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Abstract

In 2015, Dankelmann and Bau proved that for every bridgeless graph G

of order n and minimum degree δ there is an orientation of diameter at most

11 n
δ+1 + 9. In 2016, Surmacs reduced this bound to 7 n

δ+1 . In this paper, we

consider the girth of a graph g and show that for any ε > 0 there is a bound of

the form (2g+ ε) n
h(δ,g) +O(1), where h(δ, g) is a polynomial. Letting g = 3 and

ε < 1 gives an inprovement on the result by Surmacs.

Keywords: diameter, oriented diameter, orientation, oriented graph, distance,
size, girth

1. Definitions

Let G = (V,E) denote a finite simple graph with vertex set V and edge

set E ⊆
(

V
2

)

. Given G = (V,E), a subgraph H of G, denoted H ⊆ G, is a

graph H = (V ′, E′) for which V ′ ⊆ V and E′ ⊆ E ∩
(

V ′

2

)

. By |G| we mean the

order of G, |V (G)|. A digraph
−→
G = (V,A) is a graph with a vertex set V and

an arc set A where each arc is oriented and the orientation of the arc a with

ends u and v is in the direction from u to v will be denoted as −→uv. If a set of

arcs A when considered to be unordered is the set E, we call
−→
G an orientation

of the graph G. A path is defined as P = (V,E), where V = {v0, v1, . . . , vn}

and E = {x0x1, x1x2, . . . , xn−1xn}. We will denote this path P = v0v1 . . . vn.
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Given such a path P , a cycle is defined as a graph G = (V (P ), E(P ) ∪ {v0vn}).

Given an unoriented path P = v0v1 . . . vn, we denote using
−→
P the corresponding

oriented path from v0 to vn, we will denote using
←−
P the oriented path from vn to

v0. Denote the interior of a path P = v1 . . . vn−1. Given a graph G and an edge

set E′ ⊆ E, define G \ E′ = (V,E \ E′). Given an edge set containing a single

edge, E′ = {e}, we may leave off the brackets, i.e. G\{e} = G\e = (V,E \{e}).

We define a forest as a graph containing no cycles. A connected forest is called

a tree.

For a set B ⊆ V (G), the induced subgraph of G on the vertex set B is

denoted by G[B]. That is, G[B] =
(

B,
(

B
2

)

∩ V
)

. Given G a simple graph

and v ∈ V (G), the degree of v in G is the number of vertices adjacent to

v, denoted deg(v) = |{uv | u ∈ V (G), u 6= v, uv ∈ E(G)}|. The minimum

degree of a graph G is δ(G) = min{deg(v) | v ∈ V (G)}. If the graph G is

unambiguous, we let δ(G) = δ. We define the closed neighborhood of a vertex

v ∈ V (H) in the given subgraph H as, NH [v] = {u | u = v or uv ∈ E(H)}. The

open neighborhood of v in a given subgraph H , denoted NH(v), is defined as

NH(v) = {u | u 6= v and uv ∈ E(H)}. We may also use N [v] and N(v) if the

subgraph H is unambiguous. Let g(G) = g be the girth of G or the length of

the smallest cycle in the graph G.

We define the distance from u and v in a graph G or digraph
−→
G as the mini-

mum number of edges or arcs on a path from u to v. We denote this as ρG(u, v)

or ρ−→
G
(u, v). If there does not exist a path from u to v, we say that ρG(u, v) =∞

or ρ−→
G
(u, v) = ∞. We define the diameter of G or

−→
G to be diam(G) =

max{ρG(u, v) | u, v ∈ V (G)} and diam(
−→
G) = max

{

ρ−→
G
(u, v) | u, v ∈ V (

−→
G)

}

respectively. If diam(G) < ∞, we call G connected. An edge e ∈ E(G)

(or an arc a ∈ A(
−→
G )) is called a bridge if diam(G) < ∞ and diam(G \ e) =

∞ (similar for
−→
G). If a graph contains no bridges, we call it bridgeless. If

diam(
−→
G) <∞, then we call

−→
G strongly connected.

