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ON THE ¢-BINOMIAL IDENTITIES INVOLVING THE LEGENDRE SYMBOL MODULO 3.

ALEXANDER BERKOVICH

ABSTRACT. I use polynomial analogue of the Jacobi triple product identity together with the Eisenstein formula for
the Legendre symbol modulo 3 to prove six identities involving the g-binomial coefficients. These identities are then
extended to the new infinite hierarchies of g-series identities by means of the special case of Bailey’s lemma. Some of
the identities of Ramanujan, Slater, McLaughlin and Sills are obtained this way.

1. INTRODUCTION

Let a and ¢ be variables and define the g-Pochhammer symbol (a;q), = (1 —a)(1 — aq)...(1 — ag"~ ') for
any non-negative integer n. For |g| < 1, we define (a;¢)oo := limy—oo(a;q)n. We define the shorthand notation
(a1,a2,...,ak;q)n = (a1;Q)n(a2; @)n - - . (ar; q)n. Finally note that 1/(g; q), = 0 for all negative n.

Next, we define the g-binomial coefficients

[m—i—n} __{ GDmin_ - for gy >0,
a

(6D m (G:a)n”

m 0, otherwise,

where m, n are non-negative integers. We would also require the ¢g-binomial recurrences [[7], 1.45, p.353]

(1.1) [mﬂtn]q— {eryZ_lean{mntﬁIlL'

The following two limits are well known. For any j € Z>p and a =0 or 1,

lim [] = 1 ,
Looo |7, (459);
2L+ a 1
[L—j]q_(q;Q)oo'

lim =
L—oo

In [4] we proved many g-binomial identities involving the Legendre symbol (mod 3)

1, if j =1 (mod 3),

(1.2) (%) ={ —1, ifj=—1 (mod3),
0, if j =0 (mod 3).

In particular, we established

Theorem 1.1. [Berkovich, Uncu [4]] Let L € Z>, then

gPrAemn ot (g gy, s (1Y e[ 2L
(1'3) Z ( . . 3.,43) Z 3 q L—iql°
m,n>0 q; q)L—Bn—2m ((L q)m(q 3 q )n J=——1L J q
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In the limit L — oo we have
2 2
q2m +6mn—+6n Q(QG, _q)

(14) m,n>0 (q’ q)m(qg’ qg)" B (q)oo

where

— q. 49 2. 9
(15) Q(Q7z) Ca (q7_27_;7q)00(;72 q;q )OO
In deriving (1.4) we used

Theorem 1.2. Quintuple product identity [[7], ex 5.6,p 147]
For0<|ql<1andz#0,

o0

(1.6) S (1R (1 4 20b) = Q(g, 2).

k=—o0

Identity (1.4) was independently found by Kanade-Russell [8] and Kursung6z [9]. It represents the analytic version
of Capparelli’s Theorem [5], [6].

In this paper we prove many new g-binomial identities involving the Legendre symbol (mod 3) such as

o0

oo [ 3. .6
5 e (525, - G-

j=—0c0

To this end we will employ

Theorem 1.3. Polynomial Analogue of the Jacobi Triple Product Identity [[1] p. 49] For n,m € Zx>,

n+m
(1.8 > e 1] = oo
i=—n q>
It is easy to check that (1.8) is a special case of the g-binomial theorem
L
o L
(1.9) > d »”UH = (—2¢; )1,
° 1] ,2
=0 q
with L € ZZO'
As n,m — oo, (1.8) becomes the Jacobi triple product identity
) .
(1.10) > ¢ 2t = (—q/z,—q7, 0% 0o

Eisenstein established the following formula for the Legendre symbol

(1.11) ( ) U "j)

where p is an odd prime.
Hence,

(1.12)

(j) sin(2 ) Cw —w!

