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Characterizations of the set of integer points

in an integral bisubmodular polyhedron
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Abstract

In this note, we provide two characterizations of the set of integer points in an integral
bisubmodular polyhedron. Our characterizations do not require the assumption that a given
set satisfies the hole-freeness, i.e., the set of integer points in its convex hull coincides with
the original set. One is a natural multiset generalization of the exchange axiom of a delta-
matroid, and the other comes from the notion of the tangent cone of an integral bisubmodular
polyhedron.

Keywords: integral bisubmodular polyhedron, exchange axiom, BS-convex set,
M-convex set, jump system

1 Introduction

The set of integer points in an integral submodular polyhedron is called an M-convex set [10].
This is a polyhedral generalization of a matroid defined by the base family. Indeed, a matroid
coincides with the set of integer points in the base polytope of the matroid, where the base
polytope is the integral submodular polytope with respect to the rank function of the matroid.
Hence, the concept of M-convex set can be obtained by generalizing “the rank function of the
matroid” to “a general integral submodular function” in the above argument on the matroid
base family.

The relation between integral submodular functions and M-convex sets can be viewed as a
discrete version of the conjugacy. In convex analysis, it is well-known [13] that there is a one-
to-one correspondence between positively homogeneous closed proper convex functions and (the
indicator functions of) closed convex sets via the Legendre–Fenchel transformation. From this
viewpoint, (the Lovász extension of) an integral submodular function corresponds to a positively
homogeneous closed proper convex function, and an M-convex set is its corresponding convex
set. By combining convex analysis and submodular/matroid theory, Murota developed a theory
of “discrete convexity” on integer lattices, called discrete convex analysis (DCA) [11]. In DCA,
the M-convexity is a fundamental convex concept of a set of integer points in the integer lattice.
We here note that an M-convex set is clearly hole-free, i.e., the intersection of the convex hull
of an M-convex set and the integer lattice coincides with the original set, which is a naturally
required condition for a set of integer points to be “convex.”

An M-convex set admits several exchange-type axioms, which are multiset versions of the
exchange axioms of a matroid. Such axioms are more useful in checking the M-convexity of a
given set than the polyhedral definition of an M-convex set, and are used in devising a simple
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greedy algorithm for a linear optimization problem over an M-convex set. It is worth mentioning
that the fact that “a set of integer points satisfying the exchange axioms is hole-free” is nontrivial.

In this note, we address a bisubmodular/delta-matroidal generalization of M-convex sets.
The set of integer points in an integral bisubmodular polyhedron is called a BS-convex set [9],
which can also be viewed as a polyhedral generalization of a delta-matroid [7, 4, 6, 12]; a delta-
matroid coincides with the set of integer points in its feasible set polytope of the delta-matroid
(= the integral bisubmodular polytope with respect to the rank function of the delta-matroid).
A BS-convex set can also be considered as a discrete convex set, since it corresponds to the
conjugate of (the Lovász extension of) an integral bisubmodular function that can be viewed as
positively homogeneous proper closed convex.

The present article particularly focuses on exchange-type characterizations of BS-convex sets.
A few exchange-type characterizations of BS-convex sets are known [2, 5], but all of them addi-
tionally require that a given set is hole-free. For example, a jump system, introduced by Bouchet
and Cunningham [5], is defined by a certain exchange axiom, and it is known that a hole-free
set is BS-convex if and only if it is a jump system. However, the hole-freeness assumption of a
given set cannot be omitted, since there exists a jump system that is not hole-free. So far, no
exchange-type characterization of a BS-convex set without any assumption on a given set has
been known.

Our main result is to introduce two exchange-type characterizations of a BS-convex set not
requiring any assumption on the set. The one is a natural multiset version of the exchange
axiom of a delta-matroid. The other one is based on the notion of the tangent cone of an integral
bisubmodular polyhedron. Both can be more useful in checking the BS-convexity of a given set
than the polyhedral definition of a BS-convex set.

