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JACOBI POLYNOMIALS AND DESIGN THEORY II

HIMADRI SHEKHAR CHAKRABORTY, REINA ISHIKAWA,
AND YUUHO TANAKA∗

Abstract. In this paper, we introduce some new polynomials as-
sociated to linear codes over Fq. In particular, we introduce the
notion of split complete Jacobi polynomials attached to multiple
sets of coordinate places of a linear code over Fq, and give the
MacWilliams type identity for it. We also give the notion of gen-
eralized q-colored t-designs. As an application of the generalized
q-colored t-designs, we derive a formula that obtains the split com-
plete Jacobi polynomials of a linear code over Fq. Moreover, we
define the concept of colored packing (resp. covering) designs. Fi-
nally, we give some coding theoretical applications of the colored
designs for Type III and Type IV codes.
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1. Introduction

In 1997, Ozeki [35] introduced the notion of Jacobi polynomials of
linear codes, an analogue to Jacobi forms [16] of lattices. Many authors
studied the Jacobi polynomials in coding theory; for instance [6, 7, 8,
13, 14, 19]. Among these articles Bonnecaze et al. [6, 7, 8] pointed
out some characterizations of the Jacobi polynomials with the codes
supporting designs. Moreover, Bonnecaze, Rains and Solé [7] intro-
duced the notion of colored t-designs and gave an application of these
designs for Z4-codes in the evaluation of the Jacobi polynomials from
the symmetrized weight enumerator of Z4-codes using the polarization
operator. Later, Bonnecaze, Solé and Udaya [8] studied the 3-colored
3-designs in the case of Type III codes. Furthermore, Cameron [10]
gave a new generalization of the combinatorial t-designs. In this pa-
per, we would like to call these designs as the generalized t-designs. In a
recent study, Chakraborty, Miezaki, Oura and Tanaka [15] introduced
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the notion of Jacobi polynomials of a linear code with multiple refer-
ence vectors and gave a design theoretical application of these Jacobi
polynomials in the study of generalized t-designs.
In this paper, we introduced the notion of split complete weight

enumerators for the linear codes over Fq which is independent from the
sense of Bonnecaze et al. [8]. We also introduce the notion of split com-
plete Jacobi polynomials of a linear code over Fq attached to multiple
sets of coordinate places of the code. We show that both the code poly-
nomials: split complete weight enumerators and split complete Jacobi
polynomials satisfy the MacWilliams type identities. In particular, the
complete Jacobi polynomials of linear codes over F3 in our sense are
equivalent to the split complete weight enumerators of codes over F3

in the sense of Bonnecaze et al. [8]. Moreover, we define the concept
of the generalized colored t-designs, and as an analogue to Bonnecaze
et al. [8], we present a combinatorial interpretation of the polarization
of the split complete Jacobi polynomials of a linear code over Fq. In
addition, we study the complete Jacobi polynomials of some Type III
(resp. Type IV) codes of specific lengths through invariant theory to
construct the colored packing (resp. covering) designs that correspond
to the coefficients in the complete Jacobi polynomials. Bonnecaze et
al. [8] investigated the 3-colored t-designs structure for the extremal
Type III codes. In this paper, we study the Type IV codes of some
specific lengths and obtain the 4-colored t-design structures.
This paper is organized as follows. In Section 2, we discuss the

basic definitions and notations that we use in this paper. We also
prove the MacWilliams type identity (Theorem 2.2) for the spilt com-
plete weight enumerators of codes over Fq. In Section 3, we introduced
several colored designs, namely generalized colored t-designs, colored
packing (resp. covering) designs and some of their properties. In Sec-
tion 4, we give the MacWilliams type identity (Theorem 4.1) for the
spilt complete Jacobi polynomials of linear codes over Fq. We also ob-
serve (Theorem 4.3, Theorem 4.4) how polarization operator acts to
obtain the split complete Jacobi polynomials attached to multiple sets
of coordinate places of a code. In Section 5, we disclose some facts
between a Type III (resp. Type IV) code of specific lengths and col-
ored designs with the help of the complete Jacobi polynomials. We
also show that the codewords of fixed composition in the Hermitian
Type IV codes of length 6 hold 4-colored 2-designs (Theorem 5.12).
Finally, we conclude the paper with some remarks in Section 6.
All computer calculations in this paper were done with the help of

Magma [9].
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2. Preliminaries

Let Fq be a finite field of order q, where q is a prime power. Then Fn
q

denotes the vector space of dimension n over Fq. The elements of Fn
q are

known as vectors. The Hamming weight of a vector u = (u1, . . . , un) ∈
Fn
q is denoted by wt(u) and defined to be the number of i’s such that

ui 6= 0. The inner product of two vectors u,v ∈ Fn
q is given by

u · v := u1v1 + · · ·+ unvn,

where u = (u1, . . . , un) and v = (v1, . . . , vn). If q is an even power of
an arbitrary prime p, then it is convenient to consider another inner
product known as the Hermitian inner product which can be defined
as

u · v := u1v1 + · · ·+ unvn,

where vi := vi
√
q. An Fq-linear code of length n is a vector subspace of

Fn
q . The elements of an Fq-linear code are called codewords. The dual

code of an Fq-linear code C of length n is defined by

C⊥ := {v ∈ F
n
q | u · v = 0 for all u ∈ C}.

An Fq-linear code C is called self-dual if C = C⊥. Let q be an even
power of an arbitrary prime number. Then an Fq-linear code C of
length n is called Hermitian self-dual if C = C⊥H , where C⊥H denotes
the Hermitian dual code of C which is defined as

C⊥H := {v ∈ F
n
q | u · v = 0 for all u ∈ C}.

Most of the results in this paper are stated for Fq-linear codes with
usual inner product but it can be re-phrased with equal validity to the
case of the codes with the Hermitian inner product.
Let X ⊆ [n]. The composition of an element u ∈ Fn

q attached to X
is the q-tuple:

compX(u) := (na,X(u) : a ∈ Fq),

where na,X(u) := #{i ∈ X | ui = a}. Obviously,
∑

a∈Fq
na,X(u) = |X|.

If X = [n], we prefer to write the composition of u ∈ Fn
q as

comp(u) := (na(u) : a ∈ Fq),

where na(u) denotes the number of coordinates of u that are equal
to a ∈ Fq.
It is well known that the length n of a self-dual code over Fq is even

and the dimension is n/2. To study self-dual codes in detail, we refer
the readers to [5, 17, 23, 34]. A self-dual code C over F3 of length
n ≡ 0 (mod 4) is called Type III if the weight of each codeword of C
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is multiple of 3. Again a self-dual code C over F4 of length n ≡ 0
(mod 2) having even weight is called Type IV.

Definition 2.1. Let C be and Fq-linear code of length n. Then the
weight enumerator of C is defined as

WC(x, y) :=
∑

u∈C
xn−wt(u)ywt(u).

Definition 2.2. Let C be an Fq-linear code of length n. Then the
complete weight enumerator of C is defined as

cweC({xa}a∈Fq
) :=

∑

u∈C

∏

a∈Fq

xna(u)
a .

Remark 2.1. WC(x, y) = cweC(x0 ← x, {xa ← y}06=a∈Fq
).

Definition 2.3. Let C be an Fq-linear code of length n. Then the
split complete weight enumerator attached to ℓ mutually disjoint subset
X1, . . . , Xℓ of coordinate places of the code C such that

X1 ⊔ · · · ⊔Xℓ = [n]

is defined as follows:

scweC,X1,...,Xℓ
({{xXi,a}a∈Fq

}1≤i≤ℓ) :=
∑

u∈C

ℓ∏

i=1

∏

a∈Fq

x
na,Xi

(u)

Xi,a
.

Note that when ℓ = 1, the split complete weight enumerators of an
Fq-linear code C coincide with its complete weight enumerators.

Example 2.1. Let C4 be an F3-linear code of length 4 with the gen-
erator matrix: [

1 0 1 1
0 1 1 2

]
.

The elements of C4 are listed as follows:

(0, 0, 0, 0), (0, 1, 1, 2), (0, 2, 2, 1),
(1, 0, 1, 1), (1, 1, 2, 0), (1, 2, 0, 2),
(2, 0, 2, 2), (2, 1, 0, 1), (2, 2, 1, 0).

Therefore the complete weight enumerator of C4 is

cweC4(x0, x1, x2) = x4
0 + x1

0x
3
1 + x1

0x
3
2 + 3x1

0x
2
1x

1
2 + 3x1

0x
1
1x

2
2.