A classical result, due to Robbins [25], states that every bridgeless graph

has a strongly connected orientation. There may be many such orientations of

a graph. A natural next question is what it may mean to find a “good” such
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orientation. Many notions of an objective for optimality of such orientations may

be considered. For the purposes of this paper, given a graph G, let
−→
G represent

the set of all strongly connected orientations of G. We wish to minimize the

oriented diameter of a graph G, defined as the following:

−−−→
diam(G) = min

−→
G∈

−→
G

diam
(−→
G
)

.

It was shown by Chvátal and Thomassen [5] that finding the oriented diame-

ter of a given graph is NP-complete. In the same paper, Chvátal and Thomassen

found that for the class of bridgeless graphs with diameter d,
−−−→
diam(G) ≤ 2d2+2d

and constructed bridgeless graphs of diameter d for which every strong orienta-

tion admits a diameter of at least 1
2d

2 + d. The upper bound was improved by

Babu, Benson, Rajendraprasad and Vaka [1] to 1.373d2 + 6.971d− 1.

The paper by Chvátal and Thomassen [5] has led to further investigation of

such bounds on the oriented diameter given certain graph parameters, including

the diameter [10, 15, 19], the radius [4], the domination number [11, 20], the

maximum degree [8], the minimum degree [2, 7, 26], the number of edges of the

graph [6], and other graph classes[3, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 27, 28].

See the survey by Koh and Tay [16] for more information on some of these

results.

Erdős, Pach, Pollack and Tuza [9] proved that the diameter of connected

graphs of order n and minimum degree δ is at most 3n
δ+1 + O(1). Bau and

Dankelmann [2] sought to investigate a similar bound for the oriented diameter

and proved that given a bridgeless graph G of order n and minimum degree δ,

3n
δ+1 ≤

−−−→
diam(G) ≤ 11n

δ+1 . The upper bound was improved to 7n
δ+1 by Surmacs [26].

In this paper, we will consider upper bounds on the oriented diameter of a

graph considering both the minimum degree δ and the girth g of a graph. In

particular we will prove the following theorem.

Theorem 1.1. Given G = (V,E), a bridgeless graph of order n and minimum

degree δ, there is a polynomial in δ and g, h(δ, g) of degree ⌊ g−1
2 ⌋, for which,

given any choice of ε > 0,

−−−→
diam(G) ≤ (2g + ε)

n

h(δ, g)
+ c.
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We will also show that in the case of general bridgeless graphs, that
−−−→
diam(G) ≤

(2g + ε) n
δ+1 + O(1). Since bridgeless graphs have a girth g ≥ 3, we find that

if we choose 0 < ε < 1, this gives an improvement on the bound found in the

paper by Surmacs [26].

2. Preliminaries

Given a vertex v ∈ V (G), a natural number g, and a path P , let N (g, v) =

{u | ρG(u, v) ≤ ⌊
g
2⌋ − 1} and N (g, v, P ) = {u | ρG\E(P )(u, v) ≤ ⌊

g
2⌋ − 1}.

Lemma 2.1. Given a graph G with minimum degree δ > 3, girth g, a path

P = p0p1 . . . pℓ, for which ρG(pi, pj) = |j − i|, and a vertex x /∈ V (P ),

|N (g, x, P )| ≥ 1 + δ +

⌊ g−1

2
⌋−1

∑

i=1

δ(δ − 3)i.

Proof. Given a vertex x ∈ V (G) for which x /∈ V (P ), G[N (g, x)] is a tree. If
not, there would be a cycle of length less than g in G a contradiction to g being
the girth. Since G[N (g, x, P )] ⊆ G[N (g, x)], G[N (g, x, P )] is also a tree.

We will construct the set N (g, x, P ). Note that x ∈ N (g, x, P ). Since
x /∈ V (P ), N(x) ⊆ N (g, x, P ) and |N(x)| ≥ δ, so |{u | ρG\E(P )(v, u) = 1}| ≥ δ.
For each vertex v1 ∈ N(x), if v1 /∈ V (P ), then |NG\E(P )(v1)| ≥ δ. If v1 ∈ V (P ),
either one or two of the edges incident to v1 are in E(P ), so |NG\E(P )(v1)| ≥
(δ − 2). Since x ∈ N(v1) we have that |{u | ρG\E(P )(v, u) = 2}| ≥ δ(δ − 3).

