Large Girth and Small Oriented Diameter Graphs

Garner Cochran¹

Department of Mathematics and Computer Science Berry College 2277 Martha Berry Hwy NW Mt Berry GA 30149 USA

Abstract

In 2015, Dankelmann and Bau proved that for every bridgeless graph G of order n and minimum degree δ there is an orientation of diameter at most $11\frac{n}{\delta+1} + 9$. In 2016, Surmacs reduced this bound to $7\frac{n}{\delta+1}$. In this paper, we consider the girth of a graph g and show that for any $\varepsilon > 0$ there is a bound of the form $(2g + \varepsilon)\frac{n}{h(\delta,g)} + O(1)$, where $h(\delta,g)$ is a polynomial. Letting g = 3 and $\varepsilon < 1$ gives an inprovement on the result by Surmacs.

Keywords: diameter, oriented diameter, orientation, oriented graph, distance, size, girth

1. Definitions

Let G = (V, E) denote a finite simple graph with vertex set V and edge set $E \subseteq \binom{V}{2}$. Given G = (V, E), a subgraph H of G, denoted $H \subseteq G$, is a graph H = (V', E') for which $V' \subseteq V$ and $E' \subseteq E \cap \binom{V'}{2}$. By |G| we mean the order of G, |V(G)|. A digraph $\overrightarrow{G} = (V, A)$ is a graph with a vertex set V and an arc set A where each arc is oriented and the orientation of the arc a with ends u and v is in the direction from u to v will be denoted as \overrightarrow{uv} . If a set of arcs A when considered to be unordered is the set E, we call \overrightarrow{G} an orientation of the graph G. A path is defined as P = (V, E), where $V = \{v_0, v_1, \ldots, v_n\}$ and $E = \{x_0x_1, x_1x_2, \ldots, x_{n-1}x_n\}$. We will denote this path $P = v_0v_1 \ldots v_n$.

Email address: gcochran@berry.edu (Garner Cochran)

Given such a path P, a cycle is defined as a graph $G = (V(P), E(P) \cup \{v_0v_n\})$. Given an unoriented path $P = v_0v_1 \dots v_n$, we denote using \overrightarrow{P} the corresponding oriented path from v_0 to v_n , we will denote using \overleftarrow{P} the oriented path from v_n to v_0 . Denote the interior of a path $\overrightarrow{P} = v_1 \dots v_{n-1}$. Given a graph G and an edge set $E' \subseteq E$, define $G \setminus E' = (V, E \setminus E')$. Given an edge set containing a single edge, $E' = \{e\}$, we may leave off the brackets, i.e. $G \setminus \{e\} = G \setminus e = (V, E \setminus \{e\})$. We define a forest as a graph containing no cycles. A connected forest is called a tree.

For a set $B \subseteq V(G)$, the induced subgraph of G on the vertex set B is denoted by G[B]. That is, $G[B] = (B, {B \choose 2} \cap V)$. Given G a simple graph and $v \in V(G)$, the degree of v in G is the number of vertices adjacent to v, denoted deg $(v) = |\{uv \mid u \in V(G), u \neq v, uv \in E(G)\}|$. The minimum degree of a graph G is $\delta(G) = \min\{\deg(v) \mid v \in V(G)\}$. If the graph G is unambiguous, we let $\delta(G) = \delta$. We define the closed neighborhood of a vertex $v \in V(H)$ in the given subgraph H as, $N_H[v] = \{u \mid u = v \text{ or } uv \in E(H)\}$. The open neighborhood of v in a given subgraph H, denoted $N_H(v)$, is defined as $N_H(v) = \{u \mid u \neq v \text{ and } uv \in E(H)\}$. We may also use N[v] and N(v) if the subgraph H is unambiguous. Let g(G) = g be the girth of G or the length of the smallest cycle in the graph G.

We define the *distance* from u and v in a graph G or digraph \overrightarrow{G} as the minimum number of edges or arcs on a path from u to v. We denote this as $\rho_G(u, v)$ or $\rho_{\overrightarrow{G}}(u, v)$. If there does not exist a path from u to v, we say that $\rho_G(u, v) = \infty$ or $\rho_{\overrightarrow{G}}(u, v) = \infty$. We define the *diameter* of G or \overrightarrow{G} to be diam $(G) = \max\{\rho_G(u, v) \mid u, v \in V(G)\}$ and diam $(\overrightarrow{G}) = \max\{\rho_{\overrightarrow{G}}(u, v) \mid u, v \in V(\overrightarrow{G})\}$ respectively. If diam $(G) < \infty$, we call G connected. An edge $e \in E(G)$ (or an arc $a \in A(\overrightarrow{G})$) is called a *bridge* if diam $(G) < \infty$ and diam $(G \setminus e) = \infty$ (similar for \overrightarrow{G}). If a graph contains no bridges, we call it *bridgeless*. If diam $(\overrightarrow{G}) < \infty$, then we call \overrightarrow{G} strongly connected.

