Large Girth and Small Oriented Diameter Graphs

Garner Cochran ${ }^{1}$
Department of Mathematics and Computer Science
Berry College
2277 Martha Berry Hwy NW
Mt Berry GA 30149 USA

Abstract

In 2015, Dankelmann and Bau proved that for every bridgeless graph G of order n and minimum degree δ there is an orientation of diameter at most $11 \frac{n}{\delta+1}+9$. In 2016, Surmacs reduced this bound to $7 \frac{n}{\delta+1}$. In this paper, we consider the girth of a graph g and show that for any $\varepsilon>0$ there is a bound of the form $(2 g+\varepsilon) \frac{n}{h(\delta, g)}+O(1)$, where $h(\delta, g)$ is a polynomial. Letting $g=3$ and $\varepsilon<1$ gives an inprovement on the result by Surmacs.

Keywords: diameter, oriented diameter, orientation, oriented graph, distance, size, girth

1. Definitions

Let $G=(V, E)$ denote a finite simple graph with vertex set V and edge set $E \subseteq\binom{V}{2}$. Given $G=(V, E)$, a subgraph H of G, denoted $H \subseteq G$, is a graph $H=\left(V^{\prime}, E^{\prime}\right)$ for which $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E \cap\binom{V^{\prime}}{2}$. By $|G|$ we mean the order of $G,|V(G)|$. A digraph $\vec{G}=(V, A)$ is a graph with a vertex set V and an arc set A where each arc is oriented and the orientation of the arc a with ends u and v is in the direction from u to v will be denoted as $\overrightarrow{u v}$. If a set of $\operatorname{arcs} A$ when considered to be unordered is the set E, we call \vec{G} an orientation of the graph G. A path is defined as $P=(V, E)$, where $V=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{n-1} x_{n}\right\}$. We will denote this path $P=v_{0} v_{1} \ldots v_{n}$.

[^0]Given such a path P, a cycle is defined as a graph $G=\left(V(P), E(P) \cup\left\{v_{0} v_{n}\right\}\right)$. Given an unoriented path $P=v_{0} v_{1} \ldots v_{n}$, we denote using \vec{P} the corresponding oriented path from v_{0} to v_{n}, we will denote using \overleftarrow{P} the oriented path from v_{n} to v_{0}. Denote the interior of a path $\bar{P}=v_{1} \ldots v_{n-1}$. Given a graph G and an edge set $E^{\prime} \subseteq E$, define $G \backslash E^{\prime}=\left(V, E \backslash E^{\prime}\right)$. Given an edge set containing a single edge, $E^{\prime}=\{e\}$, we may leave off the brackets, i.e. $G \backslash\{e\}=G \backslash e=(V, E \backslash\{e\})$. We define a forest as a graph containing no cycles. A connected forest is called a tree.

For a set $B \subseteq V(G)$, the induced subgraph of G on the vertex set B is denoted by $G[B]$. That is, $G[B]=\left(B,\binom{B}{2} \cap V\right)$. Given G a simple graph and $v \in V(G)$, the degree of v in G is the number of vertices adjacent to v, denoted $\operatorname{deg}(v)=|\{u v \mid u \in V(G), u \neq v, u v \in E(G)\}|$. The minimum degree of a graph G is $\delta(G)=\min \{\operatorname{deg}(v) \mid v \in V(G)\}$. If the graph G is unambiguous, we let $\delta(G)=\delta$. We define the closed neighborhood of a vertex $v \in V(H)$ in the given subgraph H as, $N_{H}[v]=\{u \mid u=v$ or $u v \in E(H)\}$. The open neighborhood of v in a given subgraph H, denoted $N_{H}(v)$, is defined as $N_{H}(v)=\{u \mid u \neq v$ and $u v \in E(H)\}$. We may also use $N[v]$ and $N(v)$ if the subgraph H is unambiguous. Let $g(G)=g$ be the girth of G or the length of the smallest cycle in the graph G.

We define the distance from u and v in a graph G or digraph \vec{G} as the minimum number of edges or arcs on a path from u to v. We denote this as $\rho_{G}(u, v)$ or $\rho_{\vec{G}}(u, v)$. If there does not exist a path from u to v, we say that $\rho_{G}(u, v)=\infty$ or $\rho_{\vec{G}}(u, v)=\infty$. We define the diameter of G or \vec{G} to be $\operatorname{diam}(G)=$ $\max \left\{\rho_{G}(u, v) \mid u, v \in V(G)\right\}$ and $\operatorname{diam}(\vec{G})=\max \left\{\rho_{\vec{G}}(u, v) \mid u, v \in V(\vec{G})\right\}$ respectively. If $\operatorname{diam}(G)<\infty$, we call G connected. An edge $e \in E(G)$ (or an arc $a \in A(\vec{G})$) is called a bridge if $\operatorname{diam}(G)<\infty$ and $\operatorname{diam}(G \backslash e)=$ ∞ (similar for \vec{G}). If a graph contains no bridges, we call it bridgeless. If $\operatorname{diam}(\vec{G})<\infty$, then we call \vec{G} strongly connected.

