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Pablo Pérez-Lantero∗ Carlos Seara†

January 18, 2023

Abstract

Let R and B be two disjoint point sets in the plane with |R| = |B| = n. LetM = {(ri, bi), i =
1, 2, . . . , n} be a perfect matching that matches points of R with points of B and maximizes∑n

i=1 ‖ri − bi‖, the total Euclidean distance of the matched pairs. In this paper, we prove that

there exists a point o of the plane (the center ofM) such that ‖ri− o‖+‖bi− o‖ ≤
√

2 ‖ri− bi‖
for all i ∈ {1, 2, . . . , n}.

1 Introduction

Let R and B be two disjoint point sets in the plane with |R| = |B| = n, n ≥ 1. The points in R
are red, and those in B are blue. A matching of R ∪ B is a partition of R ∪ B into n pairs such
that each pair consists of a red and a blue point. A point p ∈ R and a point q ∈ B are matched if
and only if the (unordered) pair (p, q) is in the matching. For every p, q ∈ R2, we use pq to denote
the segment connecting p and q, and ‖p− q‖ to denote its length, which is the Euclidean norm of
the vector p− q. Let B(pq) denote the disk with diameter equal to ‖p− q‖, that is centered at the
midpoint p+q

2 of the segment pq. For any matching M, we use BM to denote the set of the disks
associated with the matching, that is, BM = {B(pq) : (p, q) ∈M}.
In this note, we consider the max-sum matching M, as the matching that maximizes the total
Euclidean distance of the matched points. As our main result, we prove the following theorem:

Theorem 1.1. There exists a point o of the plane such that for all i ∈ {1, 2, . . . , n} we have:

‖ri − o‖+ ‖bi − o‖ ≤
√

2 ‖ri − bi‖.

Fingerhut (see Eppstein [3]), motivated by a problem in designing communication networks (see
Fingerhut et al. [4]), conjectured that given a set P of 2n uncolored points in the plane and a
max-sum matching {(ai, bi), i = 1, . . . , n} of P , there exists a point o of the plane, not necessarily
a point of P , such that

‖ai − o‖+ ‖bi − o‖ ≤
2√
3
‖ai − bi‖ for all i ∈ {1, . . . , n}, where 2/

√
3 ≈ 1.1547. (1)
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Bereg et al. [2] obtained an approximation to this conjecture. They proved that for any point set
P of 2n uncolored points in the plane and a max-sum matching M = {(ai, bi), i = 1, . . . , n} of P ,
all disks in BM have a common intersection, implying that any point o in the common intersection
satisfies

‖ai − o‖+ ‖bi − o‖ ≤
√

2 ‖ai − bi‖, where
√

2 ≈ 1.4142.

Recently, Barabanshchikova and Polyanskii [1] confirmed the conjecture of Fingerhut.

The statement of Equation (1) is equivalent to stating that the intersection E(a1b1) ∩ E(a2b2) ∩
· · · ∩ E(anbn) is not empty, where E(pq) is the region of the plane bounded by the ellipse with foci
p and q, and major axis length (2/

√
3) ‖p− q‖ (see [3]).

In our context of bichromatic point sets, given p ∈ R and q ∈ B, let E(pq) denote the region
bounded by the ellipse with foci p and q, and major axis length

√
2 ‖p− q‖. That is, E(pq) = {x ∈

R2 : ‖p− x‖+ ‖q− x‖ ≤
√

2 ‖p− q‖}. Then, the statement of Theorem 1.1 is equivalent to stating
that the intersection E(r1b1) ∩ E(r2b2) ∩ · · · ∩ E(rnbn) is not empty, for any max-sum matching
{(ri, bi), i = 1, 2, . . . , n} of R ∪B.

We note that the factor
√

2 is tight. It suffices to consider two red points and two blue points as
vertices of a square, so that each diagonal has vertices of the same color. The center of the square
is the only point in common of the two ellipses induced by any max-sum matching.

Hence, to prove Theorem 1.1 it suffices to consider n ≤ 3, by Helly’s Theorem. Let X1, X2, . . . , Xn

be a collection of n convex subsets of Rd, with n ≥ d + 1. Helly’s Theorem [5] asserts that if the
intersection of every d+ 1 of these subsets is nonempty, then the whole collection has a nonempty
intersection. That is why we prove our claim only for n ≤ 3, since we are considering n ellipses in
R2. The arguments that we give in this paper are a simplification and adaptation of the arguments
of Barabanshchikova and Polyanskii [1].