Let X1 = {1, 2} and X2 = {3, 4} be two disjoint sets such that X1 ⊔
X2 = [4]. Then the split complete weight enumerator of C4 attached
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to X1 and X2 is

scweC4,X1,X2(xX1,0, xX1,1, xX1,2, xX2,0, xX2,1, xX2,2)

= x2
X1,0

x2
X2,0

+ x1
X1,0

x1
X1,1

x2
X2,1

+ x1
X1,0

x1
X1,2

x2
X2,2

+ x1
X1,0x

1
X1,1x

1
X2,1x

1
X2,2 + x2

X1,1x
1
X2,0x

1
X2,2 + x1

X1,1x
1
X1,2x

1
X2,0x

1
X2,1

+ x1
X1,0x

1
X1,2x

1
X2,1x

1
X2,2 + x1

X1,1x
1
X1,2x

1
X2,0x

1
X2,2 + x2

X1,2x
1
X2,0x

1
X2,1.

A character of Fq, where q = pf for some prime number p, is a
homomorphism from the additive group Fq to the multiplicative group
of non-zero complex numbers. We review [13, 15, 24] to introduce
some fixed non-trivial characters over Fq. Now let F (x) be a primitive
irreducible polynomial of degree f over Fp and let λ be a root of F (x).
Then any element a ∈ Fq has a unique representation as:

a = a0 + a1λ + a2λ
2 + · · ·+ af−1λ

f−1,

where ai ∈ Fp. For b ∈ Fq, we define χb(a) := ζ
a0b0+···+af−1bf−1
p , where

ζp is the p-th primitive root e2πi/p of unity. When b 6= 0, then χb is
a non-trivial character of Fq. Let χ be a non-trivial character of Fq.
Then for any a ∈ Fq, we have the following property:

∑

b∈Fq

χ(ab) :=

{
q if a = 0,

0 if a 6= 0.

Lemma 2.1 ([24]). Let C be an Fq-linear code of length n. For v ∈ Fn
q ,

define

δC⊥(v) :=

{
1 if v ∈ C⊥,

0 otherwise.

Then we have the following identity:

δC⊥(v) =
1

|C|
∑

u∈C
χ(u · v).

Now we have the following MacWilliams type identity for the split
complete weight enumerators. The proof of the theorem is straightfor-
ward. So we leave it for the readers.
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Theorem 2.2. Let C be an Fq-linear code of length n. Again let χ be

a non-trivial character of Fq. Then

scweC⊥,X1,...,Xℓ
({{xXi,a}a∈Fq

}1≤i≤ℓ)

=
1

|C|scweC,X1,...,Xℓ











∑

b∈Fq

χ(ab)xXi,b





a∈Fq





1≤i≤ℓ


 .

3. Generalized colored designs

Let v be a positive integer, and let v := (v1, . . . , vℓ) such that v =∑ℓ
i=1 vi. Let X := (X1, . . . , Xℓ), where Xi’s are pairwise disjoint sets

such that |Xi| = vi for all i. Again let

B ⊆ B1 × · · · ×Bℓ,

where Bi is the set of blocks corresponding to Xi for all i.
Then the generalized colored incidence structure is a triple D :=

(X,B, C), where C is a set of colors, together with a function

ρi : Xi ×Bi → C
for all i. We will say that B has color ρi(p, b) at p in the i-th component.
For an element K := (K1, . . . , Kℓ) ∈ B, we define a function ni : C → Z

called the palette on Ki for 1 ≤ i ≤ ℓ that counts the number of
occurrence of color c ∈ C in Ki. The generalized colored incident
structure is said to be uniform if each color c ∈ C occurs

∑ℓ
i=1 ni(c)

times in every element K ∈ B.
Definition 3.1. The uniform colored incidence structure D is called
the generalized colored t-design if t := (t1, . . . , tℓ) such that t =

∑n
i=1 ti,

then for each C := (C1, . . . , Cℓ) such that Ci is the ti-multiset of colors
(repeated choice allowed) for all i, there is a number λ ≥ 0 such that for
any choice T := (T1, . . . , Tℓ) with Ti ∈

(
Xi

ti

)
for all i, there are precisely

λ members K := (K1, . . . , Kn) ∈ B for which Ti ⊆ Ki for all i that use
the ti-multiset of colors Ci for the points in Ti.

Let D = (X,B, C) be a generalized colored t-design with the set
of colors C = {1, 2, . . . , r}. It is immediate from the above defi-
nition that the λ’s are not independent from the choices of colors.
Therefore by λ(j1(1),...,j1(r)),...,(jℓ(1),...,jℓ(r)), we denote the number of K =
(K1, . . . , Kℓ) ∈ B that uses the color c ∈ C ji(c) times in Ki with∑r

c=1 ji(c) = ti for all 1 ≤ i ≤ ℓ. Obviously, the parameters of a
generalized colored t-design D = (X,B, C) depend only on the num-
ber of points vi in Xi for all i, the number of blocks |B| and palette
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((n1(1), n1(2), . . . , ), . . . , (nℓ(1), nℓ(2), . . .)), therefore it is convenient to
write a generalized colored t-design as a

t− (v, ((n1(1), n1(2), . . . , ), . . . , (nℓ(1), nℓ(2), . . .)), |B|)

design. Note that when k = (k) and v = (v), then the generalized col-
ored t-design coincide with the colored t-design. For detail discussions
on colored t-designs, we refer the readers to [7, 8].
To construct the generalized colored t-designs from a linear code C

of length n over Fq. Let v = (v1, . . . , vℓ) such that
∑ℓ

i=1 vi = n and
X = (X1, . . . , Xℓ) of pairwise disjoint sets Xi ⊆ [n] with |Xi| = vi. We
define the split composition s := (s1, . . . , sℓ) such that si = (si1, . . . , siq)
for all i satisfying

∑q
j=1 sij = vi. For any codeword u ∈ C, let K(u) :=

(KX1(u), . . . , KXℓ
(u)) such that KXi

(u) for all i are the characteristic
vectors of the supports of u with the coordinate place Xi. Let Cs be
the set of codewords of u ∈ C such that compXi

(u) = si for all i. We
denote

B(Cs) := {K(u) | u ∈ Cs}.

In general, B(Cs) is a multi-set. Let C be a set of colors. Then we call Cs

is a generalized colored t-design if the triple (X,B(Cs), C) together with
the function ρi(p, b) of up is a generalized colored t-design. We say the
code C is generalized colorwise t-homogeneous if the set of codewords
Cs for every given s holds a generalized colored t-design. The code is
called generalized colorwise homogeneous when t = 1. In particular,
for any Fq-linear code one can choose the function ρi(p, b) = a if up = a
where a ∈ Fq.
A colored design with parameters t-(v, (n(1), n(2), . . .), (λa1

1 (P ), . . . , λaN
N (P )))

is a set of blocks B with palette (n(1), n(2), . . .) of a set of v points,
called the varieties and a partition of the set of all t-tuples into N
groups G1, . . . , GN satisfying that for each t-multiset of colors P (re-
peated choices allowed), there is a number λi such that for every t-set
belonging to Gi (say ai such t-set), there are exactly λi-blocks in B
that use the t-multiset of colors P .
When N = 1, it is clearly a colored t-design. A colored packing

(resp. covering) design with parameters t-(v, (n(1), n(2), . . .), λ(P ))
is a colored design with max(λi) = λ (resp. min(λi) = λ). The
minimum (resp. maximum) number of blocks of a covering (resp.
packing) design is denoted by Cλj(1),...,j(r)(v, (n(1), . . . , n(r)), t) (resp.

Dλj(1),...,j(r)(v, (n(1), . . . , n(r)), t)). Note that the 2-colored packing (resp.

covering) designs is the packing (resp. covering) designs in the sense
of Bonnecaze et al. [6].
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4. Jacobi polynomials and polarization

The MacWilliams type identity for the Jacobi polynomial of an Fq-
linear code with one reference vector was given in [35]. In this section,
we give the MacWilliams type identity for the Jacobi polynomial of an
Fq-linear code attached to multiple sets of coordinate positions of the
code. Bonnecaze et al. [7] defined the Aronhold polarization operator,
and as an application of this operator, they obtained a formula to
evaluate the Jacobi polynomial of a Z4-code from the symmetrized
weight enumerator of the code. Later an analogue of the formula was
given in [8] for complete weight enumerators of F3-linear codes. In this
section, we give the generalizations of the polarization operation, and
using these operators, we evaluate the complete Jacobi polynomial of
an Fq-linear code attached to the multiple reference sets.

