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A NOTE ON CONSTRUCTION OF THE LEECH LATTICE

ICHIRO SHIMADA

Abstract. In this paper, we present a method to construct the Leech lattice
from other Niemeier lattices.

1. Introduction

The Leech lattice is an important mathematical object. Various constructions
of this beautiful lattice are known. In this paper, we give a method to construct
the Leech lattice as modifications of other Niemeier lattices.

Let N be a Niemeier lattice with the intersection form 〈 , 〉N . Suppose that
N is not isomorphic to the Leech lattice. Let R be the set of vectors in N of
square-norm 2, and 〈R〉 ⊂ N the sublattice generated by R. Then N/〈R〉 is a finite
abelian group, which we call the code of N . (In [6], it is called the glue code.) For
each codeword of this code, we give a method to construct the Leech lattice. The
main result is given in Theorem 7.8.

Considering the case where this codeword is 0, we obtain the following. Let N
and R be as above. We choose a simple root system Θ of R, that is, Θ is a set of
vectors in R that form a basis of 〈R〉 with the dual graph being a Dynkin diagram
of an ordinary ADE-type. Then we have a vector ρ ∈ N⊗Q such that 〈r, ρ〉N = −1
for all r ∈ Θ. In fact, we have ρ ∈ N . Let h be the Coxeter number of N .

Corollary 1.1. The Z-module

{ u ∈ N | 〈u, ρ〉N ≡ 0 mod 2h+ 1 }
with the quadratic form

u 7→ 〈u, u〉N − 2

(2h+ 1)2
(〈u, ρ〉N )2

is isomorphic to the Leech lattice. �

Our construction is similar to the twenty-three holy constructions of Conway and
Sloane [7]. See also [5]. In the proof of our construction, the classification of deep
holes of the Leech lattice [4] and the determination of the fundamental domain of
the Weyl group of the even unimodular Lorentzian lattice II25,1 [3] play important
roles. Some ideas in our construction have already appeared in Borcherds [1].

A novelty of our approach is that we use the geometry of K3 surfaces as a
heuristic guide. Let X be a K3 surface whose Néron-Severi lattice SX is an even
unimodular lattice II1,25 of signature (1, 25). It is needless to say that such a K3
surface X does not exist. Applying the lattice theoretic tools for the study of K3
surfaces to this virtual K3 surface X, however, we can rephrase the above mentioned
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2 ICHIRO SHIMADA

results of Conway et al. [3, 4] in terms of geometry of K3 surfaces. Then, using an
algorithm that we have developed in [14] for the study of K3 surfaces, we obtain
our construction.

Note that, in the proof of our main result (Theorem 7.8), we do not use X, and
hence the result is rigorously correct. In fact, we can verify our result by direct
computations. See Remark 7.10. Computational data relevant to this paper is
presented in [15] in the format of GAP [10].

Notation. A lattice is a free Z-module of finite rank with a non-degenerate
symmetric bilinear form that takes values in Z. This bilinear form is called the
intersection form of the lattice. For a lattice M with the intersection form 〈 , 〉M ,
let M− denote the lattice whose underlying Z-module is M and whose intersection
form is equal to 〈 , 〉−M := −〈 , 〉M .

Let Λ be the Leech lattice. In this paper, we construct the negative-definite

Leech lattice Λ− from negative-definite Niemeier lattices N− using the result on
the lattice II−25,1 = II1,25. We make this change of sign because we want to use
ideas coming from the geometry of algebraic surfaces.

2. Preliminaries

2.1. Roots and reflections. A lattice M is even if 〈v, v〉M ∈ 2Z holds for all
v ∈ M . Let M be an even lattice. A vector r of M is said to be a root if
|〈r, r〉M | = 2. A lattice is said to be a root lattice if it is generated by roots. A root
r of M with 〈r, r〉M = ±2 defines the reflection

sr : x 7→ x∓ 〈x, r〉M · r,
which is an element of the automorphism group O(M) of the lattice M . Let M∨

denote the dual lattice

{ x ∈ M ⊗Q | 〈x, v〉M ∈ Z for all v ∈ M }.
The discriminant group of M is the finite abelian group M∨/M . The group O(M)
acts on M∨, and hence on M∨/M . Since sr(x)−x ∈ M holds for any x ∈ M∨, the
reflections sr ∈ O(M) act on M∨/M trivially.

2.2. ADE-configurations. A (−2)-vector of an even lattice M is a vector r ∈ M
such that 〈r, r〉M = −2. Let {r1, . . . , rm} be a set of (−2)-vectors of an even
lattice M such that 〈ri, rj〉M ∈ {0, 1, 2} holds for any i, j with i 6= j. The dual

graph of {r1, . . . , rm} is the graph whose set of nodes is {r1, . . . , rm} and whose
set of simple edges (resp. of double edges) is the set of pairs {ri, rj} such that
〈ri, rj〉M = 1 (resp. 〈ri, rj〉M = 2). (A double edge appears only in extended
ADE-configuration whose ADE-type contains A1.) We say that {r1, . . . , rm} forms
an ordinary ADE-configuration (resp. an extended ADE-configuration) if the dual
graph is the ordinary Dynkin diagram (resp. the extended Dynkin diagram) of type
ADE, and in this case, we define the type of the configuration to be the type of the
dual graph.

