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Abstract

A full-homomorphism between a pair of graphs is a vertex mapping that preserves adjacencies
and non-adjacencies. For a fixed graph H , a full H-colouring is a full-homomorphism of G
to H . A minimal H-obstruction is a graph that does not admit a full H-colouring, such that
every proper induced subgraph of G admits a full H-colouring. Feder and Hell proved that
for every graph H there is a finite number of minimal H-obstructions. We begin this work
by describing all minimal obstructions of paths. Then, we study minimal obstructions of
regular graphs to propose a description of minimal obstructions of cycles. As a consequence
of these results, we observe that for each path P and each cycle C, the number of minimal
P -obstructions and C-obstructions is O(|V (P )|2) and O(|V (C)|2), respectively. Finally, we
propose some problems regarding the largest minimal H-obstructions, and the number of
minimal H-obstructions.

Keywords: Full-homomorphism, full H-colouring, minimal obstructions, point-determining
graphs
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1 Introduction

All graphs considered in this work are finite graphs with no parallel edges. Later, we will
further restrict ourselves to loopless graphs. For standard notions of Graph Theory we refer
the reader to [2]. In particular, for n ≥ 3, we denote by Pn (resp. Cn) the path (resp. cycle)
on n vertices.

Given a pair of graphs G and H a full-homomorphism ϕ : G → H is a vertex mapping
such that for each pair of vertices x, y ∈ V (G) there is an edge xy ∈ E(G) if and only if
ϕ(x)ϕ(y) ∈ E(G). In particular, if H is a simple graph, then adjacent vertices in G are
mapped to different vertices in H . Moreover, if ϕ(x) = ϕ(y), then x and y have the same
neighbourhood in G.
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For a fixed graph H , a full H-colouring of a graph G is a full-homomorphism of G to H .
A minimal H-obstruction is a graph that does not admit a full H-colouring, such that every
proper induced subgraph of G admits a full H-colouring. We denote by obs(H) the set of
minimal H-obstructions. In [3], Feder and Hell showed that for a graph H with l vertices
with loops, and k vertices without loops, every graph in obs(H) has at most (k + 1)(l + 1)
vertices, and this bound is tight. Later, Hell and Hernández-Cruz showed that the same
tight bound holds in the case of digraphs [5]. Independently and in a more general setting,
Ball, Nešetřil, and Pultr [1], proved that for each relational structure A, there are a finite
number of minimal A-obstructions. Each of these results imply that for every simple graph
H there are finitely many minimal H-obstructions.

Proposition 1. [1, 3, 5] For each graph H there is a finite number of minimalH-obstructions.

Furthermore, Ball, Nešetřil, and Pultr [1] describe the connected minimal obstructions of
paths and cycles, i.e., the connected graphs in obs(Cn) and in obs(Pn). They also propose a
recursive description of disconnected minimal Pn-obstructions, but the “lists corresponding
to the paths do not seem to be more transparent than those in the connected case” [1]. In this
work, we propose a transparent description of the list of disconnected minimal obstructions
of paths. We do so by means of positive solutions to integer equations. In particular, we list
all minimal Pn-obstructions, and we build on this description to propose the complete list of
minimal obstructions for cycles.

The rest of this work is structured as follows. First, in Section 2 we propose a description
of minimal Pn-obstructions. In Section 3, we make some general observations regarding
minimal obstructions of regular graphs, and use these to propose a description of minimal
Cn-obstructions in terms of minimal Pn−1-obstructions. We conclude this work in Section 4
where we propose some problems that arise from observations in Section 3. The rest of this
section contains some preliminary results needed for this work.

From this point onwards, we only consider loopless finite graphs. A pair of vertices x
and y of a graph G are called false twins if N(x) = N(y), and true twins of N [x] = N [y].
In particular, every pair of true twins are adjacent, while every pair of false twins are non-
adjacent. In [6], Sumner defined a point-determining graph as a graph for which non adjacent
vertices have distinct neighbourhoods, i.e., a graph G is point-determining if it has no pair
of false twins.

Proposition 2. [6] For every non trivial point-determining graph G there is a vertex v ∈
V (G) such that G− v is point-determining. Moreover, if G is connected, then there are two
distinct vertices with that property.

A pair of graphs G and H are full-homomorphically equivalent if G admits a full H-
colouring and H admits a full G-colouring. A core in the category of graphs with full-
homomorphisms, is a graph G such that every full-homomorphism ϕ : G → G is surjective.
It is not hard to see that for each graph H , there is a unique (up to isomorphism) core G
full-homomorphically equivalent to H . In this case, we say that G is the full-core of H .

