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Abstract

The n-dimensional hypercube has n+ 1 distinct eigenvalues n − 2i, 0 ≤ i ≤ n,
with corresponding eigenspaces Ui(n). In 2021 it was proved by the author
that if a function with non-empty support belongs to the direct sum Ui(n) ⊕
Ui+1(n) ⊕ . . .⊕ Uj(n), where 0 ≤ i ≤ j ≤ n, then it has at least max(2i, 2n−j)
non-zeros. In this work we give a characterization of functions achieving this
bound.

Keywords: hypercube, eigenfunction, eigenfunctions of graphs, minimum
support, trade, [t]-trade

2010 MSC: 05C50, 05B30

1. Introduction

There are the following extremal problems for eigenfunctions of graphs.

Problem 1. Let G be a graph and let λ be an eigenvalue of G. Find the
minimum cardinality of the support of a λ-eigenfunction of G.

Problem 2. Let G be a graph and let λ be an eigenvalue of G. Characterize
λ-eigenfunctions of G with the minimum cardinality of the support.

During the last years, Problems 1 and 2 have been actively studied for various
families of distance-regular graphs [1, 5, 6, 8, 11, 13, 14, 16, 17, 18, 19, 20]
and Cayley graphs on the symmetric group [7]. In particular, Problem 1 is
completely solved for all eigenvalues of the Hamming graph [8, 17, 18] and
asymptotically solved for all eigenvalues of the Johnson graph [20]. In more
details, Problems 1 and 2 are discussed in a recent survey [15].

The Hamming graph H(n, q) is defined as follows. The vertex set of H(n, q)
is Zn

q , and two vertices are adjacent if they differ in exactly one coordinate.
The adjacency matrix of H(n, q) has n+ 1 distinct eigenvalues n(q − 1)− q · i,
where 0 ≤ i ≤ n. Let U[i,j](n, q), where 0 ≤ i ≤ j ≤ n, denote the direct
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sum of eigenspaces of H(n, q) corresponding to consecutive eigenvalues from
n(q − 1) − q · i to n(q − 1) − q · j. The support of a real-valued function f is
denoted by S(f).

Let 0 ≤ i ≤ j ≤ n. Denote

mi,j(n, q) = min
f∈U[i,j](n,q),f 6≡0

|S(f)|.

A function f ∈ U[i,j](n, q) is called optimal in the space U[i,j](n, q) if |S(f)| =
mi,j(n, q). In this work we consider the following natural generalizations of
Problems 1 and 2 for the Hamming graph.

Problem 3. Let n ≥ 1, q ≥ 2 and 0 ≤ i ≤ j ≤ n. Find mi,j(n, q).

Problem 4. Let n ≥ 1, q ≥ 2 and 0 ≤ i ≤ j ≤ n. Characterize functions that
are optimal in the space U[i,j](n, q).

Problem 3 is completely solved for all n ≥ 1 and q ≥ 2 in [17, 18]. Moreover,
Problem 4 is solved for q ≥ 3, i + j ≤ n and q ≥ 5, i = j, i > n

2 in [17]. In
this work we solve Problem 4 for q = 2 and arbitrary n. The main ideas of the
proof are the following. For i+ j ≥ n, we prove that functions that are optimal
in the space U[i,j](n, 2) correspond to some [i − 1]-trades in H(n, 2) (for more
information on [t]-trades see [4, 10]). Then we apply a characterization of [t]-
trades of size 2t+1 obtained by D. Krotov in [10]. Finally, using the bipartiteness
of H(n, 2), we reduce the case i+ j ≤ n to the case i+ j ≥ n.

The paper is organized as follows. In Section 2, we introduce basic defi-
nitions. In Section 3, we give preliminary results. In Section 4, we present
constructions of functions that are optimal in the space U[i,j](n, 2). In Section
5, we characterize functions that are optimal in the space U[i,j](n, 2). In Section
6, we discuss the properties of the spectrum of optimal functions.