2 Preliminaries

Let R and Z denote the sets of reals and integers, respectively. For a positive integer k, let
[k] := {1, 2, . . . , k}. For an index set I and a tuple t ∈ RI (or t ∈ ZI or t ∈ {−1, 0, 1}I), its
support supp(t) is defined as the set of indices i ∈ I such that the i-th element t(i) of t is nonzero,
that is, supp(t) := { i ∈ I | t(i) 6= 0}.

Let V be a nonempty finite set. For p, x ∈ RV , we define 〈p, x〉 :=
∑

u∈V p(u)x(u). For
X ⊆ RV , we denote by conv(X) and cone(X) the convex hull and conical hull of X, respectively.
That is,

conv(X) :=

{

n
∑

i=1

λixi

∣

∣

∣

∣

∣

n : positive integer, x1, . . . , xn ∈ X, λ1, . . . , λn ≥ 0,

n
∑

i=1

λi = 1

}

,

cone(X) :=

{

n
∑

i=1

µixi

∣

∣

∣

∣

∣

n : positive integer, x1, . . . , xn ∈ X, µ1, . . . , µn ≥ 0

}

.

A set B ⊆ ZV of integer points is said to be hole-free if B coincides with the set of integer points
in the convex hull of B, i.e., B = conv(B) ∩ ZV . For u ∈ V , let χu denote the u-th unit vector.
For p ∈ ZV , we define ‖p‖1 as the 1-norm

∑

u∈V |p(u)| of p. We define Φ as the set of vectors α

in {−1, 0, 1}V such that its 1-norm ‖α‖1 is one or two, namely,

Φ := {±χu | u ∈ V } ∪ {±χu ± χv | u, v ∈ V, u 6= v}.

We also define

Φ(p, q) := {α ∈ Φ | ‖q − (p + α)‖1 = ‖q − p‖1 − ‖α‖1 } (p, q ∈ ZV ),
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ΦB(p, q) := {α ∈ Φ(p, q) | p+ α ∈ B } (B ⊆ ZV , p, q ∈ B)

We assume that any function f on {−1, 0, 1}V appearing in the following satisfies f(0) = 0,
where 0 denotes the all-zero vector. A function f : {−1, 0, 1}V → R ∪ {+∞} is said to be
bisubmodular (see e.g., [8, Section 3.5 (b)]) if it satisfies the following bisubmodular inequalities;

f(x) + f(y) ≥ f(x ⊓ y) + f(x ⊔ y) (x, y ∈ {−1, 0, 1}V ),

where the binary operations ⊓ and ⊔ are defined by

(x ⊓ y)(u) :=

{

x(u) if x(u) = y(u),

0 if x(u) 6= y(u),
(x ⊔ y)(u) :=











x(u) if x(u) = y(u) or y(u) = 0,

y(u) if x(u) = 0,

0 if 0 6= x(u) 6= y(u) 6= 0

for each u ∈ V . It is known [12] that a function f : {−1, 0, 1}V → R ∪ {+∞} is bisubmodular
if and only if its Lovász extension f̃ : RV → R ∪ {+∞} is (closed) convex; the definition of
Lovász extension of a function on {−1, 0, 1}V is given in [12]. Since the Lovász extension of any
function on {−1, 0, 1}V is positively homogeneous, a bisubmodular function may play a role as a
positively homogeneous proper closed convex function in this sense, as described in Introduction.
We say that f is integral if all finite values of f are integral, i.e., f is a function from {−1, 0, 1}V

to Z ∪ {+∞}.
For a bisubmodular function f : {−1, 0, 1}V → R ∪ {+∞}, its bisubmodular polyhedron P(f)

is the polyhedron defined by

P(f) :=
{

p ∈ ZV
∣

∣

∣ 〈p, x〉 ≤ f(x) (∀x ∈ {−1, 0, 1}V )
}

.

Note that the conjugate function p 7→ supx∈RV {〈p, x〉 − f̃(x)} of the Lovász extension f̃ of f is
the indicator function of the bisubmodular polyhedron P(f), where p ∈ RV . The tangent cone
of P(f) admits a simple representation as follows, where for a convex set C ⊆ RV and a point
p ∈ C, the tangent cone of C at p is defined as cone({q − p | q ∈ C }).