Definition 4.1. Let C be an Fq-linear code of length n. Then the
Jacobi polynomial attached to a set T of coordinate places of the code C
is defined as follows:

JC,T (w, z, x, y) :=
∑

u∈C
wm0,T (u)zm1,T (u)xm0,[n]\T (u)ym1,[n]\T (u),

where T ⊆ [n], and for u ∈ C,

m0,T (u) := #{i ∈ T | ui = 0},
m1,T (u) := #{i ∈ T | ui 6= 0},

m0,[n]\T (u) := #{i ∈ [n] \ T | ui = 0},
m1,[n]\T (u) := #{i ∈ [n] \ T | ui 6= 0}.

Remark 4.1. If T ⊆ [n] is empty, then JC,T (w, z, x, y) = WC(x, y).

Definition 4.2. Let C be an Fq-linear code of length n. Then the
complete Jacobi polynomial attached to a set T of coordinate places of
the code C is defined as follows:

CJC,T ({xa, ya}a∈Fq
) :=

∑

u∈C

∏

a∈Fq

xna,T (u)
a y

na,[n]\T (u)
a ,

where T ⊆ [n], and na,T (u) is the composition of u on T and na,[n]\T (u)
is the composition of u on [n]\T .
Remark 4.2. JC,T (w, z, x, y) = CJC,T (x0 ← w, {xa ← z}06=a∈Fq

, y0 ←
x, {ya ← y}06=a∈Fq

).

Definition 4.3. Let C be an Fq-linear code of length n. Let X1, . . . , Xℓ

be ℓ mutually disjoint sets such that

[n] = X1 ⊔ · · · ⊔Xℓ.
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Then the split complete Jacobi polynomial of C attached to T1, . . . , Tℓ

such that Ti ⊆ Xi for all i is defined by

SCJC,X1(T1),...,Xℓ(Tℓ)({{xXi,a, yXi,a}a∈Fq
}1≤i≤ℓ) :=

∑

u∈C

ℓ∏

i=1

∏

a∈Fq

x
na,Ti

(u)

Xi,a
y
na,Xi\Ti

(u)

Xi,a
.

Note that if ℓ = 1, the above definition is completely equivalent to the
complete Jacobi polynomial with one reference vector (Definition 4.1).

Example 4.1. Let us consider the code C4 from Example 2.1. Then
the complete Jacobi polynomial of C4 attached to a set of coordinate
places T = {1, 3} is

CJC4,T (x0, x1, x2, y0, y1, y2) = x2
0y

2
0 + x2

1y
1
0y

1
1 + x2

2y
1
0y

1
2 + x1

0x
1
1y

1
1y

1
2

+ x1
1x

1
2y

1
0y

1
1 + x1

0x
1
2y

2
1 + x1

0x
1
2y

1
1y

1
2 + x1

0x
1
1y

2
2 + x1

1x
1
2y

1
0y

1
2

We consider the same X1 and X2 from Example 2.1. Let T1 = {1} and
T2 = {3}. Then the split complete Jacobi polynomials of C4 attached
to T1 ⊆ X1 and T2 ⊆ X2 is as follows:

SCJC4,X1(T1),X2(T2)({{xXi,a, yXi,a}a∈Fq
}i=1,2)

= x1
X1,0

y1X1,0
x1
X2,0

y1X2,0
+ x1

X1,1
y1X1,0

x1
X2,1

y1X2,1
+ x1

X1,2
y1X1,0

x1
X2,2

y1X2,2

+ x1
X1,0y

1
X1,1x

1
X2,1y

2
X2,2 + x1

X1,1y
1
X1,1x

1
X2,2y

1
X2,0 + x1

X1,2y
1
X1,1x

1
X2,0y

1
X2,1

+ x1
X1,0

y1X1,2
x1
X2,2

y1X2,1
+ x1

X1,1
y1X1,2

x1
X2,0

y1X2,2
+ x1

X1,2
y1X1,2

x1
X2,1

y1X2,0

The complete Jacobi polynomial of an Fq-linear code attached to
multiple sets satisfies the following MacWilliams type identity.

Theorem 4.1 (MacWilliams Identity). Let C be an Fq-linear code of

length n. Again let χ be a non-trivial character of Fq. Then

SCJC⊥,X1(T1),...,Xℓ(Tℓ)({{xXi,a, yXi,a}a∈Fq
}1≤i≤ℓ)

=
1

|C|SCJC,X1(T1),...,Xℓ(Tℓ)











∑

b∈Fq

χ(ab)xXi,b,
∑

b∈Fq

χ(ab)yXi,b





a∈Fq





1≤i≤ℓ


 .

Proof. By Lemma 2.1, we can write
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SCJC⊥,X1(T1),...,Xℓ(Tℓ)({{xXi,a, yXi,a}a∈Fq
}1≤i≤ℓ)

=
∑

u∈C⊥

ℓ∏

i=1

∏

a∈Fq

x
na,Ti

(u)

Xi,a
y
na,Xi\Ti

(u)

Xi,a

=
∑

v∈Fn
q

δC⊥(v)
ℓ∏

i=1

∏

a∈Fq

x
na,Ti

(v)

Xi,a
y
na,Xi\Ti

(v)

Xi,a

=
1

|C|
∑

u∈C
v∈Fn

q

χ(u · v)
ℓ∏

i=1

∏

a∈Fq

x
na,Ti

(v)

Xi,a
y
na,Xi\Ti

(v)

Xi,a

=
1

|C|
∑

u∈C
v∈Fn

q

χ(u1v1 + · · ·+ unvn)
ℓ∏

i=1

(∏

j∈Ti

xXi,vj

)
 ∏

j∈Xi\Ti

yXi,vj




=
1

|C|
∑

u∈C

ℓ∏

i=1


∏

j∈Ti

∑

vj∈Fq

χ(ujvj)xXi,vj




 ∏

j∈Xi\Ti

∑

vj∈Fq

χ(ujvj)yXi,vj




=
1

|C|
∑

u∈C

ℓ∏

i=1

∏

a∈Fq


∑

b∈Fq

χ(ab)xXi,b




na,Ti
(u)
∑

b∈Fq

χ(ab)yXi,b




na,Xi\Ti
(u)

=
1

|C|SCJC,X1(T1),...,Xℓ(Tℓ)











∑

b∈Fq

χ(ab)xXi,b,
∑

b∈Fq

χ(ab)yXi,b





a∈Fq





1≤i≤ℓ


 .

Hence the proof is completed. �

The following result reflects the basic motivation to introduce the
concept of split complete Jacobi polynomials attached to multiple sets.
We omit the proof of the theorem since it follows from the definitions.

Theorem 4.2. Let C be a linear code of length n over Fq. Let v :=

(v1, . . . , vℓ) such that
∑ℓ

i vi = n. Let X := (X1, . . . , Xℓ) of pairwise

disjoint set Xi ⊆ [n] with |Xi| = vi for all i. Then the set of codewords

of C for every given split composition forms a generalized q-colored t-
design with t = (t1, . . . , tℓ) such that

∑ℓ
i=1 ti = t if and only if the split

complete Jacobi polynomial SCJC,X1(T1),...,Xℓ(Tℓ) with Ti ∈
(
Xi

ti

)
for all i

is independent of the choices of the sets T1, . . . , Tℓ.
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Let C be a linear code of length n over Fq. Then the code C−i (resp.
C/i) obtained from C by puncturing (resp. shortening) at coordinate
place i. We denote by C + ia for all a ∈ Fq the subcodes of C where
the i-th entry of each codeword takes the value a punctured at i.
Let ℓ, n be the positive integers. Let v := (v1, . . . , vℓ) such that∑ℓ
i=1 vi = n. Let P ({{xXi,a, yXi,a}a∈Fq

}1≤i≤ℓ) be a polynomial of de-
gree n in 2qℓ variables such that in its each term the sum of the powers
of xXi,a and yXi,a for all a ∈ Fq is vi for all i. Again let P ′

k,a denote
the partial derivative with respect to yXk,a for any integer 1 ≤ k ≤ ℓ
and a ∈ Fq. Define the polarization operator A2mℓ,k for any integer
1 ≤ k ≤ ℓ as follows:

A2qℓ,k · P :=
1

vk

∑

a∈Fq

xXk ,aP
′
k,a.

For ℓ = 1, it convenient to denote the polarization operator as A2q

instead of A2qℓ,k. The detail of this particular case is as follows:
Let P ({xa, ya}a∈Fq

) be a polynomial of degree n in 2q variables.
Let P ′

ya be the partial derivative with respect to ya for a ∈ Fq. Then

A2q · P :=
1

n

∑

a∈Fq

xaP
′
ya .

Now we have the following generalization of the Fq-analogue of [7,
Theorem 1].