Let M be a negative-definite root lattice, and R the set of (−2)-vectors in M .
We have M = 〈R〉. A simple root system of M is a subset of R that is a basis of
M and that forms an ordinary ADE-configuration. A negative-definite root lattice
always has a simple root system. The set of simple root systems ofM is described as
follows. We denote by W (M) the subgroup of O(M) generated by all the reflections
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sr with respect to r ∈ R, and call it the Weyl group of M . We consider the unit
sphere

S := { x ∈ M ⊗ R | 〈x, x〉M = −1 }.
For r ∈ R, we put

(r)⊥ := { x ∈ S | 〈x, r〉M = 0 }, H+(r) := { x ∈ S | 〈x, r〉M > 0 },
and set

S◦ := S \
⋃

r∈R

(r)⊥.

Then W (M) acts on the set of connected components of S◦ simple-transitively. A
subset Θ of R is a simple root system of M if and only if the space

∆(Θ) :=
⋂

r∈Θ

H+(r)

is a connected component of S◦ and, for each r ∈ Θ, the intersection (r)⊥ ∩∆(Θ)

contains a non-empty open subset of (r)⊥, where ∆(Θ) is the closure of ∆(Θ) in S.
Therefore W (M) acts on the set of simple root systems of M simple-transitively.

2.3. The coefficients of the highest root. Let Σ̃ be a set of (−2)-vectors that
form an extended ADE-configuration of type τ with the dual graph being connected,
that is, we have τ = Al or τ = Dm or τ = En. We choose a vector θ ∈ Σ such that

Σ := Σ̃ \ {θ} forms an ordinary ADE-configuration of type τ . Then Σ is a simple
root system of the negative-definite root lattice 〈Σ〉. Let µ ∈ 〈Σ〉 be the highest
root with respect to Σ (see [9, Section 1.5] for the definition). We define a function

m : Σ̃ → Z>0 by

m(r) :=

{
1 if r = θ,

the coefficient of r in µ if r ∈ Σ.

In fact, the function m does not depend on the choice of θ ∈ Σ̃. We have m(r) = 1

if and only if Σ̃ \ {r} forms an ordinary ADE-configuration of type τ . The values
of the function m for each connected ADE-type τ can be found in [8, Figure 23.1]
or in [9, Figure 1.8].

Let ZΣ̃ be the Z-module of functions Σ̃ → Z. We can also define m as the
function Σ̃ → Z that takes values in Z>0 and that is the generator of the following

Z-submodule of of ZΣ̃:

{ ( x(r) ) ∈ ZΣ̃ | ∑
r∈Σ̃ x(r)〈r, r′〉 = 0 for all r′ ∈ Σ̃ }.

2.4. Hyperbolic lattices. We say that a lattice M of rank n > 1 is hyperbolic if
its signature is (1, n− 1).

Example 2.1. If n is a positive integer satisfying n ≡ 2 mod 8, then there ex-
ists an even unimodular hyperbolic lattice Ln of rank n, and Ln is unique up to
isomorphism. The lattice L26

∼= II1,25 plays a central role in this paper.

Example 2.2. The hyperbolic plane U is the even unimodular hyperbolic lattice
L2 of rank 2. We fix a basis u0, u1 of U such that the Gram matrix of U with
respect to u0, u1 is [

0 1
1 0

]
.
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Let M be an even hyperbolic lattice. A positive cone of M is one of the two
connected components of the space { x ∈ M ⊗ R | 〈x, x〉M > 0 }. Let PM be a
positive cone of M . We denote by PM the closure of PM in M ⊗ R, and by ∂ PM

the boundary PM \ PM . We put

RM := { r ∈ M | 〈r, r〉M = −2 },
and, for r ∈ RM , let (r)⊥ be the hyperplane { x ∈ PM | 〈x, r〉M = 0 } in PM .
The Weyl group W (M) is a subgroup of O(M) generated by all the reflections sr
associated with r ∈ RM . Then W (M) acts on PM .

Definition 2.3. A standard fundamental domain of W (M) is the closure in PM

of a connected component of

PM \
⋃

r∈RM

(r)⊥.

Let D be a standard fundamental domain of W (M). We say that r ∈ RM defines

a wall of D if D ∩ (r)⊥ contains a non-empty open subset of (r)⊥ and 〈x, r〉M ≥ 0
holds for all x ∈ D.

Note that, contrary to the case where M is a negative-definite root lattice, a
standard fundamental domain of W (M) in the positive cone of hyperbolic lattice
may have infinitely many walls.

3. Niemeier lattices

A Niemeier lattice is an even positive-definite unimodular lattice of rank 24.
Niemeier [11] classified Niemeier lattices. It was shown in [11] that, up to isomor-
phism, there exist exactly 24 Niemeier lattices, that one of them contains no roots,
whereas each of the other 23 lattices contains a sublattice of finite index generated
by roots. See also [6]. The Niemeier lattice containing no roots is called the Leech

lattice, and is denoted by Λ.
Let N be a Niemeier lattice with roots. Let R be the set of (−2)-vectors of N−,

and 〈R〉 the sublattice of N− generated by R. Then the code N−/〈R〉 of N− is a
subgroup of the discriminant group 〈R〉∨/〈R〉. Let Θ ⊂ R be a simple root system
of 〈R〉, and let τ(N) denote the ADE-type of Θ. We call τ(N) the ADE-type of
N−. Note that O(N−) is a subgroup of O(〈R〉). More precisely, we have

O(N−) = { g ∈ O(〈R〉) | the action of g on 〈R〉∨/〈R〉 preserves N−/〈R〉 }.
Since the subgroup W (〈R〉) of O(〈R〉) acts on 〈R〉∨/〈R〉 trivially, we see that
W (〈R〉) is contained in O(N−). SinceW (〈R〉) acts on the set of simple root systems
of 〈R〉 transitively, we have the following:

Proposition 3.1. The group O(N−) acts on the set of simple root systems of 〈R〉
transitively. �

We write

(3.1) τ(N) = τ(N)1 + · · ·+ τ(N)K ,

where τ(N)1, . . . , τ(N)K are the ADE-types of the connected components of the
dual graph of Θ. Accordingly, we obtain the decompositions

(3.2) Θ = Θ1 ⊔ · · · ⊔ΘK , R = R1 ⊔ · · · ⊔RK ,
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in such a way that Θi ⊂ Ri is a simple root system of the root lattice 〈Ri〉 of type
τ(N)i. We put

ni := Card(Θi) = rank 〈Ri〉.
Then we have 24 = n1 + · · ·+ nK .