Point-determining graphs play an important role in the category of graphs with full-
homomorphisms. In particular, every core in the full-homomorphism category of graphs is a
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point-determining graph. Indeed, suppose that x and y are a pair of false twins in a graph
G. By mapping x to y, we obtain a full-homomorphism of G onto a proper subgraph, which
implies that G is not a core. Moreover, the same argument also implies that if G is a minimal
H-obstruction for some graph H , then G is a point-determining graph. Finally, it is also
straightforward to see that if G is a point-determining graph, then each full-homomorphism
whose domain is G is an injective mapping. The following statement captures two of the
facts argued in this paragraph.

Lemma 3. The following statements hold for any pair of graphs G and H:

1. If G is point-determining, then every full-homomorphism ϕ : G → H is injective.

2. If G ∈ obs(H), then G is a point-determining graph. �

2 Path obstructions

In this section, we describe the minimal P -obstructions when P is a path. We begin by
describing some particular minimal P -obstructions. To do so, we introduce the graphs A, B
and E depicted in Fig. 1.

v0

v1

v2 v3

v4

v5

Graph E

v0

v1

v2 v3

v4

v5

Graph A

v0

v1

v2 v3

v4

v5

Graph B

Figure 1: For a path P , every minimal P -obstruction that is neither a linear forest or a cycle, is one of these
graphs (Lemma 5).

Recall that for n ≥ 3, we denote by Cn (resp. by Pn) the cycle (resp. path) on n vertices;
we denote by K1 and K2 the paths on one and two vertices, respectively. In general, we
denote by Kn the complete graph on n vertices.

Lemma 4. For every positive integer n, the following statements hold:

1. The graph A is a minimal Pn-obstruction if and only if n ≥ 6.

2. The graph B is a minimal Pn-obstruction if and only if n ≥ 5.

3. The graph E is a minimal Pn-obstruction if and only if n ≥ 7.

4. The m-cycle is a minimal Pn-obstruction if and only if m = 3 or 5 ≤ m ≤ n + 1.

Proof. All graphs in statements 1–3 are point-determining graphs that do not admit a full
P -colouring for any path P . By removing v4 from A, we obtain K1 + P4 which is not full
P5-colourable, so A is not a minimal Pn obstruction for any n ≤ 5. On the other hand, any
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induced subgraph of A admits a full P6-colouring, and thus, it is a minimal Pn-obstruction for
every n ≥ 6. Similarly, B − v1 is not full P5-colourable, and E − v1 is not full P6-colourable.
Also, every proper induced subgraph of B is full P6-colourable, and every proper induced
subgraph of E is full P7-colourable. Hence, B is a minimal Pn-obstruction if and only if
n ≥ 6, and E is a minimal Pn-obstruction if and only if n ≥ 7. The last statement is clearly
true.

Now, we observe that each path minimal obstructions is either a graph mentioned in
Lemma 4 or a linear forest.

Lemma 5. Consider a path P and a graph G. If G ∈ obs(P ) then one of the following
statements holds:

1. G is a cycle.

2. G is a linear forests.

3. G is one of the graphs A, B or E.

Proof. Let n be a positive integer such that G ∈ obs(Pn). We show that if G is neither
a cycle nor a linear forest, then is one of the graphs A, B or E. First, suppose that G is
not a cycle or a forest. By minimality of G, and by the fourth statement of Lemma 4, we
know that G does not contain a triangle nor a cycle of length m with 5 ≤ m ≤ n + 1. It
is not hard to see that the path on n + 1 vertices is not full Pn-colourable, thus G does
not contain an induced path on n+ 1 vertices, and so, it does not contain a cycle of length
m ≥ n + 2. Putting both of these observations together we conclude that G contains no
triangle nor an induced cycle of length m ≥ 5. Since G is not a forest, there is an induced 4
cycle C, C = v1, v2, v3, v4, in G. By the choice of G and by second part of Lemma 3, it is the
case that G is a point-determining graph. In particular, N(v1) 6= N(v3) and N(v2) 6= N(v4)
so, without loss of generality we assume that v1 has a neighbour v0 6∈ {v2, v4} and v4 has
a neighbour v5 6∈ {v1, v3}. Since G has no triangles, the unique neighbour of v0 (resp. v5)
in C is v1 (resp. v4). Let H be the subgraph of G induced by {v0, . . . , v5}. This graph is
isomorphic to either A or B. Clearly, neither of A nor B admit a full Pn-colouring, and thus,
by minimality of G we conclude that G = H .