Theorem 4.3. Let C be a linear code of length n over Fq. Let v :=

(v1, . . . , vℓ) such that
∑ℓ

i=1 vi = n. We also let X1, . . . , Xℓ be the mu-

tually disjoint subsets of [n] such that X1⊔ · · ·⊔Xℓ = [n] and |Xi| = vi
for all i. Then for every coordinate place i ∈ Xk for 1 ≤ k ≤ ℓ, we
have

SCJC,X1(∅),...,Xk−1(∅),Xk({i}),Xk+1(∅),...,Xℓ(∅)

= xXk,0scweC/i,X1,...,Xk−1,Xk,Xk+1,...,Xℓ

+
∑

a∈Fq,a6=0

xXk ,ascweC+ia,X1,...,Xk−1,Xk,Xk+1,...,Xℓ
.
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If C contains no nonzero codewords of Hamming weight less than 1,
we have

vi(A2qℓ,k · scweC,X1,...,Xk−1,Xk,Xk+1,...,Xℓ
)

= xXk,0

∑

i∈Xk

scweC/i,X1,...,Xk−1,Xk,Xk+1,...,Xℓ

+
∑

a∈Fq ,a6=0

xXk,a

∑

i∈Xk

scweC+ia,X1,...,Xk−1,Xk,Xk+1,...,Xℓ
.

If C is a generalized colorwise homogeneous code, then

SCJC,X1(∅),...,Xk−1(∅),Xk({i}),Xk+1(∅),...,Xℓ(∅) = A2qℓ,k·scweC,X1,...,Xk−1,Xk,Xk+1,...,Xℓ
.

Proof. The proof follows the similar arguments given in [7, Theorem
1]. So we omit the details. �

The following theorem is an analogue of the above theorem for t > 1.
We leave the proof for the readers.

Theorem 4.4. Let C be a linear code of length n over Fq. Let v :=

(v1, . . . , vℓ) such that
∑ℓ

i=1 vi = n. We also let X1, . . . , Xℓ be the mutu-

ally disjoint subsets of [n] such that X1 ⊔ · · · ⊔Xℓ = [n] and |Xk| = vk
for all k. If C is a generalized colorwise t-homogeneous and contains

no codeword of Hamming weight less than t, then for t := (t1, . . . , tℓ)

such that
∑ℓ

i=1 ti = t, we have

SCJX1(T1),...,Xℓ(Tℓ) = Atℓ
2qℓ,ℓ · · ·At1

2qℓ,1 · scweC,X1,...,Xℓ
,

for each (T1, . . . , Tℓ) ∈
(
X1

t1

)
× · · · ×

(
Xℓ

tℓ

)
.

5. Application to colored design theory

Bonnecaze et al. [8] gave colored t-design structures using Type III
codes. In this section, using their idea, we construct some (generalized)
colored designs such as colored packing (resp. covering) designs using
Type III and Type IV codes.

5.1. Invariant theory. Let G be a finite n×n matrix group that acts
on a polynomial ring C[x0, . . . , xn−1]; for g ∈ G and f(x0, . . . , xn−1) ∈
C[x0, . . . , xn−1],

gf(x0, . . . , xn−1) = f(g(x0, . . . , xn−1)
t).

Then

Ĝ =

{(
g 0
0 g

)∣∣∣∣ g ∈ G

}
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acts on a polynomial ring C[x0, . . . , xn−1, y0, . . . , yn−1] in a natural way.

Let M Ĝ
i,j = C[x0, . . . , xn−1, y0, . . . , yn−1]

Ĝ
i,j be the invariants of degree

(i, j):

C[x0, . . . , xn−1, y0, . . . , yn−1]
Ĝ
i,j

= {f ∈ C[x0, . . . , xn−1, y0, . . . , yn−1] | (g, h)f = f, degree of f in {xk} is i,
degree of f in {yk} is j}.

In [37], Stanley defined the bivariate Molien series

f(u, v) =
∑

u,v

dim(M Ĝ
i,j)u

ivj ,

and showed that f(u, v) is written as follows:

f(u, v) =
1

|G|
∑

g∈G

1

det (1− ug) det (1− vg)
.

We denote the homogeneous part of degree d of f(u, v) by f [d].
To obtain an invariant, the Reynolds operator is useful. For f ∈
C[x0, . . . , xn−1, y0, . . . , yn−1], the Reynolds operator of f and Ĝ is de-
fined as follows:

R(f, Ĝ) :=
∑

(g,g)∈Ĝ

(g, g) · f.

Then it is easy to show that R(f, Ĝ) is an invariant of Ĝ.

5.2. Type III codes. The MacWilliams transform and some congru-
ence conditions yield that the complete weight enumerator of a Type III
code remains invariant under the action of group GIII of order 2592
which is generated by the following four matrices:

1√
3



1 1 1
1 e2πi/3 e4πi/3

1 e4πi/3 e2πi/3


 ,



1 0 0
0 e2πi/3 0
0 0 1


 ,



1 0 0
0 1 0
0 0 e2πi/3


 ,



eπi/6 0 0
0 eπi/6 0
0 0 eπi/6


 .

It is easy to show that a split complete weight enumerator of a Type

III code is an invariant of ĜIII.
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Now we assume that G is a 2 × 2 matrix group and Ĝ acts on
C[x0, x1, y0, y1]. Let P ∈ C[x0, x1, y0, y1] be a polynomial of total de-
gree n. Now define a polarization operator A4 as follows:

A4 · P :=
x0P

′
y0
+ x1P

′
y1

n
.

Definition 5.1. A linear code of length n over F3 is said to be t-
homogeneous if the codewords of every given Hamming weight hold a
t-design.

Definition 5.2. An F3-linear code of length n is said to be colorwise

t-homogeneous if the codewords of every given composition hold a 3-
colored t-design.

Lemma 5.1 ([8]). Let C be a linear code of length n over F3. If C is

t-homogeneous with no non-zero words of Hamming weight less than t,
then for all T of size t we get

JC,T = At
4 ·WC .

Let P be a polynomial of total degree n in 6 variables x0, x1, x2, y0, y1, y2.
Now define a polarization operator A6 and specialization operator S as
follows:

A6 · P :=
x0P

′
y0 + x1P

′
y1 + x2P

′
y2

n
,

S6 · P (x0, x1, x2, y0, y1, y2) := P (x0, x1, x1, y0, y1, y1).

Lemma 5.2 ([8]). Let C be a linear code of length n over F3. If C is

colorwise t-homogeneous with no non-zero words of Hamming weight

less than t, then for all T of size t we get

CJC,T = At
6 · cweC .

5.2.1. Length 12.

Example 5.1 (length 12). Let CIII
12 be the first ternary self-dual code

of length 12 in [18].

f [12] = 2u12 + 2u11v + 3u10v2 + 4u3v9 + · · · .
In this case, it holds the following lemmas.

Lemma 5.3 ([8]). A basis of M ĜIII
3,9 is obtained by applying R(f, ĜIII)

with f running over the monomials

x3
0y

9
0, x

3
0y

3
0y

6
1, x

3
0y

3
0y

3
1y

2
2, x

2
0x1y

4
0y

5
1.

Lemma 5.4 ([8]). For ℓ = 1, 2, 3 we have

dim(S6 ·M ĜIII
ℓ,12−ℓ) = dim(M ĜIII

ℓ,12−ℓ).



JACOBI POLYNOMIALS AND DESIGN THEORY II 15

Combining the preceding lemmas and the bivariate Molien series, we
obtain the following Theorem.

Theorem 5.5 ([8]). The codewords of fixed composition in the ternary

Golay hold 3-colored 3-designs.

Since the codewords of fixed composition in CIII
12 holds 3-colored 3-

design, we assume that |T | = 1, 2, 3. Then

CJCIII
12 ,1 = x0(y

11
0 + 11y50y

6
1 + 110y50y

3
1y

3
2 + 11y50y

6
2 + 55y20y

6
1y

3
2 + 55y20y

3
1y

6
2)

+ x1(y
11
1 + 11y60y

5
1 + 55y60y

2
1y

3
2 + 110y30y

5
1y

3
2 + 55y30y

2
1y

6
2 + 11y51y

6
2)

+ x2(y
11
2 + 55y60y

3
1y

2
2 + 11y60y

5
2 + 55y30y

6
1y

2
2 + 110y30y

3
1y

5
2 + 11y61y

5
2),

CJCIII
12 ,2 = x2

0(y
10
0 + 5y40y

6
1 + 50y40y

3
1y

3
2 + 5y40y

6
2 + 10y0y

6
1y

3
2 + 10y0y

3
1y

6
2)

+ x0x1(12y
5
0y

5
1 + 60y50y

2
1y

3
2 + 60y20y

5
1y

3
2 + 30y20y

2
1y

6
2)

+ x0x2(60y
5
0y

3
1y

2
2 + 12y50y

5
2 + 30y20y

6
1y

2
2 + 60y20y

3
1y

5
2)

