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Abstract. Richard Stanley defined the chromatic symmetric function XG of a graph G and asked
whether there are non-isomorphic trees T and U with XT = XU . We study variants of the chro-
matic symmetric function for rooted graphs, where we require the root vertex to either use or avoid
a specified color. We present combinatorial identities and recursions satisfied by these rooted chro-
matic polynomials, explain their relation to pointed chromatic functions and rooted U -polynomials,
and prove three main theorems. First, for all non-empty connected graphs G, Stanley’s polynomial
XG(x1, . . . , xN ) is irreducible in Q[x1, . . . , xN ] for all large enough N . The same result holds for
our rooted variant where the root node must avoid a specified color. We prove irreducibility by a
novel combinatorial application of Eisenstein’s Criterion. Second, we prove the rooted version of
Stanley’s Conjecture: two rooted trees are isomorphic as rooted graphs if and only if their rooted
chromatic polynomials are equal. In fact, we prove that a one-variable specialization of the rooted
chromatic polynomial (obtained by setting x0 = x1 = q, x2 = x3 = 1, and xn = 0 for n > 3) already
distinguishes rooted trees. Third, we answer a question of Pawlowski by providing a combinatorial
interpretation of the monomial expansion of pointed chromatic functions.

1. Introduction

1.1. Stanley’s Chromatic Symmetric Functions. Let G be a simple graph with vertex set
V (G) and edge set E(G). A proper coloring of G is a coloring of the vertices in V (G) such that
adjacent vertices receive different colors. The classical chromatic polynomial χG counts proper
colorings: χG(k) is the number of proper colorings of G when there are k available colors. In
1995, Richard Stanley [34] defined the chromatic symmetric function XG, which is a multivariable
generalization of χG. For fixed N ≥ 1, XG(x1, x2, . . . , xN ) is a weighted sum of proper colorings of
G using colors in {1, 2, . . . , N}. A proper coloring that colors ei vertices with color i (for 1 ≤ i ≤ N)
contributes the monomial xe11 x

e2
2 · · ·x

eN
N to XG(x1, . . . , xN ). Each XG(x1, . . . , xN ) is a symmetric

polynomial in N variables. Taking a formal limit as N goes to infinity produces the chromatic
symmetric function XG using variables (xn : n > 0). We recover χG(k) from XG by setting xi = 1
for 1 ≤ i ≤ k and xi = 0 for all i > k.

The chromatic symmetric functions have been a rich source of combinatorial insights and prob-
lems. The influential paper [34, pg. 170] contains an open problem that we call Stanley’s Chromatic
Conjecture for Trees:

Conjecture 1. Trees T and U are isomorphic (as graphs) if and only if XT = XU .

This conjecture remains unsettled, although progress has been made in several directions. Using
computer investigations, Heil and Ji [22] verified that the conjecture is true for all trees with at
most 29 vertices. The conjecture also holds for certain restricted classes of trees: spiders [27],
2-spiders [24], caterpillars [5, 25, 28], trivially perfect graphs [35], and trees with diameter at most
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five [3]; see also the families described in [2, Cor. 8.7]. It is also known that features of a tree such
as its degree sequence, number of leaves, and path sequence are recoverable from XT [27].

In this paper, we study some variations of Stanley’s chromatic symmetric function for rooted
graphs. Given a rooted graph G∗, we define polynomials Xi(G∗) and X6=i(G∗) that are weighted
sums of certain proper colorings of G∗. For 0 ≤ i ≤ N , Xi(G∗;x0, x1, . . . , xN ) is a sum over proper
colorings of G∗ using available colors {0, 1, . . . , N} such that the root vertex of G must receive color
i. The polynomial X6=i(G∗;x0, x1, . . . , xN ) is defined similarly, but we sum over proper colorings
where the root cannot receive color i. We can view X0(G∗;x0, . . . , xN ) as a polynomial in x0 where
the coefficient of each xk0 is a symmetric polynomial in x1, . . . , xN .

We prove various combinatorial and algebraic properties of these polynomials, including: a
recursion for rooted trees (Proposition 6), a deletion-contraction recursion for rooted graphs (The-
orem 19), combinatorial interpretations of the coefficients of xk0 in X0(G∗) and X6=0(G∗) (Propo-
sition 22), and a formula for the power-sum expansion of X0(G∗) (Proposition 29). Using the
power-sum formula, we show how to obtain X0(G∗) as an algebraic transformation of pointed chro-
matic functions or of the rooted U -polynomials (Sections 5.1 and 5.2). Theorem 17 proves this
rooted version of Stanley’s Conjecture: for all N ≥ 3, two rooted trees T∗ and U∗ are isomorphic
(as rooted graphs) if and only if X0(T∗;x0, . . . , xN ) = X0(U∗;x0, . . . , xN ). In fact, we prove that the
one-variable specialization f0(G∗) = X0(G∗; q, q, 1, 1) already suffices to distinguish rooted trees.

1.2. Irreducibility Properties. Irreducibility and unique factorization are crucial algebraic tools
in our proof that X0(G∗) and its specialization f0(G∗) distinguish rooted trees. This proof strategy
is also used in prior literature such as [4, Theorem 9], [20, Theorem 2.8], and [21, Theorem 1.3].
Suppose a graph G has connected components C1, C2, . . . , Ck. Then XG = XC1XC2 · · ·XCk

, since
each proper coloring of G arises by independently choosing a proper coloring for each component.
This means that the chromatic symmetric polynomial for a disconnected graph is always reducible.
A natural question is whether XG must be irreducible when G is a connected graph or a tree.

To formulate precise questions about irreducibility, we must specify the ring in which the factor-
ization occurs. The polynomial XG(x1, . . . , xN ) belongs to the polynomial ring Q[x1, . . . , xN ] and
also to the subring ΛN of symmetric polynomials in N variables. Both rings are unique factorization
domains (UFDs); in fact, we can view ΛN as a polynomial ring Q[e1, . . . , eN ] in the algebraically
independent elementary symmetric polynomials e1, . . . , eN .

Using work of Cho and van Willigenburg [10], Tsujie [35, Cor. 2.4] proved that for any non-
empty connected graph G and all N ≥ |V (G)|, XG(x1, . . . , xN ) is irreducible in the ring ΛN . In
Theorem 7, we prove that for any non-empty connected graph G, XG(x1, . . . , xN ) is irreducible in
Q[x1, . . . , xN ] for large enough N . Note that irreducibility in Q[x1, . . . , xN ] is a stronger condition
than irreducibility in ΛN , since there are more potential irreducible factors in the full polynomial
ring compared to its subring ΛN . For example, eN = x1x2 · · ·xN is irreducible in ΛN but reducible
in Q[x1, . . . , xN ].

The core of our proof (Lemma 12) invokes Eisenstein’s Criterion to show the specialization
XG(q, . . . , q, 1, . . . , 1) is irreducible in Q[q] if we set k variables equal to q and p variables equal to
1 for certain choices of k and p. The proof succeeds because of a surprising affinity between the
hypotheses of Eisenstein’s Criterion and the enumerative properties of proper colorings. Theorem 14
uses the same ideas to prove that for connected bipartite rooted graphs G∗, the specialization
X6=0(G∗; q, q, 1, 1, . . . , 1) is irreducible in Q[q] if we set p variables equal to 1 for certain primes p.
When G∗ is a rooted tree, irreducibility holds for all primes p.

1.3. Variations of Chromatic Symmetric Polynomials. Stanley’s chromatic symmetric func-
tion is just one member of an entire ecosystem of polynomials and algebraic constructs based on
graph colorings. Some important variations of XG include the noncommutative chromatic sym-
metric functions of Gebhard and Sagan [19], the chromatic quasisymmetric functions of Shareshian
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and Wachs [32], the strict order quasisymmetric functions of Hasebe and Tsujie [21], the pointed
chromatic functions of Pawlowski [31], and the rooted U -polynomials of Aliste-Prieto, de Mier, and
Zamora [4], among many others (see Section 5 for a fuller discussion). Our polynomials X0(G∗)
are related to the pointed chromatic functions by an algebraic transformation on ΛN , as explained
in Proposition 30. In turn, the pointed chromatic functions are specializations of the rooted U -
polynomials, which are known to distinguish rooted trees [4, Theorem 9]. This leads to a second,
algebraic proof that X0(G∗;x0, . . . , xN ) distinguishes rooted trees for N ≥ |V (G)|.

Previous authors have found other multivariate polynomial invariants characterizing isomor-
phism classes of rooted trees. In addition to the rooted U -polynomials already mentioned, each of
the following is a complete invariant for rooted trees: the two-variable Chaudhary–Gordon polyno-
mials [8], the polychromates of Bollobás and Riordan [7], the greedoid polynomials of Gordon and
McMahon [20], and the strict order quasisymmetric functions of Hasebe and Tsujie [21]. Related
results appear in [15, 17, 19, 32].

Remark 2. The polynomials ZvG(c) defined by Heil and Ji [22, Def. 3.1] are essentially the same as
our polynomials Xc(G

v
∗). However, given Heil and Ji’s algorithmic focus, there is no overlap with

this paper beyond the decomposition of (14). We note for completeness that in [22], Lemma 3 and
the following corollaries must be modified slightly to account for the fact that the Fi are symmetric
functions in all the variables except xc.