In the paragraph above, we showed that if G ∈ obs(G) and G is not a forest, then either
G is a cycle or G ∈ {A,B}. To conclude the proof, suppose that G is a forest but not a
linear forest. In this case, G contains an induced claw C. With a similar procedure to the
paragraph above, we extend C to an induced subgraph H of G such that H ∼= E. Since E
does not admit a full Pn-colouring, we conclude that G = H ∼= E, and the claim follows.

In order to complete the characterization of obs(Pn), we study minimal Pn-obstructions
that are linear forests. To do so, it will be convenient to introduce the following notation.
First, notice that each linear forest L admits an injective full-homomorphism to any large
enough path. So, we denote by µ(L) the minimum integer n such that there is an injective
full-homomorphism from L to Pn. Also, since linear forests are disjoint unions of paths, we
will denote a linear forests L as

∑m

k=1 Pnk
, where the k-th component of L is the path on nk

vertices. Finally, we denote by c(G) the number of connected component of a graph G.
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Lemma 6. For a linear forest L =
∑m

k=1 Pnk
the following equalities hold

µ(L) = |V (L)|+ c(L)− 1 = (m− 1) +

m
∑

k=1

nk.

Proof. One can soon notice that the rightmost equality holds. Now, notice that if ϕ : L → Pn

is an injective full-homomorphism, then the image of each components of L must be at
distance at least 2 in Pn, thus n ≥ |V (L)| + c(L) − 1 and so, µ(L) ≥ |V (L)| + c(L) − 1.
It is not hard to see that there is an injective full-homomorphism from L to the path on
|V (L)|+ c(L)− 1 vertices and hence, µ(L) = |V (L)|+ c(L)− 1.

Consider a linear forest L =
∑m

k=1 Pnk
. In order to simplify our writing, we define mi to

be the number of components of length i in L. In other words, mi is the cardinality of the
set {k ∈ {1, . . . , m} : nk = i}. In particular, mi = 0 for all i > |V (L)|.

Notice that if a linear forest L contains two isolated vertices, then L is not a point-
determining graph. Similarly, if L contains a component isomorphic to P3, then it is also
the case that L is not a point-determining graph.

Lemma 7. Let L =
∑m

k=1 Pnk
be a linear forest and n a positive integer. If L ∈ obs(Pn),

then the following statements hold:

1. m1 ≤ 1.

2. nk ∈ {1, 2, 4, 6} for all k ∈ {1, . . . , m}.

3. If nk ∈ {4, 6} for some k, then m1 = 1.

Proof. By the second part of Lemma 3, L is a point-determining graph, so by the arguments
in the paragraph above, we see that m1 ≤ 1 and there is no k ∈ {1, . . . , m} such that nk = 3.
In particular, the first item holds, and to see that the second one is also true, we show that
every component of L has at most 6 vertices but not 5. Anticipating a contradiction, suppose
that there is a path Pnk

= v1, v2, . . . , vnk
with nk = 5 or nk ≥ 7, for some k ∈ {1, . . . , m}.

In such case, L− v3 is a point-determining graph and c(L− v3) = c(L) + 1 so, by applying
Lemma 6 to L − v3 and to L, we see that µ(L − v3) = µ(L). By the choice of L, there is
a full Pn-colouring of L − v3 which, by the first part of Lemma 3, must be injective. Thus,
by definition of µ, it follows that n ≥ µ(L− v3) = µ(L), contradicting the fact that L is not
full Pn-colourable. Therefore, if L ∈ obs(Pn), then nk ∈ {1, 2, 4, 6} for every k ∈ {1, . . . , m}.

To prove the third statement, suppose that Pnk
= v1, . . . , vnk

with nk ∈ {4, 6} for some
k ∈ {1, 2, . . . , m}. In this case, c(L − v2) = c(L) + 1. So, if L − v2 is a point-determining
graph, by using a similar arguments as in the first paragraph of this proof, we conclude that
L admits a full Pn-colouring, contradicting the fact that L ∈ obs(Pn). Hence, L− v2 is not
a point-determining linear forest. Since every component of L − v2 is either a component
of L, or v1, or the path v3, . . . , vnk

, it must be the case that there is an isolated vertex in
L − v2 other than v1. Hence, L has at least one isolated vertex so m1 ≥ 1, and by the first
statement of this lemma, we conclude that m1 = 1.

5



It turns out the necessary conditions stated in Lemma 7 are almost sufficient conditions
for a linear forest L to be a minimal Pn-obstruction.