Definition 3.2. The Coxeter number hi of Ri is defined by any of the following:

(a) Card(Ri) = nihi.
(b) Let ρi ∈ 〈Ri〉 ⊗Q be the vector satisfying 〈ρi, r〉−N = 1 for all r ∈ Θi. Then we

have 〈ρi, ρi〉−N = −nihi(hi + 1)/12.
(c) Let µi ∈ Ri denote the highest root with respect to Θi. (See Section 1.5 of [9]).

Then we have hi = 〈µi, ρi〉−N + 1, that is, hi − 1 is the sum of the coefficients
m(r) of µi expressed as a linear combination of vectors r ∈ Θi, where m is the
function defined in Section 2.3.

(d) The product of all the reflections sr with respect to r ∈ Θi (where the product
is taken in arbitrary order) is of order hi in O(〈Ri〉).

A remarkable fact about the ADE-type τ(N) is that hi does not depend on i.
We put

h := h1 = · · · = hK ,

and call it the Coxeter number of N−. (See Table 3.1.) We also put

ρ := ρ1 + · · ·+ ρK ,

which is called a Weyl vector of N−. By property (b) of h above, we have

(3.3) 〈ρ, ρ〉−N = −2h(h+ 1).

Remark 3.3. The Weyl vector ρ ∈ 〈R〉 ⊗ Q = N− ⊗ Q is in fact a vector of N−.
This fact can be easily confirmed by direct computation. Borcherds [1] gave a proof
of this fact. See also Remark 7.7.

4. Deep holes

In this section, we review the classification of deep holes of the Leech lattice
Λ due to Conway, Parker, Sloane [4], and the determination of the fundamental
domain of the Weyl group W (L26) of L26

∼= II1,25 due to Conway [3].
For x, y ∈ Λ⊗ R, we put

d(x, y) :=
√
〈x− y, x− y〉Λ , and d(x,Λ) := min λ∈Λ d(x, λ).

The covering radius of Λ is defined to be the maximum of d(x,Λ), where x runs
through Λ ⊗ R. In [4], the following was proved:

Theorem 4.1. The covering radius of Λ is
√
2. �

Using Vinberg’s algorithm [16] and Theorem 4.1, Conway [3] proved the follow-
ing. Let 〈 , 〉L denote the intersection form of L26

∼= II1,25. Let RL be the set of
(−2)-vectors of L26. We choose a positive cone PL of L26.

Definition 4.2. We call a standard fundamental domain of W (L26) in PL a Con-

way chamber. A non-zero primitive vector w ∈ L26 is called a Weyl vector if
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No. τ h N−/〈R〉 〈R〉∨/〈R〉

1 D24 46 Z/2Z (Z/2Z)2

2 3E8 30 0 0
3 D16 + E8 30 Z/2Z (Z/2Z)2

4 A24 25 Z/5Z Z/25Z
5 2D12 22 (Z/2Z)2 (Z/2Z)4

6 A17 +E7 18 Z/6Z Z/2Z × Z/18Z
7 D10 + 2E7 18 (Z/2Z)2 (Z/2Z)4

8 A15 +D9 16 Z/8Z Z/4Z × Z/16Z
9 3D8 14 (Z/2Z)3 (Z/2Z)6

10 2A12 13 Z/13Z (Z/13Z)2

11 4E6 12 (Z/3Z)2 (Z/3Z)4

12 A11 +D7 + E6 12 Z/12Z Z/3Z × Z/4Z× Z/12Z
13 4D6 10 (Z/2Z)4 (Z/2Z)8

14 2A9 +D6 10 Z/2Z × Z/10Z (Z/2Z)2 × (Z/10Z)2

15 3A8 9 Z/3Z × Z/9Z (Z/9Z)3

16 2A7 + 2D5 8 Z/4Z × Z/8Z (Z/4Z)2 × (Z/8Z)2

17 4A6 7 (Z/7Z)2 (Z/7Z)4

18 6D4 6 (Z/2Z)6 (Z/2Z)12

19 4A5 +D4 6 Z/2Z × (Z/6Z)2 (Z/2Z)2 × (Z/6Z)4

20 6A4 5 (Z/5Z)3 (Z/5Z)6

21 8A3 4 (Z/4Z)4 (Z/4Z)8

22 12A2 3 (Z/3Z)6 (Z/3Z)12

23 24A1 2 (Z/2Z)12 (Z/2Z)24

Table 3.1. Niemeier lattices with roots

w ∈ ∂ PL (in particular, we have 〈w,w〉L = 0) and the lattice (Zw)⊥/Zw is iso-
morphic to Λ−. For a Weyl vector w, we put

L(w) := { r ∈ RL | 〈w, r〉L = 1 },
C(w) := { x ∈ PL | 〈x, r〉L ≥ 0 for all r ∈ L(w) }.

An element of L(w) is called a Leech root of the Weyl vector w.

Theorem 4.3 (Conway [3]). (1) The mapping w 7→ C(w) gives a bijection between

the set of Weyl vectors and the set of Conway chambers.