Lemma 1 ([1, Corollary 3.6]). Let f : {−1, 0, 1}V → R ∪ {+∞} be a bisubmodular function. For
p ∈ P(f), the tangent cone of P(f) at p coincides with cone({α ∈ Φ | p+εα ∈ P(f) for some ε >
0}).

If f is integral, then P(f) is an integral polyhedron [5, Corollary 5.4], which is called an
integral bisubmodular polyhedron.

A nonempty set B ⊆ ZV is called a BS-convex set [9] if there exists an integral bisubmodular
function f : {−1, 0, 1}V → Z ∪ {+∞} such that B = P(f)∩ZV . Note that the discrete conjugate
function p 7→ supx∈ZV {〈p, x〉 − f̃(x)} of the Lovász extension f̃ is the indicator function of the
BS-convex set, where p ∈ ZV . In this sense, a BS-convex set is “discrete convex” as described
in Introduction.

A nonempty set J ⊆ ZV is called a jump system [5] if it satisfies the following exchange
axiom, called the 2-step axiom:

(J-EXC) For any p, q ∈ J and u ∈ supp(q − p),

• there exists α ∈ ΦB(p, q) such that u ∈ supp(α), or

• ‖p(u)− q(u)‖1 ≥ 2 and p+ 2su ∈ J for the unique su ∈ {±χu} satisfying su ∈ Φ(p, q).
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The above condition can be rephrased as: For any p, q ∈ J and u ∈ supp(q − p), we have
p+ su ∈ J for the unique su ∈ {±χu} satisfying su ∈ Φ(p, q), or p+ su + sv ∈ J for some v ∈ V
and sv ∈ {±χv} satisfying sv ∈ Φ(p + su, q). This is the reason why (J-EXC) is called as the
2-step axiom.

A jump system is a generalization of a BS-convex set in the following sense.

Proposition 2 ([5, Theorems 4.4 and 5.3]). For any jump system J ⊆ ZV , its convex hull
conv(J) is an integral bisubmodular polyhedron. Conversely, for any integral bisubmodular func-
tion f : {−1, 0, 1}V → Z ∪ {+∞}, the corresponding BS-convex set P(f)∩ZV is a jump system.

Proposition 2 says that, for a hole-free set B ⊆ ZV , it is BS-convex if and only if it is a jump
system. While all BS-convex sets are hole-free, which immediately follows from the definition, a
jump system is not hole-free in general. For example, the set {0, 2} ⊆ Z is a jump system but is
not hole-free. Hence, the assumption of the hole-freeness of a given set cannot be omitted.

3 Characterizations of a BS-convex set

In this section, we present two exchange-type characterizations of a BS-convex set with no
assumption on a given set.

The first one is the condition obtained from (J-EXC) by removing the second condition on
the case of ‖p(u)− q(u)‖1 ≥ 2.

(∆-EXC) For any p, q ∈ B and u ∈ supp(q − p), there exists α ∈ ΦB(p, q) such that u ∈
supp(α).

We here note that a nonempty set B ⊆ {0, 1}V is called a delta-matroid [7, 4, 6, 12] if B satisfies
(∆-EXC). Hence the condition (∆-EXC) is a natural multiset version of the exchange axiom of
a delta-matroid.

The second one comes from the notion of the tangent cone. By the convexity of P(f), for any
p, q ∈ P(f)∩ZV the difference q− p of q and p belongs to the tangent cone of P(f) at p, namely,
q − p ∈ cone({α ∈ Φ | p + εα ∈ P(f) for some ε > 0}) by Lemma 1. The following condition
requires that q − p particularly belongs to cone(ΦB(p, q)) and we can take the nonnegative
combination coefficients of q − p to be half-integral.

(BS-EXC) For any p, q ∈ B, there exist α1, α2, . . . , αk ∈ ΦB(p, q) such that p+
∑k

i=1 αi/2 = q.