+ x2
1(5y

6
0y

4
1 + 10y60y1y

3
2 + 50y30y

4
1y

3
2 + 10y30y1y

6
2 + 5y41y

6
2 + y101 )

+ x1x2(30y
6
0y

2
1y

2
2 + 60y30y

5
1y

2
2 + 60y30y

2
1y

5
2 + 12y51y

5
2) + x2

2(10y
6
0y

3
1y2

+ 5y60y
4
2 + 10y30y

6
1y2 + 50y30y

3
1y

4
2 + 5y61y

4
2 + y102 ),

CJCIII
12 ,3 = x3

0(y
9
0 + 2y30y

6
1 + 20y30y

3
1y

3
2 + 2y30y

6
2 + y61y

3
2 + y31y

6
2) + x2

0x1(9y
4
0y

5
1

+ 45y40y
2
1y

3
2 + 18y0y

5
1y

3
2 + 9y0y

2
1y

6
2) + x2

0x2(45y
4
0y

3
1y

2
0 + 9y40y

5
2

+ 9y0y
6
1y

2
2 + 18y0y

3
1y

5
2) + x0x

2
1(9y

5
0y

4
1 + 18y50y1y

3
2 + 45y20y

4
1y

3
2

+ 9y20y1y
6
2) + x0x

2
2(18y

5
0y

3
1y2 + 9y50y

4
2 + 9y20y

6
1y2 + 45y20y

3
1y

4
2)

+ x0x1x2(54y
5
0y

2
1y

2
2 + 54y20y

5
1y

2
2 + 54y20y

2
1y

5
2) + x3

1(2y
6
0y

3
1 + y91

+ y60y
3
2 + 20y30y

3
1y

3
2 + y30y

6
2 + 2y31y

6
2) + x2

1x2(9y
6
0y1y

2
2 + 45y30y

4
1y

2
2

+ 18y30y1y
5
2 + 9y41y

5
2) + x1x

2
2(9y

5
0y1y

3
2 + 18y30y

5
1y2 + 45y30y

2
1y

4
2

+ 9y51y
4
2) + x3

2(y
6
0y

3
1 + 2y60y

3
2 + y30y

6
1 + y92 + 20y30y

3
1y

3
2 + 2y61y

3
2).

Corollary 5.6 ([8]). There exist simple 3-colored 3-designs with the fol-

lowing parameters: Three designs with parameters 3-(12, (n(0), n(1), n(2)), 220)
where (n(0), n(1), n(2)) is equal to (6, 3, 3) or any one of its three per-

mutations. Three designs with parameters 3-(12, (n(0), n(1), n(2)), 22)
where (n(0), n(1), n(2)) is equal to (6, 6, 0) or any one of its three per-

mutations.
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The space of Jacobi polynomials CJCIII
12 ,T with |T | = 4 may be gen-

erated by the two polynomials

C1
CIII

12 ,4 = x4
0(y

8
0 + y20y

6
1 + 6y20y

3
1y

3
2 + y20y

6
2) + x3

0x1(4y
3
0y

5
1 + 28y30y

2
1y

3
2

+ 4y51y
3
2) + x3

0x2(28y
3
0y

3
1y

2
2 + 4y30y

5
2 + 4y31y

5
2) + x2

0x
2
1(12y

4
0y

4
1

+ 18y40y1y
3
2 + 18y0y

4
1y

3
2 + 6y0y1y

6
2) + x2

0x1x2(60y
4
0y

2
1y

2
2 + 24y0y

5
1y

2
2

+ 24y0y
2
1y

5
2) + x2

0x
2
2(18y

4
0y

3
1y2 + 12y40y

4
2 + 6y0y

6
1y2 + 18y0y

3
1y

4
2)

+ x0x
3
1(4y

5
0y

3
1 + 4y50y

3
2 + 28y20y

3
1y

3
2) + x0x

2
1x2(24y

5
0y1y

2
2 + 60y20y

4
1y

2
2

+ 24y20y1y
5
2) + x0x1x

2
2(24y

5
0y

2
1y2 + 24y20y

5
1y2 + 60y20y

2
1y

4
2)

+ x0x
3
2(4y

5
0y

3
1 + 4y50y

3
2 + 28y20y

3
1y

3
2) + x4

1(y
6
0y

2
1 + 6y30y

2
1y

3
2 + y81

+ y21y
6
2) + x3

1x2(28y
3
0y

3
1y

2
2 + 4y30y

5
2 + 4y31y

5
2) + x2

1x
2
2(6y

6
0y1y2

+ 18y30y
4
1y2 + 18y30y1y

4
2 + 12y41y

4
2) + x1x

3
2(4y

3
0y

5
1 + 28y30y

2
1y

3
2

+ 4y51y
3
2) + x4

2(y
6
0y

2
2 + 6y30y

3
1y

2
2 + y61y

2
2 + y82),

C2
CIII

12 ,4 = x4
0(y

8
0 + 8y20y

3
1y

3
2) + x3

0x1(8y
3
0y

5
1 + 24y30y

2
1y

3
2 + 4y21y

6
2)

+ x3
0x2(24y

3
0y

3
1y

2
2 + 8y30y

5
2 + 4y61y

2
2) + x2

0x
2
1(6y

4
0y

4
1 + 24y40y1y

3
2

+ 24y0y
4
1y

3
2) + x2

0x1x2(60y
4
0y

2
1y

2
2 + 24y0y

5
1y

2
2 + 24y0y

2
1y

5
2)

+ x2
0x

2
2(6y

4
0y

4
2 + 24y40y

3
1y2 + 24y0y

3
1y

4
2) + x0x

3
1(8y

5
0y

3
1 + 24y50y

3
2

+ 4y20y
6
2) + x0x

2
1x2(24y

5
0y1y

2
2 + 60y20y

4
1y

2
2 + 24y20y1y

5
2)

+ x0x1x
2
2(24y

5
0y

2
1y2 + 24y20y

5
1y2 + 60y20y

2
1y

4
2)

+ x0x
3
2(8y

5
0y

3
2 + 4y20y

6
1 + 24y20y

3
1y

3
2) + x4

1(8y
3
0y

2
1y

3
2 + y81)

+ x3
1x2(4y

6
0y

2
2 + 24y30y

3
1y

2
2 + 8y31y

5
2) + x2

1x
2
2(24y

3
0y

4
1y2 + 24y30y1y

4
2

+ 6y41y
4
2) + x1x

3
2(4y

6
0y

2
1 + 24y30y

2
1y

3
2 + 8y51y

3
2) + x4

2(8y
3
0y

3
1y

2
2 + y82).

Combining these two equations we obtain 4-designs with parameters

4-(12, (6, 6, 0), (λ1
1(P ), λ1

2(P ))) and 4-(12, (6, 3, 3), (λ2
1(P ), λ2

2(P )),

where λ(P )’s are shown in Table 5.1. By the coefficient of the term

y
n(0)
0 y

n(1)
1 y

n(2)
2 in the complete weight enumerator of the code, we obtain

an upper (resp. lower) bound ofDλmax(P )(12, (n(0), n(1), n(2)), 4) (resp.
Cλmax(P )(12, (n(0), n(1), n(2)), 4)).

Dλ1
max(P )(12, (6, 6, 0), 4) ≤ 22 ≤ Cλ1

min(P )(12, (6, 6, 0), 4),

Dλ2
max(P )(12, (6, 3, 3), 4) ≤ 220 ≤ Cλ2

min(P )(12, (6, 3, 3), 4).

The λmax(P )’s (resp. λmin(P )’s) are shown in Table 5.1.
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Table 5.1. λ’s in 3-colored 4-designs

P 0000 0001 0002 0011 0012 0022 0111 0112
λ1
1(P ) 1 4 0 12 0 0 4 0

λ1
2(P ) 0 8 0 6 0 0 8 0

λ1
max(P ) 1 8 0 12 0 0 8 0

λ1
min(P ) 0 4 0 6 0 0 4 0
λ2
1(P ) 6 28 28 18 60 18 4 24

λ2
2(P ) 8 24 24 24 60 0 24 24

λ2
max(P ) 8 28 28 24 60 18 24 24

λ2
min(P ) 6 24 24 18 60 0 4 24
P 0122 0222 1111 1112 1122 1222 2222 -

λ1
1(P ) 0 0 1 0 0 0 0 -

λ1
2(P ) 0 0 0 0 0 0 0 -

λ1
max(P ) 0 0 1 0 0 0 0 -

λ1
min(P ) 0 0 0 0 0 0 0 -
λ2
1(P ) 24 4 0 0 6 0 0 -

λ2
2(P ) 24 0 0 4 0 4 0 -

λ2
max(P ) 24 4 0 4 6 4 0 -

λ2
min(P ) 24 0 0 0 0 0 0 -

Similarly, we can obtain an upper (resp. lower) bound of D (resp.
C) 3-colored 4-designs where (n(0), n(1), n(2)) is equal to anyone of the
four choices: (6, 0, 6), (0, 6, 6), (3, 3, 6), (3, 6, 3).