A classical result, due to Robbins [25], states that every bridgeless graph has a strongly connected orientation. There may be many such orientations of a graph. A natural next question is what it may mean to find a "good" such orientation. Many notions of an objective for optimality of such orientations may be considered. For the purposes of this paper, given a graph G, let $\overrightarrow{\mathcal{G}}$ represent the set of all strongly connected orientations of G. We wish to minimize the oriented diameter of a graph G, defined as the following:

$$\overrightarrow{\operatorname{diam}}(G) = \min_{\overrightarrow{G} \in \overrightarrow{\mathcal{G}}} \operatorname{diam}\left(\overrightarrow{G}\right).$$

It was shown by Chvátal and Thomassen [5] that finding the oriented diameter of a given graph is NP-complete. In the same paper, Chvátal and Thomassen found that for the class of bridgeless graphs with diameter d, $\overrightarrow{\text{diam}}(G) \leq 2d^2 + 2d$ and constructed bridgeless graphs of diameter d for which every strong orientation admits a diameter of at least $\frac{1}{2}d^2 + d$. The upper bound was improved by Babu, Benson, Rajendraprasad and Vaka [1] to $1.373d^2 + 6.971d - 1$.

The paper by Chvátal and Thomassen [5] has led to further investigation of such bounds on the oriented diameter given certain graph parameters, including the diameter [10, 15, 19], the radius [4], the domination number [11, 20], the maximum degree [8], the minimum degree [2, 7, 26], the number of edges of the graph [6], and other graph classes [3, 12, 13, 14, 15, 17, 18, 21, 22, 23, 24, 27, 28]. See the survey by Koh and Tay [16] for more information on some of these results.

Erdős, Pach, Pollack and Tuza [9] proved that the diameter of connected graphs of order n and minimum degree δ is at most $\frac{3n}{\delta+1} + O(1)$. Bau and Dankelmann [2] sought to investigate a similar bound for the oriented diameter and proved that given a bridgeless graph G of order n and minimum degree δ , $\frac{3n}{\delta+1} \leq \overrightarrow{\operatorname{diam}}(G) \leq \frac{11n}{\delta+1}$. The upper bound was improved to $\frac{7n}{\delta+1}$ by Surmacs [26].

In this paper, we will consider upper bounds on the oriented diameter of a graph considering both the minimum degree δ and the girth g of a graph. In particular we will prove the following theorem.

Theorem 1.1. Given G = (V, E), a bridgeless graph of order n and minimum degree δ , there is a polynomial in δ and g, $h(\delta, g)$ of degree $\lfloor \frac{g-1}{2} \rfloor$, for which, given any choice of $\varepsilon > 0$,

$$\overrightarrow{diam}(G) \le (2g + \varepsilon)\frac{n}{h(\delta, g)} + c.$$

We will also show that in the case of general bridgeless graphs, that $\overline{\operatorname{diam}}(G) \leq (2g + \varepsilon)\frac{n}{\delta+1} + O(1)$. Since bridgeless graphs have a girth $g \geq 3$, we find that if we choose $0 < \varepsilon < 1$, this gives an improvement on the bound found in the paper by Surmacs [26].

2. Preliminaries

Given a vertex $v \in V(G)$, a natural number g, and a path P, let $\mathcal{N}(g, v) = \{u \mid \rho_G(u, v) \leq \lfloor \frac{g}{2} \rfloor - 1\}$ and $\mathcal{N}(g, v, P) = \{u \mid \rho_{G \setminus E(P)}(u, v) \leq \lfloor \frac{g}{2} \rfloor - 1\}.$

Lemma 2.1. Given a graph G with minimum degree $\delta > 3$, girth g, a path $P = p_0 p_1 \dots p_\ell$, for which $\rho_G(p_i, p_j) = |j - i|$, and a vertex $x \notin V(P)$,

$$|\mathcal{N}(g, x, P)| \ge 1 + \delta + \sum_{i=1}^{\lfloor \frac{g-1}{2} \rfloor - 1} \delta(\delta - 3)^i.$$

Proof. Given a vertex $x \in V(G)$ for which $x \notin V(P)$, $G[\mathcal{N}(g, x)]$ is a tree. If not, there would be a cycle of length less than g in G a contradiction to g being the girth. Since $G[\mathcal{N}(g, x, P)] \subseteq G[\mathcal{N}(g, x)]$, $G[\mathcal{N}(g, x, P)]$ is also a tree.