Given the many prior variants of Stanley’s chromatic symmetric functions, we should highlight
some particular benefits of the polynomials X0(G∗) studied here. First, X0(G∗) is combinatorially
very close to the original polynomial XG — the only new restriction on proper colorings is that
the root vertex must get color 0. Second, we can easily recover XG from X0(G∗) by the symmetry
operations specified in (8) and (9). Proposition 23 shows that being able to solve the reverse
problem (recovering all X0(G∗) that arise from XG by varying the choice of root) is equivalent to
Stanley’s Conjecture 1. Third, the deletion-contraction recursion for X0(G∗), which is not directly
available for XG, lets us efficiently compute both polynomials. Fourth, the simple restriction on
the color of the root vertex suffices to yield a short proof of the desired invariance property for
rooted trees. The proof makes compelling contact between a combinatorial property (isomorphism
of rooted trees) and an algebraic property (unique factorization of polynomials into irreducible
factors). Fifth, the specialized version X0(G∗; q, q, 1, 1) discards a huge amount of information on
colorings but still suffices to distinguish rooted trees.

Some previously studied relatives of XG achieve similar invariance results by incorporating ad-
ditional information in other ways. The Gebhard–Sagan noncommutative chromatic symmetric
function [19] remembers which vertices receive which colors by using non-commuting variables.
The Shareshian–Wachs chromatic quasisymmetric polynomial [32] uses a new variable t to record
an ascent statistic for each proper coloring. Hasebe and Tsujie [21] adopt a related approach where
only proper colorings satisfying additional ascent constraints are allowed. Section 5 contains a more
detailed discussion.

1.4. Outline of Paper. The outline of this paper is as follows. Section 2 introduces needed defi-
nitions, notation, and background. Section 3 proves our irreducibility theorems for XG, X6=0(G∗),
and their specializations. These results are used to prove our analogue of Stanley’s Conjecture
(Theorem 17). Section 4 proves the deletion-contraction recursion for X0(G∗) and describes the
coefficients of X0(G∗) in various bases. Section 5 examines some previously studied variants of
Stanley’s chromatic symmetric function and their relations to the rooted chromatic polynomials.

2. Definitions and Background

2.1. Definition of Polynomials for Rooted Graphs. The notation G = (V (G), E(G)) means
G is a simple graph with vertex set V (G) and edge set E(G). A rooted graph G∗ is a nonempty
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graph G with one vertex r of G marked as the root. When we need to display the root, we write
Gr∗ for the rooted graph obtained from G with root vertex r. The color set is C = {0, 1, 2, . . . , N},
where N is a fixed positive integer. A proper coloring of G is a function κ : V (G) → C such that
for all v, w ∈ V (G), if an edge joins v to w, then κ(v) 6= κ(w). Let col(G) be the set of proper
colorings of G. For each color i ∈ C, let coli(G∗) be the set of proper colorings of G where κ(r) = i
(the root gets color i). Let col6=i(G∗) be the set of proper colorings of G where κ(r) 6= i (the root’s
color is not i). The weight of a coloring κ : V (G)→ C is wt(κ) =

∏
v∈V (G) xκ(v).

We now introduce several versions of chromatic polynomials for a rooted graph G∗. These are
polynomials in Q[x0, x1, . . . , xN ] with nonnegative integer coefficients. Define:

X(G∗;x0, x1, . . . , xN ) =
∑

κ∈col(G)

wt(κ);(1)

Xi(G∗;x0, x1, . . . , xN ) =
∑

κ∈coli(G∗)

wt(κ);(2)

X6=i(G∗;x0, x1, . . . , xN ) =
∑

κ∈col 6=i(G∗)

wt(κ).(3)

We omit the variable list from the notation when it is clear from context. NoteX(G∗;x0, x1, . . . , xN )
is Stanley’s chromatic symmetric function XG specialized to the given variable set. This polynomial
is symmetric in x0, . . . , xN , since applying any permutation of the color set C to a proper coloring
of G produces another proper coloring of G. For each i ∈ C, Xi(G∗) and X6=i(G∗) are polynomials
in x0, . . . , xN that are symmetric in all the variables except xi. This follows since any permutation
of {0, 1, . . . , N} fixing i induces bijections from coli(G∗) to itself and from col 6=i(G∗) to itself. We
refer to X0(G∗) as the rooted chromatic polynomial for G∗ in N + 1 variables.

Let ΛN be the ring of symmetric polynomials in variables x1, . . . , xN , let Λ be the ring of sym-
metric functions in (xk : k ≥ 1), and let z = x0. Then X0(G∗) and X6=0(G∗) are in ΛN [z], the
ring of polynomials in z with coefficients in ΛN . The constant coefficient of X6=0(G∗), namely the
specialization upon setting z = 0, is Stanley’s chromatic symmetric polynomial XG in variables
x1, . . . , xN . Thus, we may view X6=0(G∗) as a refinement of the original chromatic symmetric func-

tion. The coefficient of zk in X0(G∗) is a symmetric polynomial in x1, . . . , xN that is homogeneous
of degree n− k, where n = |V (G∗)|. For all N and M with N > M , setting the last N −M vari-
ables equal to 0 in X0(G∗;x0, x1, . . . , xN ) produces X0(G∗;x0, x1, . . . , xM ). Because of this stability
property, we can let the number of variables tend to infinity to obtain a version of X0(G∗) in Λ[z].
Informally, this polynomial in z (with symmetric function coefficients) contains exactly the same
information as each finite version X0(G∗;x0, x1, . . . , xN ) where N ≥ |V (G∗)|. Similar comments
are true for X6=0(G∗).

Example 3. Suppose N = 2 and G is a three-vertex path. Then

(4) X (x0, x1, x2) = 6x0x1x2 + x20x1 + x20x2 + x0x
2
1 + x21x2 + x0x

2
2 + x1x

2
2.

For instance, the coefficient of x0x
2
2 is 1 because there is only 1 proper coloring of G using color 2

twice and color 0 once (the middle vertex must receive color 0). Now consider rooted graphs with
underlying graph G. Choosing the root to be either endpoint of the path gives

X0( ) = X0( ) = 2x0x1x2 + x20x1 + x20x2;(5)

X6=0( ) = X6=0( ) = 4x0x1x2 + x0x
2
1 + x0x

2
2 + x21x2 + x1x

2
2.(6)

On the other hand, choosing the root to be the middle vertex yields

(7) X0( ) = x0(2x1x2 + x21 + x22); X6=0( ) = 4x0x1x2 + x20x1 + x20x2 + x1x
2
2 + x21x2.
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2.2. Basic Identities. We now establish some identities relating the various chromatic polynomi-
als just defined. Let S be the symmetric group on the color set C = {0, 1, . . . , N}. For i 6= j in C,
(i, j) is the transposition in S that interchanges i and j. The group S acts on Q[x0, x1, . . . , xN ] by
permuting the variables: σ •xi = xσ(i) for σ ∈ S and i ∈ C. The following identities follow directly
from the definitions and symmetry arguments.

Proposition 4. For all rooted graphs G∗ and all k ∈ {0, 1, . . . , N},

X(G∗) =

N∑
i=0

Xi(G∗) = Xk(G∗) +X6=k(G∗);(8)

Xk(G∗) = (0, k) •X0(G∗);(9)

X6=0(G∗) =
N∑
i=1

Xi(G∗) =
N∑
i=1

(0, i) •X0(G∗);(10)

X6=k(G∗) = (0, k) •X6=0(G∗).(11)

Hence, X(G∗) = XG, X6=0(G∗), Xk(G∗), and X6=k(G∗) can all be recovered from the rooted chro-
matic polynomial X0(G∗).

A more interesting fact is that knowledge of X6=0(G∗) is also sufficient to recover X0(G∗) and all
other polynomials listed here. Given X6=0(G∗), we first obtain X6=i(G∗) = (0, i) •X6=0(G∗) for all i
between 1 and N . The key observation is:

N∑
i=0

X6=i(G∗) =
N∑
i=0

N∑
j=0
j 6=i

Xj(G∗) =
N∑
j=0

Xj(G∗)
N∑
i=0
i 6=j

1 = N
N∑
j=0

Xj(G∗) = NX(G∗).

So X(G∗) = 1
N

∑N
i=0(0, i) •X6=0(G∗). Combining this with (8) yields the following.

Proposition 5. For any rooted graph G∗,

(12) X0(G∗) =

∑N
i=0(0, i) •X6=0(G∗)

N
−X6=0(G∗).

2.3. Isomorphisms of Graphs and Rooted Graphs. Given graphs G = (V (G), E(G)) and
H = (V (H), E(H)), a graph isomorphism from G to H is a bijection f : V (G)→ V (H) such that
for all v, w ∈ V (G), E(G) contains the edge joining v and w if and only if E(H) contains the edge
joining f(v) and f(w). Suppose G∗ is a rooted graph with underlying graph G and root r, and H∗
is a rooted graph with underlying graph H and root s. A rooted graph isomorphism from G∗ to
H∗ is a graph isomorphism f : V (G) → V (H) with f(r) = s. When such an isomorphism exists,
we write G∗ ∼= H∗.

The concept of rooted graph isomorphism for rooted trees is closely related to the following
recursive construction of rooted trees. For any rooted tree T∗, either T∗ is a one-vertex graph
consisting of the root r and no edges; or T∗ has root r joined by edges to the roots of c ≥ 1
principal subtrees T1∗, T2∗, . . . , Tc∗. Note that these subtrees can be listed in any order (in contrast
to subtrees in an ordered plane tree, where the order of the children of the root is significant).
Studying isomorphism classes of rooted trees amounts to erasing all vertex labels. Upon doing this,
the principal subtrees of T∗ form a multiset of isomorphism classes of rooted trees, in which order
does not matter, but repetitions are allowed.

