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BALANCED SHIFTED TABLEAUX

JIYANG GAO, SHILIANG GAO, AND YIBO GAO

Abstract. We introduce balanced shifted tableaux, as an analogue of balanced tableaux
of Edelman and Greene, from the perspective of root systems of type B and C. We show
that they are equinumerous to standard Young tableaux of the corresponding shifted shape
by presenting an explicit bijection.

1. Introduction

In their seminal paper [3], Edelman and Greene introduced balanced tableaux and showed
that they are equinumerous to standard Young tableaux of the same shape. They defined the
Edelman-Greene insertion which yields a bijective proof of the reduced words of the longest
permutation being equinumerous to standard Young tableaux of staircase shape, a result
due originally to Stanley [10]. Fomin, Greene, Reiner and Shimozono [4] later generalized
this enumeration result to diagrams and related the story to Schubert polynomials.

Shifted tableaux, just as Young tableaux, are also algebraically and combinatorially mean-
ingful (see for example [9, 12]). In this paper, we define balanced shifted tableaux (Defini-
tion 2.3), as an analogue to balanced tableaux, from the perspective of root systems of type
B and C. The following is our main theorem, which says that balanced shifted tableaux
are equinumerous to standard shifted tableaux.

Theorem 1.1. For a shifted shape λ, the number of standard Young tableaux of shape λ
equals the number of balanced shifted tableaux of shape λ.

We prove Theorem 1.1 by presenting an explicit bijection between the two sets of objects,
SYT(λ) and BS(λ). Specifically, we have the following chain of bijections:

SYT(λ)←→ SYT(Z(d, r))|λ ←→ Red(wλ)←→ BS(Z(d, r))|λ ←→ BS(λ),

where we address each step separately. We defer the definition of SYT(λ) and BS(λ) to
Section 2 and the definition of SYT(Z(d, r))|λ, w

λ and BS(Z(d, r))|λ to Section 5. Here,
SYT(λ)→ SYT(Z(d, r))|λ and BS(λ)→ BS(Z(d, r))|λ are the procedures to pad a tableaux
from shape λ to a large trapezoid Z(d, r), while the middle steps utilize type B Edelman-
Greene insertion defined by Kraśkiewicz [6]. Our strategy largely follows the framework
of Edelman and Greene [3], with the main difference that double staircases, which are the
analogues of staircases in type B, are no longer sufficient for padding purposes.

The remainder of the paper is organized as follows. In Section 2, we introduce key
definitions and necessary background. In Section 3, we discuss the trapezoid shape Z(d, r)
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which serves the purpose of the staircase shape in type A, and provide a bijection between
BS(Z(d, r)) and Red(w(d,r)), where w(d,r) is certain signed permutation. In Section 4,

we provide a bijection between SYT(Z(d, r)) and Red(w(d,r)) via Kraśkiewicz’s insertion
algorithm, thus establishing the main theorem for the trapezoid case. Finally in Section 5,
we finish the proof of Theorem 1.1 for general shifted shapes by restricting the above
bijections to λ ⊂ Z(d, r).

2. Definitions and Preliminaries

2.1. Strict partitions and shifted tableaux. A strict partition λ is a sequence of strictly
decreasing positive integers (λ1 > λ2 > · · · > λd > 0), where d is the number of (nonzero)

parts of λ. We denote |λ| =
∑d

i=1 λi as the size of λ. For a strict partition λ its corre-
sponding shifted shape, consists of λi boxes in row i, shifted d− i+1 steps to the left. More
specifically, the shifted shape is the diagram

D(λ) := {(i, j−d+i−1) | 1 ≤ i ≤ d, 1 ≤ j ≤ λi}.

For simplicity of notation, we also use λ to denote its shape D(λ). Note that for a shifted
shape, its columns −(d − 1), . . . , 0 form a staircase shape of length d flipped horizontally.
For a shifted shape λ, define a shifted tableaux T to be a filling of D(λ) with non-negative
integers. For any shifted tableaux T , let sh(T ) denote its underlying shifted shape.

Throughout the paper, we fix the number d, that is the length of all the shifted shapes
we are going to consider. We also write ī to mean −i.

Definition 2.1. A shifted tableaux T of shape λ is called a standard Young tableaux if it
is a filling of 1, 2, . . . , |λ| that is increasing in rows and columns.

The set of standard Young tableaux of shape λ is denote SYT(λ) and its cardinality is
denoted fλ. The number fλ can be computed via the hook length formula as we explain
here. For a box (i, j) ∈ λ with j ≥ 0, its hook H(i, j) consists of all the boxes in row i to
the right of (i, j), all the boxes in column j below (i, j) and the box (i, j) itself. For a box
(i, j̄) ∈ λ with j > 0, its hook H(i, j̄) consists of all the boxes in row i to the right of (i, j̄),
all the boxes in column j̄ below (i, j̄), the box (i, j̄) itself and all the boxes in row d− j+1.
Let h(i, j) = |H(i, j)| be the size of the hook.

Theorem 2.2. [11] For a shifted shape λ, fλ = |λ|! /
∏

x∈λ h(x).

To define an analogous notion of balanced tableaux, as in [3], for shifted shapes, we need

some more notions. For a filling B of shape λ, its extended filling B̃ is a filling of the
extended shape

λ̃ = λ ∪ {(1, d̄), (2, d−1), . . . (d, 1̄)}

which agrees with B on λ and equals B(i, 0) on the newly added box (i,−(d+1− i)). The

extended hook is defined as H̃(i, j) = H(i, j) for j ≥ 0, and H̃(i, j̄) = H(i, j)∪{(d+1−j, j̄)}
for j > 0. See Example 2.5 for visualization.

For a box (i, j) ∈ λ, we also define its rank function rk(i, j). If j ≥ 0, let rk(i, j) be the
number of boxes in row i of H(i, j), and let rk(i, j̄) be 2 plus the number of boxes in H(i, j)
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with positive column index. More formally,

rk(i, j) =

{

λi − d+ i− j if j ≥ 0,

λi − d+ i+ λd+1+j + j + 1 if j < 0.

We can now introduce our main object of study:

Definition 2.3. A shifted tableaux B of shape λ is called a balanced shifted tableaux if it is
a filling of 1, 2, . . . , |λ| such that B(i, j) is the rk(i, j)-th largest entry in the extended hook

H̃(i, j) of B̃ for all (i, j) ∈ λ. Define BS(λ) to be the set of balanced shifted tableaux of
shape λ.

Remark 2.4. If we instead naively define rk(i, j) to be the length of the right arm of H(i, j)
as in straight shapes, i.e. define the balanced condition to be B(i, j) remains unchanged

after reordering the elements in H(i, j) (or H̃(i, j) ), then the number of such tableaux is
different from fλ.