Our main result is the following:

Theorem 3. Let B ⊆ ZV be a nonempty set of integer points. The following conditions (a),
(b), and (c) are equivalent.

(a) B is a BS-convex set, i.e., B = P(f)∩ZV for some integral bisubmodular function f on
{−1, 0, 1}V .

(b) B satisfies (∆-EXC).

(c) B satisfies (BS-EXC).

The implication (c)⇒ (b) easily follows. Indeed, for any p, q ∈ B, there exist α1, α2, . . . , αk ∈
ΦB(p, q) such that p+

∑k
i=1 αi/2 = q by (BS-EXC). Then, for each u ∈ supp(q − p) at least one

of α1, α2, . . . , αk must satisfy u ∈ supp(αi), which implies (∆-EXC).
The proofs of (b)⇒ (a) and (a)⇒ (c) are given in Sections 3.1 and 3.2, respectively.
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3.1 Proof of (b)⇒ (a)

Suppose that B satisfies the condition (∆-EXC). Since (∆-EXC) is stronger than (J-EXC), the
set B is a jump system. Thus, by Proposition 2, we have conv(B) = P(f) for some integral
bisubmodular function f on {−1, 0, 1}V . Hence, it suffices to show that B = conv(B)∩ZV , i.e.,
B is hole-free.

It is clear that B ⊆ conv(B) ∩ ZV . Take any p∗ ∈ conv(B) ∩ ZV . In the case where B is
infinite, we replace B with the intersection B ∩ [−n1, n1] for sufficiently large n ∈ Z+ such that
p∗ ∈ conv(B ∩ [−n1, n1]), where 1 denotes the all-one vector in ZV . Then the resulting B is
finite and satisfies (∆-EXC). Therefore, we can assume that B is finite.

Let

C :=







(λp)p∈B ∈ RB

∣

∣

∣

∣

∣

∣

p∗ =
∑

p∈B

λpp,
∑

p∈B

λp = 1, λp ≥ 0 (p ∈ B)







.

Since p∗ ∈ conv(B) ∩ ZV , the set C is nonempty. Moreover C is compact by the definition of C
and the finiteness of B. Define a function θ : C → R by

θ(λ) :=
∑

p∈B

λp‖p
∗ − p‖1

for λ = (λp)p∈B ∈ C. Since θ is continuous and C is a compact nonempty set, the function θ
attains its infimum, i.e., there exists λ∗ ∈ C such that θ(λ∗) = inf θ(= min θ). We can see that
p∗ ∈ B if and only if min θ = 0.

Suppose, to the contrary, that p∗ /∈ B, i.e., min θ > 0. Let λ∗ = (λ∗
p)p∈B ∈ argmin θ. Note

that p∗ /∈ supp(λ∗). Take q, r ∈ supp(λ∗) such that q(u′) < p∗(u′) < r(u′) for some u′ ∈ V ; such
q and r exist since

∑

p∈supp(λ∗) λ
∗
pp = p∗ and p∗ /∈ supp(λ∗). Here the following holds.

Lemma 4. There exist α1, α2, . . . , αk ∈ ΦB(q, r) and β1, β2, . . . , βℓ ∈ ΦB(r, q) such that
∑k

i=1 αi+
∑ℓ

j=1 βj = 0.

Proof. Let G denote an undirected graph (that can have self-loops) whose vertex set is supp(r−q)
and whose edge set is Eq ∪ Er, where Eq := {supp(α) | α ∈ ΦB(q, r)} and Er := {supp(β) | β ∈
ΦB(r, q)}. Note that, for each edge e ∈ Eq (resp. e ∈ Er), there uniquely exists α ∈ ΦB(q, r)
such that e = supp(α) (resp. β ∈ ΦB(r, q) such that e = supp(β)); we denote it by αe (resp. βe).
Also note that, by (∆-EXC), for each u ∈ supp(r − q), there are edges incident to u both in Eq

and in Er.
For each e ∈ Eq and u ∈ e, we choose one edge f ∈ Er with u ∈ f and construct a triple