A classical result, due to Robbins [25], states that every bridgeless graph has a strongly connected orientation. There may be many such orientations of a graph. A natural next question is what it may mean to find a "good" such
orientation. Many notions of an objective for optimality of such orientations may be considered. For the purposes of this paper, given a graph G, let $\overrightarrow{\mathcal{G}}$ represent the set of all strongly connected orientations of G. We wish to minimize the oriented diameter of a graph G, defined as the following:

$$
\overrightarrow{\operatorname{diam}}(G)=\min _{\overrightarrow{\vec{G}} \in \overrightarrow{\mathcal{G}}} \operatorname{diam}(\vec{G}) .
$$

It was shown by Chvátal and Thomassen [5] that finding the oriented diameter of a given graph is NP-complete. In the same paper, Chvátal and Thomassen found that for the class of bridgeless graphs with diameter $d, \overrightarrow{\operatorname{diam}}(G) \leq 2 d^{2}+2 d$ and constructed bridgeless graphs of diameter d for which every strong orientation admits a diameter of at least $\frac{1}{2} d^{2}+d$. The upper bound was improved by Babu, Benson, Rajendraprasad and Vaka 1] to $1.373 d^{2}+6.971 d-1$.

The paper by Chvátal and Thomassen [5] has led to further investigation of such bounds on the oriented diameter given certain graph parameters, including the diameter [10, 15, 19], the radius [4], the domination number [11, 20], the maximum degree [8], the minimum degree [2, 7, 26|, the number of edges of the graph 6], and other graph classes [3, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 27, 28]. See the survey by Koh and Tay [16] for more information on some of these results.

Erdős, Pach, Pollack and Tuza [9] proved that the diameter of connected graphs of order n and minimum degree δ is at most $\frac{3 n}{\delta+1}+O(1)$. Bau and Dankelmann 2] sought to investigate a similar bound for the oriented diameter and proved that given a bridgeless graph G of order n and minimum degree δ, $\frac{3 n}{\delta+1} \leq \overrightarrow{\operatorname{diam}}(G) \leq \frac{11 n}{\delta+1}$. The upper bound was improved to $\frac{7 n}{\delta+1}$ by Surmacs [26].

In this paper, we will consider upper bounds on the oriented diameter of a graph considering both the minimum degree δ and the girth g of a graph. In particular we will prove the following theorem.

Theorem 1.1. Given $G=(V, E)$, a bridgeless graph of order n and minimum degree δ, there is a polynomial in δ and $g, h(\delta, g)$ of degree $\left\lfloor\frac{g-1}{2}\right\rfloor$, for which, given any choice of $\varepsilon>0$,

$$
\overrightarrow{\operatorname{diam}}(G) \leq(2 g+\varepsilon) \frac{n}{h(\delta, g)}+c
$$

We will also show that in the case of general bridgeless graphs, that $\overrightarrow{\operatorname{diam}}(G) \leq$ $(2 g+\varepsilon) \frac{n}{\delta+1}+O(1)$. Since bridgeless graphs have a girth $g \geq 3$, we find that if we choose $0<\varepsilon<1$, this gives an improvement on the bound found in the paper by Surmacs [26].

2. Preliminaries

Given a vertex $v \in V(G)$, a natural number g, and a path P, let $\mathcal{N}(g, v)=$ $\left\{u \left\lvert\, \rho_{G}(u, v) \leq\left\lfloor\frac{g}{2}\right\rfloor-1\right.\right\}$ and $\mathcal{N}(g, v, P)=\left\{u \left\lvert\, \rho_{G \backslash E(P)}(u, v) \leq\left\lfloor\frac{g}{2}\right\rfloor-1\right.\right\}$.

Lemma 2.1. Given a graph G with minimum degree $\delta>3$, girth g, a path $P=p_{0} p_{1} \ldots p_{\ell}$, for which $\rho_{G}\left(p_{i}, p_{j}\right)=|j-i|$, and a vertex $x \notin V(P)$,

$$
|\mathcal{N}(g, x, P)| \geq 1+\delta+\sum_{i=1}^{\left\lfloor\frac{g-1}{2}\right\rfloor-1} \delta(\delta-3)^{i}
$$

Proof. Given a vertex $x \in V(G)$ for which $x \notin V(P), G[\mathcal{N}(g, x)]$ is a tree. If not, there would be a cycle of length less than g in G a contradiction to g being the girth. Since $G[\mathcal{N}(g, x, P)] \subseteq G[\mathcal{N}(g, x)], G[\mathcal{N}(g, x, P)]$ is also a tree.