Since N (g, x, P ) is a tree, as long as 1 ≤ i ≤ ⌊ g−1
2 ⌋ − 1, we can perform a

similar analysis to show that |{u | ρG\E(P )(v, u) = i + 1}| ≥ δ(δ − 3)i. Hence,

|N (g, x, P )| ≥ 1 + δ +
∑⌊ g−1

2
⌋−1

i=1 δ(δ − 3)i.

3. Introduction of Main Lemma

Let h(δ, g) = 1 + δ +
∑⌊ g−1

2
⌋−1

i=1 δ(δ − 3)i. For any ε > 0, let L = ⌈ g−1
ε
⌉.

Lemma 3.1. Given a bridgeless graph G with |G| = n, girth g and minimum

degree δ = δ(G), there exists a set of increasing bridgeless subgraphs H0 ⊂ H1 ⊂
H2 ⊂ . . . Hk ⊆ G, vertex sets B0 ⊂ B1 ⊂ . . . for which Bi ⊆ V (Hi), and a set

of forests Fi for which the following hold:

1. For all v ∈ V (G), ρG(v,Hk) < L · g,

2. for all i, |Fi| ≥ h(δ, g)|Bi|, and

3. |Hi| ≤ (2g + ε)|Bi|.
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Proof. We will prove by induction on Bi, Fi, and Hi. For some v0 ∈ V (G), let
B0 = {v0}, F0 = G[N (g, v0)], and H0 = ({v0}, ∅). Certainly property 3 holds.

Note that F0 is a tree of order
∑⌊ g−1

2
⌋

α=0 δα ≥ h(δ, g), so property 2 holds. If
property 1 holds, we are done.

Consider Bi, Fi, Hi for which properties 2 and 3 hold and property 1 does not
yet hold. Since property 1 does not yet hold, there exists a vertex, v, for which
ρG(v,Hi) = L · g. Let p0 be a vertex in Hi for which ρG(v, p0) = L · g. Consider
a path of shortest length between p0 and v, call this path P = p0p1 . . . pLg−1v
with v = pLg. Let ei = pi−1pi. Let H ′

i = Hi. Call ej ∈ E(P ) covered if ej is
not a bridge in H ′

i ∪P . Let Pj = p0 . . . pj and P ′
j = pjpj+1 . . . pLg. We consider

a set of edges E(Pj) to be covered if no edge e ∈ E(Pj) is a bridge in H ′
i ∪ Pj .

We will build a set of vertices cov(P ) ⊆ V (G)\ (V (P )∪V (Hi) which is incident
to all the edges used to cover E(P ).

To expand H ′
i, note that e1 is not covered in H ′

i ∪ P . Since G is bridgeless,
there must be a path from H ′

i to P ′
1. Consider a path of length ρG\E(P )(H

′
i, P

′
1),

call it Q. Note that the two end vertices of Q are the only vertices in V (Q)
which can intersect with V (P ). Let pβ be the end vertex of Q on P \ p0. Add
Q and Pβ to H ′

i. Add the set of interior vertices of Q, V
(

Q
)

, to cov(P ), a set
of vertices which will eventually be incident to all the edges used to cover P .
Label the vertices in cov(P ) as qr such that r = ρG\E(P )(Hi, qr). Let B

′
i = Bi.

We will now consider an algorithm that will add to cov(P ), B′
i, and H ′

i.

1. If there is no longer an edge left uncovered, terminate the algorithm.

2. If there is an uncovered edge in P , consider the edge ej with the smallest
index j that is not yet covered. Since G is bridgeless, there exists a path
from H ′

i to P ′
j of length ρG\E(P )(H

′
i, P

′
j), call it R. Add V

(

R
)

to cov(P ).

Label the vertices v ∈ V
(

R
)

as qr where r = |cov(P )| + ρG\E(P )(H
′
i , v).

Add R and Pj to H ′
i.

3. If for all pairs of vertices qm1
, qm2

∈ cov(P ) we have ρG\E(P )(qm1
, Hi) ≥

m1 and ρG\E(P )(qm1
, qm2

) ≥ |m2−m1|, then return to step 1. If this was
not the case, consider one of the following augmentations.

(a) If ρG\E(P )(qm1
, Hi) = s < m1, remove {q1, . . . qm1−1} and any edges

incident to that vertex set from H ′
i and cov(P ). Consider a path

S, which is edge disjoint from P between qm−1 and Hi of length
ρG\E(P )(qm1

, Hi) = s. Add this path to H ′
i, add the vertices in

V
(

S
)

to cov(P ), and label them qℓ such that ℓ = ρG\E(P )(Hi, qℓ).
For values from m1 to t, where t is the highest current label r for
qr in cov(P ), relabel qm1

. . . qt = qs . . . qt−(m1−s). After relabeling,
return to step 3.