(e, u, f). Similarly, for each f ∈ Er and v ∈ f , we choose one edge e′ ∈ Eq with v ∈ e′

and construct a triple (f, v, e′). Let T be the set of triples constructed as above. Take any
triple (f1, u1, f2) ∈ T with f1 ∈ Eq. By the definition of T , there uniquely exists a triple
(f2, u2, f3) ∈ T such that f2 = {u1, u2}. Similarly, there uniquely exists a triple (f3, u3, f4) ∈ T
such that f3 = {u2, u3}. By repeating the above, we obtain an infinite walk (f1, f2, f3, . . . ) in G
such that fi ∈ Eq if i is odd and fi ∈ Er if i is even. By the finiteness of T , the infinite walk
(f1, f2, f3, . . . ) must contain a periodic structure (. . . , e1, e2, . . . , e2m, e1, . . . ) with e1 ∈ Eq. This
implies that there is a closed walk (e1, e2, . . . , e2m) in G such that ei ∈ Eq if i is odd and ei ∈ Er

if i is even.
From such a closed walk (e1, e2, . . . , e2m), we define

(ai, αi) :=

{

(2, αe2i−1
) if |e2i−1| = 1,

(1, αe2i−1
) if |e2i−1| = 2,

(bi, βi) :=

{

(2, βe2i ) if |e2i| = 1,

(1, βe2i ) if |e2i| = 2.
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Then, for each i ∈ [m], we have αe2i−1
∈ ΦB(q, r) and βe2i ∈ ΦB(r, q). Moreover, we can see that

∑m
i=1 aiαe2i−1

+
∑m

i=1 biβe2i = 0. Hence, the lemma holds.

Let α1, α2, . . . , αk ∈ ΦB(q, r) and β1, β2, . . . , βℓ ∈ ΦB(r, q) satisfying
∑k

i=1 αi +
∑ℓ

j=1 βj = 0;
such ones exist by Lemma 4. Then, for a sufficiently small ε > 0, we have the following convex
combination representation of p∗:

p∗ =
(

λ∗
q − kε

)

q + (λ∗
r − ℓε)r +

∑

p∈B\{q,r}

λ∗
pp+ ε





k
∑

i=1

(q + αi) +
ℓ

∑

j=1

(r + βj)



.

Let λ′ = (λ′
p)p∈B denote the corresponding coefficient of p∗, where we note that λ′ ∈ C and

supp(λ′) = supp(λ∗) ∪ {q + αi, r + βj | i ∈ [k], j ∈ [ℓ]}.
We can compute the value θ(λ′) as follows. Let

S+(q) := {u ∈ supp(r − q) | p∗(u) ≤ q(u) < r(u) or r(u) < q(u) ≤ p∗(u)},

S−(q) := {u ∈ supp(r − q) | q(u) < min{p∗(u), r(u)} or max{p∗(u), r(u)} < q(u)},

su(q) := |{ i ∈ [k] | u ∈ supp(αi)}| (u ∈ supp(r − q)).

We similarly define S+(r), S−(r), and su(r). We note that both {S+(q), S−(q)} and {S+(r), S−(r)}
form bipartitions of supp(r − q). Then we have

θ(λ′) = θ(λ∗) + ε





∑

u∈S+(q)

su(q)−
∑

u∈S−(q)

su(q) +
∑

u∈S+(r)

su(r)−
∑

u∈S−(r)

su(r)



.

Furthermore, since
∑k

i=1 αi +
∑ℓ

j=1 βj = 0, we have su(q) = su(r) for every u ∈ supp(r − q).
Thus, by letting S+(q, r) := S+(q) ∩ S+(r) and S−(q, r) := S−(q) ∩ S−(r), we obtain

θ(λ′) = θ(λ∗) + ε
∑

u∈S+(q,r)

(su(q) + su(r))− ε
∑

u∈S−(q,r)

(su(q) + su(r))

= θ(λ∗)− ε
∑

u∈S−(q,r)

(su(q) + su(r)), (3.1)

where the second equality follows from S+(q, r) = ∅. By the choice of q and r, the set S−(q, r),
which is equal to {u ∈ supp(r − q) | q(u) < p∗(u) < r(u) or r(u) < p∗(u) < q(u)}, contains u′; it
is nonempty. By the minimality of λ∗, we have θ(λ′) = θ(λ∗), implying that supp(αi)∩S−(q, r) =
supp(βj) ∩ S−(q, r) = ∅ for all i ∈ [k] and j ∈ [ℓ].