It is routine to check the following criterion for two rooted trees T∗ and U∗ (with more than one
vertex) to be isomorphic as rooted graphs. If T∗ has principal subtrees T1∗, . . . , Tc∗ and U∗ has
principal subtrees U1∗, . . . , Ud∗, then:

(13) T∗ ∼= U∗ if and only if c = d and (after suitable reordering) Ti∗ ∼= Ui∗ for 1 ≤ i ≤ c.
5



2.4. Recursion for X0(T∗). There is a simple recursion for computing X0(T∗) when T∗ is a rooted
tree. A version of this result was used for computational purposes by Heil and Ji [22] (cf. [7, 8]).

Proposition 6. Let T∗ be a rooted tree with principal rooted subtrees T1∗, T2∗, . . . , Tc∗. Then

(14) X0(T∗) = x0

c∏
j=1

X6=0(Tj∗).

Proof. The left side X0(T∗) is the weighted sum of all colorings in col0(T∗). We build each such
coloring uniquely by making the following choices. First, color the root vertex r with color 0; the
weight monomial for this step is x0. Next, color the subtree T1∗ using any coloring in col6=0(T1∗);
color the subtree T2∗ using any coloring in col 6=0(T2∗); and so on. The colorings of the subtrees
can be chosen independently since the subtrees do not connect with each other except through the
root r. The recursion (14) follows by the Product Rule for Weighted Sets [26, §5.8]. �

3. Irreducibility Results

The main result proved in this section is the following theorem.

Theorem 7. For any non-empty connected graph G, there is an integer M such that for all N ≥M :
(a) XG(x1, . . . , xN ) is irreducible in Q[x1, . . . , xN ].
(b) X6=0(G∗;x0, . . . , xN ) is irreducible in Q[x0, . . . , xN ].

The proof relies on the following properties of the one-variable chromatic function χG, where
χG(k) is the number of proper colorings of G using k available colors. First, for any non-empty
graph G, χG is a polynomial in Z[x] that is divisible by x, and χG(k) > 0 for some positive integer
k. The least such k is the chromatic number of G. Second, for any non-empty connected graph
G, the coefficient c1 of x in χG is nonzero [37, Exc. 5.3.10, pg. 230]. The proof of Theorem 7 will
show that we may take M in that theorem to be k+ p, where k is the chromatic number of G and
p is the least prime such that p does not divide χG(k) and p does not divide c1. If G is an n-vertex
tree with n > 1, then χG = x(x − 1)n−1 = xn + · · · + (−1)n−1x, and G has chromatic number 2.
So when G is a tree, we may take k = 2 and p = 3 to see that Theorem 7 holds with M = 5.

3.1. Background on Irreducibility and Specializations. This subsection collects some basic
facts about irreducible polynomials needed for our proof of Theorem 7. The key tool used is
Eisenstein’s Criterion for irreducibility of polynomials in Q[q].

Theorem 8. (Eisenstein’s Criterion [23, Thm. 6.15]) Suppose f = a0+a1q+a2q
2+· · ·+anqn ∈ Q[q]

is a polynomial of degree n > 0 with integer coefficients, p is a prime, p divides ak for 0 ≤ k < n,
p does not divide an, and p2 does not divide a0. Then f is irreducible in the polynomial ring Q[q].

Lemma 9. Suppose f ∈ Q[x0, . . . , xN ] is reducible and homogeneous of degree n > 0. Then f has a
proper factorization f = gh for some non-constant homogeneous polynomials g, h ∈ Q[x0, . . . , xN ].

Proof. By reducibility of f , there is a proper factorization f = gh where g, h ∈ Q[x0, . . . , xN ]

are not initially known to be homogeneous. Write g = g(d) + (lower terms), where d > 0 is the

maximum degree of any monomial in g, and g(d) is the sum of all monomials in g having degree
d. Write h = h(e) + (lower terms), where e > 0 is the maximum degree of any monomial in h, and

h(e) is the sum of all monomials in h having degree e. Then gh = g(d)h(e) + (lower terms). Since

Q[x0, . . . , xN ] is an integral domain, the product g(d)h(e) (which is homogeneous of degree d + e)

cannot be zero. Since f is homogeneous, this product must equal f . So f = g(d)h(e), where both
factors are homogeneous and non-constant. �

Write f |xi=0 for the specialization of a polynomial f obtained by setting variable xi equal to 0.
6



Lemma 10. Suppose f ∈ Q[x0, x1, . . . , xN ] is homogeneous of degree n > 0. If f |xi=0 is an
irreducible polynomial in Q[x0, x1, . . . , x̂i, . . . xN ] (where x̂i means variable xi is omitted), then f
is irreducible in Q[x0, x1, . . . , xN ].

Proof. Let f ′ = f |xi=0. To get a contradiction, assume f ′ is irreducible (hence non-constant and
nonzero) and f is reducible. By the previous lemma, there is a proper factorization f = gh where
g and h are both homogeneous of positive degree. Letting g′ = g|xi=0 and h′ = h|xi=0, we have
f ′ = g′h′. Since f ′ 6= 0, g′ and h′ are nonzero. It follows at once that g′ and h′ are homogeneous
of positive degree. Thus f ′ = g′h′ is a proper factorization of f ′, which is a contradiction. �

Homogeneity of f is needed in Lemma 10. For example, f = x(y + 1) is reducible in Q[x, y], yet
f |y=0 = x is irreducible in Q[x].

Lemma 11. Let G∗ be a nonempty rooted graph with chromatic number k. For all N ≥M ≥ k:

(1) If XG(x1, . . . , xM ) is irreducible, then X6=0(G∗;x0, x1, . . . , xM ) is irreducible.
(2) If XG(x1, . . . , xM ) is irreducible, then XG(x1, . . . , xN ) is irreducible.
(3) If X6=0(G∗;x0, . . . , xM ) is irreducible, then X6=0(G∗;x0, . . . , xN ) is irreducible.

Proof. All polynomials mentioned in the lemma are homogeneous of degree |V (G∗)| and are nonzero,
since the hypothesis N ≥ M ≥ k ensures there are enough colors to produce at least one color-
ing satisfying all needed conditions. Part (1) follows from Lemma 10, since setting x0 = 0 in
X6=0(G∗;x0, . . . , xM ) produces XG(x1, . . . , xM ). Parts (2) and (3) follow from Lemma 10 by setting
xN = 0, . . . , xM+1 = 0 one at a time. �

3.2. Proof of Theorem 7. This section proves Theorem 7(a). Theorem 7(b) follows at once from
part (a) and Lemma 11. We begin with a lemma containing the core idea of the proof.

Lemma 12. Let G be a non-empty connected graph with chromatic polynomial χG ∈ Z[x] and
chromatic number k. Let p be a prime such that p does not divide χG(k) and p does not divide
the coefficient of x in χG. Let M = k + p. Let f ∈ Q[q] be the specialization of XG(x1, . . . , xM )
obtained by setting x1 = x2 = · · · = xk = q and xk+1 = xk+1 = · · · = xk+p = 1. Then f is
irreducible in Q[q].

Proof. Let n = |V (G)|; we may assume n > 1. Note that f =
∑n

j=0 ajq
j , where aj ∈ Z is the

number of proper colorings κ : V (G) → {1, 2, . . . ,M} such that the number of v with κ(v) ∈
{1, 2, . . . , k} is j. This holds since specializing XG to f replaces the weight monomial xe11 x

e2
2 · · ·x

eM
M

of each proper coloring κ by qe1+e2+···+ek , where e1 + · · ·+ek is the number of vertices that κ colors
using 1, 2, . . . , k.

The following counting argument leads to a formula for aj , where 0 ≤ j ≤ n is fixed. To build a
proper coloring counted by aj , first choose a j-element subset S of V (G), and let Sc = {v ∈ V (G) :
v 6∈ S}. Let G|S be the graph with vertex set S and edge set consisting of all edges in G joining
two vertices in S, and define G|Sc similarly. Choose a proper coloring κ1 of G|S using color set
{1, 2, . . . , k}, and choose a proper coloring κ2 of G|Sc using color set {k+ 1, k+ 2, . . . , k+ p}. The
union of κ1 and κ2 is a proper coloring of G counted by aj , and all such colorings arise uniquely
by this construction process. In summary,

(15) aj =
∑

S⊆V (G):
|S|=j

χG|S(k)χG|Sc(p).

In particular, an = χG(k) and a0 = χG(p).
We now confirm that f satisfies the hypotheses of Eisenstein’s Criterion (Theorem 8). By choice

of k and p, an is nonzero and not divisible by p. We know χG is c1x plus higher terms all divisible
by x2, and p does not divide c1. Replacing x by p, we see that χG(p) is c1p plus a multiple of
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p2, so p2 does not divide a0 = χG(p). For 0 ≤ j < n, each subgraph Sc used in the sum for aj is
nonempty with n− j > 0 vertices. So each χG|Sc is divisible by x, each χG|Sc(p) is divisible by p,
and aj itself is therefore divisible by p. By Eisenstein’s Criterion, f is irreducible in Q[q]. �

Lemma 12 suggests that XG(x1, . . . , xM ) is irreducible, since its specialization f(q) is irreducible.
However, we need an additional technical argument to rule out the possibility that a proper fac-
torization of XG happens to specialize to a trivial factorization of f(q). As an example of this
phenomenon, note (x1 +x2)(x3 +x4 +x5) is reducible in Q[x1, . . . , x5], but specializing x1 = x2 = q
and x3 = x4 = x5 = 1 yields the irreducible polynomial 6q in Q[q]. As another example, the
symmetric polynomial (−x1 + x2 + x3)(x1 − x2 + x3)(x1 + x2 − x3) is reducible in Q[x1, x2, x3],
but setting x1 = x2 = q and x3 = 1 yields the irreducible polynomial 2q − 1 in Q[q]. The next
lemma addresses this issue and, combined with Lemma 12 and Lemma 11(2), completes the proof
of Theorem 7(a).