2. Basic definitions

The eigenvalues of a graph are the eigenvalues of its adjacency matrix. Let
G be a graph with vertex set V and let λ be an eigenvalue of G. The set of
neighbors of a vertex x is denoted by N(x). A function f : V −→ R is called a
λ-eigenfunction of G if f 6≡ 0 and the equality

λ · f(x) =
∑

y∈N(x)

f(y) (1)

holds for any vertex x ∈ V . The set of functions f : V −→ R satisfying (1)
for any vertex x ∈ V is called a λ-eigenspace of G. The support of a function
f : V −→ R is the set S(f) = {x ∈ V | f(x) 6= 0}. Denote |f | = |S(f)|.

Given a graph G, denote by U(G) the set of all real-valued functions defined
on the vertex set of G. Note that the set U(G) forms a vector space over R.

The n-dimensional hypercube H(n) is defined as follows. The vertex set of
H(n) is Zn

2 , and two vertices are adjacent if they differ in exactly one coordinate.
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This graph has n+1 distinct eigenvalues λi(n) = n−2i, where 0 ≤ i ≤ n. Denote
by Ui(n) the λi(n)-eigenspace of H(n). The direct sum of subspaces

Ui(n)⊕ Ui+1(n)⊕ . . .⊕ Uj(n)

for 0 ≤ i ≤ j ≤ n is denoted by U[i,j](n). Denote U(n) = U(H(n)).
Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The Cartesian product

G1�G2 of graphs G1 and G2 is defined as follows. The vertex set of G1�G2 is
V1 × V2; and any two vertices (x1, y1) and (x2, y2) are adjacent if and only if
either x1 = x2 and y1 is adjacent to y2 in G2, or y1 = y2 and x1 is adjacent to
x2 in G1.

Suppose G1 = (V1, E1) and G2 = (V2, E2) are two graphs. Let f1 : V1 −→ R

and f2 : V2 −→ R. Denote G = G1�G2. We define the tensor product f1 ⊗ f2
on the vertices of G by the following rule:

(f1 ⊗ f2)(x, y) = f1(x)f2(y)

for (x, y) ∈ V (G) = V1 × V2.
Let f be a real-valued function defined on the vertices of H(n) and let

k ∈ {0, 1}, r ∈ {1, . . . , n}. We define a function f r
k on the vertices of H(n− 1)

as follows: for any vertex y = (y1, . . . , yr−1, yr+1, . . . , yn) of H(n− 1)

f r
k (y) = f(y1, . . . , yr−1, k, yr+1, . . . , yn).

For a vector u ∈ Zn
2 , where u = (u1, . . . , un), we define a function χu on the

vertices of H(n) as follows:

χu(x1, . . . , xn) = (−1)u1x1+...+unxn .

The functions χu, where u ∈ Zn
2 , are also known as the characters of the group

Zn
2 .
The weight of a vector x ∈ Zn

2 , denoted by wt(x), is the number of its
non-zero coordinates.

Let A and B be two finite subsets of Z. Denote

A+B = {c ∈ Z | c = a+ b, a ∈ A, b ∈ B}.

Let {i1, . . . , im} be an m-element subset of {1, 2, . . . , n} and let ai ∈ {0, 1}
for all 1 ≤ i ≤ m. Denote

Γa1,...,am

i1,...,im
= {(x1, . . . , xn) ∈ Zn

2 | xi1 = a1, . . . , xim = am}.

For m ∈ {0, 1, . . . , n}, a set Γ ⊆ Zn
2 is called an (n −m)-face if there exist an

m-element subset {i1, . . . , im} of {1, 2, . . . , n} and numbers a1, . . . , am ∈ {0, 1}
such that Γ = Γa1,...,am

i1,...,im
.

Recall that the set U(n) forms a vector space over R. We define an inner
product on this vector space as follows:

〈f, g〉 =
1

2n

∑

x∈Z
n
2

f(x)g(x)
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Two functions f ∈ U(n) and g ∈ U(n) are called orthogonal if 〈f, g〉 = 0.
A pair {T0, T1} of two disjoint nonempty subsets of Zn

2 is called a [t]-trade
in H(n) if every (n− t)-face contains the same number of elements from T0 and
from T1. For a subset A of Zn

2 , let 1A denote the characteristic function of A in
Zn
2 .
For every non-negative integer r and every positive integer n ≥ r, the

Reed–Muller code RM(r, n) of order r is the set of all n-variable Boolean func-
tions of algebraic degree at most r.