Proposition 8. Let L =
∑m

k=1 Pnk
be a linear forest and n a positive integer. In this case,

L ∈ obs(Pn) if and only if one of the following statements holds:

1. µ(L) = n+ 1 and nk = 2 for all k ∈ {1, . . . , m}.

2. µ(L) = n+ 1 and nk ∈ {1, 2, 4, 6} with m1 = 1.

3. µ(L) = n+ 2 and nk ∈ {1, 2, 4} with m1 = 1.

Proof. We prove the statement by case distinction depending on the components of L, and
we begin by considering the case when L = m2K2. One can easily observe that for every
vertex v of L, the equality µ(m2K2 − v) = µ(m2K2) − 1 holds. Also, L and L − v are
point-determining graphs so, L and L − v admit a full-homomorphism to Pn if and only if
they admit an injective full-homomorphism to Pn. Therefore, it follows from the definition
of the parameter µ that L ∈ obs(Pn) if and only if µ(L) = n + 1.

Now, suppose that µ(L) = n + 1 but L is not a disjoint union of edges. By the second
part of Lemma 7, it follows that nk ∈ {1, 2, 4, 6} for all k ∈ {1, . . . , m}, and by the choice
of L and the third part of the same lemma m1 = 1. Now, we observe that in this case
L is a minimal Pn-obstruction. Indeed, if v is an end vertex of any component of L, then
µ(L − v) = µ(L) − 1 = n, so L − v admits a full-homomorphism to Pn. Otherwise, if v
is a middle vertex of a P4 or a P6, then L − v is not point-determining: either L − v has
two isolated vertices, or L− v has a component isomorphic to P3. Thus, by identifying the
isolated vertices, or the end vertices of P3, we obtain a full-homomorphism of L− v to Pn.

If neither of the previous cases holds, then L is not a disjoint union of edges, and µ(L) ≤ n
or µ(L) ≥ n + 2. In the former case, there is an injective full-homomorphism from L to Pn

so L is not a minimal Pn-obstruction. So, if L ∈ obs(Pn), then µ(L) ≥ n+2. Anticipating a
contradiction suppose that L ∈ obs(Pn) and that µ(L) ≥ n + 3. Again, it must be the case
that L has exactly one isolated vertex v. One can soon notice that µ(L−v) = µ(L)−2 ≥ n+1,
and that L−v is a point-determining graph. Thus, by Lemma 3, we conclude that L−v does
not admit a full-homomorphism to Pn, contradicting the choice of L. Thus if L ∈ obs(Pn)
and µ(L) 6= n+1, then µ(L) = n+ 2. One can easily notice that if L contains a component
isomorphic to P6, and v is an end vertex of this component, then L−v is a point-determining
graph, and µ(L− v) = µ(L)− 1 = n− 1. So, with similar arguments as before, we conclude
that if L ∈ obs(Pn) and µ(L) = n + 2, then nk ∈ {1, 2, 4} for all k ∈ {1, . . . , m}, and
m1 = 1. We proceed to observe that if µ(L) = n+2, and nk ∈ {1, 2, 4} for all k ∈ {1, . . . , m}
with m1 = 1, then L ∈ obs(Pn). Similar as before, if v is the isolated vertex of L, then
µ(L−v) = µ(L)−2 = n, so L is full Pn-colourable. Otherwise, L−v is not point determining:
either L−v has two isolated vertices, or a component isomorphic to P3. Again, by identifying
the isolated vertices, or the end vertices of P3, we obtain a full-homomorphism from L − v
to Pn.

The claim now follows because on the one hand, in the first (resp. second and third) para-
graph we observed that the first (resp. second and third) statement is a sufficient condition
for L to be a minimal Pn-obstruction. On the other one, every linear forest L satisfies either
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the first assumption of the first paragraph, the first assumption of the second paragraph, or
the first assumption of the third paragraph. Since in each of these paragraphs we showed
that if L satisfies such assumption and L ∈ obs(Pn), then L must satisfy one of the three
items of this proposition; all together proving that if L ∈ obs(Pn), then L satisfies one of 1–3.

We are ready to propose a description of all minimal Pn-obstructions. To do so, we
introduce three sets C(n), LF (n) and O(n), which depend on n — C stands for cycles, LF
for linear forests, and O for other. We begin with the simplest,

C(n) :=
{

Cm : m = 3 or 5 ≤ m ≤ n+ 1
}

.

Secondly, we define O(n) as follows

O(n) :=



















∅ if n ≤ 4,

{B} if n = 5,

{A,B} if n = 6,

{A,B,E} if n ≥ 7.