(2) Let w be a Weyl vector. A (−2)-vector r of L26 defines a wall of the Conway

chamber C(w) if and only if r ∈ L(w). �

Let Co∞ denote the group of affine isometries of the Leech lattice Λ. We have
Co∞ = Λ ⋊ O(Λ), where Λ acts on Λ by translation. Let UΛ be a copy of the
hyperbolic plane U , and we put

LΛ := UΛ ⊕ Λ−,

which is isomorphic to L26. We write elements of LΛ as

(a, b, v)Λ := au0 + bu1 + v, where a, b ∈ Z and v ∈ Λ−,

where u0 and u1 are the basis of U given in Example 2.2. Then the vector

wΛ := (1, 0, 0)Λ
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is a Weyl vector of LΛ, and the mapping

(4.1) λ 7→ rλ := ( −1− λ2/2, 1, λ )Λ, where λ2 = 〈λ, λ〉−Λ ,
gives a bijection Λ− ∼= L(wΛ). Then Theorem 4.3 implies the following:

Corollary 4.4. The automorphism group

O(LΛ, wΛ) := { g ∈ O(LΛ) | wg
Λ = wΛ }

of the Conway chamber C(wΛ) is isomorphic to Co∞ via the bijection rλ 7→ λ. �

A point c ∈ Λ− ⊗ R is called a deep hole if c satisfies d(c,Λ) =
√
2. The group

Co∞ acts on the set of deep holes. In [4], deep holes are classified up to the action
of Co∞. For a deep hole c ∈ Λ ⊗ R, we put

P0(c) := {λ ∈ Λ− | d(c, λ) =
√
2 },

and call it the set of vertices of c. We then consider the set

Ξ0(c) := { rλ ∈ L(wΛ) | λ ∈ P0(c) }.
Theorem 4.5 (Conway, Parker, Sloane [4]). (1) For each deep hole c, the set Ξ0(c)

forms an extended ADE-configuration, and its type τ(c) is one of the 23 types

τ(N) of Niemeier lattices N with roots.

(2) Conversely, for an ADE-type τ(N) of a Niemeier lattice N with roots, there

exists a deep hole c such that τ(c) = τ(N).
(3) Two deep holes c and c′ are Co∞-equivalent if and only if τ(c) = τ(c′). �

Definition 4.6. The Coxeter number of a deep hole c is the Coxeter number of
the Niemeier lattice N with roots such that τ(N) = τ(c).

5. The shape of a Conway chamber

For each Co∞-equivalence class of deep holes, we have computed a representative
element c and its vertices P0(c) explicitly in [13]. The results are also presented on
the web page [15]. Using this data, we can confirm the following:

Proposition 5.1. Let c ∈ Λ− ⊗Q be a deep hole, and h the Coxeter number of c.
Then hc is a primitive vector of Λ−, and h〈c, c〉−Λ/2 is an integer. �

Recall that LΛ = UΛ ⊕ Λ−. We consider the Conway chamber C(wΛ) of LΛ

corresponding to the Weyl vector wΛ = (1, 0, 0)Λ. Let C(wΛ) be the closure of
C(wΛ) in PL. Let c ∈ Λ− ⊗Q be a deep hole with the Coxeter number h. We put

(5.1) f̄(c) := ( −〈c, c〉−Λ/2, 1, c )Λ ∈ LΛ ⊗Q, f(c) := hf̄(c).

By Proposition 5.1, the vector f(c) is a primitive vector of LΛ with 〈f(c), f(c)〉L = 0.
Then we have the following.

Proposition 5.2. The intersection C(wΛ)∩∂ PL is a union of the half-lines R≥0wΛ

and R≥0f(c), where c runs through the set of deep holes.

Proof. It is obvious that R≥0wΛ ⊂ C(wΛ)∩∂ PL. Let ℓ be a point of ∂ PL \ R≥0wΛ.
Then we have 〈ℓ, wΛ〉L > 0. Rescaling ℓ by a positive real number, we assume that
〈ℓ, wΛ〉L = 1 so that we have

ℓ = ( −〈v, v〉−Λ/2, 1, v )Λ
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for some v ∈ Λ⊗ R. Then, for each λ ∈ Λ−, we have

(5.2) 〈ℓ, rλ〉L = −1− 〈λ, λ〉−Λ
2

− 〈v, v〉−Λ
2

+ 〈v, λ〉−Λ = −1 +
d(v, λ)2

2
.

Therefore ℓ belongs to C(wΛ) if and only if v is a deep hole c, and in this case, we
have ℓ = f̄(c). �

Let c ∈ Λ− ⊗Q be a deep hole. We have 〈f(c), rλ〉L ∈ Z≥0 for any λ ∈ Λ−. For
ν ∈ Z≥0, we put

Ξν(c) := { rλ ∈ L(wΛ) | 〈rλ, f(c)〉L = ν }.
By (5.2), we see that Ξν(c) is in one-to-one correspondence with the set

Pν(c) := {λ ∈ Λ− | d(c, λ)2 = 2(1 + ν/h) }
by the bijection λ 7→ rλ between Λ− and L(wΛ). Note that these definitions are
compatible with the definitions of Ξ0(c) and P0(c) in Section 4. The set P0(c) is
the set of points of Λ nearest to c, and P1(c) is the set of points of Λ next nearest
to c.

Remark 5.3. The intersection form 〈 , 〉L of L ⊗ R restricted to the affine sub-
space of LΛ ⊗ R defined by 〈wΛ, x〉L = 1 and 〈f(c), x〉L = ν is an inhomogeneous
quadratic form whose homogeneous part of degree 2 is negative-definite. Hence we
can explicitly calculate the set Ξν(c). Then we obtain the set Pν(c).