Let G be a bipartite graph with parts V1 and V2. Suppose that f is a real-
valued function defined on the vertices of G. We define a function f ′ on the
vertices of G by the following rule:

f ′(x) =

{
f(x), if x ∈ V1;

−f(x), if x ∈ V2.

For a function f ∈ U(n), we define a function f̃ on the vertices of H(n) as
follows:

f̃(x1, . . . , xn) = (−1)x1+...+xn · f(x1, . . . , xn).

Any function f ∈ U(n) can be uniquely represented in the following form:

f =

n∑

i=0

fi,

where fi ∈ Ui(n) for any 0 ≤ i ≤ n. The spectrum of a function f ∈ U(n) is the
set

Spec(f) = {0 ≤ i ≤ n | fi 6≡ 0}.

Two functions f ∈ U(n) and g ∈ U(n) are called equivalent if there exist an
automorphism π of H(n) and a real non-zero constant c such that the equality
g(x) = c · f(π(x)) holds for any vertex x of H(n). We denote this equivalence
by f ∼ g.

3. Preliminaries

In this section, we give preliminary results. The following lemma is a special
case of Corollary 1 proved in [17].

Lemma 1. Let f1 ∈ Ui(m) and f2 ∈ Uj(n). Then f1 ⊗ f2 ∈ Ui+j(m+ n).

The following result is a special case of Lemma 4 proved in [17].

Lemma 2. Let f ∈ U[i,j](n) and r ∈ {1, 2, . . . , n}. Then the following state-
ments are true:

1. f r
0 − f r

1 ∈ U[i−1,j−1](n− 1).

2. f r
0 + f r

1 ∈ U[i,j](n− 1).

3. f r
k ∈ U[i−1,j](n− 1) for k ∈ {0, 1}.
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Lemma 3. Let f ∈ U[i,j](n) and r ∈ {1, 2, . . . , n}. Then there are functions g
and h such that f r

0 = g+h, f r
1 = g−h and g ∈ U[i,j](n−1), h ∈ U[i−1,j−1](n−1).

Proof. Denote g = 1
2 (f

r
0 + f r

1 ) and h = 1
2 (f

r
0 − f r

1 ). Then we have f r
0 = g + h

and f r
1 = g − h. In addition, by Lemma 2 we obtain that g ∈ U[i,j](n− 1) and

h ∈ U[i−1,j−1](n− 1).

We will use Lemma 3 in the proof of Lemma 17. The following two properties
of the characters of Zn

2 are well-known.

Lemma 4. The following statements hold:

1. The set {χu | u ∈ Zn
2 } forms an orthonormal basis of the vector space

U(n).

2. For every 0 ≤ i ≤ n, the set {χu | u ∈ Zn
2 ,wt(u) = i} forms a basis of the

vector space Ui(n).

We will use Lemma 4 for the proofs of Lemmas 6, 7, 8 and 15. The following
result about the Cartesian product of graphs is well-known.

Lemma 5. Let G1 and G2 be graphs with m and n vertices. If f1, . . . , fm and
g1, . . . , gn are orthogonal bases for the vector spaces U(G1) and U(G2), then the
set

{fi ⊗ gj | i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}

forms an orthogonal basis of the vector space U(G1�G2).

Using Lemmas 4 and 5, we immediately obtain the following result.

Lemma 6. The set {χu ⊗ χv | u ∈ Zm
2 , v ∈ Zn

2 } forms an orthogonal basis of
the vector space U(m+ n).

Lemma 7. Let f1 ∈ U(m) and f2 ∈ U(n). Then

Spec(f1 ⊗ f2) = Spec(f1) + Spec(f2).

Proof. It follows from Lemmas 4, 6 and 1.

We will use Lemma 7 in the proof of Lemma 16. The following theorem is a
combination of the results proved in [18] (see [18, Theorems 3 and 4]).

Theorem 1. Let f ∈ U[i,j](n) and f 6≡ 0. Then the following statements hold:

1. If i + j ≥ n, then |f | ≥ 2i and this bound is sharp.

2. If i + j ≤ n, then |f | ≥ 2n−j and this bound is sharp.

We will use Theorem 1 in the proof of Lemma 17.