5.3. Type IV codes. The MacWilliams transform and some congru-
ence conditions yield that the complete weight enumerator of a Type IV
code remains invariant under the action of groupGIV of order 576 which
is generated by the following four matrices:

1

2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 ,




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 ,




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 ,




1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0


 .

It is easy to show that a split complete weight enumerator of a Type

IV code is an invariant of ĜIV.
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Let the elements of F4 be 0, 1, s, s2. If P is a polynomial of total
degree n in 8 variables x0, x1, xs, xs2, y0, y1, ys, ys2. Now define a polar-

ization operator A8 and specialization operator S̃ as follows:

A8 · P :=
x0P

′
y0 + x1P

′
y1 + xsP

′
ys + xs2P

′
y
s2

n
,

S8 · P (x0, x1, xs, xs2 , y0, y1, ys, ys2) := P (x0, x1, x1, x1, y0, y1, y1, y1).

Definition 5.3. An F4-linear code of length n is said to be colorwise

t-homogeneous if the codewords of every given composition hold a 4-
colored t-design.

Now we have the following F4-code analogues of Lemma 5.1 and
Lemma 5.2.

Lemma 5.7. Let C be a linear code of length n over F4. If C is t-
homogeneous with no non-zero words of Hamming weight less than t,
then for all T of size t we get

JC,T = At
4 ·WC .

Lemma 5.8. Let C be a linear code of length n over F4. If C is

colorwise t-homogeneous with no non-zero words of Hamming weight

less than t, then for all T of size t we get

CJC,T = At
8 · cweC .

5.3.1. Length 4.

Example 5.2. Let CIV
4 be the Hermitian self-dual code over F4 of

length 4 in [18].

f [4] = u4 + u3v + 2u2 + uv3 + v2.

Since the codewords of fixed composition in CIV
4 holds 4-colored 1-

design, we assume that |T | = 1. Then,

CJCIV
4 ,1 = x0(y

3
0 + y0y

2
1 + y0y

2
s + y0y

2
s2) + x1(y

2
0y1 + y31 + y1y

2
s + y1y

2
s2)

+ xs(y
2
0ys + y21ys + y3s + ysy

2
s2) + xs2(y

2
0ys2 + y21ys2 + y2sys2 + y3s2).

There exist simple 4-colored 1-designs with the following parameters:
Six designs with parameters 1-(4, (n(0), n(1), n(s), n(s2)), 2) where (n(0), n(1), n(s), n(s2))
is equal to (2, 2, 0, 0) or any one of its four permutations. The space of
Jacobi polynomials CJCIV

4 ,T with |T | = 2 may be generated by the two
polynomials

CJ1CIV
4 ,2 = (x2

0 + x2
1 + x2

s + x2
s2)(y

2
0 + y21 + y2s + y2s2),

CJ2CIV
4 ,2 = x2

0y
2
0 + 2x0x1y0y1 + 2x0xsy0ys + 2x0xs2y0ys2 + x2

1y
2
1 + 2x1xsy1ys

+ 2x1xs2y1ys2 + x2
sy

2
s + 2xsxs2ysys2 + x2

s2y
2
s2.
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Combining these two equations we obtain 2-designs with parameters

2-(4, (2, 2, 0, 0), (λ1(P ), (λ2(P ))),

where λ(P )’s are shown in Table 5.2. By the coefficient of the term
y20y

2
1 in the complete weight enumerator of the code, we obtain an upper

(resp. lower) bound ofDλmax(P )(4, (2, 2, 0, 0), 2) (resp. Cλmax(P )(4, (2, 2, 0, 0), 2)).

Dλmax(P )(4, (2, 2, 0, 0), 2) ≤ 2 ≤ Cλmin(P )(4, (2, 2, 0, 0), 2).

The λmax(P )’s (resp. λmin(P )’s) are shown in Table 5.2. Similarly, we
can obtain an upper (resp. lower) bound of D (resp. C) 4-colored
2-designs where (n(0), n(1), n(s), n(s2)) is equal to anyone of the four
choices: (2, 0, 2, 0), (2, 0, 0, 2), (0, 2, 2, 0), (0, 0, 2, 2).

Table 5.2. λ’s in 4-colored 2-designs

P 00 01 0s 0s2 11 1s 1s2 ss ss2 s2s2

λ1(P ) 1 0 0 0 1 0 0 0 0 0
λ2(P ) 0 2 0 0 0 0 0 0 0 0
λmax(P ) 1 2 0 0 1 0 0 0 0 0
λmin(P ) 0 0 0 0 0 0 0 0 0 0

5.3.2. Length 6.

Example 5.3. Let CIV
6 be the second Hermitian self-dual code over F4

of length 6 in [18].

f [6] = 2u6 + 2u5v + 3u4v2 + 4u3v3 + 3u2v4 + 2uv5 + 2v6.

In this case, it holds the following Lemmas and Theorem.

Lemma 5.9. A basis of M ĜIV
2,4 is obtained by applying R(f, ĜIV) with f

running over the monomials

x2
0y

4
0, x

2
0y

2
1y

2
s , x0x1y0y1y

2
s .

Lemma 5.10. A basis of M ĜIV
3,3 is obtained by applying R(f, ĜIV)

with f running over the monomials

x3
0y

3
0, x

2
0x1y1y

2
s , x0x

2
1y0y

2
s , x0x1xsy0y1ys.

We need to observe that that specialization is one-to-one on those
spaces.

Lemma 5.11. For ℓ = 1, 2 we have

dim(S8 ·M ĜIV
ℓ,6−ℓ) = dim(M ĜIV

ℓ,6−ℓ).
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Proof. We obtain it by taking the image by S8 of the preceding bases.
�

Theorem 5.12. The codewords of fixed composition in the Hermitian

Type IV code of length 6 hold 4-colored 2-designs.

Proof. We need to show that CJC,T does not depend on T for |T | = 2.

Since it lives in M ĜIV
2,4 , we can expand it with indeterminate coeffi-

cients on the basis given in Lemma 5.9. The Hermitian code is 3-
homogeneous. By specialization and Lemma 5.7 and Lemma 5.11, we
determine these completely by solving a 3× 3 linear system. �

Note that we can expand CJC,T for |T | = 3 with indeterminate

coefficients on the basis given in Lemma 5.10 since it lives in M ĜIV
3,3 .

But we can’t determine these completely by solving a 3 × 3 linear
system by specialization and Lemma 5.7 and Lemma 5.11.
Since the codewords of fixed composition in CIV

6 holds 4-colored 2-
design, we assume that |T | = 1, 2. Then

CJCIV
6 ,1 = x0(y

5
0 + 5y0y

2
1y

2
s + 5y0y

2
1y

2
s2 + 5y0y

2
sy

2
s2) + x1(5y

2
0y1y

2
s

+ 5y20y1y
2
s2 + y51 + 5y1y

2
sy

2
s2) + xs(5y

2
0y

2
1ys + 5y20ysy

2
s2

+ 5y21ysy
2
s2 + y5s) + xs2(5y

2
0y

2
1ys2 + 5y20y

2
sys2 + 5y21y

2
sys2 + y5s2),

CJCIV
6 ,2 = x2

0(y
4
0 + y21y

2
s + y21y

2
s2 + y2sy

2
s2) + x0x1(4y0y1y

2
s + 4y0y1y

2
s2)

+ x0xs(4y0y
2
1ys + 4y0ysy

2
s2) + x0xs2(4y0y1y

2
s2 + 4y0y

2
sys2)

+ x2
1(y

2
0y

2
s + y20y

2
s2 + y41 + y2sy

2
s2) + x1xs(4y

2
0y1ys + 4y1ysy

2
s2)

+ x1xs2(4y
2
0y1ys2 + y1y

2
sys2) + x2

s(y
2
0y

2
1 + y20y

2
s2 + y21y

2
s2 + y4s)

+ xsxs2(4y
2
0ysys2 + 4y21ysys2) + x2

s2(y
2
0y

2
1 + y20y

2
s + y21y

2
s + y4s2).