We investigate the sets Ξ0 and Ξ1. Propositions 5.4, 5.5, and 5.6 below were
observed in [7]. We can also confirm them by looking at the computational data
in [15]. As will be explained in Section 6.2, they have geometric meanings in terms
of the virtual K3 surface X.

Recall that Ξ0(c) forms an extended ADE-configuration of type τ(c). We write
τ(c) as

τ(c) = τ(c)1 + · · ·+ τ(c)K ,

where τ(c)i are the ADE-types of the connected components of the dual graph of
Ξ0(c). Let

Ξ0(c) = Ξ0(c)1 ⊔ · · · ⊔ Ξ0(c)K

be the corresponding decomposition. Then we have a function m : Ξ0(c)i → Z>0

defined in Section 2.3 for i = 1, . . . ,K.

Proposition 5.4. We have
∑

r∈Ξ0(c)i

m(r)r = f(c) for i = 1, . . . ,K. �

Next, we investigate the set Ξ1(c).

Proposition 5.5. Let s be an element of Ξ1(c). Then, for each i = 1, . . . ,K, there

exists a unique element θ(i, s) of Ξ0(c)i such that, for all r ∈ Ξ0(c)i, we have

〈r, s〉L =

{
1 if r = θ(i, s),

0 otherwise.

We then have m(θ(i, s)) = 1, and hence

(5.3) Θ(c, s)i := Ξ0(c)i \ {θ(i, s)}
forms an ordinary ADE-configuration of type τ(c)i. �
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We choose and fix an element

(5.4) z ∈ Ξ1(c),

and let U(c, z) denote the hyperbolic plane in LΛ generated by f(c) and z. Its
orthogonal complement U(c, z)⊥ in LΛ contains the set

Θ(c, z) := Θ(c, z)1 ⊔ · · · ⊔Θ(c, z)K

of (−2)-vectors that form an ordinary ADE-configuration of type τ(c), where Θ(c, z)i
is defined by (5.3). Let N be the Niemeier lattice such that τ(c) = τ(N). Since
U(c, z)⊥ is unimodular and of rank 24, the lattice

N−(c, z) := U(c, z)⊥

is isomorphic to N−, and contains Θ(c, z) as a simple root system. Thus LΛ has
two orthogonal direct-sum decompositions

(5.5) LΛ = UΛ ⊕ Λ− = U(c, z)⊕N−(c, z).

Let 〈Θ(c, z)〉 be the sublattice of N−(c, z) generated by Θ(c, z), and we put

Γ (c, z) := N−(c, z)/〈Θ(c, z)〉,
which is a finite abelian group isomorphic to the code of N−. We have a natural
homomorphism

(5.6) LΛ → N−(c, z) → Γ (c, z),

where LΛ → N−(c, z) is the projection by the second decomposition (5.5).

Proposition 5.6. The mapping (5.6) induces a bijection Ξ1(c) ∼= Γ (c, z). �

Remark 5.7. The (−2)-vector θ(i, z) ∈ Ξ0(c)i satisfies the following:

(a) 〈f(c), θ(i, z)〉L = 0, 〈z, θ(i, z)〉L = 1,
(b) if j 6= i, then 〈r, θ(i, z)〉L = 0 for all r ∈ Θ(c, z)j, and
(c) Θ(c, z)i ∪ {θ(i, z)} forms an extended ADE-configuration of type τ(c)i.

Since f(c), z and the 24 vectors in Θ(c, z) span LΛ⊗Q, these properties characterize
the vector θ(i, z) ∈ Ξ0(c)i uniquely.

6. The virtual K3 surface X

The results in Section 5 can be interpreted as geometric results on a virtual,
non-existing K3 surface X.

6.1. K3 surfaces. First, we give a brief review of lattice theoretic aspects of the
theory of (non-virtual) K3 surfaces. See the book [12, Chapter 11] for details. See
also [14] for a review from a computational point of view.

For simplicity, we work over an algebraically closed field of characteristic 6= 2, 3.
Let X be a K3 surface. We denote by SX the Néron-Severi lattice of X , that is, SX

is the lattice of numerical equivalence classes of divisors on X . Let 〈 , 〉S denote
the intersection form of SX . For a curve C on X , let [C] ∈ SX be the class of C.
Suppose that the Picard number rankSX is > 1. Then SX is an even hyperbolic
lattice. Let PX be the positive cone of SX that contains an ample class. The
nef-and-big cone NX of X is defined by

NX := { x ∈ PX | 〈x, [C]〉S ≥ 0 for all curves C on X }.
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We denote by NX the closure of NX in PX . We put

Rats(X) := { r ∈ SX | r is the class of a smooth rational curve on X }.
Then we have the following:

Proposition 6.1. (1) The nef-and-big cone NX is the standard fundamental do-

main of the Weyl group W (SX) containing an ample class.

(2) A (−2)-vector r of SX belongs to Rats(X) if and only if r defines a wall of the

standard fundamental domain NX . �

Let f and z be vectors of SX such that

〈f, f〉S = 0, 〈f, z〉S = 1, 〈z, z〉S = −2, f ∈ NX , z ∈ Rats(X).