Lemma 8. Let f ∈ Ui(n), where 1 ≤ i ≤ n. Then for every (n− i + 1)-face Γ
it holds

∑
x∈Γ f(x) = 0.
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Proof. Suppose that Γ is an (n− i+1)-face. It is easy to check that the function
1Γ is orthogonal to χu for any u ∈ Zn

2 of weight i. Then by Lemma 4 we obtain
that 1Γ is orthogonal to an arbitrary function from the space Ui(n). So, the
functions 1Γ and f are orthogonal and we have

∑
x∈Γ f(x) = 0.

The following result was obtained in [10] (see the last paragraph in the proof
of Theorem 1).

Lemma 9. Let {T0, T1} be a [t]-trade in H(n). Then 1T0∪T1 ∈ RM(n−t−1, n).

The following fact is well known in coding theory (for example, see [12,
Chapter 13, Theorem 5] or [3, Chapter 4, Theorem 8]).

Lemma 10. Any Boolean function from RM(r, n) of weight 2n−r is the char-
acteristic function of an (n− r)-dimensional affine subspace of Zn

2 .

The following lemma was proved in [10].

Lemma 11 ([10], Proposition 1). An affine subspace T ⊂ Zn
2 of dimension t+1

can be split into a [t]-trade {T0, T1} if and only if it is a translation of the linear
span of mutually disjoint base subsets.

We will use Lemmas 8, 9, 10 and 11 in the proof of Theorem 2. The following
fact is well known in spectral graph theory (for example, see [2, Section 1.3.6]).

Lemma 12. Let G be a bipartite graph. If f is a λ-eigenfunction of G, then f ′

is a (-λ)-eigenfunction of G.

Since H(n) is bipartite and λi(n) = −λn−i(n), by Lemma 12 we immediately
obtain the following result.

Lemma 13. If f ∈ Ui(n), then f̃ ∈ Un−i(n).

Using the previous lemma for Uk(n), where i ≤ k ≤ j, we obtain the following
result.

Lemma 14. If f ∈ U[i,j](n), then f̃ ∈ U[n−j,n−i](n).

We will use Lemma 14 in the proof of Theorem 2.

4. Constructions of functions with the minimum cardinality of the

support

In this section, we give constructions of functions that are optimal in the
space U[i,j](n). We also find the spectrum of these functions.

For k ≥ 1, we define a function ϕk on the vertices of H(k) by the following
rule:

ϕk(x) =





1, if x is the all-zeros vector;

−1, if x is the all-ones vector;

0, otherwise.

6



For k ≥ 1, we define a function ψk on the vertices of H(k) by the following
rule:

ψk(x) =





1, if x is the all-zeros vector;

1, if x is the all-ones vector;

0, otherwise.

For k ≥ 1, we define a function Ik on the vertices of H(k) by the following
rule:

Ik(x) =

{
1, if x is the all-zeros vector;

0, otherwise.

The functions ϕ3, ψ3 and I3 are shown in Figure 1:

Figure 1: Functions ϕ3, ψ3 and I3 in H(3)

Lemma 15. The following statements are true:

1. Spec(ϕ2k+1) = {1, 3, . . . , 2k + 1} for k ≥ 1 and Spec(ϕ1) = {1}.

2. Spec(ϕ2k) = {1, 3, . . . , 2k − 1} for k ≥ 2 and Spec(ϕ2) = {1}.

3. Spec(ψ2k+1) = {0, 2, . . . , 2k} for k ≥ 1 and Spec(ψ1) = {0}.

4. Spec(Ik) = {0, 1, . . . , k} for k ≥ 1.

Proof. Let us consider the function ϕn. By Lemma 4, there exist the real
numbers cu, where u ∈ Zn

2 , such that

ϕn =
∑

u∈Z
n
2

cuχu.

Then we have

〈ϕn, χu〉 = 〈
∑

u∈Z
n
2

cuχu, χu〉 = cu〈χu, χu〉 = cu.

On the other hand,

〈ϕn, χu〉 =
1

2n

∑

x∈Z
n
2

ϕn(x)χu(x) =
1

2n
(1 − (−1)u1+...+un).