We will construct the set $\mathcal{N}(g, x, P)$. Note that $x \in \mathcal{N}(g, x, P)$. Since $x \notin V(P), N(x) \subseteq \mathcal{N}(g, x, P)$ and $|N(x)| \geq \delta$, so $\left|\left\{u \mid \rho_{G \backslash E(P)}(v, u)=1\right\}\right| \geq \delta$. For each vertex $v_{1} \in N(x)$, if $v_{1} \notin V(P)$, then $\left|N_{G \backslash E(P)}\left(v_{1}\right)\right| \geq \delta$. If $v_{1} \in V(P)$, either one or two of the edges incident to v_{1} are in $E(P)$, so $\left|N_{G \backslash E(P)}\left(v_{1}\right)\right| \geq$ $(\delta-2)$. Since $x \in N\left(v_{1}\right)$ we have that $\left|\left\{u \mid \rho_{G \backslash E(P)}(v, u)=2\right\}\right| \geq \delta(\delta-3)$. Since $\mathcal{N}(g, x, P)$ is a tree, as long as $1 \leq i \leq\left\lfloor\frac{g-1}{2}\right\rfloor-1$, we can perform a similar analysis to show that $\left|\left\{u \mid \rho_{G \backslash E(P)}(v, u)=i+1\right\}\right| \geq \delta(\delta-3)^{i}$. Hence, $|\mathcal{N}(g, x, P)| \geq 1+\delta+\sum_{i=1}^{\left\lfloor\frac{g-1}{2}\right\rfloor-1} \delta(\delta-3)^{i}$.

3. Introduction of Main Lemma

Let $h(\delta, g)=1+\delta+\sum_{i=1}^{\left\lfloor\frac{g-1}{2}\right\rfloor-1} \delta(\delta-3)^{i}$. For any $\varepsilon>0$, let $L=\left\lceil\frac{g-1}{\varepsilon}\right\rceil$.
Lemma 3.1. Given a bridgeless graph G with $|G|=n$, girth g and minimum degree $\delta=\delta(G)$, there exists a set of increasing bridgeless subgraphs $H_{0} \subset H_{1} \subset$ $H_{2} \subset \ldots H_{k} \subseteq G$, vertex sets $B_{0} \subset B_{1} \subset \ldots$ for which $B_{i} \subseteq V\left(H_{i}\right)$, and a set of forests F_{i} for which the following hold:

1. For all $v \in V(G), \rho_{G}\left(v, H_{k}\right)<L \cdot g$,
2. for all $i,\left|F_{i}\right| \geq h(\delta, g)\left|B_{i}\right|$, and
3. $\left|H_{i}\right| \leq(2 g+\varepsilon)\left|B_{i}\right|$.

Proof. We will prove by induction on B_{i}, F_{i}, and H_{i}. For some $v_{0} \in V(G)$, let $B_{0}=\left\{v_{0}\right\}, F_{0}=G\left[\mathcal{N}\left(g, v_{0}\right)\right]$, and $H_{0}=\left(\left\{v_{0}\right\}, \emptyset\right)$. Certainly property 3 holds. Note that F_{0} is a tree of order $\sum_{\alpha=0}^{\left\lfloor\frac{g-1}{2}\right\rfloor} \delta^{\alpha} \geq h(\delta, g)$, so property 2 holds. If property 1 holds, we are done.

Consider B_{i}, F_{i}, H_{i} for which properties 2 and 3 hold and property 1 does not yet hold. Since property 1 does not yet hold, there exists a vertex, v, for which $\rho_{G}\left(v, H_{i}\right)=L \cdot g$. Let p_{0} be a vertex in H_{i} for which $\rho_{G}\left(v, p_{0}\right)=L \cdot g$. Consider a path of shortest length between p_{0} and v, call this path $P=p_{0} p_{1} \ldots p_{L g-1} v$ with $v=p_{L g}$. Let $e_{i}=p_{i-1} p_{i}$. Let $H_{i}^{\prime}=H_{i}$. Call $e_{j} \in E(P)$ covered if e_{j} is not a bridge in $H_{i}^{\prime} \cup P$. Let $P_{j}=p_{0} \ldots p_{j}$ and $P_{j}^{\prime}=p_{j} p_{j+1} \ldots p_{L g}$. We consider a set of edges $E\left(P_{j}\right)$ to be covered if no edge $e \in E\left(P_{j}\right)$ is a bridge in $H_{i}^{\prime} \cup P_{j}$. We will build a set of vertices $\operatorname{cov}(P) \subseteq V(G) \backslash\left(V(P) \cup V\left(H_{i}\right)\right.$ which is incident to all the edges used to cover $E(P)$.

To expand H_{i}^{\prime}, note that e_{1} is not covered in $H_{i}^{\prime} \cup P$. Since G is bridgeless, there must be a path from H_{i}^{\prime} to P_{1}^{\prime}. Consider a path of length $\rho_{G \backslash E(P)}\left(H_{i}^{\prime}, P_{1}^{\prime}\right)$, call it Q. Note that the two end vertices of Q are the only vertices in $V(Q)$ which can intersect with $V(P)$. Let p_{β} be the end vertex of Q on $P \backslash p_{0}$. Add Q and P_{β} to H_{i}^{\prime}. Add the set of interior vertices of $Q, V(\bar{Q})$, to $\operatorname{cov}(P)$, a set of vertices which will eventually be incident to all the edges used to cover P. Label the vertices in $\operatorname{cov}(P)$ as q_{r} such that $r=\rho_{G \backslash E(P)}\left(H_{i}, q_{r}\right)$. Let $B_{i}^{\prime}=B_{i}$. We will now consider an algorithm that will add to $\operatorname{cov}(P), B_{i}^{\prime}$, and H_{i}^{\prime}.