We will construct the set $\mathcal{N}(g, x, P)$. Note that $x \in \mathcal{N}(g, x, P)$. Since $x \notin V(P), N(x) \subseteq \mathcal{N}(g, x, P)$ and $|N(x)| \ge \delta$, so $|\{u \mid \rho_{G \setminus E(P)}(v, u) = 1\}| \ge \delta$. For each vertex $v_1 \in N(x)$, if $v_1 \notin V(P)$, then $|N_{G \setminus E(P)}(v_1)| \ge \delta$. If $v_1 \in V(P)$, either one or two of the edges incident to v_1 are in E(P), so $|N_{G \setminus E(P)}(v_1)| \ge (\delta - 2)$. Since $x \in N(v_1)$ we have that $|\{u \mid \rho_{G \setminus E(P)}(v, u) = 2\}| \ge \delta(\delta - 3)$. Since $\mathcal{N}(g, x, P)$ is a tree, as long as $1 \le i \le \lfloor \frac{g-1}{2} \rfloor - 1$, we can perform a similar analysis to show that $|\{u \mid \rho_{G \setminus E(P)}(v, u) = i + 1\}| \ge \delta(\delta - 3)^i$. Hence, $|\mathcal{N}(g, x, P)| \ge 1 + \delta + \sum_{i=1}^{\lfloor \frac{g-1}{2} \rfloor - 1} \delta(\delta - 3)^i$.

3. Introduction of Main Lemma

Let
$$h(\delta, g) = 1 + \delta + \sum_{i=1}^{\lfloor \frac{g-1}{2} \rfloor - 1} \delta(\delta - 3)^i$$
. For any $\varepsilon > 0$, let $L = \lceil \frac{g-1}{\varepsilon} \rceil$.

Lemma 3.1. Given a bridgeless graph G with |G| = n, girth g and minimum degree $\delta = \delta(G)$, there exists a set of increasing bridgeless subgraphs $H_0 \subset H_1 \subset H_2 \subset \ldots H_k \subseteq G$, vertex sets $B_0 \subset B_1 \subset \ldots$ for which $B_i \subseteq V(H_i)$, and a set of forests F_i for which the following hold:

- 1. For all $v \in V(G)$, $\rho_G(v, H_k) < L \cdot g$,
- 2. for all $i, |F_i| \ge h(\delta, g)|B_i|$, and
- 3. $|H_i| \leq (2g + \varepsilon)|B_i|$.

Proof. We will prove by induction on B_i, F_i , and H_i . For some $v_0 \in V(G)$, let $B_0 = \{v_0\}, F_0 = G[\mathcal{N}(g, v_0)]$, and $H_0 = (\{v_0\}, \emptyset)$. Certainly property 3 holds. Note that F_0 is a tree of order $\sum_{\alpha=0}^{\lfloor \frac{g-1}{2} \rfloor} \delta^{\alpha} \geq h(\delta, g)$, so property 2 holds. If property 1 holds, we are done.

Consider B_i , F_i , H_i for which properties 2 and 3 hold and property 1 does not yet hold. Since property 1 does not yet hold, there exists a vertex, v, for which $\rho_G(v, H_i) = L \cdot g$. Let p_0 be a vertex in H_i for which $\rho_G(v, p_0) = L \cdot g$. Consider a path of shortest length between p_0 and v, call this path $P = p_0 p_1 \dots p_{Lg-1} v$ with $v = p_{Lg}$. Let $e_i = p_{i-1}p_i$. Let $H'_i = H_i$. Call $e_j \in E(P)$ covered if e_j is not a bridge in $H'_i \cup P$. Let $P_j = p_0 \dots p_j$ and $P'_j = p_j p_{j+1} \dots p_{Lg}$. We consider a set of edges $E(P_j)$ to be covered if no edge $e \in E(P_j)$ is a bridge in $H'_i \cup P_j$. We will build a set of vertices $cov(P) \subseteq V(G) \setminus (V(P) \cup V(H_i)$ which is incident to all the edges used to cover E(P).