Huemer et al. [6] proved that if M′ is any perfect matching of R and B that maximizes the total
squared Euclidean distance of the matched points, i.e., it maximizes

∑
(p,q)∈M′ ‖p − q‖2, then all

disks of BM′ have a point in common. As proved by Bereg et al. [2], the disks of our max-sum
matching M of R ∪ B intersect pairwise, fact that will be used in this paper, but the common
intersection is not always possible.

2 Proof of main result

Let R and B be two disjoint point sets defined as above, where |R| = |B| = n, n ≤ 3, and let M
be a max-sum matching of R ∪B. Note that for every pair (p, q) ∈ M the disk B(pq) is inscribed
in the ellipse E(pq) (see Figure 1a), which implies B(pq) ⊂ E(pq). Then, for n = 2 Theorem 1.1 is
true because the disks of M intersect pairwise [2, Proposition 2.1]. Trivially, the theorem is also
true for n = 1. Therefore, we will prove in the rest of the paper that the theorem is also true for
n = 3, which will require elaborated arguments.

Let n = 3, with R = {a, b, c} and B = {a′, b′, c′}, and letM = {(a, a′), (b, b′), (c, c′)} be a max-sum
matching of R ∪B.

For two points p, q ∈ R2, let r(pq) denote the ray with apex p that goes through q, and for a real
number λ ≥ 1, let Eλ(pq) be the region bounded by the ellipse with foci p and q and major axis
length λ‖p − q‖. That is, Eλ(pq) = {x ∈ R2 : ‖p − x‖ + ‖q − x‖ ≤ λ‖p − q‖}. Note that in our
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context E(pq) = E√2(pq), and Eλ(pq) ⊂ Eλ′(pq) for any λ′ > λ.

Assume by contradiction that E(aa′)∩E(bb′)∩E(cc′) = ∅. Then, we can “inflate uniformly” E(aa′),
E(bb′), and E(cc′) until they have a common intersection. Formally, we can take the minimum
λ >
√

2 such that Eλ(aa′) ∩ Eλ(bb′) ∩ Eλ(cc′) is not empty, case in which Eλ(aa′) ∩ Eλ(bb′) ∩ Eλ(cc′)
is singleton. Let o denote the point of Eλ(aa′) ∩ Eλ(bb′) ∩ Eλ(cc′).

Let `(aa′) denote the ray with apex o that bisects r(oa) and r(oa′). Similarly, we define `(bb′) and
`(cc′). Let t(aa′) denote the line through o tangent to Eλ(aa′), oriented so that Eλ(aa′) is to its
right. Similarly, we define t(bb′) and t(cc′). It is well known that given an ellipse with foci p and
q, and a line tangent at it at some point o, the rays r(op) and r(oq) form equal angles with the
tangent line (see Figure 1b). This implies that rays `(aa′), `(bb′), and `(cc′) are perpendicular to the
tangent lines t(aa′), t(bb′), and t(cc′), respectively. In other words, they are contained respectively
in the normal lines at point o.

Since E(aa′), E(bb′), and E(cc′) intersect pairwise (and also none of them is contained inside other
one), we have that o belongs to the boundary of each of Eλ(aa′), Eλ(bb′), and Eλ(cc′). Then, Eλ(aa′),
Eλ(bb′), and Eλ(cc′) intersect pairwise, and each pairwise intersection contains interior points. This
implies that no two lines of t(aa′), t(bb′), and t(cc′) coincide. Furthermore, the six directions
(positive and negative) of t(aa′), t(bb′), and t(cc′) alternate around o, which implies that any two
consecutive rays among `(aa′), `(bb′), and `(cc′) counterclockwise around o, have rotation angle
strictly less than π (see Figure 1c).

Let G = (R∪B,E) be the bipartite graph such that (p, q) ∈ E if and only if p ∈ R, q ∈ B, and either
(p, q) ∈ {(a, a′), (b, b′), (c, c′)} or o ∈ B(pq). We color the edges into two colors: We say that edge
(p, q) is black if (p, q) ∈ {(a, a′), (b, b′), (c, c′)}. Otherwise, we say that (p, q) is white. Note that this
color classification is consistent, since we have that o /∈ B(pq) for all (p, q) ∈ {(a, a′), (b, b′), (c, c′)}
because B(pq) is contained in the interior of Eλ(pq) and o is in the boundary of Eλ(pq).

The proof of the next lemma is included for completeness.

Lemma 2.1 ([1]). If G has a cycle whose edges are color alternating, then M is not a max-sum
matching of R ∪B.