Then we have an elliptic fibration φ : X → P1 with a section ζ : P1 → X such that
f is the class of a fiber of φ and that z is the class of the image of ζ. Let Uf,z denote
the hyperbolic plane in SX generated by f and z, and let U⊥

f,z be the orthogonal

complement of Uf,z in SX . Note that U⊥
f,z is negative-definite. Let R(U⊥

f,z) be

the set of (−2)-vectors in U⊥
f,z, and 〈R(U⊥

f,z)〉 the sublattice of U⊥
f,z generated by

R(U⊥
f,z). We put

Θ̃φ := { [C] | C is a smooth rational curve on X mapped to a point by φ }.
Then Θ̃φ forms an extended ADE-configuration. Let

Θ̃φ = Θ̃φ,1 ⊔ · · · ⊔ Θ̃φ,K

be the decomposition according to the connected components of the dual graph of

Θ̃φ. Then the fibration φ : X → P1 has exactlyK reducible fibers φ−1(p1), . . . , φ
−1(pK),

and, under an appropriate numbering of the points p1, . . . , pK ∈ P1, we have

[C] ∈ Θ̃φ,i ⇐⇒ C ⊂ φ−1(pi)

for a smooth rational curve C on X . Let m : Θ̃φ,i → Z>0 be the function defined
in Section 2.3. Then we have

(6.1) φ∗(pi) =
∑

C⊂φ−1(pi)

m([C])C,

where C runs through the set of irreducible components of φ−1(pi). Let Ci0 be the
unique irreducible component of φ−1(pi) that intersects the zero section ζ, and we
put

Θφ,ζ,i := Θ̃φ,i \ {[Ci0]}.
Then each Θφ,ζ,i forms a connected ordinary ADE-configuration. We put

Θφ,ζ := Θφ,ζ,1 ⊔ · · · ⊔Θφ,ζ,K .

Then we have

Θφ,ζ = R(U⊥
f,z) ∩Rats(X).

We can calculate the classes

[Ci0] = f −
∑

r∈Θφ,ζ,i

m(r)r

of smooth rational curves in fibers of φ that intersect ζ. Note that
∑

r∈Θφ,ζ,i
m(r)r

is the highest root of 〈Θφ,ζ,i〉 with respect to Θφ,ζ,i.
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Let MWφ,ζ be the Mordell-Weil group of the Jacobian fibration φ : X → P1 with
the zero section ζ : P1 → X , that is, MWφ,ζ is the group of sections s : P1 → X of
φ with ζ being 0. For s ∈ MWφ,ζ , let [s] ∈ Rats(X) denote the class of the image
of the section s. Then we have the following famous result. See [12].

Proposition 6.2. The mapping s 7→ [s] induces an isomorphism

(6.2) MWφ,ζ
∼= SX/(Uf,z ⊕ 〈Θφ,ζ〉)

of abelian groups. �

Remark 6.3. We have an algorithm [14, Section 4] that calculates, for any v ∈ SX ,
the class [sv] ∈ Rats(X) of the section sv ∈ MWφ,ζ corresponding to the class of v
modulo Uf,z ⊕ 〈Θφ,ζ〉 via (6.2).

6.2. Geometry of the virtual K3 surface X. Let X be a virtual K3 surface
with an isometry

(6.3) SX
∼= LΛ.

Applying to X the results of K3 surfaces explained in Section 6.1, we obtain natural
explanations to the results Propositions 5.4, 5.5, and 5.6 that were observed in [7].
Remark that such a K3 surface X does not exist, and the arguments below should
be considered only as a heuristic guide.

By composing (6.3) with an element of the Weyl group W (LΛ), we can assume
that (6.3) maps the nef-and-big cone NX of X to the Conway chamber C(wΛ). In
the following, we identify LΛ with SX, and C(wΛ) with NX.

By Theorem 4.3 and Proposition 6.1, the set Rats(X) of the classes of smooth
rational curves on X is equal to the set L(wΛ) of Leech roots of wΛ. The primitive
vector wΛ ∈ SX ∩ NX corresponds to the class of a fiber of an elliptic fibration

φΛ : X → P1.

Since 〈wΛ, rλ〉L = 1 for any rλ ∈ L(wΛ), every smooth rational curve on X is a
section of φΛ. If we choose a smooth rational curve and consider it as a zero section
ζ : P1 → X of φΛ, then, by Proposition 6.2, the Mordell-Weil group of this Jacobian
fibration (φΛ, ζ) is isomorphic to Z24, because we have ΘφΛ,ζ = ∅.
Remark 6.4. More strongly, the Mordell-Weil lattice (see [12]) of (φΛ, ζ) is isomor-
phic to the Leech lattice Λ.

Let c ∈ Λ− ⊗ Q be a deep hole. We have defined in (5.1) a primitive vector
f(c) ∈ LΛ generating a half-line in C(wΛ) ∩ ∂ PL. Then the vector f(c) ∈ SX ∩NX

is the class of a fiber of an elliptic fibration

φ(c) : X → P1.

The set Ξ0(c) is the set of classes of smooth rational curves on X that are contained
in fibers of φ(c). Let φ(c)∗(pi) (i = 1, . . . ,K) be the reducible fibers of φ(c).
Renumbering the points p1, . . . , pK ∈ P1 if necessary, we have that, for each i =
1, . . . ,K, the set Ξ0(c)i is the set of classes [C] of irreducible components C of
φ(c)∗(pi) with m([C]) ∈ Z>0 being the multiplicity of C in the fiber φ(c)∗(pi). The
set Ξ1(c) is the set of classes of sections of φ(c). Hence Proposition 5.4 follows
from (6.1), Proposition 5.5 follows from the fact that a section and a fiber intersect
only at one point and with intersection multiplicity 1. We choose z ∈ Ξ1(c) as
in (5.4). Then we have a section ζ : P1 → X whose class is z. We consider ζ as a
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zero section of φ(c). Then θ(i, z) is the class of the smooth rational curve in φ(c)∗(pi)
that intersects ζ, and hence Θ(c, z) is the set of classes of irreducible components
of reducible fibers of φ(c) that are disjoint from ζ. Hence the Mordell-Weil group
of the Jacobian fibration (φ(c), ζ) is isomorphic to Γ (c, z) = N−(c, z)/〈Θ(c, z)〉 by
Proposition 6.2, and Proposition 5.6 also follows from Proposition 6.2.