Lemma 13. Suppose 2 ≤ k ≤ M and F (x1, . . . , xM ) is a symmetric polynomial in Q[x1, . . . , xM ]
with nonnegative coefficients. Let q be a formal variable and let f = F (q, . . . , q, 1 . . . , 1) ∈ Q[q] be
obtained from F by setting x1 = · · · = xk = q and xk+1 = · · · = xM = 1. If f is irreducible in Q[q],
then F is irreducible in Q[x1, . . . , xM ].

Proof. We prove the contrapositive. Given F and f as in the lemma setup, assume there is a
proper factorization F = GH, where G,H ∈ Q[x1, . . . , xM ] are not constant. Choose i, j so that xi
appears in G and xj appears in H. Since F is symmetric, we can assume i = 1 and j ∈ {1, 2} by
applying a permutation of the variables to the factorization F = GH.

Let R = Q[xk+1, . . . , xM ] and view F,G,H as elements of the ring R[x1, . . . , xk]. This ring is
graded by total degree in the variables x1, . . . , xk. So we can write

F = F (d) + (lower terms), G = G(d1) + (lower terms), H = H(d2) + (lower terms),

where F (d) is the sum of all the highest degree monomials in F (say of degree d), and similarly for

G(d1) and H(d2). Since F = GH and there are no zero divisors, we must have F (d) = G(d1)H(d2)

and d = d1 + d2. Moreover, d1 > 0 since x1 appears in G, and d2 > 0 since x1 or x2 appears in H
and k ≥ 2.

We now apply the specialization that replaces each variable x1, . . . , xk by the new formal variable
q. For each P ∈ R[x1, . . . , xk], let P ′ ∈ R[q] be the image of P under this specialization. We have
F ′ = G′H ′ where F ′, G′, H ′ are in R[q]. Write

F ′ = uqe + (lower terms), G′ = rqe1 + (lower terms), H ′ = sqe2 + (lower terms),

where u, r, s ∈ R are nonzero. Since R[q] is graded by degree in q and has no zero divisors,
u = rs and e = e1 + e2. On one hand, e1 ≤ d1 and e2 ≤ d2 since the degree in q of each
monomial after the specialization matches the original total degree in x1, . . . , xk, but some terms
might perhaps cancel. On the other hand, e = d since all coefficients of F are nonnegative. But
now e = e1 + e2 ≤ d1 + d2 = d = e, so we must actually have e1 = d1 > 0 and e2 = d2 > 0. In
other words, G′ and H ′ are non-constant polynomials in q.

For all p ∈ R = Q[xk+1, . . . , xM ], write p for the specialization of p where xk+1 = · · · = xM = 1.
Now u has all nonnegative coefficients (since F does), so u > 0. Then r · s = rs = u > 0,
and hence r 6= 0 6= s. So when we further specialize the factorization F ′ = G′H ′ by setting
xk+1 = · · · = xM = 1, we get a factorization f = gh in Q[q] where g still has degree d1 > 0 in q
and h still has degree d2 > 0 in q. Thus, f is reducible in Q[q]. �

3.3. Irreducible One-Variable Specializations of X6=0(G∗). By modifying the proof idea in
Lemma 12, we can prove some additional irreducibility results. For each prime p and rooted
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graph G∗, let X2,p
i (G∗) ∈ Z[q] be the specialization of Xi(G∗;x0, x1, . . . , xp+1) obtained by set-

ting x0 = x1 = q and x2 = · · · = xp+1 = 1. Let X2,p
6=i (G∗) be the analogous specialization of

X6=i(G∗;x0, x1, . . . , xp+1).

Theorem 14. Let G∗ be a connected bipartite rooted graph with n vertices. For any prime p
that does not divide the coefficient of x in χG, X2,p

6=0 (G∗) is monic of degree n and irreducible in

Q[q]. The conclusion always holds for p = 2. When G∗ is a rooted tree, the conclusion holds for
all primes p.

Proof. Write X2,p
6=0 (G∗) =

∑
j≥0 ajq

j . Adapting the argument leading to (15), we can show

(16) aj =
∑

(S0,S1,U)

χG|U (p),

where we sum over all lists (S0, S1, U) satisfying these conditions: V (G∗) is the disjoint union of
S0, S1, and U ; |S0 ∪ S1| = j; the root of G∗ is not in S0; no two vertices in S0 are joined by an
edge; and no two vertices in S1 are joined by an edge. We get a proper coloring contributing to
the coefficient of qj in X2,p

6=0 (G∗) by coloring every vertex in S0 with color 0, every vertex in S1
with color 1, and choosing a proper coloring of G|U using the p available colors {2, 3, . . . , p + 1}.
Formula (16) follows from the Sum Rule, the Product Rule, and the definition of χG|U .

Since G∗ is connected and bipartite, there is exactly one proper coloring of G∗ using color set
{0, 1} where the root r of G∗ is not colored 0. In more detail, for each vertex s of G, there exists
a path in G from r to s (since G is connected), and the lengths of all paths from r to s have
the same parity (since G is bipartite). To obtain a coloring κ with the specified properties, we
must set κ(s) = 1 for all s that are an even number of edges away from r, and κ(s) = 0 for all

s that are an odd number of edges away from r. So the coefficient of qn in X2,p
6=0 (G∗) is 1, and

hence this polynomial is monic of degree n = |V (G)|. (This conclusion also holds for X2,p
0 (G∗), by

interchanging the roles of colors 0 and 1.)
For 0 ≤ j < n, p divides aj since p divides each summand χG|U (p) on the right side of (16).

(We need j < n to ensure that G|U is a nonempty graph.) Since p does not divide the coefficient

of x in χG, a0 = χG(p) is not divisible by p2. Eisenstein’s Criterion now shows that X2,p
6=0 (G∗) is

irreducible in Q[q]. The conclusion for rooted trees follows since every rooted tree T∗ is non-empty,
connected, and bipartite, and the coefficient of x in χT = x(x− 1)n−1 is (−1)n−1. When p = 2, the
conclusion for any connected bipartite rooted graph follows from the next lemma. �

Lemma 15. For any graph G, the coefficient of x in χG is odd if and only if G is connected and
bipartite (has no odd cycles).

Proof. Let L(G) be the coefficient of x in χG. We use induction on the number of edges in G.
The result is immediate if G has no edges, or if G is not connected (L(G) is zero in the latter
case). For the induction step, assume G is connected with at least one edge. It follows from the
deletion-contraction recursion [37, Thm. 5.3.6] that for any edge e of G, L(G) = L(G− e)−L(Ge),
where G− e is obtained from G by deleting edge e, and Ge is obtained from G by contracting edge
e. Now consider several cases.

Case 1. There is an edge e of G whose removal disconnects G, so L(G − e) = 0. Now Ge is
connected, and Ge is bipartite if and only if G is bipartite, since contracting e does not create or
destroy any cycles. So L(G) and L(Ge) have the same parity, and the result follows by induction.

Case 2. G is connected and bipartite, but Case 1 does not apply to G. Let e be any edge of G.
Then G− e is connected and bipartite, while Ge is connected and not bipartite (as e must be part
of an even-length cycle of G, and contraction makes this an odd cycle). By induction, L(G− e) is
odd and L(Ge) is even, so L(G) is odd.
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Case 3. G is connected with an odd cycle, and G has an edge e not used in that odd cycle. We
can assume Case 1 does not apply to G. Then G − e is connected with an odd cycle, and (as is
readily checked) Ge also has an odd cycle. By induction, L(G− e) and L(Ge) are even, so L(G) is
even.

Case 4. None of the first three cases apply to G. Then G itself must be an odd cycle. For any
edge e on this cycle, G − e is a path and Ge is an even cycle (or a single edge), so G − e and Ge
are connected and bipartite. By induction, L(G− e) and L(Ge) are odd, so L(G) is even. �

3.4. Analogue of Stanley’s Conjecture for Rooted Trees. In this section, we prove that for
all N ≥ 3, the polynomial X0(T∗;x0, . . . , xN ) distinguishes isomorphism classes of rooted trees. In

fact, a much more striking result is true: the one-variable polynomial X2,2
0 (T∗) = X0(T∗; q, q, 1, 1)

already suffices to distinguish rooted trees. To prove this, we need a variation of Proposition 5. First
we set up notation. For i ∈ {0, 1, 2, 3} and a rooted graph G∗, let fi(G∗) = Xi(G∗; q, q, 1, 1), let
f6=i(G∗) = X6=i(G∗; q, q, 1, 1), and let fG = XG(q, q, 1, 1). Given a polynomial f = anq

n+an−1q
n−1+

· · ·+a1q+a0 ∈ Q[q] of degree at most n, let revn(f) = qnf(1/q) = a0q
n+a1q

n−1 + · · ·+an−1q+an
be the polynomial obtained by reversing the coefficient sequence (a0, a1, . . . , an).