Example 2.5. Let λ = (6, 2, 1) and consider the balanced shifted tableaux in Figure 1.
The hook H(1,−1) contains the colored boxes so h(1,−1) = 7, while the extended hook

H̃(1,−1) contains one more box at coordiante (3,−1), which is circled and filled with 1.
As this hook contains 3 boxes with positive column index, we have rk(1,−1) = 5. The
balanced condition is now satisfied at coordinate (1,−1) as 3 is indeed the 5-th largest
numbers among the numbers in the extend hook, 9, 5, 2, 4, 3, 7, 1, 1.

4 6 3 4 2 5 9

8 7 8

1 1

Figure 1. A balanced shifted tableau of shape (6, 2, 1)

Remark 2.6. Here is another way to understand the extended hooks H̃(i, j) and ranks

rk(i, j), shown in Figure 2. Given a shifted tableau B, we stack its extended filling B̃ and
a flipped copy BT (see left of Figure 2) together to obtain a larger tableau B0. The entries
in the shaded boxes on the diagonal agree with column 0 of B. Then the extended hook
H̃(i, j) of x = (i, j) is the same as the standard hook of x in B̃ (colored in blue). The rank
rk(i, j) is the number of yellow boxes (see right of Figure 2) in the hook of x.

2.2. Root systems and Weyl groups. Readers are referred to [5] for detailed exposition
on root systems and Weyl groups. Let Φ ⊂ V ≃ R

d be a finite crystallographic root system
of rank d, with a chosen set of positive roots Φ+ which corresponds to a set of simple roots
∆ = {α0, α1, . . . , αd−1}. Let sα be the reflection across the hyperplane normal to α, and
write si for the simple reflections sαi

. Let W (Φ) ⊂ GL(V ) be the finite Weyl group, defined
to be generated by s0, . . . , sd−1.

For w ∈ W (Φ), let ℓ(w) denote its Coxeter length, which equals the size of its (left)
inversion set Inv(w) := Φ+ ∩ wΦ−. For any sequence a = (a1, a2, . . . , aℓ(w)), we say a is
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B̃

BT

x

Figure 2. An alternative description of rk(i, j)

a reduced word of w if w = sa1sa2 , . . . , saℓ(w)
. Let Red(w) be the set of reduced words of

w. For each reduced word a ∈ Red(w), its (total) reflection order is an ordering ro(a) =
γ1, . . . , γℓ(w) of Inv(w) where γj = sa1 · · · saj−1αj ∈ Φ+. Let

ro(w) = {ro(a) : a ∈ Red(w)}.

The following proposition is classical and very useful, which follows immediately from the
biconvexity classification of inversion sets. See for example Proposition 3 of [2].

Proposition 2.7. Let γ = γ1, . . . , γℓ(w) be an ordering of Inv(w). Then γ ∈ ro(w) if and

only if for all the triples α, β, α + β ∈ Φ+ such that α,α + β ∈ Inv(w),

(1) if β /∈ Inv(w), then α appears before α+ β in this sequence;
(2) and if β ∈ Inv(w), then α+ β appears in the middle of α and β.

We are primarily concerned with root systems of type Bn, and adopt the following con-
vention, where ei is the i-th coordinate vector:

• Φ(Bn) = {±ej ± ei | 1 ≤ i < j ≤ n} ∪ {±ei | 1 ≤ i ≤ n};
• Φ+(Bn) = {ej ± ei | 1 ≤ i < j ≤ n} ∪ {ei | 1 ≤ i ≤ n};
• ∆ = {α0 = e1, α1 = e2 − e1, . . . , αn−1 = en − en−1};
• W (Bn) = {permutation w on 1, . . . , n, 1̄, . . . , n̄ | w(i) = −w(̄i), ∀i}.

The type Bn Weyl group W (Bn) is called the group of signed permutations. For a signed
permutation w, its one-line notation is written as w(1)w(2) · · · w(n). For example, w =
34̄21̄ ∈ W (B4) means that w(1) = 3, w(2) = −4, w(3) = 2 so that w(−3) = −2 and
w(4) = −1. A reduced word of w ∈ W (Bn) can be viewed as going from id = 12 · · · n
to w by swapping adjacent entries (and their negatives) one step at a time, while the
corresponding reflection order records ej − ei if the values j and i are swapped (and records
ei if i and ī are swapped).

Example 2.8. Consider w = 13̄42 ∈ W (B4) with a reduced word a = 21031 ∈ Red(w).
We compute its reflection order to be e3 − e2, e3 − e1, e3, e4 − e2, e3 + e1, which can be seen
as follows:

1234 1324 3124 3̄124 3̄142 13̄42.
e3−e2 e3−e1 e3 e4−e2 e3+e1
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3. Bijection between BS(Z(d, r)) and Red(w(d,r)) via reflection order

A crucial shape for our analysis is the trapezoid

Z(d, r) := (r + 2d− 1, r + 2d− 3, . . . , r + 3, r + 1)

with height d and base lengths r + 2d − 1 and r + 1. In particular, Z(d, 0) is the double
staircase and every shifted shape is contained in some trapezoid of the same height.

Set e−j = −ej for all j > 0 and e0 = 0, and consider the labeling f : Z(d, r) −→ Φ+(Bd+r)
where

f(i, j) =











ed+1−i − ej if j ≤ 0,

ed+1−i + ej+d if 0 < j ≤ r,

ed+1−i − ej−r if j > r.

(1)

Define the permutation w(d,r) ∈W (Bd+r) associated to Z(d, r) by

w(d,r)(i) :=

{

d+ i if 0 < i ≤ r,

i− r if i > r.
(2)

Proposition 3.1. For all d > 0 and r ≥ 0, f(Z(d, r)) = Inv(w(d,r)).

Proof. Since for i > 0 and j < i such that j 6= ī, ei − ej ∈ Inv(w) if and only if w−1(i) <
w−1(j). By (2), we have

(3) ei − ej ∈ Inv(w(d,r)) ⇐⇒ i ∈ [d+ r], |j| ≤ d, i > j 6= −i.

Since ei ∈ Inv(w) ⇐⇒ w−1(i) < 0 for all i > 0, we get

(4) ei ∈ Inv(w(d,r)) ⇐⇒ i ∈ [d].

We are then done by comparing (3) and (4) with (1). �

The labeling f can also be extended to a labeling f̃ : Z̃(d, r)→ Φ+(Bd+r) where

Z̃(d, r) = Z(d, r) ∪ {(1, d̄), (2, d − 1), . . . (d, 1̄)}

is the extended shape of Z(d, r) with d extra boxes as defined in Section 2. The extended
labeling is given by

f̃(i, j) =

{

2ed+1−i if j = d+ 1− i,

f(i, j) otherwise.

Example 3.2. For d = 3 and r = 2, we have Z(d, r) = (7, 5, 3) and w(3,2) = 451̄2̄3̄ ∈W (B5).

See Figure 3 for the extended labeling f̃ in this case.