Finally, LF (n) is the union LF1(n) ∪ LF2(n) ∪ LF3(n) where

LF1(n) :=
{

m2K2 : 3m2 = n+ 2
}

LF2(n) :=
{

K1 +m2K2 +m4P4 : 3m3 + 5m4 = n + 1
}

, and

LF3(n) :=
{

K1 +m2K2 +m4P4 +m6P6 : 3m2 + 5m4 + 7m6 = n
}

.

We describe the set obs(Pn) of minimal Pn-obstructions in terms of the previously defined
sets.

Theorem 9. For every positive integer n the set obs(Pn) of minimal Pn-obstructions is the
union C(n) ∪ LF (n) ∪O(n).

Proof. It follows from Lemma 4 that C(n)∪O(n) ⊆ obs(Pn), and from Lemma 5 that every
L ∈ obs(Pn)\(C(n)∪O(n)) is a linear forest. The fact that the set of linear forests in obs(Pn)
equals LF (n), follows from Proposition 8, and from the equality µ(L) = (m− 1) +

∑m

k=1 nk

from Lemma 6.

To conclude this section, allow us to discuss an implication of Theorem 9. Since all
paths are linear forests, any graph that admits a full-homomorphism to some path, admits
a full-homomorphism to some linear forest. On the other hand, each linear forest admits a
full-homomorphism to a large enough path. Thus, a graph G admits a full-homomorphism
to a path if and only if it admits a full-homomorphism G to a linear forest.

A blow-up of a graph G is obtained by addition of false twins — intuitively, by “blowing
up” some vertices of G to an independent set. Clearly, a graph G admits a full H-colouring
if and only if G is a blow-up of some induced subgraph of H . Since the class of linear forest
is closed under induced subgraphs, we use the observation in the paragraph above to prove
the following statement.
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Corollary 10. A graph G is a blow-up of a linear forest if and only if G is an {A,B,E}-free
graph such that all induced cycles have length four.

Proof. If G is a blow-up of some linear forest, then G admits a full Pn-colouring for some
large enough n. Thus, by Theorem 9, G is an {A,B,E}-free graph such that all induced
cycles have length four. On the other hand, notice that the number of vertices of the smallest
graph in LF (n) increases with respect to n. Thus, for every a graph G there is a positive
integer N such that G is an LF (N)-free graph. Hence, if G is an {A,B,E}-free graph such
that all induced cycles have length four, then G is an (O(N) ∪ C(N) ∪ LF (N))-free graph.
Therefore, G admits a full PN -colouring, and so, G is a blow-up of a linear forest.

3 Cycle obstructions

The aim of this section is listing all minimal obstructions of cycles. To do so, we first make
some general observations regarding minimal obstructions of regular graphs. Proposition 2
asserts that for each point-determining graph G, there is a vertex x ∈ V (G) such that G−x
is point-determining. We begin by noticing that this can be strengthen in the case of regular
graphs.

Proposition 11. Let H be a point-determining graph. If H is a regular graph, then for each
x ∈ V (H) the graph H − x is point-determining.

Proof. Proceeding by contrapositive, suppose that there is a vertex x ∈ V (H) such thatH−x
is not point-determining. Let r, s ∈ V (H − x) be a pair of false twins, i.e., rs 6∈ E(H − x)
and NH−x(r) = NH−x(s). Since H is a point-determining graph and rs 6∈ E(H), it must
be the case that xr ∈ E(H) and xs /∈ E(H) (or vice versa). Hence, dH(s) = dH−x(s) =
dH−x(r) = dH(r)− 1. Thus, H is not a regular graph.

Consider a graph H and a minimal H-obstruction G. By the second part of Lemma 3,
G is a point-determining graph so, by Proposition 2, there is a vertex v ∈ V (G) such that
G−v is a point-determining graph, and G−v admits a full H-colouring by minimality of G.
Also, by the first part of Lemma 3, each full-homomorphism from G − v to H is injective,
and thus |V (G− v)| ≤ |V (H)|. Therefore, every graph G ∈ obs(H) has at most |V (H)|+ 1
vertices. We denote by obs∗(H) the set of minimal H-obstructions on |V (H)| + 1 vertices.
The following statement was proved in [3].

Proposition 12. [3] For any graph H, there are at most two non-isomorphic graphs in
obs∗(H).

By similar arguments as in the paragraph above, we observe that if G ∈ obs∗(H), then
there is a vertex v ∈ V (G) such that G− v ∼= H .

Observation 13. Consider a pair of graphs G and H. If G ∈ obs∗(H), then there is a
vertex v ∈ V (G) such that G− v ∼= H.
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This observation about the structure of graphs in obs∗(H) can be strengthened when H
is a regular graph. Recall that a pair of vertices u and v in a graph G are true twins if
N [u] = N [v].