Hence

cu =
1

2n
(1− (−1)u1+...+un)
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for any u ∈ Zn
2 . So, we have

cu =

{
1

2n−1 , if wt(u) is odd;

0, if wt(u) is even.

Using Lemma 4, we obtain that Spec(ϕn) consists of odd numbers belonging to
the set {1, . . . , n}.

The proofs for the functions ψn and In are similar.

Lemma 16. Let n be a positive integer and n = n1+ . . .+nk+m1+ . . .+mℓ+r,
where n1, . . . , nk are odd positive integers, m1, . . . ,mℓ are even positive integers,
k, ℓ and r are nonnegative integers. Then the following statements hold:

1. Let f = ϕn1 ⊗ · · · ⊗ ϕnk
⊗ ϕm1 ⊗ · · · ⊗ ϕmℓ

⊗ Ir. Then f ∈ U[k+ℓ,n−ℓ](n)

and |f | = 2k+ℓ. Moreover,

Spec(f) = {k + ℓ, k + ℓ+ 1, . . . , n− ℓ}

for r > 0 and

Spec(f) = {k + ℓ, k + ℓ+ 2, . . . , n− ℓ}

for r = 0.

2. Let f = ψn1 ⊗ · · · ⊗ ψnk
⊗ ϕm1 ⊗ · · · ⊗ ϕmℓ

⊗ Ir. Then f ∈ U[ℓ,n−k−ℓ](n)

and |f | = 2k+ℓ. Moreover,

Spec(f) = {ℓ, ℓ+ 1, . . . , n− k − ℓ}

for r > 0 and
Spec(f) = {ℓ, ℓ+ 2, . . . , n− k − ℓ}

for r = 0.

Proof. Let us consider the first case. By Lemma 7 we have

Spec(f) = Spec(ϕn1)+. . .+Spec(ϕnk
)+. . .+Spec(ϕm1)+. . .+Spec(ϕmℓ

)+Spec(Ir).

Then applying Lemma 15, we obtain that

Spec(f) = {k + ℓ, k + ℓ+ 1, . . . , n− ℓ}

for r > 0 and
Spec(f) = {k + ℓ, k + ℓ+ 2, . . . , n− ℓ}

for r = 0. Using the equality |f1 ⊗ f2| = |f1| · |f2|, we see that |f | = 2k+ℓ.
The proof for the second case is similar.
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5. Main results

In this section, we prove the main theorem of this paper. Firstly, we prove
the following result.

Lemma 17. Let f ∈ U[i,j](n), where i+ j ≥ n. If |f | = 2i, then f takes values
from the set {−a, 0, a}, where a is a positive real number.

Proof. Let us prove this lemma by induction on n, i and j. If i = 0, then |f | = 1
and the claim of the lemma holds. So, we can assume that i ≥ 1. If n = 1, then
i = j = 1. Then f ∈ U1(1) and the claim of the lemma holds.

Let us prove the induction step for n ≥ 2 and i ≥ 1. Let us consider the
functions fn

0 and fn
1 . Denote fk = fn

k for k ∈ {0, 1}. Lemma 3 implies that
there are functions g and h such that f0 = g+h, f1 = g−h and g ∈ U[i,j](n−1),
h ∈ U[i−1,j−1](n− 1). Let us consider two cases.

In the first case we suppose that g ≡ 0. In this case we have |h| = 1
2 |f | =

2i−1. Let us show that i+ j ≥ n+ 1. Indeed, if i+ j = n, then |h| ≥ 2i due to
Theorem 1. Since |h| = 2i−1, we get a contradiction. So, in this case we have
i+ j ≥ n+1. Applying the induction assumption for h, we obtain that h takes
values from the set {−a, 0, a}, where a is a positive real number. Therefore, f
also takes values from the set {−a, 0, a}.

In the second case we suppose that g 6≡ 0. Since g ∈ U[i,j](n−1), by Theorem
1 we obtain that |g| ≥ 2i. Then we have

|f | = |f0|+ |f1| ≥ |f0 + f1| = |g| ≥ 2i.