The filling of a balanced shifted tableaux B ∈ BS(Z(d, r)) can be viewed as a map

B : Z(d, r)→ N by sending a box to its entry. Then the composition Bf−1 : Inv(w(d,r))→ N

encodes an ordering of the roots in Inv(w(d,r)). We will show that this actually gives a

reflection order in ro(w(d,r)).
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2e3 e3+e2 e3+e1 e3 e4+e3 e5+e3 e3−e1 e3−e2

2e2 e2+e1 e2 e4+e2 e5+e2 e2−e1

2e1 e1 e4+e1 e5+e1

Figure 3. The extended labeling f̃ of Z̃(3, 2)

Proposition 3.3. The map B 7→ Bf−1 is a bijection between BS(Z(d, r)) and ro(w(d,r)),

and thus induces a bijection between BS(Z(d, r)) and Red(w(d,r)).

To prove Proposition 3.3, we need the following technical lemmas.

Lemma 3.4. Given B ∈ BS(λ) and j ≥ 0, if column j and j + 1 have the same length in
B, then B(i, j) < B(i, j + 1) for all i.

Proof. We induce on the the number of boxes directly below box (i, j). If there are no
boxes below (i, j), then B(i, j) is the minimum in its hook H(i, j) and B(i, j) < B(i, j+1).
Now suppose B(i, j) < B(i, j + 1) for all i > k. Since B is balanced and j ≥ 0, B(k, j)
is smaller than rk(k, j) − 1 entries in its hook H(k, j). If B(k, j) > B(k, j + 1), since
B(i, j) < B(i, j + 1) for all i > k, we can find at least rk(k, j) − 1 entries in H(k, j + 1)
that is larger than B(k, j + 1). This implies that rk(k, j + 1) ≥ rk(k, j), a contradiction.
Therefore B(k, j) < B(k, j + 1) and we are done by induction. �

Corollary 3.5. For any balanced shifted tableaux B of shape Z(d, r) and 1 ≤ i ≤ d,

B(i, 0) < B(i, 1) < B(i, 2) < · · · < B(i, r).

Proof. This follows from Lemma 3.4 and the fact that the 0th column to the rth column of
Z(d, r) all have the same length d. �

Lemma 3.6 (Strongly balanced conditions). A shifted tableaux B of shape Z(d, r) is bal-
anced if and only if the following holds at f−1(α):

(1) (Right Staircase) For any α = ei − ej where 1 ≤ j < i ≤ d, Bf−1(α) lies between
Bf−1(ei − ek) and Bf−1(ek − ej) for all j < k < i;

(2) (Rectangle) For any α = ei + ep where 1 ≤ i ≤ d < p ≤ d+ r,
(a) Bf−1(α) < Bf−1(ei + eq) for all p < q ≤ d+ r;
(b) Bf−1(α) lies between Bf−1(ei − ek) and Bf−1(ek + ep) for all 1 ≤ k < i;

(3) (Column 0) For any α = ei where 1 ≤ i ≤ d,
(a) Bf−1(α) < Bf−1(ei + eq) for all d < q ≤ d+ r;
(b) Bf−1(α) lies between Bf−1(ei − ek) and Bf−1(ek) for all 1 ≤ k < i;

(4) (Left Staircase) For any α = ei + ej where 1 ≤ j < i ≤ d,
(a) Bf−1(α) < Bf−1(ei + eq) for all d < q ≤ d+ r;
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(b) Bf−1(α) < Bf−1(ej + eq) for all d < q ≤ d+ r;

(c) Bf−1(α) lies between Bf̃−1(ei − ek) and Bf̃−1(ej + ek) for all −j < k < i.

Proof. For a root α ∈ Inv(w(d,r)), denote H̃(α) as the set of roots in the extended hook

of α in Z(d, r) given by H̃(α) = f̃(H̃(f−1(α))). The set H̃(α) − {α} can be partitioned
into pairs or singletons of roots based on the strongly balanced condition at f−1(α). If the

strongly balanced condition at f−1(α) is met, then the hook H̃(α) must be balanced. If
this is true for all α, then B is balanced.

Conversely, assume B is balanced, and we will show that the strongly balanced condition
holds at f−1(α) for every α ∈ Inv(w(d,r)). We will proceed by induction on the size of H̃(α).
Although there are eight different statements to prove, it boils down to three cases. We will
prove one example for each case as the others hold by similar reasoning. The examples are
illustrated in Figure 4.

Case 1 : statements (1), (2b), (3b), (4c). We prove (1) as an example. Consider α =

ei − ej . If |H̃(α)| = 1 or 3, the statement is clear since B is balanced. Suppose that (1)

holds at all f−1(β) such that |H̃(β)| < |H̃(α)| and, for the sake of contradiction, that (1)

does not hold at f−1(α). Since H̃(α) is balanced, we can find k, l such that j < k, l < i and

Bf−1(ei − el), Bf−1(el − ej) < x = Bf−1(α) < Bf−1(ei − ek), Bf−1(ek − ej).

If l > k, we set y = Bf−1(el − ek). By inductive hypothesis, statement (1) holds at
f−1(ei − ek) and f−1(el − ej). The former implies that y < x and the latter implies that
y > x, a contradiction. If k > l, we set y = Bf−1(ek − el) and a contradiction will be
reached by similar reasoning. Therefore we conclude that statement (1) holds.

Case 2 : statements (2a), (3a). They follow directly from Corollary 3.5.
Case 3 : statements (4a), (4b). We prove (4a) as an example. Here we will induce on

|H̃(α)| for both (4a) and (4b). Set x = Bf−1(α). We start with the base case in the
induction and consider α = e1 + e2. Since B is balanced, x is larger than two entries in
H̃(α). By statement (4c), x lies between B(e2) and B(e1) as well as between B(e2−e1) and
B(2e1) = B(e1). Therefore x is smaller than B(e2+eq) and B(e1+eq) for all d < q ≤ d+ r.

Suppose that (4a) and (4b) holds at all f−1(β) such that |H̃(β)| < |H̃(α)|. Suppose
further, for the sake of contradiction, that x is larger than Bf−1(ei + eq) for some q. Since

H̃(α) is balanced, x must be smaller than both Bf−1(ei − ek) and Bf−1(ej + ek) for some
k. If k ≤ 0, statement (4a) at f−1(ei − ek) implies that Bf−1(ei − ek) < Bf−1(ei + eq),
contradicting our inductive hypothesis. If k > 0, consider y = Bf−1(ek + eq). Since
Statement (2b) holds at f−1(ei + eq), we have y < x. Since statement (4a) and (4b) holds
at f−1(ej + ek), we get y > x, a contradiction. We can then conclude that (4a) holds. �

Example 3.7. Let d = 3 and r = 2. Figure 5 illustrates an example of the strongly
balanced conditions of Lemma 3.6 at the box (1,−1) (or at root α = e3 + e1), labeled by ∗
in the diagram. Its extended hook is colored yellow. The strongly balanced conditions for
box ∗ are

• Condition (4a) and (4b): Box ∗ is smaller than the boxes labeled by +;

• Condition (4c): Box ∗ lies between the pair of a’s, pair of b’s and pair of c’s.
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ei−ej · · ·
ei−ek
> · · · ei−el

<

...
. . .