To expand H'_i , note that e_1 is not covered in $H'_i \cup P$. Since G is bridgeless, there must be a path from H'_i to P'_1 . Consider a path of length $\rho_{G \setminus E(P)}(H'_i, P'_1)$, call it Q. Note that the two end vertices of Q are the only vertices in V(Q)which can intersect with V(P). Let p_β be the end vertex of Q on $P \setminus p_0$. Add Q and P_β to H'_i . Add the set of interior vertices of Q, $V(\overline{Q})$, to cov(P), a set of vertices which will eventually be incident to all the edges used to cover P. Label the vertices in cov(P) as q_r such that $r = \rho_{G \setminus E(P)}(H_i, q_r)$. Let $B'_i = B_i$. We will now consider an algorithm that will add to cov(P), B'_i , and H'_i .

- 1. If there is no longer an edge left uncovered, terminate the algorithm.
- 2. If there is an uncovered edge in P, consider the edge e_j with the smallest index j that is not yet covered. Since G is bridgeless, there exists a path from H'_i to P'_j of length $\rho_{G \setminus E(P)}(H'_i, P'_j)$, call it R. Add $V(\overline{R})$ to cov(P). Label the vertices $v \in V(\overline{R})$ as q_r where $r = |cov(P)| + \rho_{G \setminus E(P)}(H'_i, v)$. Add R and P_j to H'_i .
- 3. If for all pairs of vertices $q_{m_1}, q_{m_2} \in cov(P)$ we have $\rho_{G \setminus E(P)}(q_{m_1}, H_i) \ge m_1$ and $\rho_{G \setminus E(P)}(q_{m_1}, q_{m_2}) \ge |m_2 m_1|$, then return to step 1. If this was not the case, consider one of the following augmentations.
 - (a) If $\rho_{G \setminus E(P)}(q_{m_1}, H_i) = s < m_1$, remove $\{q_1, \dots, q_{m_1-1}\}$ and any edges incident to that vertex set from H'_i and cov(P). Consider a path S, which is edge disjoint from P between q_{m-1} and H_i of length $\rho_{G \setminus E(P)}(q_{m_1}, H_i) = s$. Add this path to H'_i , add the vertices in $V(\overline{S})$ to cov(P), and label them q_ℓ such that $\ell = \rho_{G \setminus E(P)}(H_i, q_\ell)$. For values from m_1 to t, where t is the highest current label r for q_r in cov(P), relabel $q_{m_1} \dots q_t = q_s \dots q_{t-(m_1-s)}$. After relabeling, return to step 3.
 - (b) If $\rho_{G \setminus E(P)}(q_{m_1}, q_{m_2}) = s < |m_2 m_1|$, without loss of generality, let $m_1 < m_2$. Remove the vertices $q_{m_1+1}, \ldots, q_{m_2-1}$ from H'_i and cov(P). Consider a path S, which is edge disjoint from P between q_{m_1} and q_{m_2} of length $\rho_{G \setminus E(P)}(q_{m_1}, q_{m_2}) = s$. Add this path to H'_i ,

Figure 3.1: The left graph is an example of subgraph H' where step 3a will be executed. The right is H_i' after execution of 3a.

Figure 3.2: The left graph is an example of subgraph H' where step 3b will be executed. The right is H'_i after execution of 3b.

add the vertices in $V(\overline{S})$ to cov(P). Label the newly added vertices $q_{m_1+1}, \ldots, q_{m_1+s-1}$ and relabel $q_{m_2+1} \ldots q_t = q_{m_1+s} \ldots q_{t-((m_2-m_1)-s)}$. After relabeling, return to step 3.

Any step for which step 3a or step 3b executes, there was a strict reduction in |cov(P)|. On the path P, since $\rho(H_i, p_j) = j$, there must be at least 1 vertex in cov(P), so at some point we must leave step 3 of the algorithm. Any time step 2 executes, there is a strict increase in the number of edges in P that are covered. Since P is finite, at some point the algorithm must return to step 1 and terminate.

Let $H_{i+1} = H'_i$, $B_{i+1} = \{B_i \cup q_r | r \equiv 0 \mod g\}$, and $F_{i+1} = F_i \bigcup \cup_{b \in B_{i+1} \setminus B_i} \mathcal{N}(g, b, P)$. Now we will show that Properties 2 and 3 of Lemma 3.1 hold.