Lemma 14. Let H be a non-complete regular connected graph. For every graph G ∈ obs∗(H)
there is a pair of true twins u, v ∈ V (G) (u 6= v) such that G− v ∼= H and G− u ∼= H.

Proof. Since H is non-complete, it is not isomorphic to K2, and since it is connected, it
is not a matching. Thus, H is a k-regular graph with k ≥ 2. Let G ∈ obs∗(H). By
Observation 13, there is a vertex x ∈ V (G) such that G − x ∼= H . For this proof, it will
be convenient to identify H with the subgraph of G induced by V (G) − {x}. We fix x
and use this identification throughout the proof. We proceed to show x is not an isolated
vertex. Since k ≥ 2, there are no leaves in H . Consider a vertex v ∈ V (G) − {x} and let
ϕ : G− v → H be a full-homomorphism. Since H is a regular graph, by Proposition 11 we
know that H − v is point-determining so, by the first part of Lemma 3, the restriction of
ϕ to H − v is an injective mapping. Let L be the image ϕ[H − v] of H − v. In particular,
|V (L)| = |V (H)|−1. Since H is connected, either ϕ(x) has a neighbour in L or ϕ(x) belongs
to L. Recall, that L ∼= H − v and H has no leaves so, L has no isolated vertices. Therefore,
if ϕ(x) belongs to L, then ϕ(x) has a neighbour in L, and since ϕ is a full-homomorphism,
x cannot be an isolated vertex in G.

In the paragraph above, we proved that x is not an isolated vertex. Since G − x is
connected (recall that G − x = H), G is a connected graph. By Proposition 2, there is a
vertex y ∈ V (G)−{x} such that G−y is point-determining, and so, G−y ∼= H . We conclude
the proof by showing that x and y are true twins in G. Since H is a k-regular graph, for each
v ∈ V (G−y) the equality dG−y(v) = k holds. Also, since H = G−x, the equality dH−y(v) =
k− 1 holds if and only if v ∈ NH(y) = NG−x(y). On the other hand, k− 1 = d(G−y)−x(v)− 1
if and only if v ∈ NG−y(x). Clearly, (G− y)− x = H − y, and so, v ∈ NG−y(x) if and only if
v ∈ NG−x(y) for any v ∈ VG−{x,y}. Thus, NG(x)− y = NG−y(x) = NG−x(y) = NG(y)− x so
in particular, NG(x) − y = NG(y)− x. Since G is point-determining, x and y are not false
twins in G so, xy ∈ E(G), and thus x and y are true twins. The claim follows.

Proposition 12 asserts that | obs∗(H)| ≤ 2 for every graph H . Using Lemma 14, we show
that in the case of regular non-complete graphs obs∗(H) = ∅. Recall that a universal vertex
in a graph G is a vertex x ∈ V (G) adjacent to every y ∈ V (G) \ {x}.

Proposition 15. For a connected regular graph H, the following equalities hold

obs∗(H) =











{K1 +K2, K3} if H ∼= K2,

{Kn+1} if H ∼= Kn and n 6= 2,

∅ otherwise.

Proof. Since the class of complete multipartite graphs is the class of K1+K2-free graphs, the
class of full Kn-colourable graphs is the class of {K1+K2, Kn+1}-free graphs. Now, suppose
that H is a regular non-complete connected graph and let G ∈ obs∗(H). By Lemma 14,
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there is a pair of true twins x and y of G, such that G − x ∼= H ∼= G − y. Again, we
identify H with the subgraph of G induced by V (G)−x. Notice that if x and y are universal
vertices in G, then y is a universal vertex in H and so, H is a complete graph (because H is
a regular graph). So, by the choice of H , there is a vertex z ∈ V (G) such that zy /∈ E(G),
and since x and y are true twins, it is the case that xz /∈ E(G). By the choice of G,
there is a full-homomorphism ϕ : G − z → H . Let k be the degree of every vertex in H so,
dG(x) = dG(y) = k + 1. Since zx, zy 6∈ E(G), it is the case that dG−z(x) = dG−z(y) = k + 1.
But dH(ϕ(y)) = k so, there are two vertices r, s ∈ NG−z(y) such that ϕ(r) = ϕ(s). Hence
NG−z(r) = NG−z(s) and rs 6∈ E(G− z). Recall that H = G− x, so NH−z(r) = NH−z(s) and
rs 6∈ E(G− z), i.e., r and s are false twins in H − z. Thus, H − z is not a point-determining
graph which contradicts the fact that H is a regular graph and Proposition 11.