(b) If ρG\E(P )(qm1
, qm2

) = s < |m2 − m1|, without loss of generality,
let m1 < m2. Remove the vertices qm1+1, . . . , qm2−1 from H ′

i and
cov(P ). Consider a path S, which is edge disjoint from P between
qm1

and qm2
of length ρG\E(P )(qm1

, qm2
) = s. Add this path to H ′

i,

5



Hi

p1 p2 p3

q1 q3 q4 q6

q7 q11

q10q8 q9

q2 q5

Hi

p1 p2 p3

q1 q5

q4q2 q3

Figure 3.1: The left graph is an example of subgraph H
′ where step 3a will be executed. The

right is H
′

i
after execution of 3a.
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Hi

p1 p2 p3

q1

q2 q3

q4

q5 q6

q7

Hi

p1 p2 p3

q1

q2 q5

q6

q3 q4

Figure 3.2: The left graph is an example of subgraph H
′ where step 3b will be executed. The

right is H
′

i
after execution of 3b.

add the vertices in V
(

S
)

to cov(P ). Label the newly added vertices
qm1+1, . . . , qm1+s−1 and relabel qm2+1 . . . qt = qm1+s . . . qt−((m2−m1)−s).
After relabeling, return to step 3.

Any step for which step 3a or step 3b executes, there was a strict reduction
in |cov(P )|. On the path P , since ρ(Hi, pj) = j, there must be at least 1 vertex
in cov(P ), so at some point we must leave step 3 of the algorithm. Any time
step 2 executes, there is a strict increase in the number of edges in P that are
covered. Since P is finite, at some point the algorithm must return to step 1
and terminate.

LetHi+1 = H ′
i, Bi+1 = {Bi∪qr|r ≡ 0 mod g}, and Fi+1 = Fi

⋃

∪b∈Bi+1\Bi
N (g, b, P ).

Now we will show that Properties 2 and 3 of Lemma 3.1 hold.
To prove Property 3 holds, first remember that L = ⌈ g−1

ε
⌉ ≥ g−1

ε
, hence

g − 1 ≤ Lε. We will have two cases: L ≤ |Bi+1 \ Bi| and L > |Bi+1 \ Bi|. If

7



L ≤ |Bi+1 \Bi|, the following holds:

|Hi+1| ≤ |Hi+1|+ |P |+ |cov(P )| (3.1)

≤ |Hi|+ gL+ g|Bi+1 \Bi|+ (g − 1) (3.2)

≤ |Hi|+ g|Bi+1 \Bi|+ g|Bi+1 \Bi|+ Lε (3.3)

≤ |Hi|+ g|Bi+1 \Bi|+ g|Bi+1 \Bi|+ |Bi+1 \Bi|ε (3.4)

≤ |Hi|+ (2g + ε)|Bi+1 \Bi| (3.5)

≤ (2g + ε)|Bi|+ (2g + ε)|Bi+1 \Bi| (3.6)

≤ (2g + ε)|Bi+1|. (3.7)

To prove property 2, note that for each b ∈ Bi+1 \ Bi, ρG\E(P )(b,Hi) ≥
g, otherwise we would have augmented cov(P ) in step 3a the algorithm, so
ρG\E(P )(b, Bi) ≥ g. For any pair of vertices b1, b2 ∈ Bi+1 \Bi, ρG\E(P )(b1, b2) ≥
g, otherwise we would have augmented cov(P ) in step 3b of the algorithm.
Hence, N (g, b1, P ) ∩ N (g, b2, P ) = ∅. So,

|Fi+1| ≥ |Fi|+

∣

∣

∣

∣

∣

∣

⋃

b∈Bi+1\Bi

N (g, b, P )

∣

∣

∣

∣

∣

∣

(3.8)

≥ |Bi|h(δ, g) + |Bi+1 \Bi|h(δ, g) (3.9)

≥ |Bi+1|h(δ, g). (3.10)