...

el−ej
< · · · el−ek

?

...

ek−ej
>

ei+ej · · ·
ei+eq
< · · · ei−ek

>

...
. . .

...

ek+ej
> · · · ek+eq

?

Figure 4. Proof ideas for Case 1 and Case 3 of Lemma 3.6

∗ c + + b a

a

b c + +

Figure 5. An example of strongly balanced condition for box ∗

Proof of Proposition 3.3. This follows from Lemma 3.6 since the conditions on Bf−1 in the
lemma are exactly the conditions for Bf−1 being a reflection order in Proposition 2.7. �

Since there is a natural bijection between ro(w) and Red(w), Proposition 3.3 implies:

Corollary 3.8. The map B 7→ ro−1(Bf−1) is a bijection between BS(Z(d, r)) and Red(w(d,r)).

Example 3.9. Assume we started with the following balanced tableaux of shape Z(3, 2).

B = 4 8 7 10 13 5 15

3 2 6 9 1

11 12 14

The corresponding reflection order Bf−1 is given as follows:

12345 21345 2̄1345 12̄345 132̄45 312̄45

3142̄5 3̄142̄5 13̄42̄5 13̄452̄ 143̄52̄

1̄43̄52̄ 41̄3̄52̄ 41̄53̄2̄ 451̄3̄2̄ 451̄2̄3̄.

e2−e1 e2 e2+e1 e3+e2 e3−e1

e4+e2 e3 e3+e1 e5+e2 e4+e3

e1 e4+e1 e5+e3 e5+e1 e3−e2

Therefore, we can read off a reduced word a of w(3,2) = 451̄2̄3̄ as

a = ro−1(Bf−1) = 101213014201324 ∈ Red(w(3,2)).
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4. Bijection between SYT(Z(d, r)) and Red(w(d,r)) via Kraśkiewicz’s insertion

4.1. Kraśkiewicz’s insertion algorithm. We will follow the notations as recorded in
Section 1.3 of [7]. For a shifted tableaux T of shape λ = (λ1, . . . , λd), define π(T ) =
TdTd−1, . . . , T1 to be the reading word of T obtained by reading left to right along rows and
from bottom to top, where Ti represents the i-th row. For a unimodal sequence of integers

R = (r1 > r2 > . . . > rk < rk+1 < . . . < rm),

we define the decreasing part of R to be

R↓ = (r1 > r2 > . . . > rk),

and the increasing part of R to be

R↑ = (rk+1 < rk+2 < . . . < rm).

Note that we include the minimal integer of the sequence in R↓.
Let w ∈ W (Bn) and a = a1a2 . . . aℓ(w) ∈ Red(w), we define the Kraśkiewicz’s insertion

algorithm recursively. Set (P (0), Q(0)) := (∅, ∅), for any i ∈ [ℓ(w)], define the insertion

(P (i−1), Q(i−1))← ai =: (P (i), Q(i))

as follows:
Step 1: Set R to be the first row of P (i−1) and a = ai.
Step 2: Insert a into R as follows:

• Case 0 (R = ∅): Insert a into the left-most box of the row to obtain P (i). Then

define Q(i) from Q(i−1) by adding i to the unique box in P (i)/P (i−1). Stop.

• Case 1 (Ra is unimodal): Append bi to the right of R and to obtain P (i). Then

define Q(i) from Q(i−1) by adding i to the unique box in P (i)/P (i−1). Stop.
• Case 2 (Ra is not unimodal): Let b be the smallest number in R↑ such that b ≥ a.

– Case 2.0 (a = 0 and R contains 101 as a subsequence): We leave R unchanged
and return to start of Step 2 with a = 0 and R equals the next row.

– Case 2.1.1 (b 6= a): Replace b with a and set c = b.
– Case 2.1.2 (b = a): Keep R↑ unchanged and set c = a+ 1.

We now insert c into R↓. Let d be the largest integer such that d ≤ c. This number
always exists since R↓ contains the smallest number in the row.

– Case 2.1.3 (d 6= c): Replace d with c and set a′ = d.
– Case 2.1.4 (d = c): Keep R↓ unchanged and set a′ = c− 1.

Step 3: Repeat Step 2 with a = a′ and R the next row.
Define P (a) = P (ℓ(w)) to be the insertion tableau and Q(a) = Q(ℓ(w)) to be the recording

tableau.

Example 4.1. Let w = w(3,2) = 451̄2̄3̄ as in Example 3.2. Consider the reduced word
a = 010121012342312 ∈ Red(w). Following the above insertion algorithm, we obtain

P (0) = ∅
0
−→ 0 1

−→ 0 1 0
−→ 1 0

0

1
−→ 1 0 1

0

2
−→ 1 0 1 2

0

1
−→ 2 0 1 2

0 1

0
−→ 2 1 0 2

1 0
0

1
−→
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2 1 0 1
1 0 1

0

2
−→ 2 1 0 1 2

1 0 1
0

3
−→ 2 1 0 1 2 3

1 0 1
0

4
−→ 2 1 0 1 2 3 4

1 0 1
0

2
−→ 3 1 0 1 2 3 4

1 0 1 2
0

3
−→

4 1 0 1 2 3 4
1 0 1 2 3

0

1
−→ 4 2 0 1 2 3 4

2 0 1 2 3
0 1

2
−→ 4 3 0 1 2 3 4

3 0 1 2 3
0 1 2

.

We then have

P (a) = 4 3 0 1 2 3 4
3 0 1 2 3

0 1 2

, Q(a) = 1 2 4 5 9 1011
3 6 8 1213

7 1415

,

and the reading word π(P (a)) = 012301234301234.

Definition 4.2. For a shifted tableaux T withm rows, we say T is a standard decomposition
tableaux of w ∈W (Bn) if

(1) π(T ) = TmTm−1, . . . , T1 is a reduced word of w,
(2) Ti is a unimodal subsequence of maximal length in TmTm−1 . . . Ti.

Define the set of all such tableaux to be SDT(w).

Theorem 4.3 (Theorem 5.2, [6]). The Kraśkiewicz’s insertion gives a bijection between
{a ∈ Red(w)} and the pairs of tableaux (P (a), Q(a)) where P (a) ∈ SDT(w) and Q(a) is a
standard tableaux of the same shape.

Corollary 4.4 (Section 6, [6]). For any w ∈W (Bn),

|Red(w)| =
∑

P∈SDT(w)

f sh(P ).

4.2. Type C Stanley symmetric functions and vexillary elements. For w ∈W (Bn)
and any strict partition λ, let FC(w) and Qλ be the corresponding type C Stanley symmetric
function and Schur-Q function respectively. See [1] for the exact definitions.

Theorem 4.5 (Theorem 3.12, [8]). FC(w) =
∑

T∈SDT(w)Qsh(T ).

Definition 4.6. A permutation w ∈ W (Bn) is said to be vexillary if SDT(w) consists of
exactly one shifted tableau. We denote this tableau as P (w).