1. If there is no longer an edge left uncovered, terminate the algorithm.
2. If there is an uncovered edge in P, consider the edge e_{j} with the smallest index j that is not yet covered. Since G is bridgeless, there exists a path from H_{i}^{\prime} to P_{j}^{\prime} of length $\rho_{G \backslash E(P)}\left(H_{i}^{\prime}, P_{j}^{\prime}\right)$, call it R. Add $V(\bar{R})$ to $\operatorname{cov}(P)$. Label the vertices $v \in V(\bar{R})$ as q_{r} where $r=|\operatorname{cov}(P)|+\rho_{G \backslash E(P)}\left(H_{i}^{\prime}, v\right)$. Add R and P_{j} to H_{i}^{\prime}.
3. If for all pairs of vertices $q_{m_{1}}, q_{m_{2}} \in \operatorname{cov}(P)$ we have $\rho_{G \backslash E(P)}\left(q_{m_{1}}, H_{i}\right) \geq$ m_{1} and $\rho_{G \backslash E(P)}\left(q_{m_{1}}, q_{m_{2}}\right) \geq\left|m_{2}-m_{1}\right|$, then return to step 1. If this was not the case, consider one of the following augmentations.
(a) If $\rho_{G \backslash E(P)}\left(q_{m_{1}}, H_{i}\right)=s<m_{1}$, remove $\left\{q_{1}, \ldots q_{m_{1}-1}\right\}$ and any edges incident to that vertex set from H_{i}^{\prime} and $\operatorname{cov}(P)$. Consider a path S, which is edge disjoint from P between q_{m-1} and H_{i} of length $\rho_{G \backslash E(P)}\left(q_{m_{1}}, H_{i}\right)=s$. Add this path to H_{i}^{\prime}, add the vertices in $V(\bar{S})$ to $\operatorname{cov}(P)$, and label them q_{ℓ} such that $\ell=\rho_{G \backslash E(P)}\left(H_{i}, q_{\ell}\right)$. For values from m_{1} to t, where t is the highest current label r for q_{r} in $\operatorname{cov}(P)$, relabel $q_{m_{1}} \ldots q_{t}=q_{s} \ldots q_{t-\left(m_{1}-s\right)}$. After relabeling, return to step 3 .
(b) If $\rho_{G \backslash E(P)}\left(q_{m_{1}}, q_{m_{2}}\right)=s<\left|m_{2}-m_{1}\right|$, without loss of generality, let $m_{1}<m_{2}$. Remove the vertices $q_{m_{1}+1}, \ldots, q_{m_{2}-1}$ from H_{i}^{\prime} and $\operatorname{cov}(P)$. Consider a path S, which is edge disjoint from P between $q_{m_{1}}$ and $q_{m_{2}}$ of length $\rho_{G \backslash E(P)}\left(q_{m_{1}}, q_{m_{2}}\right)=s$. Add this path to H_{i}^{\prime},

Figure 3.1: The left graph is an example of subgraph H^{\prime} where step 3 a will be executed. The right is H_{i}^{\prime} after execution of 3 a

Figure 3.2: The left graph is an example of subgraph H^{\prime} where step 3 b will be executed. The right is H_{i}^{\prime} after execution of 3 b
add the vertices in $V(\bar{S})$ to $\operatorname{cov}(P)$. Label the newly added vertices $q_{m_{1}+1}, \ldots, q_{m_{1}+s-1}$ and relabel $q_{m_{2}+1} \ldots q_{t}=q_{m_{1}+s} \ldots q_{t-\left(\left(m_{2}-m_{1}\right)-s\right)}$. After relabeling, return to step 3.

Any step for which step 3a or step 3b executes, there was a strict reduction in $|\operatorname{cov}(P)|$. On the path P, since $\rho\left(H_{i}, p_{j}\right)=j$, there must be at least 1 vertex in $\operatorname{cov}(P)$, so at some point we must leave step 3 of the algorithm. Any time step 2 executes, there is a strict increase in the number of edges in P that are covered. Since P is finite, at some point the algorithm must return to step 1 and terminate.

Let $H_{i+1}=H_{i}^{\prime}, B_{i+1}=\left\{B_{i} \cup q_{r} \mid r \equiv 0 \bmod g\right\}$, and $F_{i+1}=F_{i} \bigcup \cup_{b \in B_{i+1} \backslash B_{i}} \mathcal{N}(g, b, P)$. Now we will show that Properties 2 and 3 of Lemma 3.1 hold.