To prove Property 3 holds, first remember that $L = \lceil \frac{g-1}{\varepsilon} \rceil \geq \frac{g-1}{\varepsilon}$, hence $g-1 \leq L\varepsilon$. We will have two cases: $L \leq |B_{i+1} \setminus B_i|$ and $L > |B_{i+1} \setminus B_i|$. If

 $L \leq |B_{i+1} \setminus B_i|$, the following holds:

$$|H_{i+1}| \le |H_{i+1}| + |P| + |cov(P)| \tag{3.1}$$

$$\leq |H_i| + gL + g|B_{i+1} \setminus B_i| + (g-1)$$
(3.2)

$$\leq |H_i| + g|B_{i+1} \setminus B_i| + g|B_{i+1} \setminus B_i| + L\varepsilon \tag{3.3}$$

$$\leq |H_i| + g|B_{i+1} \setminus B_i| + g|B_{i+1} \setminus B_i| + |B_{i+1} \setminus B_i|\varepsilon$$
(3.4)

$$\leq |H_i| + (2g + \varepsilon)|B_{i+1} \setminus B_i| \tag{3.5}$$

$$\leq (2g+\varepsilon)|B_i| + (2g+\varepsilon)|B_{i+1} \setminus B_i|$$
(3.6)

$$\leq (2g+\varepsilon)|B_{i+1}|. \tag{3.7}$$

To prove property 2, note that for each $b \in B_{i+1} \setminus B_i$, $\rho_{G \setminus E(P)}(b, H_i) \geq b_{i+1}$ g, otherwise we would have augmented cov(P) in step 3a the algorithm, so $\rho_{G\setminus E(P)}(b, B_i) \geq g$. For any pair of vertices $b_1, b_2 \in B_{i+1} \setminus B_i, \rho_{G\setminus E(P)}(b_1, b_2) \geq g$. g, otherwise we would have augmented cov(P) in step 3b of the algorithm. Hence, $\mathcal{N}(g, b_1, P) \cap \mathcal{N}(g, b_2, P) = \emptyset$. So,

$$|F_{i+1}| \ge |F_i| + \left| \bigcup_{b \in B_{i+1} \setminus B_i} \mathcal{N}(g, b, P) \right|$$
(3.8)

$$\geq |B_i| h(\delta, g) + |B_{i+1} \setminus B_i| h(\delta, g)$$
(3.9)

ı.

$$\geq |B_{i+1}| h(\delta, g). \tag{3.10}$$

In the case that $L > |B_{i+1} \setminus B_i|$, redefine B_{i+1} to be $B_i \bigcup \bigcup_{c=1}^{L} p_{cg}$. Since $Lg = g|B_{i+1} \setminus B_i|$, the computation above from 3.1 to 3.7 holds. See that by definition of P, for any $b \in B_{i+1} \setminus B_i$, $\rho_G(b, H_i) \ge g$, so $\mathcal{N}(g, b) \cap V(H_i) = \emptyset$. For any $b_1, b_2 \in B_{i+1} \setminus B_i$, $\rho_G(b_1, b_2) \ge g$, hence $\mathcal{N}(g, b_1) \cap \mathcal{N}(g, b_2) = \emptyset$. It follows that

$$|F_{i+1}| \ge |F_i| + \left| \bigcup_{b \in B_{i+1} \setminus B_i} \mathcal{N}(g, b) \right|$$
(3.11)

$$\geq |B_i| h(\delta, g) + |B_{i+1} \setminus B_i| h(\delta, g)$$
(3.12)

$$\geq |B_{i+1}| h(\delta, g). \tag{3.13}$$

Hence, Property 2 of Lemma 3.1 holds in this case.

Since H_i and B_i are increasing subgraphs and vertex sets, and our graph G is a finite graph, eventually 1 will hold. When this happens, let i = k.

Now we wish to use Lemma 3.1 to create an orientation on a subgraph of G with a small diameter. First, we need to consider the following theorem by Robbins.

Theorem 3.2 (Robbins[25]). A graph is bridgeless if and only if it admits a strong orientation.

Lemma 3.3. Let $H_k \subseteq G$, $B_k \subseteq V(G)$, and $F_k \subseteq G$, and Properties 1, 2, and 3 of Lemma 3.1 hold. There exists an orientation of H_k , $\overrightarrow{H_k}$ for which $diam\left(\overrightarrow{H_k}\right) \leq (2g + \varepsilon) \frac{n}{h(\delta,g)}$.

Proof. By Property 2 of Lemma 3.1 we have that $h(\delta, g)|B_k| \leq |F_k| \leq n$, so we find that $|B_k| \leq \frac{n}{h(\delta,g)}$. In conjunction with Property 3 of Lemma 3.1, we find that $|H_k| \leq (2g + \varepsilon)|B_k| \leq (2g + \varepsilon)\frac{n}{h(\delta,g)}$.