7. Constructions of the Leech lattice

Let N be a Niemeier lattice with roots. Let

Θ = Θ1 ⊔ · · · ⊔ΘK ⊂ R ⊂ 〈R〉 ⊂ N−

and τ(N) = τ(N)1+ · · ·+τ(N)K be defined as in Section 3. We give a construction
of the Leech lattice Λ− for each codeword γ of the finite abelian group N−/〈R〉.

Remark 7.1. By Proposition 3.1, this construction does not depend on the choice
of the simple root system Θ of 〈Θ〉 = 〈R〉 up to the action of O(N−).

First we present a lemma about the discriminant group of a negative-definite
root lattice. Let Σ = {r1, . . . , rk} be a set of (−2)-vectors that form a connected

ordinary ADE-configuration, and let 〈Σ〉 denote the lattice generated by Σ. Let
m : Σ → Z>0 be the function defined in Section 2.3. We put

J(Σ) := { j | m(rj) = 1 } ⊂ {1, . . . , k}.

Let r∨1 , . . . , r
∨
k be the basis of 〈Σ〉∨ dual to the basis r1, . . . , rk of 〈Σ〉. Then the

following can be checked easily for each connected ADE-configuration Σ.

Lemma 7.2. The mapping j 7→ r∨j mod 〈Σ〉 gives rise to a bijection from J(Σ) to

the set of non-zero elements of the discriminant group 〈Σ〉∨/〈Σ〉. �

Definition 7.3. For a codeword α ∈ 〈Σ〉∨/〈Σ〉, we define its canonical representa-
tive α̃ ∈ 〈Σ〉∨ by the following: if α = 0, then α̃ = 0, and if α 6= 0, then α̃ = r∨j ,

where j ∈ J(Σ) corresponds to α by the bijection in Lemma 7.2.

We put

Ai := 〈Θi〉∨/〈Θi〉.
By the natural embedding

(7.1) N− →֒ 〈R〉∨ = 〈Θ1〉∨ ⊕ · · · ⊕ 〈ΘK〉∨,

we have an embedding

(7.2) N−/〈R〉 →֒ A1 × · · · ×AK .

Let γ ∈ N−/〈R〉 be a codeword. For i = 1, . . . ,K, let γi ∈ Ai be the ith component
of γ by the embedding (7.2). Let γ̃i ∈ 〈Θi〉∨ be the canonical representative of γi,
and we put

vγ := γ̃1 + · · ·+ γ̃K ∈ 〈Θ1〉∨ ⊕ · · · ⊕ 〈ΘK〉∨ = 〈R〉∨.

Then we have the following:

Proposition 7.4. We have vγ ∈ N−.
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Proof. Let UN be a copy of the hyperbolic plane U , and we put

LN := UN ⊕N−.

The intersection form on LN is denoted by 〈 , 〉L. Let u0, u1 be the basis of UN

given in Example 2.2. A vector of LN is written as

(7.3) (a, b, v)N = au0 + bu1 + v, where a, b ∈ Z and v ∈ N−.

By v 7→ (0, 0, v)N , we regard N− as a sublattice of LN . In particular, we have
R ⊂ LN and Θ ⊂ LN . We then put

fN := (1, 0, 0)N ∈ LN , zN := (−1, 1, 0)N ∈ LN .

Note that LN is isomorphic to LΛ. We construct an isometry LΛ
∼= LN explicitly

by means of deep holes. Let c ∈ Λ− ⊗ Q be a deep hole such that τ(c) = τ(N).
Recall from Section 5 that we have defined subsets Ξ0(c) and Ξ1(c) of the set
L(wΛ) of the Leech roots of wΛ, and for a fixed element z ∈ Ξ1(c), we constructed
an orthogonal direct-sum decomposition

LΛ = U(c, z)⊕N−(c, z).

Note that N−(c, z) is isomorphic to N−. By Proposition 3.1, after renumbering the
connected components Θ1, . . . ,ΘK of the simple root system Θ of N− if necessary,
we have an isometry N−(c, z) ∼= N− that maps Θ(c, z)i to Θi for i = 1, . . . ,K.
Then we obtain an isometry

(7.4) LΛ
∼= LN satisfying f(c) 7→ fN , z 7→ zN , Θ(c, z)i

∼−→ Θi (i = 1, . . . ,K).

For i = 1, . . . ,K, let µi ∈ 〈Θi〉 be the highest root with respect to Θi. We put

θi := (1, 0,−µi)N .

The (−2)-vector θi ∈ LN satisfies the following:

(a) 〈fN , θi〉L = 0, 〈zN , θi〉L = 1,
(b) if j 6= i, then 〈r, θi〉L = 0 for all r ∈ Θj, and
(c) Θi ∪ {θi} form an extended ADE-configuration of type τi.

By Remark 5.7, we see that θi ∈ LN corresponds to θ(i, z) ∈ Ξ0(c)i ⊂ LΛ via the
isometry (7.4) given above. We put

Θ̃i := Θi ∪ {θi}.
Then the isometry (7.4) induces a bijection from Ξ0(c)i to Θ̃i.