To prove Property 3 holds, first remember that $L=\left\lceil\frac{g-1}{\varepsilon}\right\rceil \geq \frac{g-1}{\varepsilon}$, hence $g-1 \leq L \varepsilon$. We will have two cases: $L \leq\left|B_{i+1} \backslash B_{i}\right|$ and $L>\left|B_{i+1} \backslash B_{i}\right|$. If
$L \leq\left|B_{i+1} \backslash B_{i}\right|$, the following holds:

$$
\begin{align*}
\left|H_{i+1}\right| & \leq\left|H_{i+1}\right|+|P|+|\operatorname{cov}(P)| \tag{3.1}\\
& \leq\left|H_{i}\right|+g L+g\left|B_{i+1} \backslash B_{i}\right|+(g-1) \tag{3.2}\\
& \leq\left|H_{i}\right|+g\left|B_{i+1} \backslash B_{i}\right|+g\left|B_{i+1} \backslash B_{i}\right|+L \varepsilon \tag{3.3}\\
& \leq\left|H_{i}\right|+g\left|B_{i+1} \backslash B_{i}\right|+g\left|B_{i+1} \backslash B_{i}\right|+\left|B_{i+1} \backslash B_{i}\right| \varepsilon \tag{3.4}\\
& \leq\left|H_{i}\right|+(2 g+\varepsilon)\left|B_{i+1} \backslash B_{i}\right| \tag{3.5}\\
& \leq(2 g+\varepsilon)\left|B_{i}\right|+(2 g+\varepsilon)\left|B_{i+1} \backslash B_{i}\right| \tag{3.6}\\
& \leq(2 g+\varepsilon)\left|B_{i+1}\right| . \tag{3.7}
\end{align*}
$$

To prove property 2 note that for each $b \in B_{i+1} \backslash B_{i}, \rho_{G \backslash E(P)}\left(b, H_{i}\right) \geq$ g, otherwise we would have augmented $\operatorname{cov}(P)$ in step 3a the algorithm, so $\rho_{G \backslash E(P)}\left(b, B_{i}\right) \geq g$. For any pair of vertices $b_{1}, b_{2} \in B_{i+1} \backslash B_{i}, \rho_{G \backslash E(P)}\left(b_{1}, b_{2}\right) \geq$ g, otherwise we would have augmented $\operatorname{cov}(P)$ in step 3b of the algorithm. Hence, $\mathcal{N}\left(g, b_{1}, P\right) \cap \mathcal{N}\left(g, b_{2}, P\right)=\emptyset$. So,

$$
\begin{align*}
\left|F_{i+1}\right| & \geq\left|F_{i}\right|+\left|\bigcup_{b \in B_{i+1} \backslash B_{i}} \mathcal{N}(g, b, P)\right| \tag{3.8}\\
& \geq\left|B_{i}\right| h(\delta, g)+\left|B_{i+1} \backslash B_{i}\right| h(\delta, g) \tag{3.9}\\
& \geq\left|B_{i+1}\right| h(\delta, g) \tag{3.10}
\end{align*}
$$

In the case that $L>\left|B_{i+1} \backslash B_{i}\right|$, redefine B_{i+1} to be $B_{i} \bigcup \cup_{c=1}^{L} p_{c g}$. Since $L g=g\left|B_{i+1} \backslash B_{i}\right|$, the computation above from 3.1 to 3.7 holds. See that by definition of P, for any $b \in B_{i+1} \backslash B_{i}, \rho_{G}\left(b, H_{i}\right) \geq g$, so $\mathcal{N}(g, b) \cap V\left(H_{i}\right)=\emptyset$. For any $b_{1}, b_{2} \in B_{i+1} \backslash B_{i}, \rho_{G}\left(b_{1}, b_{2}\right) \geq g$, hence $\mathcal{N}\left(g, b_{1}\right) \cap \mathcal{N}\left(g, b_{2}\right)=\emptyset$. It follows that

$$
\begin{align*}
\left|F_{i+1}\right| & \geq\left|F_{i}\right|+\left|\bigcup_{b \in B_{i+1} \backslash B_{i}} \mathcal{N}(g, b)\right| \tag{3.11}\\
& \geq\left|B_{i}\right| h(\delta, g)+\left|B_{i+1} \backslash B_{i}\right| h(\delta, g) \tag{3.12}\\
& \geq\left|B_{i+1}\right| h(\delta, g) \tag{3.13}
\end{align*}
$$

Hence, Property 2 of Lemma 3.1 holds in this case.
Since H_{i} and B_{i} are increasing subgraphs and vertex sets, and our graph G is a finite graph, eventually 1 will hold. When this happens, let $i=k$.

Now we wish to use Lemma 3.1 to create an orientation on a subgraph of G with a small diameter. First, we need to consider the following theorem by Robbins.

Theorem 3.2 (Robbins 25]). A graph is bridgeless if and only if it admits a strong orientation.

Lemma 3.3. Let $H_{k} \subseteq G, B_{k} \subseteq V(G)$, and $F_{k} \subseteq G$, and Properties 1, 2, and 3 of Lemma 3.1 hold. There exists an orientation of $H_{k}, \overrightarrow{H_{k}}$ for which $\operatorname{diam}\left(\overrightarrow{H_{k}}\right) \leq(2 g+\varepsilon) \frac{n}{h(\delta, g)}$.