Proof. For a black edge (p, q) we have that ‖p − o‖ + ‖q − o‖ = λ‖p − q‖. For a white edge (p, q)
we have that ‖p− o‖+ ‖q − o‖ < λ‖p− q‖, since o ∈ B(pq) and B(pq) is contained in the interior
of Eλ(pq). Let (r1, b1, r2, b2, . . . , rm, bm, rm+1 = r1) be a color alternating cycle of length m, where
r1, . . . , rm ∈ R and b1, . . . , bm ∈ B. Suppose w.l.o.g. that the edge (r1, b1) is black, which means
that the edges (r1, b1), . . . , (rm, bm) ∈ M are all black, and the edges (b1, r2), . . . , (bm, rm+1) ∈ M
are all white. Then, we have that:

m∑
i=1

‖ri − bi‖ =
1

λ

m∑
i=1

(‖ri − o‖+ ‖bi − o‖) =
1

λ

m∑
i=1

(‖bi − o‖+ ‖ri+1 − o‖) <
m∑
i=1

‖bi − ri+1‖.

Hence, by replacing inM the black edges of the cycle by the white edges, we will obtain a matching
of larger total sum.

Lemma 2.2. Each vertex of G has at least one white edge incident to it.

Proof. Consider the blue vertex a′. Assume w.l.o.g. that o is the origin of coordinates, and a′

is in the positive direction of the y-axis. We have that ∠aoa′ < π/2 because o /∈ B(aa′), then

3



p q

(a)

p q

o

(b)

t(aa′)

t(bb′)

t(cc′)

Eλ(aa′)

Eλ(bb′)

Eλ(cc′)

o

`(aa′)

`(bb′)

`(cc′)

(c)

Figure 1: (a) The ellipse E(pq) and the disk B(pq). (b) A line tangent to an ellipse forms equal angles with
the rays, whose apex is the tangency point, that go through the foci. (c) Point o and the three ellipses.

assume w.l.o.g. that a is in the interior of the first quadrant Q1. Let Q2, Q3, and Q4 be the second,
third, and fourth quadrants, respectively. Further assume w.l.o.g. that rays `(aa′), `(bb′), and `(cc′)
appear in this order counterclockwise.

Assume by contradiction that there is no white edge incident to a′. This implies that b, c belong
to the interior of Q1 ∪Q2. If c ∈ Q2, then the counterclockwise rotation angle from `(cc′) to `(aa′)
is larger than π. Hence, c ∈ Q1. If b ∈ Q1, then the counterclockwise rotation angle from `(aa′) to
`(bb′), or that from `(bb′) to `(cc′), is larger than π. Hence b ∈ Q2. Furthermore, if both b′ and c′

belong to Q1 ∪Q2, then the counterclockwise rotation angle from `(bb′) to `(cc′) is larger than π.
Hence, at least one of b′, c′ belong to the interior of Q3 ∪Q4. That is, b′ ∈ Q3 and/or c′ ∈ Q4. The
proof is divided now into three cases:

Case 1: b′ ∈ Q3 and c′ ∈ Q4. Since b ∈ Q2 and c′ ∈ Q4, the angle ∠boc′ ≥ π/2, which implies that
o ∈ B(bc′) (see Figure 2a). That is, edge (b, c′) is white. Similarly, edge (b′, c) is also white. The
colors of the edges of the cycle (b, c′, c, b′, b) alternate, then Lemma 2.1 implies a contradiction.

Case 2: b′ ∈ Q3 and c′ /∈ Q4. Since the counterclockwise rotation angle θ from `(bb′) to `(cc′) is
smaller than π, we must have that c′ ∈ Q1. As in Case 1, we have that edge (b′, c) is white, given
that b′ ∈ Q3 and c ∈ Q1. Let β be the half of the angle between rays r(ob) and r(ob′), and γ the
half of the angle between the rays r(oc) and r(oc′) (see Figure 2b). We have that β, γ < π/4, which
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Figure 2: Proof of Lemma 2.2. Black edges are in normal line style, and white edges in dashed style.

implies that ∠boc′ ≥ 2π − β − γ − θ ≥ π/2. Hence, edge (b, c′) is also white. Again, the colors of
the edges of the cycle (b, c′, c, b′, b) alternate, and Lemma 2.1 implies a contradiction.

Case 3: b′ /∈ Q3 and c′ ∈ Q4. The proof of this case is analogous to that of Case 2.

The lemma thus follows.

Lemma 2.2 implies that graph G has always a cycle (of length four or six) whose edges are color
alternating. Hence, Lemma 2.1 implies a contradiction, and we obtain that the max-sum matching
M ensures that E(aa′) ∩ E(bb′) ∩ E(cc′) 6= ∅. Therefore, Theorem 1.1 holds.
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