The isometry (7.4) induces an isomorphism

(7.5) Γ (c, z) = N−(c, z)/〈Θ(c, z)〉 ∼= N−/〈R〉.
Let s′γ ∈ Ξ1(c) denote the (−2)-vector of LΛ that corresponds to the codeword

γ ∈ N−/〈R〉 via the isomorphism (7.5) and the bijection Ξ1(c) ∼= Γ (c, z) in
Proposition 5.6. Let sγ be the (−2)-vector of LN that corresponds to the (−2)-
vector s′γ ∈ LΛ via the isomorphism (7.4). Since 〈fN , sγ〉L = 〈f(c), s′γ〉L = 1 and

〈sγ , sγ〉L = −2, there exists a vector uγ ∈ N− such that

sγ = (a, 1, uγ)N , where a = −1− 〈uγ , uγ〉−N/2.

By Proposition 5.5 transplanted to sγ ∈ LN from s′γ ∈ LΛ, we see that the ith
component of uγ by the embedding (7.1) is equal to the canonical representative
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γ̃i. Indeed, Proposition 5.5 implies that there exists a unique element rγ ∈ Θ̃i such

that m(rγ) = 1 and that, for any r ∈ Θ̃i, we have

〈sγ , r〉L =

{
1 if r = rγ ,

0 otherwise.

Hence sγ intersects the elements of Θi with the same intersection numbers as the
canonical representative γ̃i ∈ 〈Θi〉∨ does. (If rγ = θi, then we have γ̃i = 0.)
Therefore we obtain vγ = uγ ∈ N−. �

Definition 7.5. We call vγ ∈ N− the canonical representative of γ ∈ N−/〈R〉.
Recall from Section 3 that h is the Coxeter number of N− and that ρ ∈ N−⊗Q

is the Weyl vector of N− with respect to Θ.

Proposition 7.6. The vector

wN := (h+ 1, h, ρ)N

corresponds to the Weyl vector wΛ ∈ LΛ via the isometry (7.4). In particular, the

lattice (ZwN )⊥/ZwN is isomorphic to Λ−.

Remark 7.7. The vector wN appeared in Borcherds [1]. Proposition 7.6 gives a
proof that ρ ∈ N− ⊗Q is in fact ρ ∈ N−.

Proof. Note that equality (3.3) implies 〈wN , wN 〉L = 0. From defining property
(b) of ρi and property (c) of h = hi in Definition 3.2, we see that the vector
wN ∈ LN ⊗Q satisfies 〈wN , zN 〉L = 1 and

〈wN , r〉L = 1 for all r ∈ Θ, 〈wN , θi〉L = 1 for i = 1, . . . ,K.

Since zN , r (r ∈ Θ) and θi (i = 1, . . . ,K) span LN ⊗ Q and correspond, via the
isometry (7.4), to Leech roots of wΛ, we see that wN corresponds to wΛ via the
isometry (7.4). �

Theorem 7.8. Let γ be a codeword of the code N−/〈R〉, and let vγ ∈ N− be the

canonical representative of γ. We put

nγ := 〈vγ , vγ〉−N , aγ := 2h+ 1 + hnγ/2.

We define linear forms α0 : N
− → Q and α1 : N

− → Q by

α0(u) := 〈hvγ − ρ, u〉−N/aγ ,

α1(u) := (1 + nγ/2)α0(u)− 〈vγ , u〉−N ,

and put

Λ−(γ) := { u ∈ N− | α0(u) ∈ Z }.
Then the Z-module Λ−(γ) with the intersection form

(7.6) 〈u, u′〉 := 〈u, u′〉−N + α0(u)α1(u
′) + α1(u)α0(u

′)

is isomorphic to the negative-definite Leech lattice Λ−.

Proof. Recall that sγ = (−1− nγ/2, 1, vγ)N ∈ LN is the vector corresponding, via
the isometry (7.4), to the Leech root s′γ ∈ Ξ1(c) of wΛ. Let U(wN , sγ) be the
hyperbolic plane in LN generated by wN and sγ . Since wN is a Weyl vector of
LN , the orthogonal complement U(wN , sγ)

⊥ ∼= (ZwN )⊥/ZwN is isomorphic to the
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negative-definite Leech lattice Λ−. A vector (x, y, u)N of LN ⊗ Q is orthogonal to
both of wN and sγ if and only if

x = α1(u), y = α0(u).

Hence the image of the orthogonal projection

U(wN , sγ)
⊥ →֒ LN = UN ⊕N− → N−

is equal to the Z-submodule Λ−(γ) ofN−, and the restriction of 〈 , 〉L to U(wN , sγ)
⊥

gives rise to the intersection form (7.6) on Λ−(γ). �

Remark 7.9. In terms of X, the construction above is described as follows. The
sublattice UN ⊂ LN yields a Jacobian fibration of X by the isometry LN

∼= LΛ = SX

given in (7.4), and the (−2)-vector sγ is the class of the image of the element of
the Mordell-Weil group corresponding to γ.

Considering the case where γ = 0 in Theorem 7.8, and changing signs of inter-
section forms of lattices, we obtain Corollary 1.1 in Introduction.

Remark 7.10. Since the Leech lattice Λ− is characterized, up to isomorphism, as the
unique even unimodular negative-definite lattice of rank 24 with no roots (see [2]),
we can confirm Theorem 7.8 by direct computation, once we compute canonical
representatives vγ of codewords γ ∈ N−/〈R〉 explicitly.

The canonical representatives are computed as follows. The set of (−2)-vectors
sγ ∈ LN , where γ runs through N−/〈R〉, is equal to

{ r ∈ LN | 〈fN , r〉L = 〈wN , r〉L = 1, 〈r, r〉 = −2 },
and, as was explained in Remark 5.3, this set can be computed easily as the set
of integer solutions of a negative-definite inhomogeneous quadratic form. The set
of canonical representatives vγ is then obtained from this set by the projection
LN → N−.

We can also use the algorithm for the study of elliptic K3 surfaces described
in [14, Section 4]. See Remark 6.3.
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