Proof. By Property 2 of Lemma 3.1 we have that $h(\delta, g)\left|B_{k}\right| \leq\left|F_{k}\right| \leq n$, so we find that $\left|B_{k}\right| \leq \frac{n}{h(\delta, g)}$. In conjunction with Property 3 of Lemma 3.1 we find that $\left|H_{k}\right| \leq(2 g+\varepsilon)\left|B_{k}\right| \leq(2 g+\varepsilon) \frac{n}{h(\delta, g)}$.

Hence, there exists a bridgeless subraph H_{k} for which $\left|H_{k}\right| \leq(2 g+\varepsilon) \frac{n}{h(\delta, g)}$. By Theorem 3.2, there is strong orientation of $H_{k}, \overrightarrow{H_{k}}$. Note that $\operatorname{diam}\left(\overrightarrow{H_{k}}\right) \leq$ $\left|H_{k}\right| \leq(2 g+\varepsilon) \frac{n}{h(\delta, g)}$.

We now wish to extend our result in Lemma 3.3 for $H_{k} \subseteq G$ to G. To do so, we will need to consider an extension to the following two lemmas, one by Fomin et al. 11] and one by Bau et al. [2]
Lemma 3.4 (Fomin, Matamala, Prisner and Rapaport 11]). Let G be a bridgeless graph and H a bridgeless subgraph of G with $\rho_{G}(v, H) \leq 1$ for all $v \in V(G)$. Given an orientation \vec{H} such that $\operatorname{diam}(\vec{H})=d$, then G has an orientation of $d+4$.

Lemma 3.5 (Bau and Dankelmann[2]). Let G be a bridgeless graph and H a bridgeless subgraph of G such that $\rho_{G}(v, H) \leq 2$ for all $v \in V(G)$. Let \vec{H} be a strongly connected orientation of H of diameter d. Then there exists a strongly connected orientation of G of diameter at most $d+12$ that extends the orientation of \vec{H}.

We have that for any $v \in V(G), \rho_{G}\left(v, H_{k}\right) \leq L g$. Since $L g>2$, we will need to extend this lemma as seen below.

Lemma 3.6. Let G be a bridgeless graph, H a bridgeless subgraph of G, and let s be an integer such that $s \geq 2$ and for all $v \in V(G), \rho_{G}(v, H) \leq s$. Let \vec{H} be a strongly connected orientation of H of diameter d. Then there exists a strongly connected orientation of G of diameter at most $d+4\binom{s+1}{2}$ that extends the orientation of \vec{H}.
Proof. Let $H \subseteq G$ be a bridgeless subgraph with an orientation \vec{H} such that $\operatorname{diam}(\vec{H})=d$ and $\rho_{G}(v, H) \leq k$ for all $v \in V(G)$. Let $V_{1}:=\left\{v \mid \rho_{G}(v, H)=\right.$ 1\}. Given a vertex $v \in V_{1}$, label one of its neighbors in H as x. Let $\overrightarrow{H^{\prime}}=\vec{H}$, we will continue to augment $\overrightarrow{H^{\prime}}$ throughout the proof. We will call $\overrightarrow{H^{\prime}}$ extendable at step i if for any $v \in V\left(\overrightarrow{H^{\prime}}\right), \rho_{\overrightarrow{H^{\prime}}}(v, H)+\rho_{\overrightarrow{H^{\prime}}}(H, v) \leq 2 i$ and $\rho_{G}(H, v) \leq i$.

Assume there is a vertex z for which $\rho_{G}(\vec{H}, z)=s$. First, we will show that there exists a graph $\overrightarrow{H^{\prime}}$ that is extendable at step 1. If there is a vertex
$v \in V_{1} \backslash V\left(\overrightarrow{H^{\prime}}\right)$ for which $\rho_{G \backslash v x}(v, H)=1$, there exists some vertex $y, y \neq x$ for which $v y \in E(G)$. Let $\overrightarrow{H^{\prime}}=\vec{H} \cup \overrightarrow{x v y}$. Repeat this until there are no longer vertices $v \in V_{1} \backslash V\left(\overrightarrow{H^{\prime}}\right)$ for which $\rho_{G \backslash v x}(v, H)=1$. Note that for any $v \in V\left(\overrightarrow{H^{\prime}}\right), \rho_{\overrightarrow{H^{\prime}}}(v, H)+\rho_{\overrightarrow{H^{\prime}}}(H, v) \leq 2$ and $\rho_{G}(v, H) \leq 1$, so $\overrightarrow{H^{\prime}}$ is extendable at step 1.