The following statement shows that if a graph G is a minimal H-obstruction of size
|V (H)| + 1, then every minimal G-obstruction F is either a minimal H-obstruction or
|V (F )| = |V (G)| + 1. Conversely, every minimal H-obstruction other than G is a mini-
mal G-obstruction.

Theorem 16. Consider a pair of graphs H and G. If G ∈ obs∗(H), then

obs(G) = (obs(H) \ {G}) ∪ obs∗(G).

Proof. To simplify notation, let S = (obs(H) \ {G}) ∪ obs∗(G). We need to prove that a
graph F belongs to S if and only if it belongs to obs(G). Clearly, every graph in S has
at most |V (G)| + 1 vertices and so does every graph in obs(G). Moreover, by definition of
obs∗(G), a graph on |V (G)|+1 vertices belongs to obs(G) if and only if it belongs to obs∗(G).
Thus, it suffices to prove the claim for graphs on at most |V (G)| vertices, and by the second
part of Lemma 3 it suffices to consider point-determining graphs. We begin by showing that
the claim holds for graphs on at most |V (G)| − 1 vertices (recall that |V (G)| = |V (H)|+1).
Since G is a minimal H-obstruction, every proper induced subgraph of G admits a full-
homomorphism to H . Thus, any graph that admits a non-surjective full homomorphism
to G, admits a full H-colouring. Hence, a graph on at most |V (G)| − 1 vertices admits a
full G-colouring if and only if it admits a full H-colouring. Therefore a graph on at most
|V (G)− 1| vertices belongs to S if and only if it belongs to obs(G).

Finally, consider a point-determining graph L on |V (G)| vertices. By the first part of
Lemma 3, every full-homomorphism from L to G is injective, thus L admits a full G-colouring
if and only if L ∼= G. By similar arguments as in the paragraph above, we conclude that L
is a minimal G-obstruction if and only if it is a minimal H-obstruction.

Corollary 17. Consider a pair of graphs H1 and H2. If obs∗(H1) ∩ obs∗(H2) 6= ∅, then
H1

∼= H2.

Proof. One soon notices that if obs∗(H) 6= ∅, then H is a point-determining graph. Let
G ∈ obs∗(H1) ∩ obs∗(H2). By applying Theorem 16 to H1 and G, and to H2 and G, we
conclude that obs(H1) = obs(H2). Thus, H1 admits a full-homomorphism to H2, and vice
versa. Since H1 andH2 are point-determining graphs, both full-homomorphisms are injective
(Lemma 3), and thus, they are isomorphisms.
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In other words, Corollary 17 asserts that if a graph G is a minimal obstruction of two
smaller graphs, then these graphs are isomorphic. Another immediate implication of Theo-
rem 16 is the following one.

Corollary 18. Consider a pair of graphs H and G. If G ∈ obs∗(H), then there is at most
one minimal G-obstruction on |V (G)| vertices.

Recall that the orbit of a vertex y ∈ V (G) is the set of vertices x ∈ V (G) such that
there is an automorphism ϕ : G → G such that ϕ(y) = x. We denote the orbit of y by o(y).
Clearly, if x ∈ o(y), then G− x ∼= G− y.

Proposition 19. Let H be a non-complete connected vertex transitive graph. For any vertex
x of H, the following equalities hold

obs(H) = obs(H − x) \ {H} and obs(H − x) = obs(H) ∪ {H}

Proof. Since H is vertex transitive, H − x ∼= H − y for any pair of vertices x, y ∈ V (H). So,
every proper induced subgraph of H admits a full (H − x)-colouring. Since H is a point-
determining graph, H is not full (H − x)-colourable, so, H ∈ obs∗(H − x). By Theorem 16,
we conclude that obs(H) = obs(H−x) \ {H}∪ obs∗(H) so, using Proposition 15 we observe
that obs∗(H) = ∅.

By applying Proposition 19 to cycles, we see that minimal Cn-obstructions are determined
by minimal Pn−1-obstructions, and vice versa.

Corollary 20. For every positive integer n, n ≥ 5, the following equalities hold

obs(Cn) = obs(Pn−1) \ {Cn} and obs(Pn−1) = obs(Cn) ∪ {Cn}.

The following characterization of minimal Cn-obstructions follows from Corollary 20
and Theorem 9.

Theorem 21. For every positive integer n the set obs(Cn) of minimal Cn-obstructions is
the union C(n− 2) ∪ LF (n− 1) ∪ O(n− 1).