Definition 4.7. For any w ∈ W (Bn) and any v ∈ W (Bm) such that m ≤ n, we say w
pattern embeds v if the following is true for some 1 ≤ i1 < i2 < . . . < im ≤ n:

(1) w(ij) has the same sign as v(j),
(2) For all j, k, |w(ij)| < |w(ik)| if and only if |v(j)| < |v(k)|.

We say w pattern avoids v if w does not pattern embed v.

Theorem 4.8 (Theorem 7, [1]). A permutation w ∈ W (Bn) is vexillary if and only if w
pattern avoids the following permutations:

3̄21̄ 3̄21 321̄ 321 31̄2 2̄31 1̄32 4̄1̄2̄3 4̄12̄3
3̄4̄1̄2̄ 3̄3̄12̄ 34̄1̄2̄ 34̄12̄ 3142 2̄3̄41̄ 2413 23̄41̄ 2143

.
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By comparing (2) with the above list of patterns, we directly see that w(d,r) is vexillary.

In particular, this means that any a ∈ Red(w(d,r)) has the same P tableau.

4.3. Proof of Theorem 1.1 in the case λ = Z(d, r).

Proposition 4.9. For d > 0 and r ≥ 0, sh(P (w(d,r))) = Z(d, r). Moreover,

P (w(d,r))(i, j) =

{

r − j if j < 0,

j if j ≥ 0.

See Figure 6 for this tableaux. A concrete example is also shown in Example 5.7.

Proof. Consider the shifted tableau T defined as above in the proposition statement. We
claim that T = P (w(d,r)). Since w(d,r) is vexillary, it is enough to show that T ∈ SDT(w).

For every i ∈ [d], it is clear from definition that

Ti = r + d− i, . . . , r + 1, 0, 1, . . . , r + d− i

is a unimodal subsequence of maximal length in TdTd−1 . . . T1. For i ∈ [d], define u(i) ∈
W (Bn) by the one-line notation:

u(i) = (i+ 1, i+ 2, . . . , r + i, 1̄, . . . , ī, r + i+ 1, . . . , r + d).

It is straightforward to check that, for all i ∈ [d],

TdTd−1 . . . Td−i+1 ∈ Red(u(i)).

Notice that w(d,r) = u(d). We conclude that π(T ) ∈ Red(w(d,r)) and thus T ∈ SDT(w). �

r+d−1 · · · r+1 0 · · · r r+1 · · · r+d−1

. . .
...

...
...

... . .
.

r+1 0 · · · r r+1

0 · · · r

Figure 6. The insertion tableaux P (w(d,r)) of shape Z(d, r)

By Theorem 4.3 and Proposition 4.9, we obtain:

Corollary 4.10. By restricting to the recording tableaux, Kraśkiewicz’s insertion gives a
bijection between Red(w(d,r)) and SYT(Z(d, r)).

Combining Corollary 3.8 and Corollary 4.10, we derive Theorem 1.1 for the trapezoid
shape Z(d, r).
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5. The general case

In this Section, we prove our main result, Theorem 1.1, in full generality. Fix a strict
partition λ ⊂ Z(d, r) such that λd > 0 and set N = |λ|. Let ℓ = |Z(d, r)| = ℓ(w(d,r)) and set

µ0 = σ0 = 0, µi = Z(d, r)i−λi and σi =
∑i

k=1 µk for all i ∈ [d]. Recall our main framework

SYT(λ)←→ SYT(Z(d, r))|λ ←→ Red(wλ)←→ BS(Z(d, r))|λ ←→ BS(λ).

The first arrow of bijection is immediate (Definition 5.1). In each of the subsequent subsec-
tions, we prove one remaining bijection respectively. We will make heavy use of Section 4,
and consider Red(wλ) as the subset of Red(w(d,r)) that ends with a fixed sequence.

A complete example is given at the end of this section in Example 5.13. Readers are
encouraged to refer to this example for intuition.

5.1. Bijection between SYT(Z(d, r))|λ and Red(wλ).

Definition 5.1. For any tableau T ∈ SYT(λ), define T+ ∈ SYT(Z(d, r)) to be the tableau
obtained from T by assigning N +1, . . . , ℓ to the cells in Z(d, r) \ λ from left to right along
rows and from top to bottom. Define SYT(Z(d, r))|λ to be the set of all such T+ obtained
from some T ∈ SYT(λ).

Example 5.2. Let λ = (6, 2, 1) ⊂ Z(3, 2) and

T = 1 2 3 5 6 9

4 7

8

, then T+ = 1 2 3 5 6 9 10

4 7 11 12 13

8 14 15

.

Lemma 5.3 (Lemma 1.25, [7]). Given (P (a), Q(a)) for some a = a1a2 · · · aℓ(w) ∈ Red(w)

and w ∈ W (Bn), let Q′ be obtained by removing the largest entry in Q(a). Then there
is a unique a ∈ [0, n − 1] and a unique P ′ ∈ SDT(wsa) such that P ′ ← a = P, and
sh(P ′) = sh(Q′). In fact, we have a = aℓ(w).

Proposition 5.4. There exists a unique wλ ∈W (Bn) and a unique word

aλ = aN+1 · · · aℓ ∈ Red((wλ)−1w(d,r))

such that for every T+ ∈ SYT(Z(d, r))|λ, there is a unique a′ ∈ Red(wλ) so that T+ =
Q(a′aλ).

Proof. We show that under the bijection of Corollary 4.10, every T+ ∈ SYT(Z(d, r))|λ
corresponds to a reduced word with a fixed ending sequence of length ℓ−N , establishing the
uniqueness of aλ, and consequently of wλ. Let T+, S+ ∈ SYT(Z(d, r))|λ. By Corollary 4.10,

there is a unique a = a1a2 · · · aℓ ∈ Red(w(d,r)) and a unique b = b1b2 · · · bℓ ∈ Red(w(d,r))
such that Q(a) = T+ and Q(b) = S+. Let Q′(a) and Q′(b) be obtained from Q(a) and
Q(b) by removing the largest entry respectively. Since i appears in the same box in T+

and S+ for all i > N , sh(Q′(a)) = sh(Q′(b)). Since P (a) = P (b), by the uniqueness of a
and P ′ in Lemma 5.3, we get aℓ = bℓ and P (a1 · · · aℓ−1) = P (b1 · · · bℓ−1).
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Note that the above argument holds as long as the two insertion tableaux are the same
and the largest entry in the two recording tableaux appear in the same box. In particular,
we can apply the argument ℓ−N times and get

(5) bi = ai for all i > N and P (a1 · · · aN ) = P (b1 · · · bN ).

Set

(6) aλ = aN+1 · · · aℓ and wλ = w(d,r)saℓ · · · saN+1
.

Then for every a ∈ Red(w(d,r)) such that Q(a) ∈ SYT(Z(d, r))|λ, a = a′aλ for some
a′ ∈ Red(wλ). The uniqueness of such a′ follows from Corollary 4.10. �

Corollary 5.5. Let aλ and wλ be as defined in (6). Then there is a bijection between
Red(wλ) and SYT(Z(d, r))|λ given by a′ 7→ Q(a′aλ).