Corollary 5.13. Let F4 = {0, 1, s, s2}. There exist simple 4-colored
2-designs with the following parameters: Four designs with parameters

2-(6, (n(0), n(1), n(s), n(s2)), 15) where (n(0), n(1), n(s), n(s2)) is equal
to (2, 2, 2, 0) or any one of its four permutations.
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The space of Jacobi polynomials CJCIV
6 ,T with |T | = 3 may be gen-

erated by the two polynomials

CJ1CIV
6 ,3 = x3

0y
3
0 + 3x2

0x1y1y
2
s + 3x2

0xsysy
2
s2 + 3x2

0xs2y
2
1ys2 + 3x0x

2
1y0y

2
s2

+ 6x0x1xsy0y1ys + 6x0x1xs2y0y1ys2 + 3x0x
2
sy0y

2
1 + 6x0xsxs2y0ysys2

+ 3x0x
2
s2y0y

2
s + x3

1y
3
1 + 3x2

1xsy
2
0ys + 3x2

1xs2y
2
sys2 + 3x1x

2
sy1y

2
s2

+ 6x1xsxs2y1ysys2 + 3x1x
2
s2y

2
0y1 + x3

sy
3
s + 3x2

sxs2y
2
0ys2

+ 3xsx
2
s2y

2
1ys + x3

s2y
3
s2,

CJ2CIV
6 ,3 = x3

0y
3
0 + 3x2

0x1y1y
2
s2 + 3x2

0xsy
2
1ys + 3x2

0xs2y
2
sys2 + 3x0x

2
1y0y

2
s

+ 6x0x1xsy0y1ys + 6x0x1xs2y0y1ys2 + 3x0x
2
sy0y

2
s2 + 6x0xsxs2y0ysys2

+ 3x0x
2
s2y0y

2
1 + x3

1y
3
1 + 3x2

1xsysy
2
s2 + 3x2

1xs2y
2
0ys2 + 3x1x

2
sy

2
0y1

+ 6x1xsxs2y1ysys2 + 3x1x
2
s2y1y

2
s + x3

sy
3
s + 3x2

sxs2y
2
1ys2 + 3xsx

2
s2y

2
0ys

+ x3
s2y

3
s2.

Combining these two equations we obtain 3-designs with parameters

3-(6, (2, 2, 2, 0), (λ1(P ), (λ2(P ))),

where λ(P )’s are shown in Table 5.3. By the coefficient of the term
y20y

2
1y

2
s in the complete weight enumerator of the code, we obtain an up-

per (resp. lower) bound ofDλmax(P )(6, (2, 2, 2, 0), 3) (resp. Cλmax(P )(6, (2, 2, 2, 0), 3)).

Dλmax(P )(6, (2, 2, 2, 0), 3) ≤ 15 ≤ Cλmin(P )(6, (2, 2, 2, 0), 3).

The λmax(P )’s (resp. λmin(P )’s) are shown in Table 5.3. Similarly, we
can obtain an upper (resp. lower) bound of D (resp. C) 4-colored
3-designs where (n(0), n(1), n(s), n(s2)) is equal to anyone of the three
choices: (2, 2, 0, 2), (2, 0, 2, 2), (0, 2, 2, 2).

Table 5.3. λ’s in 4-colored 3-designs

P 000 001 00s 00s2 011 01s 01s2 0ss 0ss2 0s2s2

λ1(P ) 0 0 3 0 3 6 0 0 0 0
λ2(P ) 0 3 0 0 0 6 0 3 0 0
λmax(P ) 0 3 3 0 3 6 0 3 0 0
λmin(P ) 0 0 0 0 0 6 0 0 0 0

P 111 11s 11s2 1ss 1ss2 1s2s2 sss sss2 ss2s2 s2s2s2

λ1(P ) 0 0 0 3 0 0 0 0 0 0
λ2(P ) 0 3 0 0 0 0 0 0 0 0
λmax(P ) 0 3 0 3 0 0 0 0 0 0
λmin(P ) 0 0 0 0 0 0 0 0 0 0
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5.3.3. Length 8.

Example 5.4. Let CIV
8 be the third Hermitian self-dual code over F4

of length 8 in [18].

f [8] = 3u8 + 5u7v + 7u6v2 + 8u5v3 + 10u4v4 + · · · .

Since the codewords of fixed composition in CIV
8 holds 4-colored 3-

design, we assume that |T | = 1, 2, 3. Then,

CJCIV
8 ,1 = x0(y

7
0 + 7y30y

4
1 + 7y30y

4
s + 7y30y

4
s2 + 42y0y

2
1y

2
sy

2
s2)

+ x1(7y
4
0y

3
1 + 42y20y1y

2
sy

2
s2 + y71 + 7y31y

4
s + 7y31y

4
s2)

+ xs(7y
4
0y

3
s + 42y20y

2
1ysy

2
s2 + 7y41y

3
s + y7s + 7y3sy

4
s2)

+ xs2(7y
4
0y

3
s2 + 42y20y

2
1y

2
sys2 + 7y41y

3
s2 + 7y4sy

3
s2 + y7s2),

CJCIV
8 ,2 = x2

0(y
6
0 + 3y20y

4
1 + 3y20y

4
s + 3y20y

4
s2 + 6y21y

2
sy

2
s2)

+ x0x1(8y
3
0y

3
1 + 24y0y1y

2
sy

2
s2) + x0xs(8y

3
0y

3
s + 24y0y

2
1ysy

2
s2)

+ x0xs2(8y
3
0y

3
s2 + 24y0y

2
1y

2
sys2) + x2

1(3y
4
0y

2
1 + 6y20y

2
sy

2
s2

+ y61 + 3y21y
4
s + 3y21y

4
s2) + x1xs(24y

2
0y1ysy

2
s2 + 8y31y

3
s)

+ x1xs2(24y
2
0y1y

2
sys2 + 8y31y

3
s2) + x2

s(3y
4
0y

2
s + 6y20y

2
1y

2
s2

+ 3y41y
2
s + 3y2sy

4
s2 + y6s) + xsxs2(24y

2
0y

2
1ysys2 + 8y3sy

3
s2)

+ x2
s2(3y

4
0y

2
s2 + 6y20y

2
1y

2
s + 3y41y

2
s2 + 3y4sy

2
s2 + y6s2),

CJCIV
8 ,3 = x3

0(y
5
0 + y0y

4
s + y0y

4
s + y0y

4
s2) + x2

0x1(6y
2
0y

3
1 + 6y1y

2
sy

2
s2)

+ x2
0xs(6y

2
0y

3
s + 6y21ysy

2
s2) + x2

0xs2(6y
2
0y

3
s2 + 6y21y

2
sys2)

+ x0x
2
1(6y

3
0y

2
1 + 6y0y

2
sy

2
s2) + 24x0x1xsy0y1ysy

2
s2

+ 24x0x1xs2y0y1y
2
sys2 + x0x

2
s(6y

3
0y

2
s + 6y0y

2
1y

2
s2)

+ 24x0xsxs2y0y
2
1ysys2 + x0x

2
s2(6y

3
0y

2
s2 + 6y0y

2
1y

2
s)

+ x3
1(y

4
0y1 + y51 + y1y

4
s + y1y

4
s2) + x2

1xs(6y
2
0ysy

2
s2 + 6y21y

3
s)

+ x2
1xs2(6y

2
0y

2
sys2 + 6y21y

3
s2) + x1x

2
s(6y

2
0y1y

2
s2 + 6y31y

2
s)

+ x1x
2
s2(6y

2
0y1y

2
s + 6y31y

2
s2) + 24x1xsxs2y

2
0y1ysys2

+ x3
s(y

4
0ys + y41ys + y5s + ysy

4
s2) + x2

sxs2(6y
2
0y

2
1ys2 + 6y2sy

3
s2)

+ xsx
2
s2(6y

2
0y

2
1ys + 6y3sy

2
s2) + x3

s2(y
4
0ys2 + y41ys2 + y4sys2 + y5s2).