Hence, there exists a bridgeless subraph H_k for which $|H_k| \leq (2g + \varepsilon) \frac{n}{h(\delta,g)}$. By Theorem 3.2, there is strong orientation of H_k , $\overrightarrow{H_k}$. Note that diam $\left(\overrightarrow{H_k}\right) \leq |H_k| \leq (2g + \varepsilon) \frac{n}{h(\delta,g)}$.

We now wish to extend our result in Lemma 3.3 for $H_k \subseteq G$ to G. To do so, we will need to consider an extension to the following two lemmas, one by Fomin et al. [11] and one by Bau et al. [2]

Lemma 3.4 (Fomin, Matamala, Prisner and Rapaport [11]). Let G be a bridgeless graph and H a bridgeless subgraph of G with $\rho_G(v, H) \leq 1$ for all $v \in V(G)$. Given an orientation \overrightarrow{H} such that diam $(\overrightarrow{H}) = d$, then G has an orientation of d+4.

Lemma 3.5 (Bau and Dankelmann[2]). Let G be a bridgeless graph and H a bridgeless subgraph of G such that $\rho_G(v, H) \leq 2$ for all $v \in V(G)$. Let \overrightarrow{H} be a strongly connected orientation of H of diameter d. Then there exists a strongly connected orientation of G of diameter at most d + 12 that extends the orientation of \overrightarrow{H} .

We have that for any $v \in V(G)$, $\rho_G(v, H_k) \leq Lg$. Since Lg > 2, we will need to extend this lemma as seen below.

Lemma 3.6. Let G be a bridgeless graph, H a bridgeless subgraph of G, and let s be an integer such that $s \ge 2$ and for all $v \in V(G)$, $\rho_G(v, H) \le s$. Let \overrightarrow{H} be a strongly connected orientation of H of diameter d. Then there exists a strongly connected orientation of G of diameter at most $d + 4\binom{s+1}{2}$ that extends the orientation of \overrightarrow{H} .

Proof. Let $H \subseteq G$ be a bridgeless subgraph with an orientation \overrightarrow{H} such that diam $(\overrightarrow{H}) = d$ and $\rho_G(v, H) \leq k$ for all $v \in V(G)$. Let $V_1 := \{v \mid \rho_G(v, H) = 1\}$. Given a vertex $v \in V_1$, label one of its neighbors in H as x. Let $\overrightarrow{H'} = \overrightarrow{H}$, we will continue to augment $\overrightarrow{H'}$ throughout the proof. We will call $\overrightarrow{H'}$ extendable at step i if for any $v \in V(\overrightarrow{H'})$, $\rho_{\overrightarrow{H'}}(v, H) + \rho_{\overrightarrow{H'}}(H, v) \leq 2i$ and $\rho_G(H, v) \leq i$.

Assume there is a vertex z for which $\rho_G(\vec{H}, z) = s$. First, we will show that there exists a graph $\vec{H'}$ that is extendable at step 1. If there is a vertex

 $v \in V_1 \setminus V\left(\overrightarrow{H'}\right)$ for which $\rho_{G\setminus vx}(v, H) = 1$, there exists some vertex $y, y \neq x$ for which $vy \in E(G)$. Let $\overrightarrow{H'} = \overrightarrow{H} \cup \overrightarrow{xvy}$. Repeat this until there are no longer vertices $v \in V_1 \setminus V\left(\overrightarrow{H'}\right)$ for which $\rho_{G\setminus vx}(v, H) = 1$. Note that for any $v \in V\left(\overrightarrow{H'}\right), \rho_{\overrightarrow{H'}}(v, H) + \rho_{\overrightarrow{H'}}(H, v) \leq 2$ and $\rho_G(v, H) \leq 1$, so $\overrightarrow{H'}$ is extendable at step 1.

We will show that for any $1 \leq i < 2s$, if $\overrightarrow{H'}$ is extendable at step i, then it is also extendable at step i + 1. If there is a vertex $v \in V_1 \setminus V\left(\overrightarrow{H'}\right)$ for which $\rho_{G\setminus vx}(v,H) = i$, let Q be a path of length i from v to H which does not include vx. Consider a vertex $v' \in V(Q)$ for which $v' \in V\left(\overrightarrow{H'}\right)$ and $\rho_{G\setminus vx}(v',v)$ is minimized. If $v' \in V(H)$, add $\overrightarrow{Q} \cup \overrightarrow{xv}$ to $\overrightarrow{H'}$. See that for all $v \in V\left(\overrightarrow{H'}\right)$, $\rho_{\overrightarrow{H'}}(v,H) + \rho_{\overrightarrow{H'}}(H,v) \leq 2i$ and $\rho_G(v,H) \leq i$, so $\overrightarrow{H'}$ is extendable at step i.