Proposition 16. For any rooted graph G∗ with n vertices:
(a) f0(G∗) = f1(G∗) and f2(G∗) = f3(G∗) = revn(f0(G∗)).
(b) f6=0(G∗) = f6=1(G∗) and f6=2(G∗) = f6=3(G∗) = revn(f6=0(G∗)).
(c) fG = 2f0(G∗) + 2 revn(f0(G∗)).
(d) fG = (2/3)f6=0(G∗) + (2/3) revn(f6=0(G∗)).
(e) f0(G∗) = fG − f6=0(G∗) = (−1/3)f6=0(G∗) + (2/3) revn(f6=0(G∗)).

Proof. For a permutation σ of {0, 1, 2, 3} and a coloring κ : V (G∗)→ {0, 1, 2, 3}, σ◦κ is the coloring
obtained from κ by replacing each color c by color σ(c). Note κ is a proper coloring of G if and only
if σ◦κ is a proper coloring of G. A coloring κ contributes to the coefficient of qj in f0(G∗) if and only
if (0, 1) ◦ κ contributes to the coefficient of qj in f1(G∗). So f0(G∗) = f1(G∗), and f2(G∗) = f3(G∗)
follows similarly by comparing κ to (2, 3) ◦ κ. On the other hand, a coloring κ contributes to the
coefficient of qj in f0(G∗) iff κ′ = (0, 2)(1, 3) ◦ κ contributes to the coefficient of qn−j in f2(G∗). So
f2(G∗) = revn(f0(G∗)). This proves (a), and we prove (b) by the same symmetry arguments. For
example, if κ colors exactly j vertices using {0, 1} and does not color the root with color 0, then
(0, 2)(1, 3) ◦ κ colors exactly n − j vertices using {0, 1} and does not color the root with color 2
(and conversely). Since fG = f0(G∗) + f1(G∗) + f2(G∗) + f3(G∗), part (c) follows from part (a).

Similarly, part (d) follows from part (b) and the observation
∑3

i=0 f6=i(G∗) =
∑3

j=0 3fj(G∗) = 3fG.

The first equality in part (e) holds by definition, and the second equality follows from part (d). �

Theorem 17. For all rooted trees T∗ and U∗ and all N ≥ 3, the following conditions are equivalent:
(a) T∗ ∼= U∗; (b) X0(T∗;x0, . . . , xN ) = X0(U∗;x0, . . . , xN ); (c) f0(T∗) = f0(U∗).

Proof. It is routine to check that isomorphic rooted graphs have the same X0 polynomial, so (a)
implies (b). Since N ≥ 3, (b) implies (c) by setting x0 = x1 = q, x2 = x3 = 1, and xk = 0 for
3 < k ≤ N . To prove (c) implies (a), we use induction on n = deg(f0(T∗)). Let T∗ and U∗ be
rooted trees with f0(T∗) = f0(U∗). Both T∗ and U∗ have n = deg(f0(T∗)) vertices. In the base case
n = 1, we have T∗ ∼= U∗ since both trees consist of a single root vertex. Assume n > 1 from now
on. Let the root r of T∗ have principal subtrees T1∗, . . . , Tc∗, and let the root s of U∗ have principal
subtrees U1∗, . . . , Ud∗. Applying Proposition 6 to T∗ and to U∗ and specializing at (q, q, 1, 1), the
assumption f0(T∗) = f0(U∗) becomes

(17) q
c∏
j=1

f6=0(Tj∗) = q
d∏
j=1

f6=0(Uj∗) in Q[q].
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Theorem 14 shows that each side of (17) is a factorization of the polynomial f0(T∗) = f0(U∗) into
monic irreducible factors. Because Q[q] is a unique factorization domain, we conclude that c = d
and (after reordering factors appropriately) f6=0(Tj∗) = f6=0(Uj∗) for 1 ≤ j ≤ c. For each j, we
can apply Proposition 16(e), taking n there to be deg(f6=0(Tj∗)) = |V (Tj∗)| = |V (Uj∗)|, to deduce
that f0(Tj∗) = f0(Uj∗). Each principal subtree Tj∗ has fewer than n vertices. By the induction
hypothesis, Tj∗ ∼= Uj∗ for 1 ≤ j ≤ c. Finally, T∗ ∼= U∗ follows from (13). �

Based on the previous result, one might hope that fG(q) = XG(q, q, 1, 1) suffices to distinguish
unrooted trees. This is not true, as seen in the next example.

Example 18. Trees T and U shown below are not isomorphic, but fT = fU = 2q11 + 104q10 +
1700q9 + 11452q8 + 37804q7 + 67036q6 + 67036q5 + 37804q4 + 11452q3 + 1700q2 + 104q + 2.

4. Further Properties of Chromatic Polynomials for Rooted Graphs

In this section and the next, certain standard facts regarding various bases of the ring of sym-
metric functions Λ are needed. See [26] for background including definitions of the monomial basis
{mλ}, the elementary basis {eλ}, and the power-sum basis {pλ}.

4.1. Deletion-Contraction Recursion for X0(G∗). The classical one-variable chromatic poly-
nomials satisfy the deletion-contraction recursion χG = χG−e − χGe , where G is a graph, e is
an edge of G, G − e is the graph G with edge e deleted, and Ge is the graph obtained from G
by contracting the edge e. There is no such recursion for Stanley’s chromatic symmetric func-
tion XG, although deletion-contraction recursions are known for the pointed chromatic symmetric
functions [31, Lemma 3.5], the W -polynomials and U -polynomials [29, pg. 1059], and the noncom-
mutative chromatic functions YG [19, Prop. 3.5]. Related recursions can be found in [30]. We now
show that the rooted version X0(G∗) does satisfy a simple generalization of the recursion for χG.

Theorem 19. Suppose G∗ is a rooted graph with root vertex r, and e is an edge from r to s. Let
G∗ − e be G∗ with edge e deleted (using the same root r). Let Ge∗ be G∗ with edge e contracted,
meaning that we identify vertices r and s in Ge and use the identified vertex as the new root. Then

(18) X0(G∗) = X0(G∗ − e)− x0X0(Ge∗).

An initial condition occurs when no edge of G touches the root r. In that case,

(19) X0(G∗) = x0X(G− r;x0, . . . , xN ),

where G− r is the unrooted graph obtained from G by deleting the isolated root vertex.

Proof. Let S = col0(G∗), T = col0(G∗ − e), and U = col0(Ge∗). The set T is the disjoint union
of the two subsets

S = {κ ∈ T : 0 = κ(r) 6= κ(s)} and U ′ = {κ ∈ T : 0 = κ(r) = κ(s)}.

There is a bijection from U ′ to U sending κ to κ, where the two colorings agree on all vertices other
than r and s, and κ colors the new root vertex 0. It follows at once that wt(κ) = x0 wt(κ). Since T
is the disjoint union of S and U ′, the Weighted Sum Rule gives X0(G∗− e) = X0(G∗) +x0X0(Ge∗),
as needed. The initial condition is immediate from the Weighted Product Rule. �
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Example 20. Continuing Example 3, we use Theorem 19 to compute (for N = 2)

X0( ) = X0( )− x0X0( ) = x0(2x0x1 + 2x0x2 + 2x1x2)− x0(x0x1 + x0x2)

= 2x0x1x2 + x20x1 + x20x2,

in agreement with (5).

Recursions analogous to (18) hold for specializations of X0(G∗). For example, the polynomials
f0(G∗) = X0(G∗; q, q, 1, 1) satisfy f0(G∗) = f0(G∗ − e) − qf0(Ge∗) with initial condition f0(G∗) =
qfG−r. If we instead use the principal specialization x0 → 1, x1 → q, . . ., xN → qN , then the x0
multiplying the subtracted term in (18) becomes 1.

Conjecture 21. For all trees T and U with at most N + 1 vertices,

T ∼= U if and only if XT (1, q, q2, . . . , qN ) = XU (1, q, q2, . . . , qN ).

We have confirmed this conjecture by computer calculations for all trees with at most 17 vertices.

4.2. Interpretation of Coefficients of xk0 in X0(G∗). Let G∗ be a rooted graph. Writing z = x0,
we have

X0(G∗; z, x1, . . . , xN ) =
∑
k≥1

ck(x1, . . . , xN )zk,

where each ck(x1, . . . , xN ) is a symmetric polynomial in ΛN . We now give combinatorial interpre-
tations for these coefficients. Recall that an independent set in a graph G is a subset A of V (G)
such that no two vertices in A are joined by an edge in G. Given such an A, let G−A be the graph
with vertex set V (G)− A and edge set obtained from E(G) by deleting all edges with a vertex in
A as one endpoint.

Proposition 22. Let G∗ be a rooted graph.
(a) For k > 0, let I(G∗, k) be the set of k-element independent subsets of G that contain the root.
Then

X0(G∗)|xk0 =
∑

A∈I(G∗,k)

XG−A(x1, . . . , xN ).

(b) For k ≥ 0, let I ′(G∗, k) be the set of k-element independent subsets of G that do not contain
the root. Then

X6=0(G∗)|xk0 =
∑

A∈I′(G∗,k)

XG−A(x1, . . . , xN ).