We update λ∗ and r as λ∗ ← λ′ and r ← r + β1. For the resulting r, the value ‖r − q‖1
strictly decreases, but the set S−(q, r) does not change since supp(β1) ∩ S−(q, r) = ∅.

By repeating the above update finitely many times, we finally obtain λ∗ ∈ C minimizing
θ and q, r ∈ supp(λ∗) such that S−(q, r) = supp(r − q). For such q and r, we again repeat
the above update. Then, since S−(q, r) = supp(r − q), the set S−(q, r) includes supp(αi) and
supp(βj) for any i ∈ [k] and j ∈ [ℓ]. Thus, by (3.1), the resulting λ′ ∈ C strictly decreases θ,
which contradicts the minimality of λ∗.

3.2 Proof of (a)⇒ (c)

Suppose that B = P(f)∩ZV for an integral bisubmodular function f on {−1, 0, 1}V . For p ∈ B,
let ΦB(p) := {α ∈ Φ | p+ α ∈ B }. Take any p, q ∈ B. For r ∈ ZV , we define

v(r) :=
∑

{|r(u)| | u ∈ V : r(u)(q(u)− p(u)) ≤ 0}.
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In particular, the function v for α ∈ ΦB(p) measures the violation of α from ΦB(p, q); for
α ∈ ΦB(p), we have that v(α) = 0 if and only if α ∈ ΦB(p, q). The following is an easy
observation.

Lemma 5. Let r, r′ ∈ ZV . Then we have

v(r) + v(r′)

{

> v(r + r′) if r(u)r′(u) < 0 for some u ∈ V ,

= v(r + r′) otherwise.

We consider the following linear programming:

(LP)

Minimize
∑

{v(α)µα | α ∈ ΦB(p)}

subject to
∑

{µαα | α ∈ ΦB(p)} = q − p,

µα ≥ 0 (α ∈ ΦB(p)).

It suffices to show that (i) the problem (LP) has a feasible solution, (ii) its optimal value is 0, and
(iii) it admits a half-integral optimal solution. Indeed, statements (i)–(iii) imply that q − p =
∑

α∈ΦB(p,q) µαα for some nonnegative half-integral coefficient µ = (µα)α∈ΦB(p,q), particularly,
that B satisfies (BS-EXC).

Before the proofs of (i) and (ii), we recall basic facts on P(f) and B. For x ∈ {−1, 0, 1}V ,
let supp+(x) := {u ∈ V | x(u) = 1} and supp−(x) := {u ∈ V | x(u) = −1}. We define a partial
order � on {−1, 0, 1}V by: x � y if and only if supp+(x) ⊆ supp+(y) and supp−(x) ⊆ supp−(y).
For p ∈ B and u ∈ V , we define

dep(p, χu) :=
l{

x ∈ {−1, 0, 1}V
∣

∣

∣
u ∈ supp+(x), 〈p, x〉 = f(x)

}

,

dep(p,−χu) :=
l{

x ∈ {−1, 0, 1}V
∣

∣

∣ u ∈ supp−(x), 〈p, x〉 = f(x)
}

,

where ⊓∅ := 0. By definition, if su � dep(p, sv) for some su ∈ {±χu}, then we have su �
dep(p, su) � dep(p, sv). The following are known in [1].

Lemma 6 ([1]). (1) Let p ∈ B, u ∈ V , and su ∈ {±χu}. Then we have

su ∈ ΦB(p) ⇐⇒ p+ εsu ∈ P(f) for some ε > 0 ⇐⇒ dep(p, su) = 0.