3 sin(%)  w-w’

where w = exp(%-1), w = w

In Section 2, we will employ both (1.12) and Theorem 1.3. We would also need
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Theorem 1.4. Special Case of Bailey’s Lemma [12], [2]

Fora=0,1, if
- 2L +a

(1.13) Fa<L,q>_j_Zooaj(q>[L_jL7
then

r2tar(,. I

q (Q7q)2L+a s 9L +a
114 Fa r,q)= (g qj a][ . '
Y 5 (69)1-+(4 D)2rta (r.9) j;oo i(q) Lol

Observe that the right-hand side of the second equation in Theorem 1.4 is of the same form as the right-hand side
of the first equation. Thus, we may iterate Theorem 1.4 as often as we desire by updating «;(q)’s in each step. This
procedure gives rise to an infinite hierarchy of polynomial identities.

2. SIX NEW ¢-HYPERGEOMETRIC HIERARCHIES

In this section we will use polynomial analogue of the Jacobi triple identity to prove validity of six ”seed” identities.
These seeds are then extended to infinite hierarchies of g-series identities by means of Theorem 1.4.

Theorem 2.1.
0 ; o =45¢®)e1 , L-11-¢* (1 _ L
(2.1) 3 (l) q(le)[ 2L ] _ ) O T TS (1-dh), L>0
Jj=—00 3 L +'] q Oa L=0
Proof.
3 <1> qj23j+2[ 2L } RS S _qugj{ oL ] _
j=—oo 3 L+] q2 oo w — w L—i—] o
s 4. 2 2 9
MR (W) (g wi)1) =
2.2
( ) (—’(U, —wj QQ)L—1Q2(L_1)(1 - q2L)(1 + q2 + q4)7 L>0 _
0, L=0
1.6 _ 6
S g, 150
Oa L - O
Replace ¢ — ¢ to arrive at (2.1). O

Applying Theorem 1.4 with a = 0 to (2.1) we derive

3 , 1.3 i j j

I—¢q n>0 omt2(Q)p—1-n (=1;q)n oo

Applying Theorem 1.4 with a = 0 repeatedly ”v-times” to (2.1) we derive
1-¢° g2i=1 (Ni+2)Nitn, (=1;¢%)n,

>

(1 _ q1+"”) (q)2L _

1—¢q N1,y >0 (q)nl---(q)nufl (q)QnquQ (_1; Q)nu (q)Lflle
(2.0 o
(j) @ui)i® =85 (,_1) { 2L ]
Z 5 14 2 L o
P 3 +il4
where, here and everywhere, for j =1,2,...,v

(25) Ny =n;+ni41+ -+ ny.
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Multiplying both sides of (2.4) by <=% and letting L — oo, we have with the aid of (1.6)

1—q3

n1yeeeymp >0 (Q)n1...(Q)nv71(Q)2nu+2 (_1;Q)’ﬂu B 1- q3

qz;f:l(NiJrQ)NiJrnv(l _ q1+nv) (—1; qs)nv 1—¢q

2.6 .
(2:6) i (%) q%H—v _ (@803, 3%, P03 g8V +3) o (q12V43, 1209, g12046)
= (9)oo (4% @)oo
Next, we will prove
Theorem 2.2.
— (=) (J\ [2L+1 (L) L+1
2.7 q(2)<—>{ ] =¢"—=(1+q—q¢").
@7) j;m 3)1L+37], (=L ( )
Proof.
i (DY [PLAL] e g @ 2L
21 (3){“;‘ PRl e PP B At
Jj=—00 Jj=—00
1
(2.8) 2%(17) - w(_w, —w; ) (1 + @1+ @) + PRI =
2L - 2 2 2042 or (1¢%)L 2 2(L+1)
¢ (—w,—wiq )L - (1+¢ —¢77) =¢ T(]Q)L(l‘f'q —q ):
Replace ¢> — ¢ in the above to complete the proof. O

Applying Theorem 1.4 with a = 1 to (2.7) v-times we get

5 g=izt NiVikDdne(_1:03),(g)ar 41
N1 yeeey Ny >0 (Q)nyn(Q)nufl(q)lJran (—1;Q)nv (Q)Lle

i (Z)q(?v+1)j2;(2v+3)j+l 2L—|—.1 '
3 L+j],

(1+q—g¢'t™) =
(2.9)

j=—o00
Letting L — oo and using (1.6) we derive

(2.10) >

gz NiVatDne (1 g3y, Q¢ 2, —¢*)

(1+g—g¢*)=

N1y >0 (q)n1~~~(Q)nv71(Q)1+2nu (_1;61)7% (Q)oo
It is instructive to compare (2.10) with the following formula
Yi N? —1:3 6v+3 _ utl
(2.11) 3 == (L), _ Q¢™, —¢"")

@D @ @, (L, (@

first proven by McLaughlin and Sills in [[10], (5.9)]. We remark that products on the right of (2.10) and (2.11) are
identical when v = 1.
Next, we will prove

Theorem 2.3.