We will show that for any $1 \leq i<2 s$, if $\overrightarrow{H^{\prime}}$ is extendable at step i, then it is also extendable at step $i+1$. If there is a vertex $v \in V_{1} \backslash V\left(\overrightarrow{H^{\prime}}\right)$ for which $\rho_{G \backslash v x}(v, H)=i$, let Q be a path of length i from v to H which does not include $v x$. Consider a vertex $v^{\prime} \in V(Q)$ for which $v^{\prime} \in V\left(\overrightarrow{H^{\prime}}\right)$ and $\rho_{G \backslash v x}\left(v^{\prime}, v\right)$ is minimized. If $v^{\prime} \in V(H)$, add $\vec{Q} \cup \overrightarrow{x v}$ to $\overrightarrow{H^{\prime}}$. See that for all $v \in V\left(\overrightarrow{H^{\prime}}\right)$, $\rho_{\overrightarrow{H^{\prime}}}(v, H)+\rho_{\overrightarrow{H^{\prime}}}(H, v) \leq 2 i$ and $\rho_{G}(v, H) \leq i$, so $\overrightarrow{H^{\prime}}$ is extendable at step i.

If $v^{\prime} \notin V(H)$, let Q^{\prime} be the subpath of Q from v to v^{\prime}. Since $\overrightarrow{H^{\prime}}$ is extendable at step i, there exists an integer j for which $|j|<i, \rho \overrightarrow{H^{\prime}}{ }^{\prime}\left(v^{\prime}, H\right) \leq i-j$, and $\rho_{\overrightarrow{H^{\prime}}}\left(H, v^{\prime}\right) \leq i+j$. If $j \geq 0$, add $\overleftarrow{Q^{\prime}} \cup \overrightarrow{v x}$ to $\overrightarrow{H^{\prime}}$. If $j<0$, add $\overrightarrow{Q^{\prime}} \cup \overrightarrow{x v}$ to $\overrightarrow{H^{\prime}}$. See in each case that for all $v \in V\left(\overrightarrow{H^{\prime}}\right), \rho_{\overrightarrow{H^{\prime}}}(v, H)+\rho_{\overrightarrow{H^{\prime}}}(H, v) \leq 2 i$ and $\rho_{G}(v, H) \leq i$.

Once we have an extendable subgraph $\overrightarrow{H^{\prime}}$ at step $2 s$, and have considered all vertices $v \in V_{1} \backslash V\left(\overrightarrow{H^{\prime}}\right)$ for which $\rho_{G \backslash e}(v, H) \leq 2 s$, there are no more vertices $v \in V_{1} \backslash V\left(\overrightarrow{H^{\prime}}\right)$. If there were a vertex $v \in V_{1} \backslash V\left(\overrightarrow{H^{\prime}}\right)$ for which $\rho_{G \backslash e}(v, H)>2 s$, notice that this would mean there exists a vertex $v^{\prime} \in V(G)$ for which $\rho_{G}\left(v^{\prime}, H\right)>s$, a contradiction to the assumption of the lemma.

Since $\overrightarrow{H^{\prime}}$ was extendable at step $2 s$, for any $v \in V\left(\overrightarrow{H^{\prime}}\right), \rho_{\overrightarrow{H^{\prime}}}(v, H) \leq 2 s$ and $\rho_{\overrightarrow{H^{\prime}}}(H, v) \leq 2 s$, so $\overrightarrow{\operatorname{diam}}\left(H^{\prime}\right) \leq \overrightarrow{\operatorname{diam}}(H)+4 s$.

We will now prove Theorem 1.1 .
Proof. In Lemma 3.1 we showed that there is a bridgeless subgraph $H_{k} \subseteq G$ such that for any $v \in V(G), \rho_{G}\left(v, H_{k}\right) \leq L g$ and

$$
\overrightarrow{\operatorname{diam}}\left(H_{k}\right) \leq(2 g+\varepsilon) \frac{n}{h(\delta, g)} .
$$

By a combination of this and Lemma 3.6 with $s=L \cdot g$, we find

$$
\overrightarrow{\operatorname{diam}}(G) \leq \overrightarrow{\operatorname{diam}}\left(H_{k}\right)+\sum_{i=1}^{L g} 4 i \leq(2 g+\varepsilon) \frac{n}{h(\delta, g)}+4\binom{L g+1}{2}
$$

Corollary 3.7. In Theorem 1.1, if $g=3$ and $0<\varepsilon<1$,

$$
\overrightarrow{\operatorname{diam}}(G) \leq(2 g+\varepsilon) \frac{n}{h(\delta, g)}+4\binom{L g+1}{2}<7 \frac{n}{\delta+1}+O(1)
$$

This is an improvement on the current bound by Surmacs [26]. It is still left as an open question whether this is the smallest possible upper bound in the case without girth. The same question could be asked when including girth as well.

4. Acknowledgments

I would like to thank Peter Dankelmann, Éva Czabarka, and László Székely for their mentorship and guidance. I would also like to thank Peter Dankelmann for originally introducting me to this problem and Zhiyu Wang for helping me edit the paper prior to submission.