Proof. By (5), the P tableaux are the same for every a′ ∈ Red(wλ). Since sh(P (a′)) =
λ, Q(a′aλ) ∈ SYT(Z(d, r))|λ and the map is well-defined. Injectivity follows from the
injectivity of Kraśkiewicz’s insertion, and surjectivity follows from Proposition 5.4. �

Denote the unique P tableau of Red(wλ) as P (wλ). The next Proposition provides
explicit description of aλ and P (wλ).

Proposition 5.6. Let aλ and wλ be as defined in (6). Then aλ = aλ
1
· · · aλ

d
where

(7) aλi = d+ r − i− µi + 1, . . . , d+ r − i.

This is simply reading off the entries in Z(d, r) \ λ in Figure 6 from left to right along rows
and from top to bottom. In terms of P = P (wλ),

(8) P (i, j) =

{

r − j − νd+1+j if j < 0

j if j ≥ 0,

where νi = min{µi, µi+1, . . . , µd} for all i ∈ [d].

Proof. Recall from the proof of Proposition 5.4 that aλ is obtained in the following way: let
P+ be the unique P tableau corresponding to Red(w(d,r)) and Q+ ∈ SYT(Z(d, r))|λ, then
ℓ−N steps of reverse Kraśkiewicz’s insertion on (P+, Q+) pop out aℓ, . . . , aN+1. Readers
are referred to Example 5.7 for visualization.

We use induction on ℓ − N . The base case λ = Z(d, r) is done in Proposition 4.9. For
a general λ with N < ℓ, let x be the smallest row index such that λx 6= Z(d, r)x. Let
λ′ = (λ1, . . . , λx + 1, . . . , λd) ⊂ Z(d, r) be obtained from λ by adding one to row x. Let
(x, y) be the coordinate of this added box, where y = λx+x−d = r+d+1−x−µx > 0. Let

P be as described in (8), and P ′ = P (wλ′

) as described analogously by inductive hypothesis.
Notice that for Q+ ∈ SYT(Z(d, r))|λ, the largest entry of Q′ := Q+|λ′ must be at coordinate
(x, y). In order to show that one step of reverse Kraśkiewicz’s insertion from (P ′, Q′) pops
out y and results in (P,Q), by Lemma 5.3, it suffices to show that

P ← y = P ′,
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and that P is a standard decomposition tableaux (Definition 4.2). Analogously define µ′
i

and ν ′i for λ′. Note that µi = µ′
i = 0 for all i ∈ [x − 1] and µx = µ′

x + 1. Also recall the
notations in Section 4 that the rows of P are labeled as P1, . . . , Pd and the reading word
for P is π(P ) = Pd · · ·P1. Let w(P ) be the signed permutation corresponding to this word.

We divide into two cases and show that P ← y = P ′ and w(P )sy = w(P ′).
Case 1 : νx = µx. Let j = x− d − 1. Then column j of P has value r − j − µx = y and

column j − 1 of P has value r − (j − 1) − µx−1 = r − (j − 1) ≥ y + 2. In this case, ν and
ν ′ differ only at νx = µx and ν ′x = µ′

x = µx − 1. So the columns of P ′ with negative indices
can be obtained from that of P by increasing column j by 1, that is, changing all the values
y to y + 1. We then analyze the situations where y is inserted into P , going through the
algorithm in Section 4. In row i where i ≤ x − 1, as y cannot be the largest entry in P ↑,
we go to case 2.1.2 and insert y + 1 to P ↓; as y is the largest integer weakly smaller than
y + 1, we go to case 2.1.3 by replacing y with y + 1 and continue to insert y to the next
row. During this process for i ≤ x− 1, we see that

w(Pi)sy =w(Pi ↓)s1s2 · · · sλi−d+i−1sy

=w(Pi ↓)sy+1s1s2 · · · sλi−d+i−1 = w(Pi ↓)sy+1w(Pi ↑)

= · · · sr−j+1sy · · · sy+1w(Pi ↑)

=sy · · · sr−j+1sy+1 · · ·w(Pi ↑)

=syw(P
′
i ↓)w(Pi ↑) = syw(P

′
i )

where we used Coxeter relations sysy+1sy = sy+1sysy+1 and the commutation relations as
r − j + 1 ≥ y + 2. Finally, in row x, we insert y to the rightmost position at coordinate
(x, y), resulting in P ′ as desired. This also says that w(Px)sy = w(P ′

x). Together with the
above equalities, we obtain w(P )sy = w(P ′).

Case 2 : νx < µx. Let νx = µz < µx with z > x. In this case, ν ′x = min{µx − 1, µz} =
µz = νx so ν and ν ′ are identical, and this means that the tableaux P and P ′ are the same
in the negative columns. Let j = r − µz − y − 1. Then d + 1 + j = d + r − µz − y =
d+ r − µz − (d + r + 1− x− µx) = x+ µx − µz − 1. As µz < µx, this value d+ 1 + j ≥ x
and as λ is a strict partition, µx + x ≤ µz + z so d+ 1 + j ≤ z − 1. This calculation shows
that column j < 0 exists in row 1 through row x of P . Moreover, as x ≤ d + 1 + j ≤ z,
νd+1+j = νz so column j of P takes on value r− j− νz = y+1. Since d+2+ j ≤ z, column
j + 1 of P takes on value r − (j + 1) − νd+2+j = y. Now, for i = 1, . . . , x − 1, when we
insert y to row i of P , we go to case 2.1.2 as before since y cannot be the largest entry of
P ↑ to insert y + 1 to P ↓; since y + 1 exists in P ↓ of row i, we go to case 2.1.4 by keeping
P ↓ unchanged and continue to insert y to the next row. During this process, for i ≤ x− 1,

w(Pi)sy =w(Pi ↓)s1s2 · · · sλi−d+i−1sy

=w(Pi ↓)sy+1s1s2 · · · sλi−d+i−1 = w(Pi ↓)sy+1w(Pi ↑)

= · · · sy+1sy · · · sy+1w(Pi ↑) = · · · sy+1sysy+1 · · ·w(Pi ↑)

= · · · sysy+1sy · · ·w(Pi ↑) = sy · · · sy+1sy · · ·w(Pi ↑)

=syw(Pi ↓)w(Pi ↑) = syw(Pi) = syw(P
′
i ).