(2.12) i (_1)jqj2 (ﬂ) [2L+.1] = ((q3;q6)L (1 — g2(1+2L)y,

L+ ¢ 4% L1
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Proof. Using (1.8) and (1.12) we have

> C o2 (FH1\ [20+1 > T — @ 20417 e
e N B S G e e I
J:Zoo 3 L+‘7 q? j;oo w—w L+'7 q?
w — 2, [2L+1 B 2Ly
1 RGEL S e ] )= o g et

j=—o0
_ 3. .6
_ i i q9:;49°)L
(g0, qw; ¢*) (1 + @211 = (1+ #5H) | | (1 +¢'+% 4 g?0F2)) = 7(2, qz)L)ﬂ(l — 220y,

Applying Theorem 1.4 with a = 1 and ¢ — ¢? v-times we obtain

(2.14) 3 g N NVAD (@8 g5)n, (@)2n1 Z JCUDI 20 (1) [2L+1} <Ji>
>0 (D1 ( Dy (D20, (Q?q2)l+nu (@r—N, L+ g 3 ’

j=—o00
where § = ¢°.
Letting L — oo and using (1.6) we arrive at

qZI 1 Ni(Ni+1) ) (qs;QG)nv o Q(ql2v+67q)
(215) D D @, @ @

n1,...,My 20

We remark that v = 1 case of (2.15) was first proven by McLaughlin and Sills [[11], Thm 4.8].
Next, we will prove

Theorem 2.4.

(2.16) j_f:oo(_l)jqf <J%1> szj} ) _ %
Proof.
2%(ww (qw, quw; ¢°) %

Applying Theorem 1.4 with a = 0 and ¢ — ¢* v-times to (2.16) we obtain

v 2 - %) .
(2.18) Z gi= Ni . (@3¢, ) (92t _ Z (—1)/ (J + 1) q(2v+1)j2[ 2L ]
N1y >0 (q)nlwv(q)nv—l (Q)an (q; q2)nv (q)L*Nl =0 3 L+ q7

where § = ¢°.
Letting L — oo we obtain with the aid of (1.6)

~5Y 2 v v
(2.19) > g=i= N (50, Qa0 ¢

Dy Doy (D2n, (3560, (@)oo
N1yenns Ny >0
Casev =1
2

(2.20) > " (@6 _ Qe @)

=5 (D2n (4:¢%)n (@oe

was first recorded by Ramanujan and proven by Andrews and Berndt in [[3], Ent:5, 3.4].
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Next, we will prove

Theorem 2.5.

— o411\ [2L +1 (¢*:¢%)1
2.21 —1)igh (—) S =g
22 j:z_:oo( ) 3 )J1lL-Jle (&)
Proof. Using g-binomial recurrences (1.1) we have
- C e (jH1IN] 20+1 ] = 2 (JHIN ] 2L
—1)7 g7 — —1)7 g7
j_z_:oo( V'a ( 3 )[L—I—l-l—j_q j:z_:oo( Fa ( 5 ) le+il,"
(2.22) ,
Peag Z SRS J+1 2L
3 L+1+j].
j=—00 q
Note that
> g i+ 1 2L = o[ 2L
2.23 _q)igt et (L2 =_ —1)ig (2 .
(2:23) j;oo( Va 3 ) lL+1+4], j:z_:oo( re (3 L+,

Observe that the last sum on the right negates under j — —j. Hence, it equals zero.
And so, with the aid of (2.16) we have