Therefore |g| = |f | = 2i. Applying the induction assumption for g, we obtain
that g takes values from the set {−a′, 0, a′}, where a′ is a positive real number.
Since |f | = |g|, we have h(x) ∈ {−g(x), g(x)} for every vertex x of H(n − 1).
Thus, f takes values from the set {−2a′, 0, 2a′}.

The main result of this paper is the following.

Theorem 2. The following statements hold:

1. Let f ∈ U[i,j](n), where i+ j ≥ n. The equality |f | = 2i holds if and only
if f is equivalent to

ϕn1 ⊗ · · · ⊗ ϕnk
⊗ ϕm1 ⊗ · · · ⊗ ϕmℓ

⊗ Ir,

where n = n1 + . . .+ nk +m1 + . . .+mℓ + r, n1, . . . , nk are odd positive
integers, m1, . . . ,mℓ are even positive integers, k, ℓ and r are nonnegative
integers, k + ℓ = i and ℓ ≥ n− j.

2. Let f ∈ U[i,j](n), where i + j ≤ n. The equality |f | = 2n−j holds if and
only if f is equivalent to

ψn1 ⊗ · · · ⊗ ψnk
⊗ ϕm1 ⊗ · · · ⊗ ϕmℓ

⊗ Ir ,

where n = n1 + . . .+ nk +m1 + . . .+mℓ + r, n1, . . . , nk are odd positive
integers, m1, . . . ,mℓ are even positive integers, k, ℓ and r are nonnegative
integers, k + ℓ = n− j and ℓ ≥ i.
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Proof. 1. Suppose that |f | = 2i. If i = 0, then j = n. In this case |f | = 1.
Therefore, f ∼ In and the claim of the theorem holds. In what follows in the
proof of Theorem 2 for i+ j ≥ n we can assume that i ≥ 1.

Let us consider a pair {T0, T1}, where T0 = {x ∈ Zn
2 | f(x) > 0} and

T1 = {x ∈ Zn
2 | f(x) < 0}. Lemmas 8 and 17 imply that every (n− i + 1)-face

contains the same number of elements from T0 and from T1. So, {T0, T1} is an
[i− 1]-trade in H(n). Lemma 9 implies that

1T0∪T1 ∈ RM(n− i, n).

Since |1T0∪T1 | = |f |, we have |1T0∪T1 | = 2i. Then by Lemma 10 we have that
1T0∪T1 is the characteristic function of an i-dimensional affine subspace of Zn

2 .
Applying Lemma 11, we obtain that

f ∼ ϕt1 ⊗ · · · ⊗ ϕti ⊗ Ir ,

where n = t1+ . . .+ ti+ r, t1, . . . , ti are positive integers and r is a nonnegative
integer. Suppose that the set {t1, . . . , ti} consists of k odd numbers n1, . . . , nk

and ℓ even numbers m1, . . . ,mℓ. Then

f ∼ ϕn1 ⊗ · · · ⊗ ϕnk
⊗ ϕm1 ⊗ · · · ⊗ ϕmℓ

⊗ Ir.

Using Lemma 16, we see that f ∈ U[i,n−ℓ](n) and n − ℓ ∈ Spec(f). Since
f ∈ U[i,j](n), we obtain ℓ ≥ n− j.

Conversely, suppose that

f ∼ ϕn1 ⊗ · · · ⊗ ϕnk
⊗ ϕm1 ⊗ · · · ⊗ ϕmℓ

⊗ Ir,

where n = n1+ . . .+nk+m1+ . . .+mℓ+r, n1, . . . , nk are odd positive integers,
m1, . . . ,mℓ are even positive integers, k, ℓ and r are nonnegative integers, k+ℓ =
i and ℓ ≥ n− j. Lemma 16 implies that f ∈ U[k+ℓ,n−ℓ](n) and |f | = 2k+ℓ. Since
k + ℓ = i and ℓ ≥ n− j, we have f ∈ U[i,j](n) and |f | = 2i.