Proof. By Corollary 20, the equality obs(Cn) = obs(Pn−1) \ {Cn} holds. By Theorem 9, the
set of minimal Pn-obstructions is C(n− 1)∪LF (n− 1)∪O(n− 1). Finally, by definition of
C(n), the equality C(n− 2) = C(n− 1) \ {Cn} holds, and so, the claim follows.

Corollary 22. A graph G is full C5-colourable if and only if it is {C3, K1 + P4, 2K2}-free.

To conclude this section, we list all Cn-minimal obstructions for small integers n in
Table 1.
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n Linear forests in obs(Cn) Other minimal Cn-obstructions
5 K1 + P4 and 2K2 C3

6 K1 + P4 and K1 + 2K2 C3, C5 and B
7 K1 + 2K2 C3, C5, C6, A and B
8 3K2, K1 +K2 + P4, and K1 + P6 C3, C5, C6, C7, A, B and E
9 K1 + 3K2 and K1 +K2 + P4 C3, C5, C6, C8, A, B and E
10 K1 + 2P4 and K1 + 3K2 C3, C5, C6, C7, C8, C9, A, B and E

Table 1: To the left, the number of vertices in a cycle C. In the middle, the linear forests which are minimal
C-obstructions. To the right, all minimal C-obstructions that are not linear forests.

4 Conclusions

Proposition 15 asserts that for a connected regular graph H the set obs∗(H) is empty
if and only if H is not a complete graph. Also, if H is obtained from a vertex-transitive
graph G by removing one vertex, then G ∈ obs∗(H) so, obs∗(H) 6= ∅. A possible interesting
question to investigate is the following one.

Question. Is there a meaningful characterization of those graphs H for which obs∗(H) 6= ∅?

Theorem 16 suggests that there is a close relation between a graphH such that obs∗(H) 6=
∅ and a graph G ∈ obs∗(H). For this reason, we believe that another possible interesting
problem is determining which graphs G are a minimal H-obstruction of size |V (H)|+ 1 for
some graph H .

Question. For which graphs G there is a graph H such that G is a minimal H-obstruction
in obs∗(H)?

We briefly observe that this problem is not interesting if we remove the restriction that
|V (G)| = |V (H)|+ 1.

Proposition 23. For every point-determining connected graph G, there is a graph H such
that G is a minimal H-obstruction.

Proof. Let G be as in the hypothesis, and for each vertex x ∈ V (G) let Hx be the full-core of
G− x. Finally, let H be the disjoint union

∑

x∈V (G)Hx. Since every connected component

of H has less than |V (G)| vertices, there is no injective full-homomorphism from G to H .
By the first part of Lemma 3, and since G is a point-determining graph, we conclude that G
does not admit a full H-colouring. It is not hard to see that, by the choice of Hx, for every
vertex x ∈ V (G) there is a full H-colouring of G− x. The claim follows.

The following observation shows that, in the case of regular graphs, Section 4 has a
meaningful answer.

Proposition 24. Let G be a point-determining regular graph. There is a graph H such that
G ∈ obs∗(H) if and only if G is a vertex transitive graph.
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Proof. By Proposition 11, if G is a point-determining regular graph, then for each x ∈ V (G)
the induced subgraph G− x is point-determining. So, if |V (G)| = |V (H)|+ 1, then by the
first part of Lemma 3, for each x ∈ V (G), every full-homomorphism from G − x to H is
an isomorphism. Hence, all vertex-deleted subgraphs of G are isomorphic, and thus G is a
vertex transitive graph.

As a final implication of this work, notice that for every positive integer n, there are at
most three graphs in O(n), at most n − 2 graphs in C(n), and as many graphs in LF (n)
as non-negative solutions to the diophantine equations, 3x = n + 2, 3x + 5y = n + 1, and
3x+5y+7z = n. It is not hard to observe that there are O(nk−1) solutions to each of these
equations, where k is the number of variables in the corresponding equation. Hence, there
are quadratically many linear forests in LF (n). These arguments, together with Theorems 9
and 21, imply that the following statement holds.

Corollary 25. For every positive integer n, there are quadratically many (with respect to n)
minimal Pn-obstructions and minimal Cn-obstructions.

The well-defined and simple structure of paths and cycles might be the reason why their
number of minimal obstructions is polynomially bounded (with respect to n). Nonetheless,
having made this observation, it is natural to ask about the cardinality of obs(H) in terms
of the cardinality of the vertex set of H .

Question. Is there a polynomial p(n) such that the size of obs(H) is bounded by p(|V (H)|)
for each graph H?
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