(o9} oo

wo S one (B[] - S ()2, -8

j=—00 q j=—00 — Il (3L

Using Theorem 1.4 with @ = 1 and ¢ — ¢ to get

01 Ni(N;+1) 3. .6 ~ 00 " .

G2i=1 (@%¢°)n.  (@)2r41 i 20+1)7° 42 -(j+1) [2L+1]
2.25 . Lo, — -1 1 420 vJ
(2.25) > > (-1)q — ]

N1yt >0 (q)nl---((j)nv—l (q)Qnqul (Q; qz)nv (Q)L*Nl 3 L— J

j=—o0

As L — oo, we obtain with the aid of (1.6)

G2 i1 Ni(Ni+1) 3. .6 12046 dv+1
(2.26) o .(q,qQ)nU:Q(q gt
n1smy >0 Dy Doy @D2n,41 (456%)n, (@)oo
where § = ¢2. Case v = 1 yields
2n(n+1) ( 18 5
(2.27) Z q ) _ Uy )
@2n+1 (69 ) (@)oo

which is item (124) in Slater’s compendlum of Rogers—Ramanujan type identities [13].
Next, we will prove

Theorem 2.6.

YR P

Proof.

(2.29) IR~ (g ) s (s 1) = 2R LLILIE (2t

w—w w—w

3. 6
_ q;9")L
(qquw;qz)quJrzL _ ( ) q1+2L,
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where § = ¢°. O

Applying Theorem 1.4 with a = 1 and ¢ — ¢? to (2.28) v-times we obtain

(2.30) >

~ o @nr (D (D201 (@ ¢Pns (D

o0

(@*50%)n, (@D2z41 _ Z (—1)7 g2t Di* 201 <l> {2L+1]
- 2 iy
q

quzl Ni(Ni+1)+n,

L—j

j=—0c0

As L — oo we get with the aid of (1.6)

(2.31) >

Gi=1 Ni(Nit1)+ny (63;6%)n, Q(q'2+6, gt +3)

n1smy >0 (@i Doy (D2ny+1 (6620, (@)
Case v = 1 yields item (125) on Slater’s list in [13]
7 +2) (g3 ¢ 18 7
(2.32) Z q ¢ _ Q"4 )
@2n+1 (6¢%)n (@)oo

where § = ¢°.

3. SOME ADDITIONAL IDENTITIES

In this section, we present three new polynomial identities. The proof of these identities is left as an exercise for
a motivated reader.

oo

S (31N RL+1] [ W o 4 gl(1 4 g) — 2P, L>0
(3.1) S (-1 (T)q(){fl—j]q_{ 17() L

Jj=—00
Using Theorem 1.4 with ¢ = 1 and L = oo, we get with the aid of Theorem 1.2

(3.2) 1+ Z

’I"Jr’l" 3 )

"L24 ¢ (14q) —¢'t?) = (0", =4 =4"19")o0 (4%, 4" ") oo

r>1 q q 2r q)r 1 (q27q)oo
Next,
o0 . 3..3 _
(3.3) S (1) <z> @ [QL + 1] _ | g 2, L>0
Jj=—00 3 L—j q 4, L=0
Using Theorem 1.4 with @ = 1 and L = oo, we obtain with the aid of Theorem 1.2
rP4r—1 3. 43 9 4 5. .9 17. 18
q (4% ¢°)r—1 . a1y _ (@5 =0 —07107) (4,470 )
34 1+ : (=14+4¢"(1+q)+2q = .
(34) = ()2 (Dr ( (1+9) ) (4% @)oo
Lastly, adding (3.1) and (3.3), and observing that
J Jj+1 Jj+2
< =0
()« (%)« (57) =
we get
(3.5) i (—1)i+! <Jﬁ> ) [2’3 + 1} [ e R 2 (L4 ), L0
P 3 L—j 1+4g¢, L=0

We divide (3.5) by (1 + ¢), and then use Theorem 1.4 with a = 1 to obtain, as L — oo

(P51 14+ g (@ =% =" ") (07, 0" M) e
(3.6) 1+Z (— +2¢") = = .
r>1 q q 2r q)r—l + (q 7Q)oo
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