In the case that L > |Bi+1 \ Bi|, redefine Bi+1 to be Bi

⋃

∪Lc=1pcg. Since
Lg = g|Bi+1 \ Bi|, the computation above from 3.1 to 3.7 holds. See that by
definition of P , for any b ∈ Bi+1 \ Bi, ρG(b,Hi) ≥ g, so N (g, b) ∩ V (Hi) = ∅.
For any b1, b2 ∈ Bi+1 \ Bi, ρG(b1, b2) ≥ g, hence N (g, b1) ∩ N (g, b2) = ∅. It
follows that

|Fi+1| ≥ |Fi|+

∣

∣

∣

∣

∣

∣

⋃

b∈Bi+1\Bi

N (g, b)

∣

∣

∣

∣

∣

∣

(3.11)

≥ |Bi|h(δ, g) + |Bi+1 \Bi|h(δ, g) (3.12)

≥ |Bi+1|h(δ, g). (3.13)

Hence, Property 2 of Lemma 3.1 holds in this case.
Since Hi and Bi are increasing subgraphs and vertex sets, and our graph G

is a finite graph, eventually 1 will hold. When this happens, let i = k.

Now we wish to use Lemma 3.1 to create an orientation on a subgraph of

G with a small diameter. First, we need to consider the following theorem by

Robbins.

Theorem 3.2 (Robbins[25]). A graph is bridgeless if and only if it admits a

strong orientation.
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Lemma 3.3. Let Hk ⊆ G, Bk ⊆ V (G), and Fk ⊆ G, and Properties 1, 2,

and 3 of Lemma 3.1 hold. There exists an orientation of Hk,
−→
Hk for which

diam
(−→
Hk

)

≤ (2g + ε) n
h(δ,g) .

Proof. By Property 2 of Lemma 3.1 we have that h(δ, g)|Bk| ≤ |Fk| ≤ n, so we
find that |Bk| ≤

n
h(δ,g) . In conjunction with Property 3 of Lemma 3.1, we find

that |Hk| ≤ (2g + ε)|Bk| ≤ (2g + ε) n
h(δ,g) .

Hence, there exists a bridgeless subraph Hk for which |Hk| ≤ (2g+ ε) n
h(δ,g) .

By Theorem 3.2, there is strong orientation of Hk,
−→
Hk. Note that diam

(−→
Hk

)

≤

|Hk| ≤ (2g + ε) n
h(δ,g) .

We now wish to extend our result in Lemma 3.3 for Hk ⊆ G to G. To do

so, we will need to consider an extension to the following two lemmas, one by

Fomin et al. [11] and one by Bau et al. [2]

Lemma 3.4 (Fomin, Matamala, Prisner and Rapaport [11]). Let G be a bridge-

less graph and H a bridgeless subgraph of G with ρG(v,H) ≤ 1 for all v ∈ V (G).

Given an orientation
−→
H such that diam

(−→
H
)

= d, then G has an orientation of

d+ 4.

Lemma 3.5 (Bau and Dankelmann[2]). Let G be a bridgeless graph and H

a bridgeless subgraph of G such that ρG(v,H) ≤ 2 for all v ∈ V (G). Let
−→
H

be a strongly connected orientation of H of diameter d. Then there exists a

strongly connected orientation of G of diameter at most d+12 that extends the

orientation of
−→
H.

We have that for any v ∈ V (G), ρG(v,Hk) ≤ Lg. Since Lg > 2, we will need

to extend this lemma as seen below.

Lemma 3.6. Let G be a bridgeless graph, H a bridgeless subgraph of G, and

let s be an integer such that s ≥ 2 and for all v ∈ V (G), ρG(v,H) ≤ s. Let
−→
H be a strongly connected orientation of H of diameter d. Then there exists a

strongly connected orientation of G of diameter at most d+4
(

s+1
2

)

that extends

the orientation of
−→
H .

Proof. Let H ⊆ G be a bridgeless subgraph with an orientation
−→
H such that

diam
(−→
H
)

= d and ρG(v,H) ≤ k for all v ∈ V (G). Let V1 := {v | ρG(v,H) =

1}. Given a vertex v ∈ V1, label one of its neighbors in H as x. Let
−→
H ′ =

−→
H , we

will continue to augment
−→
H ′ throughout the proof. We will call

−→
H ′ extendable

at step i if for any v ∈ V (
−→
H ′), ρ−→

H′
(v,H) + ρ−→

H′
(H, v) ≤ 2i and ρG(H, v) ≤ i.