There exist simple 4-colored 3-designs with the following parameters:
Six designs with parameters 3-(8, (n(0), n(1), n(s), n(s2)), 14) where (n(0), n(1), n(s), n(s2))
is equal to (4, 4, 0, 0) or any one of its four permutations. The space of
Jacobi polynomials CJCIV

8 ,T with |T | = 4 may be generated by the two
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polynomials

CJ1CIV
8 ,4 = x4

0(y
4
0 + y41 + y4s + y4s2) + x2

0x
2
1(12y

2
0y

2
1 + 12y2sy

2
s2)

+ x2
0x

2
s(12y

2
0y

2
s + 12y21y

2
s2) + x2

0x
2
s2(12y

2
0y

2
s2 + 12y21y

2
s)

+ 96x0x1xsxs2y0y1ysys2 + x4
1(y

4
0 + y41 + y4s + y4s2) + x2

1x
2
s(12y

2
0y

2
s2

+ 12y21y
2
s) + x2

1x
2
s2(12y

2
0y

2
s + 12y21y

2
s2) + x4

s(y
4
0 + y41 + y4s + y4s2)

+ x2
sx

2
s2(12y

2
0y

2
1 + 12y2sy

2
s2) + x4

s2(y
4
0 + y41 + y4s + y4s2),

CJ2CIV
8 ,4 = x4

0y
4
0 + 4x3

0x1y0y
3
1 + 4x3

0xsy0y
3
s + 4x3

0xs2y0y
3
s2 + 6x2

0x
2
1y

2
0y

2
1

+ 12x2
0x1xsy1ysy

2
s2 + 12x2

0x1xs2y1y
2
sys2 + 6x2

0x
2
sy

2
0y

2
s

+ 12x2
0xsxs2y

2
1ysys2 + 6x2

0x
2
s2y

2
0y

2
s2 + 4x0x

3
1y

3
0y1 + 12x0x

2
1xsy0ysy

2
s2

+ 12x0x
2
1xs2y0y

2
sys2 + 12x0x1x

2
sy0y1y

2
s2 + 24x0x1xsxs2y0y1ysys2

+ 12x0x1x
2
s2y0y1y

2
s + 4x0x

3
sy

3
0ys + 12x0x

2
sxs2y0y

2
1ys2

+ 12x0xsx
2
s2y0y

2
1ys + 4x0x

3
s2y

3
0ys2 + x4

1y
4
1 + 4x3

1xsy1y
3
s

+ 4x3
1xs2y1y

3
s2 + 6x2

1x
2
sy

2
1y

2
s + 12x2

1xsxs2y
2
0ysys2 + 6x2

1x
2
s2y

2
1y

2
s2

+ 4x1x
3
sy

3
1ys + 12x1x

2
sxs2y

2
0y1ys2 + 12x1xsx

2
s2y

2
0y1ys + 4x1x

3
s2y

3
1ys2

+ x4
sy

4
s + 4x3

sxs2ysy
3
s2 + 6x2

sx
2
s2y

2
sy

2
s2 + 4xsx

3
s2y

3
sys2 + x4

s2y
4
s2.

Combining these two equations we obtain 4-designs with parameters

4-(8, (4, 4, 0, 0), (λ1
1(P ), λ1

2(P ))) and 4-(8, (2, 2, 2, 2), (λ2
1(P ), λ2

2(P )),

where λ(P )’s are shown in Table 5.4. By the coefficient of the term

y
n(0)
0 y

n(1)
1 y

n(s)
s y

n(s2)

s2 in the complete weight enumerator of the code, we
obtain an upper (resp. lower) bound ofDλmax(P )(8, (n(0), n(1), n(s), n(s

2)), 4)
(resp. Cλmax(P )(8, (n(0), n(1), n(s), n(s

2)), 4)).

Dλ1
max(P )(8, (4, 4, 0, 0), 4) ≤ 14 ≤ Cλ1

min(P )(8, (4, 4, 0, 0), 4),

Dλ2
max(P )(8, (2, 2, 2, 2), 4) ≤ 168 ≤ Cλ2

min(P )(8, (2, 2, 2, 2), 4).

The λmax(P )’s (resp. λmin(P )’s) are shown in Table 5.4. Similarly, we
can obtain an upper (resp. lower) bound of D (resp. C) 4-colored
3-designs where (n(0), n(1), n(s), n(s2)) is equal to anyone of the five
choices: (4, 0, 4, 0), (4, 0, 0, 4), (0, 4, 4, 0), (0, 4, 0, 4), (0, 0, 4, 4).

In the case the extremal Type III (resp. Type IV) code of length n
containing the all-one vector, it holds 3- (resp. 4-) colored t-design as
in Table 5.5 (resp. Table 5.6).
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6. Concluding remarks

Let Dw be the support design of a code C for weight w and

δ(C) := max{t ∈ N | ∀w,Dw is a t-design},
s(C) := max{t ∈ N | ∃w s.t. Dw is a t-design}.

We note that δ(C) ≤ s(C). In our previous papers [3, 20, 29, 30, 31, 32,
33], we considered the possible occurrence of δ(C) < s(C). This was
motivated by Lehmer’s conjecture, which is an analogue of δ(C) < s(C)
in the theory of lattices and vertex operator algebras. For the details,
see [1, 2, 4, 22, 26, 27, 29, 38, 39].
Let CDw be the support colored design of a code C for weight w and

δc(C) := max{t ∈ N | ∀w,CDw is a colored t-design},
sc(C) := max{t ∈ N | ∃w s.t. CDw is a colored t-design}.

It is natural to give upper and lower bounds of δc(C) and sc(C) for all
extremal Type II, III, and IV codes.
We will continue the study of this paper in [11] to the case of Zk-

codes as a generalization of the works done by Bonnecaze et al. [6].
Moreover, we investigate the colored designs to the case of Kleinian
codes in [12].
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Table 5.4. λ’s in 4-colored 4-designs

P 0000 0001 000s 000s2 0011 001s 001s2

λ1
1(P ) 1 0 0 0 12 0 0

λ1
2(P ) 0 4 0 0 6 0 0

λ1
max(P ) 1 4 0 0 12 0 0

λ1
min(P ) 0 0 0 0 6 0 0
λ2
1(P ) 0 0 0 0 12 0 0

λ2
2(P ) 0 0 0 0 0 12 12

λ2
max(P ) 0 0 0 0 12 12 12

λ2
min(P ) 0 0 0 0 0 0 0
P 00ss 00ss2 00s2s2 0111 011s 011s2 01ss

λ1
1(P ) 0 0 0 0 0 0 0

λ1
2(P ) 0 0 0 4 0 0 0

λ1
max(P ) 0 0 0 4 0 0 0

λ1
min(P ) 0 0 0 0 0 0 0
λ2
1(P ) 12 0 12 0 0 0 0

λ2
2(P ) 0 12 0 0 12 12 12

λ2
max(P ) 12 12 12 0 12 12 12

λ2
min(P ) 0 0 0 0 0 0 0
P 01ss2 01s2s2 0sss 0sss2 0ss2s2 0s2s2s2 1111

λ1
1(P ) 0 0 0 0 0 0 1

λ1
2(P ) 0 0 0 0 0 0 0

λ1
max(P ) 0 0 0 0 0 0 1

λ1
min(P ) 0 0 0 0 0 0 0
λ2
1(P ) 96 0 0 0 0 0 0

λ2
2(P ) 24 12 0 12 12 0 0

λ2
max(P ) 96 12 0 12 12 0 0

λ2
min(P ) 24 0 0 0 0 0 0
P 111s 111s2 11ss 11ss2 11s2s2 1sss 1sss2

λ1
1(P ) 0 0 0 0 0 0 0

λ1
2(P ) 0 0 0 0 0 0 0

λ1
max(P ) 0 0 0 0 0 0 0

λ1
min(P ) 0 0 0 0 0 0 0
λ2
1(P ) 0 0 12 0 12 0 0

λ2
2(P ) 12 0 0 12 0 0 12

λ2
max(P ) 12 0 12 12 12 0 12

λ2
min(P ) 0 0 0 0 0 0 0
P 1ss2s2 1s2s2s2 ssss ssss2 sss2s2 ss2s2s2 s2s2s2s2

λ1
1(P ) 0 0 0 0 0 0 0

λ1
2(P ) 0 0 0 0 0 0 0

λ1
max(P ) 0 0 0 0 0 0 0

λ1
min(P ) 0 0 0 0 0 0 0
λ2
1(P ) 0 0 0 0 12 0 0

λ2
2(P ) 12 0 0 0 0 0 0

λ2
max(P ) 12 0 0 0 12 0 0

λ2
min(P ) 0 0 0 0 0 0 0
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Table 5.5. 3-colored t-(n, (n0, n1, n2), |B|) design in
Type III code

n t
Blocks in the cwe (n0, n1, n2)

up to permutation Number of blocks
12 1 (6, 3, 3) 220

1 (6, 6, 0) 22
2 (6, 3, 3) 220
2 (6, 6, 0) 22
3 (6, 3, 3) 220
3 (6, 6, 0) 22

Table 5.6. 4-colored t-(n, (n0, n1, ns, ns2), |B|) design in
Type IV code

n t
Blocks in the cwe (n0, n1, ns, ns2)

up to permutation Number of blocks
4 1 (2, 2, 0, 0) 2
6 1 (2, 2, 2, 0) 15
8 1 (4, 4, 0, 0) 14
8 1 (2, 2, 2, 2) 168
6 2 (2, 2, 2, 0) 15
8 2 (4, 4, 0, 0) 14
8 2 (2, 2, 2, 2) 168
8 3 (4, 4, 0, 0) 14
8 3 (2, 2, 2, 2) 168
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