If $v' \notin V(H)$, let Q' be the subpath of Q from v to v'. Since $\overrightarrow{H'}$ is extendable at step i, there exists an integer j for which |j| < i, $\rho_{\overrightarrow{H'}}(v', H) \leq i - j$, and $\rho_{\overrightarrow{H'}}(H, v') \leq i + j$. If $j \geq 0$, add $\overleftarrow{Q'} \cup \overrightarrow{vx}$ to $\overrightarrow{H'}$. If j < 0, add $\overrightarrow{Q'} \cup \overrightarrow{xv}$ to $\overrightarrow{H'}$. See in each case that for all $v \in V\left(\overrightarrow{H'}\right)$, $\rho_{\overrightarrow{H'}}(v, H) + \rho_{\overrightarrow{H'}}(H, v) \leq 2i$ and $\rho_G(v, H) \leq i$.

Once we have an extendable subgraph $\overrightarrow{H'}$ at step 2s, and have considered all vertices $v \in V_1 \setminus V\left(\overrightarrow{H'}\right)$ for which $\rho_{G \setminus e}(v, H) \leq 2s$, there are no more vertices $v \in V_1 \setminus V\left(\overrightarrow{H'}\right)$. If there were a vertex $v \in V_1 \setminus V\left(\overrightarrow{H'}\right)$ for which $\rho_{G \setminus e}(v, H) > 2s$, notice that this would mean there exists a vertex $v' \in V(G)$ for which $\rho_G(v', H) > s$, a contradiction to the assumption of the lemma.

Since $\overrightarrow{H'}$ was extendable at step 2s, for any $v \in V\left(\overrightarrow{H'}\right)$, $\rho_{\overrightarrow{H'}}(v,H) \leq 2s$ and $\rho_{\overrightarrow{H'}}(H,v) \leq 2s$, so $\overrightarrow{\operatorname{diam}}(H') \leq \overrightarrow{\operatorname{diam}}(H) + 4s$.

We will now prove Theorem 1.1.

Proof. In Lemma 3.1 we showed that there is a bridgeless subgraph $H_k \subseteq G$ such that for any $v \in V(G)$, $\rho_G(v, H_k) \leq Lg$ and

$$\overrightarrow{\operatorname{diam}}(H_k) \le (2g + \varepsilon) \frac{n}{h(\delta, g)}$$

By a combination of this and Lemma 3.6 with $s = L \cdot g$, we find

$$\overrightarrow{\operatorname{diam}}(G) \le \overrightarrow{\operatorname{diam}}(H_k) + \sum_{i=1}^{L_g} 4i \le (2g + \varepsilon) \frac{n}{h(\delta, g)} + 4 \binom{Lg + 1}{2}.$$

Corollary 3.7. In Theorem 1.1, if g = 3 and $0 < \varepsilon < 1$,

$$\overrightarrow{diam}(G) \leq (2g+\varepsilon)\frac{n}{h(\delta,g)} + 4\binom{Lg+1}{2} < 7\frac{n}{\delta+1} + O(1).$$

This is an improvement on the current bound by Surmacs [26]. It is still left as an open question whether this is the smallest possible upper bound in the case without girth. The same question could be asked when including girth as well.

4. Acknowledgments

I would like to thank Peter Dankelmann, Éva Czabarka, and László Székely for their mentorship and guidance. I would also like to thank Peter Dankelmann for originally introducting me to this problem and Zhiyu Wang for helping me edit the paper prior to submission.

References

- J. Babu, D. Benson, D. Rajendraprasad, and S. N. Vaka. An improvement to Chvátal and Thomassen's upper bound for oriented diameter. *Discrete Applied Mathematics*, 304:432–440, December 2021.
- [2] S. Bau and P. Dankelmann. Diameter of orientations of graphs with given minimum degree. *European Journal of Combinatorics*, 49:126–133, 2015.
- [3] B. Chen and A. Chang. Diameter Three Orientability of Bipartite Graphs. The Electronic Journal of Combinatorics, 28(2):P2.25, May 2021.
- [4] F.R.K. Chung, M. R. Garey, and R. E. Tarjan. Strongly connected orientations of mixed multigraphs. *Networks*, 15(4):477–484, 1985.
- [5] V. Chvátal and C. Thomassen. Distances in orientations of graphs. Journal of Combinatorial Theory, Series B, 24(1):61–75, 1978.
- [6] G. Cochran, É. Czabarka, P. Dankelmann, and L. Székely. A Size Condition for Diameter Two Orientable Graphs. *Graphs and Combinatorics*, 37(2):527–544, March 2021.