Assume there is a vertex z for which ρG(
−→
H, z) = s. First, we will show

that there exists a graph
−→
H ′ that is extendable at step 1. If there is a vertex

9



v ∈ V1 \ V
(−→
H ′

)

for which ρG\vx(v,H) = 1, there exists some vertex y, y 6= x

for which vy ∈ E(G). Let
−→
H ′ =

−→
H ∪ −−→xvy. Repeat this until there are no

longer vertices v ∈ V1 \ V
(−→
H ′

)

for which ρG\vx(v,H) = 1. Note that for any

v ∈ V
(−→
H ′

)

, ρ−→
H′

(v,H) + ρ−→
H′

(H, v) ≤ 2 and ρG(v,H) ≤ 1, so
−→
H ′ is extendable

at step 1.

We will show that for any 1 ≤ i < 2s, if
−→
H ′ is extendable at step i, then it

is also extendable at step i + 1. If there is a vertex v ∈ V1 \ V
(−→
H ′

)

for which

ρG\vx(v,H) = i, let Q be a path of length i from v to H which does not include

vx. Consider a vertex v′ ∈ V (Q) for which v′ ∈ V
(−→
H ′

)

and ρG\vx(v
′, v) is

minimized. If v′ ∈ V (H), add
−→
Q ∪ −→xv to

−→
H ′. See that for all v ∈ V

(−→
H ′

)

,

ρ−→
H′

(v,H) + ρ−→
H′

(H, v) ≤ 2i and ρG(v,H) ≤ i, so
−→
H ′ is extendable at step i.

If v′ /∈ V (H), let Q′ be the subpath of Q from v to v′. Since
−→
H ′ is extendable

at step i, there exists an integer j for which |j| < i, ρ−→
H′

(v′, H) ≤ i − j, and

ρ−→
H′

(H, v′) ≤ i+j. If j ≥ 0, add
←−
Q′∪−→vx to

−→
H ′. If j < 0, add

−→
Q′∪−→xv to

−→
H ′. See in

each case that for all v ∈ V
(−→
H ′

)

, ρ−→
H′

(v,H)+ρ−→
H′

(H, v) ≤ 2i and ρG(v,H) ≤ i.

Once we have an extendable subgraph
−→
H ′ at step 2s, and have considered

all vertices v ∈ V1 \ V
(−→
H ′

)

for which ρG\e(v,H) ≤ 2s, there are no more

vertices v ∈ V1 \ V
(−→
H ′

)

. If there were a vertex v ∈ V1 \ V
(−→
H ′

)

for which

ρG\e(v,H) > 2s, notice that this would mean there exists a vertex v′ ∈ V (G)
for which ρG(v

′, H) > s, a contradiction to the assumption of the lemma.

Since
−→
H ′ was extendable at step 2s, for any v ∈ V

(−→
H ′

)

, ρ−→
H′

(v,H) ≤ 2s

and ρ−→
H′

(H, v) ≤ 2s, so
−−−→
diam(H ′) ≤

−−−→
diam(H) + 4s.

We will now prove Theorem 1.1.

Proof. In Lemma 3.1 we showed that there is a bridgeless subgraph Hk ⊆ G
such that for any v ∈ V (G), ρG(v,Hk) ≤ Lg and

−−−→
diam(Hk) ≤ (2g + ε)

n

h(δ, g)
.

By a combination of this and Lemma 3.6 with s = L · g, we find

−−−→
diam(G) ≤

−−−→
diam(Hk) +

Lg
∑

i=1

4i ≤ (2g + ε)
n

h(δ, g)
+ 4

(

Lg + 1

2

)

.
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Corollary 3.7. In Theorem 1.1, if g = 3 and 0 < ε < 1,

−−−→
diam(G) ≤ (2g + ε)

n

h(δ, g)
+ 4

(

Lg + 1

2

)

< 7
n

δ + 1
+O(1).

This is an improvement on the current bound by Surmacs [26]. It is still left

as an open question whether this is the smallest possible upper bound in the

case without girth. The same question could be asked when including girth as

well.
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[6] G. Cochran, É. Czabarka, P. Dankelmann, and L. Székely. A Size Con-
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