References

[1] J. Babu, D. Benson, D. Rajendraprasad, and S. N. Vaka. An improvement to Chvátal and Thomassen's upper bound for oriented diameter. Discrete Applied Mathematics, 304:432-440, December 2021.
[2] S. Bau and P. Dankelmann. Diameter of orientations of graphs with given minimum degree. European Journal of Combinatorics, 49:126-133, 2015.
[3] B. Chen and A. Chang. Diameter Three Orientability of Bipartite Graphs. The Electronic Journal of Combinatorics, 28(2):P2.25, May 2021.
[4] F.R.K. Chung, M. R. Garey, and R. E. Tarjan. Strongly connected orientations of mixed multigraphs. Networks, 15(4):477-484, 1985.
[5] V. Chvátal and C. Thomassen. Distances in orientations of graphs. Journal of Combinatorial Theory, Series B, 24(1):61-75, 1978.
[6] G. Cochran, É. Czabarka, P. Dankelmann, and L. Székely. A Size Condition for Diameter Two Orientable Graphs. Graphs and Combinatorics, 37(2):527-544, March 2021.
[7] É. Czabarka, P. Dankelmann, and L. Székely. A degree condition for diameter two orientability of graphs. Discrete Mathematics, 342(4):1063-1065, April 2019.
[8] P. Dankelmann, Y. Guo, and M. Surmacs. Oriented diameter of graphs with given maximum degree. Journal of Graph Theory, 88(1):5-17, May 2018.
[9] P. Erdős, J. Pach, R. Pollack, and Z. Tuza. Radius, diameter, and minimum degree. Journal of Combinatorial Theory, Series B, 47(1):73-79, 1989.
[10] F. V. Fomin, M. Matamala, and I. Rapaport. Complexity of approximating the oriented diameter of chordal graphs. Journal of Graph Theory, 45(4):255-269, 2004.
[11] F. V. Fomin, M. N. Matamala, E. Prisner, and I. Rapaport. AT-free graphs: linear bounds for the oriented diameter. Discrete applied mathematics, 141(1):135-148, 2004.
[12] G. Gutin. Minimizing and maximizing the diameter in orientations of graphs. Graphs and Combinatorics, 10(2-4):225-230, 1994.
[13] G. Gutin, K.M. Koh, E.G. Tay, and A. Yeo. Almost minimum diameter orientations of semicomplete multipartite and extended digraphs. Graphs and Combinatorics, 18(3):499-506, 2002.
[14] G. Gutin and A. Yeo. Orientations of digraphs almost preserving diameter. Discrete applied mathematics, 121(1):129-138, 2002.
[15] J. Huang and D. Ye. Sharp Bounds for the Oriented Diameters of Interval Graphs and 2-Connected Proper Interval Graphs. In Computational Science - ICCS 2007, volume 4489, pages 353-361. Berlin, Heidelberg, 2007. Series Title: Lecture Notes in Computer Science.
[16] K. M. Koh and E. G. Tay. Optimal orientations of graphs and digraphs: a survey. Graphs and Combinatorics, 18(4):745-756, 2002.
[17] K.M. Koh and K. L. Ng. The orientation number of two complete graphs with linkages. Discrete mathematics, 295(1):91-106, 2005.
[18] K.S.A. Kumar, D. Rajendraprasad, and K.S. Sudeep. Oriented diameter of star graphs. Discrete Applied Mathematics, February 2021.
[19] Peter K. Kwok, Q. Liu, and D. B. West. Oriented diameter of graphs with diameter 3. Journal of Combinatorial Theory, Series B, 100(3):265-274, 2010.
[20] M. Laetsch and S. Kurz. Bounds for the minimum oriented diameter. Discrete Mathematics $\&$ Theoretical Computer Science, 14, 2012.
[21] R. Lakshmi. Optimal orientation of the tensor product of a small diameter graph and a complete graph. Australas. J. Combin, 50:165-169, 2011.
[22] R. Lakshmi and P. Paulraja. On optimal orientations of tensor product of complete graphs. Ars Combinatoria, 82:337-352, 2007.
[23] R. Lakshmi and P. Paulraja. On optimal orientations of tensor product of graphs and circulant graphs. Ars Combinatoria, 92:271-288, 2009.
[24] J. Plesník. Remarks on the diameters of orientations of graphs. Acta Math. Univ. Comenian, 36(3):225-236, 1985.
[25] H. E. Robbins. A Theorem on Graphs, with an Application to a Problem of Traffic Control. The American Mathematical Monthly, 46(5):281, May 1939.
[26] M. Surmacs. Improved bound on the oriented diameter of graphs with given minimum degree. European Journal of Combinatorics, 59:187-191, January 2017.
[27] L. Šoltés. Orientations of graphs minimizing the radius or the diameter. Mathematica Slovaca, 36(3):289-296, 1986.
[28] X. Wang, Y. Chen, P. Dankelmann, Y. Guo, M. Surmacs, and L. Volkmann. Oriented diameter of maximal outerplanar graphs. Journal of Graph Theory, 98(3):426-444, November 2021.

[^0]: Email address: gcochran@berry.edu (Garner Cochran)