Proof. We build the proper colorings κ ∈ col0(G∗) contributing to the coefficient of xk0 in X0(G∗)
as follows. First, choose a k-element independent set A ∈ I(G∗, k) and color the vertices of A
(including the root r) with color 0. Second, choose any proper coloring of the graph G − A using
color set {1, 2, . . . , N}. The formula in (a) follows from the Sum and Product Rules for Weighted
Sets. Part (b) is proved in the same way, but now we choose A ∈ I ′(G∗, k) to ensure the root does
not receive color 0. �

4.3. Reformulation of Stanley’s Conjecture. The following proposition illuminates the rela-
tionship between Stanley’s original conjecture for unrooted trees (Conjecture 1) and the analogous
result for rooted trees (Theorem 17).

Proposition 23. Conjecture 1 holds if and only if for every tree T , the multiset [X0(T
r
∗ ) : r ∈ V (T )]

is uniquely determined by the chromatic symmetric function XT .
12



Proof. Assume the condition on multisets is true; we prove Conjecture 1. Let T and U be any n-
vertex trees with XT = XU . By the multiset condition, [X0(T

r
∗ ) : r ∈ V (T )] = [X0(U

s
∗ ) : s ∈ V (U)].

So there exist r ∈ V (T ) and s ∈ V (U) with X0(T
r
∗ ) = X0(U

s
∗ ). By Theorem 17, T r∗ and U s∗ are

isomorphic as rooted graphs. So T and U are isomorphic as graphs.
We prove the converse implication by contradiction. Assume Conjecture 1 is true, but the

condition on multisets is false. Then there exist trees T and U such that XT = XU , but [X0(T
r
∗ ) :

r ∈ V (T )] 6= [X0(U
s
∗ ) : s ∈ V (U)]. Since XT = XU , Conjecture 1 says T ∼= U , so there is a graph

isomorphism f : V (T ) → V (U). For each r ∈ V (T ), f is a rooted graph isomorphism from T r∗ to

U
f(r)
∗ . But then X0(T

r
∗ ) = X0(U

f(r)
∗ ) for all r ∈ V (T ), which means the two multisets are equal.

This gives the required contradiction. �

At present, we do not know how to recover the multiset [X0(T
r
∗ ) : r ∈ V (T )] from XT . In fact,

this cannot be done for general graphs G, as the following example shows. This example uses the
augmented monomial symmetric functions m̃λ, defined by m̃λ = r1!r2! · · ·mλ if λ has r1 parts equal
to 1, r2 parts equal to 2, and so on.

Example 24. Stanley [34, pg. 170] gave this example of two non-isomorphic graphs with equal
chromatic symmetric functions:

X = X = 2m̃221 + 4m̃2111 + m̃11111.

Let z = x0. For the first graph G, the multiset [X0(G
r
∗)] consists of

X0

( )
= X0

( )
= X0

( )
= X0

( )
= z(2m̃211 + m̃1111) + z2(2m̃21 + 2m̃111),

X0

( )
= z(2m̃22 + 4m̃211 + m̃1111).

For the second graph H, the multiset [X0(H
s
∗)] consists of

X0

( )
= X0

( )
= z(m̃22 + 3m̃211 + m̃1111) + z2(m̃21 + m̃111),

X0

( )
= z(2m̃211 + m̃1111) + z2(2m̃21 + 2m̃111),

X0

( )
= z(3m̃211 + m̃1111) + z2(2m̃21 + m̃111),

X0

( )
= z(m̃211 + m̃1111) + z2(2m̃21 + 3m̃111).

This calculation also shows that there exist non-isomorphic rooted graphsG∗ andH∗ withX0(G∗) =
X0(H∗). Indeed, we may take

G∗ = and H∗ = .

Despite this example, there is a simple way to recover the sum of all X0(G
r
∗) from XG.

Proposition 25. For any graph G,

(20) x0
∂

∂x0
XG(x0, . . . , xN ) =

∑
r∈V (G)

X0(G
r
∗;x0, . . . , xN ).
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Proof. The proof is an application of the pointing construction to the generating function XG

(see [16, Theorem I.4]). Each coloring κ ∈ col(G) contributes a monomial xe00 · · ·x
eN
N to XG.

Applying the operator x0
∂
∂x0

multiplies this monomial by e0, which is the number of vertices

colored 0 by κ. The coloring κ belongs to exactly e0 of the sets col0(G
r
∗) as r varies through V (G),

since the root r must be colored 0. Thus, each coloring κ makes the same contribution (namely
e0x

e0
0 · · ·x

eN
N ) to both sides of (20). �

Example 26. Continuing Example 3, the following calculation illustrates Proposition 25:

X0( ) +X0( ) +X0( )

= (2x0x1x2 + x20(x1 + x2)) + (2x0x1x2 + x0(x
2
1 + x22)) + (2x0x1x2 + x20(x1 + x2))

= 6x0x1x2 + 2x20(x1 + x2) + x0(x
2
1 + x22) = x0

∂

∂x0
X (x0, x1, x2).

4.4. Analogue of the (3+1)-conjecture. Much of the research pertaining to XG has focused on
characterizing the coefficients of XG when expressed in various bases of the space Λ of symmetric
functions. One outstanding conjecture by Stanley and Stembridge is the following e-positivity
conjecture (see [1, 18, 31, 32] for recent research relevant to this conjecture).

Let (3 + 1) be the poset ({0, 1, 2, 3},�), where 1 � 2 � 3 and 0 is incomparable to 1, 2, 3. Given
any posets (P,≤P ) and (Q,≤Q), we say that P is Q-free if Q is not isomorphic to any induced
subposet of P . The incomparability graph G(P ) of a poset (P,≤P ) is the undirected graph with
vertex set P and edges {x, y} for all x, y ∈ P such that x and y are incomparable under ≤P .

Conjecture 27. [34, Conj. 5.1], [33, Conj. 5.5] If (P,≤P ) is (3 + 1)-free, then XG(P ) is e-positive.

If we view X0(G
r
∗;x0, . . . , xN ) as an element of Λ[x0], the coefficient of x0 is XG−r(x1, . . . , xN ).

For f ∈ Λ[z], we say that f is e-positive if the coefficient of zk is an e-positive element of Λ for each
k ≥ 0. Here is a refinement of Conjecture 27, which we have checked (by computer) for posets with
at most 8 vertices.

Conjecture 28. Let (P,≤P ) be a poset. For all r ∈ P , if P − r is (3 + 1)-free, then X0(G(P )r∗) is
e-positive.

When (P,≤P ) is (3+1)-free, G(P ) is claw-free (i.e., has no vertex-induced subgraph isomorphic
to the complete bipartite graph K1,3). One might hope that we could strengthen Conjecture 27 to
assert that X0(G

r
∗) is e-positive whenever G−r is claw-free. However, as discussed in [34], claw-free

graphs do not have e-positive chromatic symmetric functions in general (see also [12]).

4.5. Power-Sum Formula. Stanley [34, Thm. 2.5] used an inclusion–exclusion argument to find
the power-sum expansion of the chromatic symmetric function XG. For any edge e ∈ E(G), define
Ae to be the set of (non-proper) colorings κ : V (G)→ Z≥0 such that the endpoints of edge e receive
the same color. For any S ⊆ E(G), let GS denote the graph with vertex set V (G) and edge set S.
Let λ(GS) be the integer partition whose parts are the sizes of the connected components of GS in
weakly decreasing order. Let pλ be the power-sum symmetric function indexed by λ. A coloring
κ : V (G) → Z≥0 is proper if and only if it does not belong to the union

⋃
e∈E(G)Ae. Hence, the

Inclusion–Exclusion Formula leads to

(21) XG =
∑

S⊆E(G)

(−1)|S|pλ(GS).

We can adapt Stanley’s argument to obtain an analogous expansion of X0(G∗;x0, x1, . . . , xN ).
(This formula is closely related to the power-sum expansion of Pawlowski’s pointed chromatic
symmetric functions, as we explain in Section 5.1.) Given a rooted graph Gv∗ with root v and
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S ⊆ E(G), let λ+v (GS) be the size of the component of GS containing v, and let λ−v (GS) be the
partition λ(GS) with a single part of size λ+v (GS) deleted.

Proposition 29. For all rooted graphs Gv∗ and N ≥ |V (G)|,

(22) X0(G
v
∗;x0, x1, . . . , xN ) =

∑
S⊆E(G)

(−1)|S|pλ−v (GS)
(x0, x1, . . . , xN )x

λ+v (GS)
0 .

Proof. Let Av be the set of all (not necessarily proper) colorings κ : V (G) → {0, 1, . . . , N} where
κ(v) = 0. For each edge e, let Ave be the set of κ ∈ Av that assign the same color to the two endpoints
of edge e. For each S ⊆ E(G), we can count the weighted set

⋂
e∈S A

v
e as follows. Write λ+v (Gs) = k,

where k is the size of the component Cv of GS containing the root v. Write λ−v (GS) = (λ1, . . . , λm),
where each λi is the size of another component Ci of GS . We build a coloring in

⋂
e∈S A

v
e as follows.

Color all k vertices in Cv with color 0 (as we must), giving a weight contribution of xk0. For each
remaining component Ci, choose the common color for all λi vertices in that component. The weight
contribution for that choice is xλi0 +xλi1 + · · ·+xλiN = pλi(x0, x1, . . . , xN ). By the Product Rule, the

generating function for
⋂
e∈S A

v
e is pλ−v (GS)

(x0, x1, . . . , xN )x
λ+v (GS)
0 . Equation (22) follows at once

from the Inclusion–Exclusion Formula, since X0(G
v
∗) counts colorings in Av outside

⋃
e∈E(G)A

v
e . �

5. Other Variants of Stanley’s Chromatic Symmetric Functions

In this section, we review some of the previously studied polynomials and algebraic constructs
related to the chromatic symmetric function. When applicable, we explain the connection between
these objects and the polynomials X0(G∗).