BALANCED SHIFTED TABLEAUX 15

Nothing changes until in the end, we insert y in row x at coordinate (x, y), to obtain P ′ as
desired. This gives w(Px)sy = w(P ′

x) so w(P )sy = w(P ′) as desired.
We then show that P is a standard decomposition tableaux by checking the two conditions

in Definition 4.2, where condition (2) is clear from construction. For (1), we use induction
hypothesis that π(P ′) is reduced, i.e. ℓ(π(P ′)) = |λ′| = |λ| + 1. As w(P )sy = w(P ′),
ℓ(w(P )) ≥ ℓ(w(P ′))− 1 = |λ| so π(P ) is reduced as well. �

Example 5.7. Consider λ = (6, 2, 1) ⊂ Z(3, 2). Here w(3,2) = 451̄2̄3̄. We compute aλ and
wλ defined in (6) step by step via (the reverse of) Kraśkiewicz’s insertion. We start with
the unique P+ (see Proposition 4.9), and a standard shifted tableau Q+ of shape Z(3, 2),
padded from any standard shifted tableau Q of shape λ, shown in Table 1.

insertion tableau P recording tableau Q letter ai’s

4 3 0 1 2 3 4
3 0 1 2 3

0 1 2

10
111213
1415

4 2 0 1 2 3 4
2 0 1 2 3

0 1

10
111213
14

a15 = 2

4 1 0 1 2 3 4
1 0 1 2 3

0

10
111213

a14 = 1

3 1 0 1 2 3 4
1 0 1 2

0

10
1112

a13 = 3

2 1 0 1 2 3 4
1 0 1

0

10
11

a12 = 2

2 1 0 1 2 3 4
1 0

0

10 a11 = 1

2 1 0 1 2 3
1 0

0

a10 = 4

Table 1. An example of aλ and wλ

We read off aλ = a10 · · · a15 = 412312. As wλ = w(d,r)sa15 · · · sa10 , we obtain wλ = 2̄1̄43̄5.

Remark 5.8. Here is an explicit description for wλ. Draw a (d+r)×(d+r) triangle over λ
with box (1, 1) as the top left corner. Rotate by 45◦ and consider the Dyck path of semilength
d + r that is the border of λ. Label the upsteps with d + r, d + r − 1, . . . , d + 1, 1̄, 2̄, . . . , d̄
in order, and pass these labels to the corresponding leftmost downsteps. Reading off the
downsteps in order gives wλ. An example is shown in Figure 7.
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λ

5

4
1̄

2̄

3̄
5

4
1̄

2̄

3̄

Figure 7. Reading off wλ = 2̄1̄43̄5 for λ = (6, 2, 1) and (d, r) = (3, 2)

5.2. Bijection between BS(λ) and BS(Z(d, r))|λ. Recall some notations from the begin-

ning of this section: µi = Z(d, r)i − λi, σi =
∑i

k=1 µk and N = |λ|.

Definition 5.9. Define BS(Z(d, r))|λ to be the set of balanced tableaux T of shape Z(d, r)
such that for all i ∈ [d] and any k ∈ [N + σi−1 + 1, N + σi], k appears in row i of T .

Lemma 5.10. Let B ∈ BS(λ) and fix some i ∈ [d] such that either i = 1 or λi−1 ≥ λi + 3.
Denote λ# the shifted diagram obtained from λ by adding a box in the i-th row. Let j be
the column index of the box λ# \ λ. Let B# be the tableau obtained from B by

(1) interchange column j and j + 1 of B,
(2) define B#(i, j) = N + 1.

Then B# is a balanced tableau and the following map is a bijection:

fi : BS(λ) −→{T ∈ BS(λ#) : T (i, j) = N + 1}

B 7−→B#.
(9)

Proof. Let rkB , H̃B and rkB# , H̃B# be the rank function and extended hooks of B and B#

respectively. We first verify that B#(a, b) is the rkB#(a, b)-th largest entry in H̃B#(a, b) ⊂

B̃# in the following four cases as in Figure 8:
Case 1 : a = i, b ≤ j. If (a, b) = (i, j), then rkB#(a, b) = 1. Since there is exactly one

element in H̃B#(a, b), we are done. Now suppose b < j. Here we have

rkB#(a, b) = rkB(a, b) + 1 and H̃B#(a, b) = H̃B(a, b) ∪ {(i, j)}.

Since B is balanced, B(a, b) is the rkB(a,b)-th largest element in H̃B(a, b). B
#(a, b) is then

the rkB#(a, b)-th largest entry in H̃B#(a, b) since B(a′, b′) = B#(a′, b′) for all (a′, b′) ∈
H̃B(a, b) and B#(i, j) = N + 1 is the largest entry in H̃B#(a, b).

Case 2 : a < i, b = −d− 1 + i. Here we again have

rkB#(a, b) = rkB(a, b) + 1 and H̃B#(a, b) = H̃B(a, b) ∪ {(i, j)}.

Since B(a, j) = B#(a, j +1) and B(a, j +1) = B#(a, j) and the entries not in column j or
j + 1 remain unchanged under fi, we obtain

{B̃#(a′, b′) : (a′, b′) ∈ H̃B#(a, b)} = {B̃(a′, b′) : (a′, b′) ∈ H̃B(a, b)} ∪ {N + 1}.
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Since N + 1 > B#(a, b) and B is balanced, B#(a, b) is the rkB#(a, b)-th largest entry in

H̃B#(a, b).
Case 3 : a < i, b = j. Since λd > 0, we have j > 0 and thus

(10) rkB#(a, b) = rkB(a, b) = rkB(a, b+ 1) + 1.

Since we swapped column j with j + 1, we have B#(a, b) = B(a, b+ 1) and
(11)

{B#(a′, b′) : (a′, b′) ∈ HB#(a, b)} = {B(a′, b′) : (a′, b′) ∈ HB(a, b+ 1)} ∪ {B(a, b), N + 1}.

Since B is balanced, B(a, b + 1) is the rkB(a, b + 1)-th largest entry in HB(a, b + 1). By
Lemma 3.4, B(a, b+1) > B(a, b). Since B(a, b+1) < N +1, by (11) and (10), we conclude
that B#(a, b) is the rkB#(a, b)-th largest entry in HB#(a, b).

Case 4 : a < i, b = j + 1. Again since j > 0,

(12) rkB#(a, b) = rkB(a, b) = rkB(a, b− 1)− 1.

Since we swapped column j and j + 1, we have B#(a, b) = B(a, b− 1) and

(13) {B#(a′, b′) : (a′, b′) ∈ HB#(a, b)} = {B(a′, b′) : (a′, b′) ∈ HB(a, b− 1)} \ {B(a, b)}.

Since B is balanced, B(a, b − 1) is the rkB(a, b − 1)-largest entry in HB(a, b − 1). By
Lemma 3.4, B(a, b− 1) < B(a, b). We can then conclude that B#(a, b) is the rkB#(a, b)-th
largest entry in HB#(a, b) by (12) and (13).

(i, j)

λ

1

2 3 4

Figure 8. Location of (a, b) in the four cases of Lemma 5.10

For every (a, b) ∈ λ# that is not in the four cases above, we have B#(a, b) = B(a, b) and

{B#(a′, b′) : (a′, b′) ∈ HB#(a, b)} = {B(a′, b′) : (a′, b′) ∈ HB(a, b)}.

Therefore the balanced condition of B# follows from that of B and thus B# is balanced.
Now we are left to show that fi is a bijection. For a balanced tableau B of shape λ#

such that B(i, j) = N + 1, define B♭ to be the tableau obtained from B by

(1) remove the entry B(i, j),
(2) interchange column j and j + 1.