2. Suppose that |f | = 2n−j . Lemma 14 implies that f̃ ∈ U[n−j,n−i](n). Note

that |f̃ | = |f | = 2n−j . By the first case of this theorem we obtain that f̃ ∼ v,
where

v = ϕn1 ⊗ · · · ⊗ ϕnk
⊗ ϕm1 ⊗ · · · ⊗ ϕmℓ

⊗ Ir,

n = n1 + . . . + nk + m1 + . . . + mℓ + r, n1, . . . , nk are odd positive integers,
m1, . . . ,mℓ are even positive integers, k, ℓ and r are nonnegative integers, k+ℓ =

n− j and ℓ ≥ i. Using the equality f̃1 ⊗ f2 = f̃1 ⊗ f̃2, we obtain that

ṽ = ψn1 ⊗ · · · ⊗ ψnk
⊗ ϕm1 ⊗ · · · ⊗ ϕmℓ

⊗ Ir.

Therefore, we have

f ∼ ψn1 ⊗ · · · ⊗ ψnk
⊗ ϕm1 ⊗ · · · ⊗ ϕmℓ

⊗ Ir.

Conversely, suppose that

f ∼ ψn1 ⊗ · · · ⊗ ψnk
⊗ ϕm1 ⊗ · · · ⊗ ϕmℓ

⊗ Ir,
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where n = n1+ . . .+nk+m1+ . . .+mℓ+r, n1, . . . , nk are odd positive integers,
m1, . . . ,mℓ are even positive integers, k, ℓ and r are nonnegative integers, k+ℓ =
n− j and ℓ ≥ i. Lemma 16 implies that f ∈ U[ℓ,n−k−ℓ](n) and |f | = 2k+ℓ. Since
k + ℓ = n− j and ℓ ≥ i, we have f ∈ U[i,j](n) and |f | = 2n−j .

Applying Theorem 2 for i = j, we obtain the following result.

Corollary 1. The following statements hold:

1. Let f ∈ Ui(n), where i ≥
n
2 . The equality |f | = 2i holds if and only if f is

equivalent to ϕ2i−n
1 ⊗ ϕn−i

2 .
2. Let f ∈ Ui(n), where i ≤

n
2 . The equality |f | = 2n−i holds if and only if

f is equivalent to ψn−2i
1 ⊗ ϕi

2.

Finally, we illustrate Theorem 2 in the following examples:

Example 1. Let n = 4, i = 2 and j = 3. There are exactly two partitions of 4
such that k + ℓ = 2 and ℓ ≥ 1: 4 = 2 + 2 and 4 = 1 + 2 + 1. These partitions
correspond to the functions ϕ2 ⊗ ϕ2 and ϕ1 ⊗ ϕ2 ⊗ I1 respectively.

Example 2. Let n = 3, i = 0 and j = 2. There are exactly three partitions of 3
such that k+ ℓ = 1 and ℓ ≥ 0: 3 = 2+ 1, 3 = 3 and 3 = 1+2. These partitions
correspond to the functions ϕ2 ⊗ I1, ψ3 and ψ1 ⊗ I2 respectively.

6. Spectrum of optimal functions

In this section, we discuss the spectrum of functions that are optimal in the
space U[i,j](n). Theorem 2 and Lemma 16 imply that the spectrum of such
functions forms an arithmetic progression with common difference 1 or 2. More
precisely, we have the following result.

Corollary 2. The following statements hold:

1. Let f ∈ U[i,j](n), where i+ j ≥ n. If |f | = 2i, then

Spec(f) = {i, i+ d, . . . , i+ kd},

where d ∈ {1, 2}, k is non-negative integer and i+ kd ≤ j.

2. Let f ∈ U[i,j](n), where i+ j ≤ n. If |f | = 2n−j, then

Spec(f) = {j − kd, j − (k − 1)d, . . . , j},

where d ∈ {1, 2}, k is non-negative integer and j − kd ≥ i.

Corollary 2 implies that if f ∈ U[i,j](n) and Spec(f) is not an arithmetic
progression of a special kind, then |f | > max(2i, 2n−j). For example, if f ∈
U(n) and Spec(f) = {0, 3}, where n ≥ 3, then |f | > 2n−3. In view of these
observations, it seems natural to consider the following question.

Problem 5. Let n ≥ 3. Find

min
f∈U(n),Spec(f)={0,3}

|f |.
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