5.1. Pawlowski’s Pointed Chromatic Symmetric Functions. Given a rooted graph Gv∗ with
root v and S ⊆ E(G), Pawlowski’s pointed chromatic symmetric function is defined in [31, Def.
3.1] as

(23) PG,v =
∑

S⊆E(G)

(−1)|S|pλ−v (GS)
zλ

+
v (GS)−1 ∈ Λ[z],

where pλ = 1 if λ has no positive parts. The polynomial version using variables x1, . . . , xN is

(24) PG,v(x1, . . . , xN ) =
∑

S⊆E(G)

(−1)|S|pλ−v (GS)
(x1, . . . , xN )zλ

+
v (GS)−1 ∈ ΛN [z].

Let x0 = z. Comparing (23) and (22), we see that X0(G
v
∗; z, x1, . . . , xN ) is the transformation

of PG,v obtained by replacing each abstract power-sum pk by zk + xk1 + · · · + xkN (as opposed to

xk1 + · · ·+ xkN ) and multiplying by z. This extra z accounts for the subtracted 1 in the exponent of
z in (23). We state this result more formally as follows.

Proposition 30. Regard X0(G
v
∗) and PG,v as elements of Λ[z], where Λ = Q[pk : k ≥ 1] is the ring

of symmetric functions. Define evaluation homomorphisms φ, ψ on Λ by setting φ(pk) = zk + pk
and ψ(pk) = −zk + pk for all k. Then X0(G

v
∗) = φ(zPG,v) and zPG,v = ψ(X0(G

v
∗)).

Example 31. For Gv∗ = , we use Equation (23) to compute

(25) PG,v = (p1111 − 2p211 + p31)z
0 + (−2p111 + 2p21 − p3)z1 + (3p11)z

2 + (−3p1)z
3 + z4.

Replacing each pk by zk + pk and simplifying, we obtain

(26) X0(G
v
∗) = (p1111 − 2p211 + p31)z + (2p111 − 2p21)z

2 + p11z
3.

Notice that the coefficient of z = x0 in X0(G
v
∗) and zPG,v is the same; this holds in general.
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Pawlowski proved [31, Cor. 3.6] that replacing z by −z in PG,v gives a positive sum of monomials.

He asked for a combinatorial interpretation of the coefficient of (−z)k in PG,v. We give one such
interpretation in Theorem 33 below. First we need the following definitions. Suppose H is a
connected graph with k+ 1 vertices. For each subset S of E(H), recall HS is the graph with vertex
set V (H) and edge set S. Define

f(H) =
∑

S⊆E(H):
HS is connected

(−1)|S|−k,

which is a signed sum of all connected spanning subgraphs of H. The following combinatorial
interpretation of f(H) shows that f(H) is always a positive integer. Fix a total ordering e1 < e2 <
· · · < em of the edge set E(H). Say that a spanning tree T of H is internal iff for every cycle in H
such that all but one edge ej of the cycle belongs to T , the missing edge is not the largest edge in
the cycle. In Tutte’s terminology [36, pg. 85], an internal spanning tree is a spanning tree with no
externally active edges.

Lemma 32. For any connected graph H with k + 1 vertices, f(H) is the number of internal
spanning trees of H.

Proof. Let Z = {S ⊆ E(H) : HS is connected}, and let the sign of S be (−1)|S|−k for each S ∈ Z.
It suffices to define a sign-reversing involution I : Z → Z whose fixed points are positive and
correspond to the internal spanning trees of H. Given S ∈ Z, compute I(S) by the following
algorithm. Process the edges e1, e2, . . . , em in the given order. When edge ej is reached, do the
following. If ej ∈ S and ej is the largest edge in some cycle of HS , then return I(S) = S \ {ej}.
If ej 6∈ S and adding ej to S creates a cycle with largest edge ej , then return I(S) = S ∪ {ej}.
Otherwise, proceed to the next edge. If no output is returned after processing all edges, then return
I(S) = S.

Since I acts by deleting or adding one edge from S, I reverses signs when acting on a non-fixed
point. To see that I is an involution, suppose we compute I(S) = S′ by returning an answer when
edge ej is processed. The decisions made when processing edges e1, . . . , ej−1 do not depend on
whether ej is or is not in S. So, when we compute I(S′), the same decisions will be made for edges
e1, . . . , ej−1 (namely, continue without returning an output). When the algorithm processes edge
ej , it returns I(S′) = S, as needed.

Now consider the fixed points of I. On one hand, let S ∈ Z correspond to a spanning subgraph
of H that is not a tree. This subgraph has a cycle, so there exists an edge ej that is the largest edge
in some cycle of HS . Then I matches S to some S′ of opposite sign when processing ej (or perhaps
earlier). On the other hand, by comparing the definition of internal spanning tree to the definition
of I, we see that the edge set S of a spanning tree of H is a fixed point of I iff this spanning tree
is internal. All such trees have k edges and therefore have positive sign. �

The next theorem shows that the coefficient of (−z)k in PG,v is the weighted sum of pairs (T, κ),
where T is an internal spanning subtree of a (k + 1)-vertex induced subgraph of G containing the
root v, and κ is a proper coloring of the vertices of G not in this subgraph.

Theorem 33. Let G be a graph with root vertex v. For all k, the coefficient of (−z)k in PG,v is∑
H f(H)XG\H , where we sum over all H = (V (H), E(H)) satisfying the following conditions: H

is a connected graph, |V (H)| = k + 1, v ∈ V (H), and E(H) consists of all edges in E(G) joining
vertices in V (H). Here, G \H is the graph obtained from G by deleting all vertices in H and all
edges incident to those vertices.

Proof. Fix k, and letH be the set of all graphs H satisfying the conditions in the theorem statement.
Let S be the set of all S ⊆ E(G) such that λ+v (GS) − 1 = k. By the defining formula (23), the
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coefficient of (−z)k in PG,v is

(27)
∑
S∈S

(−1)|S|−kpλ−v (GS)
.

Define a function h : S → H by letting h(S) = H, where V (H) is the connected component of v
in GS . For each H ∈ H, we can build all S ∈ S with h(S) = H as follows. Choose S1 ⊆ E(H)
such that HS1 is connected, choose S2 ⊆ E(G \H) arbitrarily, and let S = S1 ∪ S2. By definition,
pλ−v (GS)

= pλ((G\H)S2
). Therefore, equation (27) can be rewritten as

∑
H∈H

 ∑
S1⊆E(H):

HS1
is connected

(−1)|S1|−k

 ·
 ∑
S2⊆E(G\H)

(−1)|S2|pλ((G\H)S2
)

 .

By Lemma 32, the sum over S1 equals f(H). By (21), the sum over S2 equals XG\H . �

When G itself is a tree, the subgraphs H in Theorem 33 are also trees. In this case, all the
multipliers f(H) are 1. We see that for trees T , the coefficient of zk in each of X0(T

v
∗ ) and PT,v(−z)

is a weighted sum of proper colorings of certain subgraphs of T . For X0(T
v
∗ ), these subgraphs are

complements of independent sets containing v (Proposition 22(a)). For PT,v, these subgraphs are
complements of connected subgraphs containing v.

5.2. Rooted U-Polynomials. The pointed chromatic symmetric functions are closely related to
another family of polynomials called rooted U -polynomials [4]. To describe these, we first review
the W -polynomials and U -polynomials of Noble and Welsh [29]. A weighted graph is a pair (G,ω)
where G is a graph (possibly containing loop edges or multiple edges with the same endpoints)
and ω : V (G) → Z>0 is a weight function on the vertex set of G. Writing x for the sequence of
commuting indeterminates x1, x2, . . ., the W -polynomials W(G,ω)(x, y) are defined recursively using
a version of the deletion-contraction recursion. As an initial condition, if G has no edges, then
W(G,ω)(x, y) =

∏
v∈V (G) xω(v). If G has a loop edge e, then W(G,ω)(x, y) = yW(G−e,ω)(x, y), where

G−e is the graph G with loop e deleted. If G has an edge e with distinct endpoints vi and vj , then

W(G,ω)(x, y) = W(G−e,ω)(x, y) +W(Ge,ωe)(x, y),

where Ge is the contraction of G along e (i.e., delete e and identify vi and vj as a new vertex vij),
ωe(vij) = ω(vi) + ω(vj), and ωe(v) = ω(v) for all v 6∈ {vi, vj}. Note that contraction of an edge
could lead to a graph with a loop edge or multiple edges with the same endpoint. When G is a
forest, the variable y does not appear in W(G,ω).

Remark 34. In 1994, Chmutov, Duzhin, and Lando [9] independently defined functions on weighted
graphs (in the context of Vassiliev knot invariants) that are essentially equivalent to the W -
polynomials of Noble and Welsh with y = 0. Equation (21) is a specialization of an equation
appearing at the beginning of Section 2.2 in [9].

The U -polynomial for a graph G is UG(x, y) = W(G,1)(x, y), where 1 is the weight function
sending each v ∈ V (G) to 1.