The fact that B♭ is a balanced tableau follows from the same reasoning as the analysis
above. It is then clear that the map

gi : {T ∈ BS(λ#) : T (i, j) = N + 1} −→BS(λ)

B 7−→B♭
(14)
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is the inverse of fi and thus fi is a bijection. �

Lemma 5.11. BS(Z(d, r))|λ is the image of BS(λ) under the composition of maps F =
(fd)

ad ◦ (fd−1)
ad−1 ◦ · · · ◦ (f1)

a1 with each fi defined as in (9). As a result, F is a bijection
between BS(λ) and BS(Z(d, r))|λ.

Proof. Notice by the construction in Lemma 5.10, for any tableau T and any (a, b) ∈ sh(T ),
the entry T (a, b) appear in row a of fi(T ) for all i ∈ [d]. Now by definition N+bi+j appear
in row i of (fi)

j ◦ (fi−1)
ai−1 ◦ · · · ◦ (f1)

a1(B) for all i ∈ [d], 1 ≤ j ≤ ai, and all B ∈ BS(λ).
Thus for all i ∈ [d], k ∈ [N + bi + 1, N + bi+1] and all B ∈ BS(λ), k appears in row i of
F (B). Therefore F (B) ∈ BS(Z(d, r))|λ.

Similarly, notice that for any tableau T and any (a, b) ∈ sh(T ) such that T (a, b) is not
the largest entry, T (a, b) appears in row a in (fi)

−1T . As a result, for any k ≤ N and any
T ∈ BS(Z(d, r))|λ, k appears in the same row of T as F−1(T ). Therefore F−1(T ) ∈ BS(λ)
and we can conclude that BS(Z(d, r))|λ is the image of BS(λ) under F . �

5.3. Bijection between BS(Z(d, r))|λ and Red(wλ).

Proposition 5.12. Let a ∈ Red(w(d,r)) be a reduced word. Then ro(a) gives a balanced
tableau in BS(Z(d, r))|λ if and only if the ending segment of a is the same as aλ as in
Proposition 5.6. Consequently, this induces a bijection between BS(Z(d, r))|λ and Red(wλ).

Proof. Set a = a1a2 · · · aℓ ∈ Red(w(d,r)), and ro(a) = γ1, γ2, . . . , γℓ. By construction
(Lemma 5.10), ro(a) produces a balanced tableau in BS(Z(d, r))|λ if and only if for all
i ∈ [d], the roots γN+σi−1+1, . . . , γN+σi

appear in the i-th row of the labeling of Z(d, r) as in
(1). Now we use induction on k to prove the following two conditions on a are equivalent.
Notice that the proposition is precisely the case k = d.

(1) a ends with aN+σd−k+1 · · · aℓ = aλ
d−k+1

aλ
d−k+2

· · · aλ
d
;

(2) The roots γN+σi−1+1, . . . , γN+σi
appear in the i-th row of the labeling of Z(d, r) for

all d− k + 1 ≤ i ≤ d.

When k = 0, both conditions are vacuous. Assume the two conditions are equivalent
for k. Consider the permutation w′ = w(d,r)saℓsaℓ−1

· · · saN+σd−k+1
. By inductive hy-

pothesis we know that aN+σd−k+1 · · · aℓ = aλ
d−k+1

aλ
d−k+2

· · · aλ
d
. By (7), the subsequence

aλ
d−k+1

aλ
d−k+2

· · · aλ
d
only contains indices in the interval [1, r + k − 1]. Therefore, w′(t) =

w(d,r)(t) for all t ≥ d+ k+1 since they are not affected by the simple transpositions. Thus
the one-line notation of w′ ends with k + 1 k + 2 · · · d. Now consider the following steps:

(15) w′ w′′ · · · w′′′.aN+σd−k

γN+σd−k

aN+σd−k−1

γN+σd−k−1

aN+σd−k−1+1

γN+σd−k−1+1

To show (2) =⇒ (1), we assume the γ’s in (15) all appear in the (d − k)th row of Z(d, r),
which contains ek+1+ eq for q > d or ek+1− ei for i < k+1. All these roots include ek+1, so

these steps must swap k + 1 forward in w′. As a result, aN+σd−k−1+1 · · · aN+σd−k
= aλ

d−k
.

To show (1) =⇒ (2), if these steps are exactly aλ
d−k

, since w′(r+k+1) = k + 1, these steps

must swap k + 1 forward in w′, so the roots γ’s all lie in the (d− k)th row of Z(d, r). This
concludes the induction step and we are done by induction. �
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Proof of Theorem 1.1. Combining Corollary 5.5, Lemma 5.11 and Proposition 5.12, we get
a bijection between SYT(λ) and BS(λ). �

Example 5.13. We now work out an example in the case where λ = (6, 2, 1), d = 3 and
r = 2. Assume we start with a balanced tableaux B ∈ BS(λ) shown here:

B = 6 3 4 1 5 9

7 8

2

.

We can complete it to B+ ∈ BS(Z(3, 2)) using the algorithm in Lemma 5.11

B = 6 3 4 1 5 9

7 8

2

→ 6 3 4 1 5 9 10

7 8

2

→ 6 3 4 5 1 9 10

7 8 11

2

→

6 3 4 5 9 1 10

7 8 11 12

2

→ 6 3 4 5 9 10 1

7 8 11 12 13

2

→ 6 3 4 9 5 10 1

7 8 12 11 13

2 14

→

6 3 4 9 10 5 1

7 8 12 13 11

2 14 15

= B+

Now B+ gives a reflection order of w(d,r) as follows

12345 13245 1̄3245 31̄245 3̄1̄245 1̄3̄245

1̄23̄45 21̄3̄45 2̄1̄3̄45 2̄1̄43̄5 2̄1̄453̄

1̄2̄453̄ 1̄42̄53̄ 1̄452̄3̄ 41̄52̄3̄ 451̄2̄3̄.

e3−e2 e1 e3+e1 e3 e3−e1

e3+e2 e2+e1 e2 e4+e3 e5+e3

e2−e1 e4+e2 e5+e2 e4+e1 e5+e1

We can read off the reduced word a = 201012103412312 ∈ Red(w(3,2)). We can confirm
that the reduced word ends with aλ = 412312. Now we perform the Kraśkiewicz’s insertion
on a described in Section 4 and we get

P (a) = 4 3 0 1 2 3 4

3 0 1 2 3

0 1 2

, Q(a) = 1 2 3 5 6 9 10

4 7 11 12 13

8 14 15

,



20 JIYANG GAO, SHILIANG GAO, AND YIBO GAO

Finally, let T+ = Q(a) ∈ SYT(w(3,2)), and T ∈ SYT(λ) is obtained from T+ by deleting
the largest entries until |λ| entries are left:

T+ =
1 2 3 5 6 9 10

4 7 11 12 13

8 14 15

, T =
1 2 3 5 6 9

4 7

8

.
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