- [7] É. Czabarka, P. Dankelmann, and L. Székely. A degree condition for diameter two orientability of graphs. *Discrete Mathematics*, 342(4):1063–1065, April 2019.
- [8] P. Dankelmann, Y. Guo, and M. Surmacs. Oriented diameter of graphs with given maximum degree. *Journal of Graph Theory*, 88(1):5–17, May 2018.
- [9] P. Erdős, J. Pach, R. Pollack, and Z. Tuza. Radius, diameter, and minimum degree. Journal of Combinatorial Theory, Series B, 47(1):73–79, 1989.
- [10] F. V. Fomin, M. Matamala, and I. Rapaport. Complexity of approximating the oriented diameter of chordal graphs. *Journal of Graph Theory*, 45(4):255–269, 2004.
- [11] F. V. Fomin, M. N. Matamala, E. Prisner, and I. Rapaport. AT-free graphs: linear bounds for the oriented diameter. *Discrete applied mathematics*, 141(1):135–148, 2004.
- [12] G. Gutin. Minimizing and maximizing the diameter in orientations of graphs. Graphs and Combinatorics, 10(2-4):225–230, 1994.
- [13] G. Gutin, K.M. Koh, E.G. Tay, and A. Yeo. Almost minimum diameter orientations of semicomplete multipartite and extended digraphs. *Graphs* and Combinatorics, 18(3):499–506, 2002.
- [14] G. Gutin and A. Yeo. Orientations of digraphs almost preserving diameter. Discrete applied mathematics, 121(1):129–138, 2002.
- [15] J. Huang and D. Ye. Sharp Bounds for the Oriented Diameters of Interval Graphs and 2-Connected Proper Interval Graphs. In *Computational Sci*ence – ICCS 2007, volume 4489, pages 353–361. Berlin, Heidelberg, 2007. Series Title: Lecture Notes in Computer Science.
- [16] K. M. Koh and E. G. Tay. Optimal orientations of graphs and digraphs: a survey. *Graphs and Combinatorics*, 18(4):745–756, 2002.

- [17] K.M. Koh and K. L. Ng. The orientation number of two complete graphs with linkages. *Discrete mathematics*, 295(1):91–106, 2005.
- [18] K.S.A. Kumar, D. Rajendraprasad, and K.S. Sudeep. Oriented diameter of star graphs. *Discrete Applied Mathematics*, February 2021.
- [19] Peter K. Kwok, Q. Liu, and D. B. West. Oriented diameter of graphs with diameter 3. Journal of Combinatorial Theory, Series B, 100(3):265–274, 2010.
- [20] M. Laetsch and S. Kurz. Bounds for the minimum oriented diameter. Discrete Mathematics & Theoretical Computer Science, 14, 2012.
- [21] R. Lakshmi. Optimal orientation of the tensor product of a small diameter graph and a complete graph. Australas. J. Combin, 50:165–169, 2011.
- [22] R. Lakshmi and P. Paulraja. On optimal orientations of tensor product of complete graphs. Ars Combinatoria, 82:337–352, 2007.
- [23] R. Lakshmi and P. Paulraja. On optimal orientations of tensor product of graphs and circulant graphs. Ars Combinatoria, 92:271–288, 2009.
- [24] J. Plesník. Remarks on the diameters of orientations of graphs. Acta Math. Univ. Comenian, 36(3):225–236, 1985.
- [25] H. E. Robbins. A Theorem on Graphs, with an Application to a Problem of Traffic Control. *The American Mathematical Monthly*, 46(5):281, May 1939.
- [26] M. Surmacs. Improved bound on the oriented diameter of graphs with given minimum degree. European Journal of Combinatorics, 59:187–191, January 2017.
- [27] L. Šoltés. Orientations of graphs minimizing the radius or the diameter. Mathematica Slovaca, 36(3):289–296, 1986.

[28] X. Wang, Y. Chen, P. Dankelmann, Y. Guo, M. Surmacs, and L. Volkmann. Oriented diameter of maximal outerplanar graphs. *Journal of Graph The*ory, 98(3):426–444, November 2021.