Example 35. Let ω be the weight function that assigns 3 to the leftmost vertex of T =
and 1 to the other two vertices. One can check that W(T,ω)(x, y) = x21x3 + x2x3 + x1x4 + x5 and

UT (x, y) = x31 + 2x1x2 + x3.
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The U -polynomials can also be defined directly on unweighted graphs G as an alternating sum
over subsets of the edge set, as in (21). Define the rank of S ⊆ E(G) to be r(S) = |V (G)| − k(GS),
where k(GS) = `(λ(GS)) is the number of connected components of GS . Then

(28) UG(x, y) =
∑

S⊆E(G)

xλ(GS)(y − 1)|S|−r(S),

where xλ =
∏
i xλi . When G is a forest, k(GS) = |V (G)|− |S|, so r(S) = |S| and the power of y−1

disappears. For any loopless graph G, we can recover XG from UG by setting y = 0 and xi = −pi
for all i > 0 and multiplying by (−1)|V (G)| (see [29, Theorem 6.1]).

The rooted U -polynomial for the graph G rooted at v is defined in [4] as

(29) U r(G, v; x, y, z) =
∑

S⊆E(G)

xλ−v (GS)
zλ

+
v (GS)(y − 1)|S|−r(S).

Note that (29) modifies (28) in the same way that (23) modifies (21), up to a factor of z−1. In
particular, Pawlowski’s pointed chromatic symmetric function can be recovered from the rooted
U -polynomial by setting y = 0 and xi = −pi for all i > 0 and multiplying by (−1)|V (G)|+1z−1. (An
extra sign is needed since λ−v (GS) has one fewer part than λ(GS).)

Example 36. For the rooted graph , we compute U r(G, v; x, y, z) = x21z + 2x1z
2 + z3.

Corollary 10 of [4] proves that the rooted U -polynomials distinguish isomorphism classes of rooted
trees. Combining this with Proposition 30 gives a second proof of the symmetric function version of
Theorem 17. In detail, suppose rooted trees T v∗ and Sw∗ have X0(T∗) = X0(S∗). Then PT,v = PS,w
by Proposition 30. Since y does not appear in the rooted U -polynomial for a tree, we can reverse
the transformation above to conclude that U r(T, v; x, y, z) = U r(S,w; x, y, z). Hence, T∗ and S∗ are
isomorphic by [4, Cor. 10]. Theorem 17 is a stronger result, showing that the polynomial version
X0(T∗;x0, x1, x2, x3) or its specialization X2

0 (T∗) = X0(T∗; q, q, 1, 1) already suffices to distinguish
rooted trees with any number of vertices.

5.3. Noncommutative Chromatic Symmetric Functions. In 2001, Gebhard and Sagan in-
troduced a noncommutative version of the chromatic symmetric function [19] (see also the more
recent [1]). Let x1, x2, . . . be noncommuting indeterminates. Given a graph G, let v1 < v2 <
· · · < vn be a fixed total ordering of V (G). The weight of a proper coloring κ : V (G) → Z>0

is xκ(v1)xκ(v2) · · ·xκ(vn). The noncommutative chromatic symmetric function YG is the sum of the
weights of all proper colorings. Clearly, YG reduces to XG when the variables are allowed to
commute. A primary motivation for introducing YG is that YG satisfies a deletion-contraction re-
cursion, which is based on an operation called induction. Proposition 8.2 of [19] shows that two
simple graphs G and H are isomorphic if and only if YG = YH .

Example 37. Using a left-to-right ordering of the vertices, we have Y =
∑

i,j,k xixjxk +∑
i,j xixjxi, where the indices i, j, k in the two sums are required to be distinct.

Let G∗ be a rooted graph with root r, and suppose the chosen total ordering v1 < · · · < vn of
V (G) satisfies v1 = r. We can recover X0(G∗;x0, x1, . . . , xN ) from YG(x0, x1, . . . , xN ) as follows:
discard all monomials in YG that do not begin with x0, and then allow all indeterminates xi to
commute.

Each of the functions XG, X0(G∗), and YG reveals certain information about the proper colorings
of G. Each monomial in XG tells us the multiset of colors used in the associated coloring κ. The
monomials in X0(G∗) contain similar information, but now we are also told that one specific vertex
(the root) has color 0. The monomial for κ in YG tells us much more, since we can recover κ itself
from the monomial xκ(v1)xκ(v2) · · ·xκ(vn). For any graph G, it is easy to reconstruct the edge set
E(G) from the information in YG [19, Prop. 8.2]. Stanley’s Conjecture (still open) asks whether a
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tree T can be reconstructed from the information in XT . Theorem 17 shows that a rooted tree T∗
can be recovered from X0(T∗). This result is tantalizing because X0(T∗) seems so much closer to
XT compared to YT .

5.4. Chromatic Quasisymmetric Functions. Shareshian and Wachs [32] studied another vari-
ation of XG involving QSym, the ring of quasisymmetric functions in commuting indeterminates
x1, x2, . . .. Fix a total ordering v1 < v2 < · · · < vn of V (G). Given a proper coloring κ of G, define
asc(κ) to be the number of i < j such that there is an edge in G from vi to vj and κ(vi) < κ(vj).
The Shareshian–Wachs chromatic quasisymmetric function is

(30) XG(x, t) =
∑
κ

tasc(κ) wt(κ),

where we sum over all proper colorings κ : V (G)→ Z>0. It can be shown that XG(x, t) ∈ QSym[t],
meaning that the coefficient of each tm is a quasisymmetric function. The specialization XG(x, 1)
is Stanley’s symmetric function XG.

Example 38. Let Mα be the monomial quasisymmetric function indexed by the composition α.
Using a left-to-right ordering of the vertices, we find

X (x, t) = M111 + (M21 +M12 + 4M111)t+M111t
2.

Setting t = 1 gives XG = m21 + 6m111.

In a related construction, Hasebe and Tsujie [21] define the strict order quasisymmetric function
of a poset P , as follows. Let Hom<(P,Z≥0) be the set of functions f : P → Z≥0 such that for all
u, v ∈ P , u < v in P implies f(u) < f(v) in Z≥0. Define

Γ<(P,x) =
∑

f∈Hom<(P,Z≥0)

∏
v∈P

xf(v).

A rooted tree T∗ has an associated poset P (T∗), where u ≤ v in P (T∗) iff the unique path in T∗
from the root to v passes through u. Γ<(P (T∗),x) sums over the subset of proper colorings of T∗
where the colors strictly increase following any path away from the root.

Example 39. We have Γ<( , x0, x1, x2) = x0x
2
1+2x0x1x2+x0x

2
2 = X0( ). Equality holds

here only because every path from the root has length 1 and the number of colors equals the number
of vertices. Note that Γ<( , x0, x1, x2) = x0x1x2, which does not equal X0( ;x0, x1, x2)
as given in (5).

Hasebe and Tsujie show that Γ< is a complete invariant for rooted trees [21, Theorem 1.3].
Their proof is structurally similar to our proof of Theorem 17, relying on QSym being a unique
factorization domain and on the irreducibility of various polynomials appearing in the recursion. In
a related vein, Ellzey [14, 15] extended the chromatic symmetric function to directed graphs. In [6],
Aval, Djenabou, and McNamara build on this work and generalize some of the work of Hasebe and
Tsujie.

Let us informally compare the information encoded in X0(T∗), XT (x; t), and Γ<(P (T∗)) for a
rooted tree T∗ with root r. Assume XT (x; t) is computed using a total ordering of V (G) compatible
with the poset structure on T∗ (so r must be v1). Each monomial in Γ<(P (T∗)) records the multiset
of colors used by a proper coloring, but we also know that colors must strictly increase along all
paths leading away from the root. The restriction on which colorings are allowed for X0(T∗) is
much weaker: we only require that the root itself receive the smallest available color (color 0).
XT (x; t) contains even more information than Γ<(P (T∗)), since Γ<(P (T∗)) is none other than the

coefficient of t|E(G)| in XT (x; t) given our assumption on the total ordering of V (G).
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We can deduce that XT (x; t) distinguishes rooted trees, in the following sense. Suppose T∗ and
U∗ are two n-vertex rooted trees with unlabeled vertices. In each tree, label the vertices 1, 2, . . . , n
in a way that is compatible with the poset structure on each tree. Suppose XT (x; t) = XU (x; t)
using the vertex order 1 < 2 < · · · < n. Then Γ<(P (T∗)) = Γ<(P (U∗)) by taking the coefficient of
tn−1 on both sides. By Hasebe and Tsujie’s result, T∗ is isomorphic to U∗.

5.5. Other Variations for Weighted Graphs. For completeness, we mention a few other vari-
ants of XG for weighted graphs. In [11], the authors define extended chromatic functions for
weighted graphs (cf. earlier overlapping results of [9]). Given a graph G and a weight function

ω : V (G)→ Z>0, define the weight of a proper coloring κ of G (relative to ω) to be
∏
v∈V (G) x

ω(v)
κ(v) .

The extended chromatic function X(G,ω) is the sum of the weights of all proper colorings of G. These
functions satisfy a deletion-contraction recursion and can be recovered from the W -polynomial.
They generalize Stanley’s chromatic symmetric function XG as well as the Shareshian–Wachs chro-
matic quasisymmetric functions. In [3], the authors work with a more general notion of vertex-
weighting and define M -polynomials for marked graphs. They also consider a specialization of
M -polynomials called D-polynomials. Another generalization, the V -polynomial, is considered
in [13].
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function. arXiv preprint: 2202.11787, 2022.
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