(2) Let p ∈ B, u, v ∈ V with u 6= v, su ∈ {±χu}, and sv ∈ {±χu}. Suppose that p + su /∈ B.
Then we have

su + sv ∈ ΦB(p) ⇐⇒ p+ ε(su + sv) ∈ P(f) for some ε > 0 ⇐⇒ −sv � dep(p, su).

We prove statement (i). By the convexity of P(f) and Lemma 1, we have q−p ∈ cone({α ∈ Φ |
p+ εα ∈ P(f) for some ε > 0}). Moreover, we can see that

cone({α ∈ Φ | p+ εα ∈ P(f) for some ε > 0}) = cone(ΦB(p)),

which implies that (LP) has a feasible solution, namely, statement (i) holds. The inclusion (⊇)
is clear. To see the converse inclusion (⊆), take any α ∈ Φ such that p + εα ∈ P(f) for some
ε > 0. If α = su for some u ∈ V and su ∈ {±χu}, then we have su ∈ ΦB(p) by Lemma 6 (1).
Suppose α = su + sv for some distinct u, v ∈ V , su ∈ {±χu}, and sv ∈ {±χv}. If su, sv ∈ ΦB(p),
then α ∈ cone(ΦB(p)); we are done. Otherwise, by Lemma 6 (2), we have su+ sv ∈ ΦB(p). This
completes the proof of (i).

We prove statement (ii). The following lemma is crucial in the proof.
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Lemma 7. For u, v, w ∈ V , let su ∈ {±χu}, sv ∈ {±χv}, and sw ∈ {±χw}. If su,−su + sv ∈
ΦB(p), then sv ∈ ΦB(p). Also if su+ sv,−sv + sw ∈ ΦB(p) and su 6= −sw, then su+ sw ∈ ΦB(p)
or su, sw ∈ ΦB(p).

Proof. First we show the former statement. Note that, by −su + sv ∈ ΦB(p), we have u 6= v.
Suppose, to the contrary, that sv /∈ ΦB(p). Then, by −su + sv ∈ ΦB(p) and Lemma 6 (2), we
have su � dep(p, su) � dep(p, sv), implying dep(p, su) 6= 0. Hence su /∈ ΦB(p) by Lemma 6 (1),
which contradicts the assumption su ∈ ΦB(p).

Next we show the latter statement. Note that, by su+sv,−sv+sw ∈ ΦB(p), we have u 6= v 6=
w. Suppose that su /∈ ΦB(p). By su+sv ∈ ΦB(p) and Lemma 6 (2), we have −sv � dep(p,−sv) �
dep(p, su), implying dep(p,−sv) 6= 0. Therefore −sv /∈ ΦB(p) by Lemma 6 (1). Furthermore, by
−sv + sw ∈ ΦB(p) and Lemma 6 (2), we obtain −sw � dep(p,−sw) � dep(p,−sv) � dep(p, su).
Hence su 6= −sw implies u 6= w, and by Lemma 6 (2), we obtain su + sw ∈ ΦB(p).

Suppose, to the contrary, that the optimal value of the problem (LP) is strictly positive. Let
µ∗ = (µ∗

α)α∈ΦB(p) be an optimal solution. Take any α0 ∈ (ΦB(p) \ ΦB(p, q)) ∩ supp(µ∗) (such
α0 exists by the assumption of the positivity of the optimal value). Then there is u ∈ supp(α0)
such that α0(u)(q(u)− p(u)) ≤ 0. Since

∑

α∈ΦB(p) µ
∗
αα = q− p, there is α1 ∈ supp(µ∗) such that

α0(u)+α1(u) = 0, or equivalently, α0(u)α1(u) = −1. Then, for ε := min
{

µ∗
α0
, µ∗

α1

}

, we have the
following nonnegative combination representation of q − p:

q − p =
(

µ∗
α0
− ε

)

α0 +
(

µ∗
α1
− ε

)

α1 +
∑

α∈ΦB(p)\{α0,α1}

µ∗
αα+ ε(α0 + α1). (3.2)

It follows from Lemma 7 that α0 + α1 = 0, α0 + α1 ∈ ΦB(p), or there are sv ∈ {±χv} and
sw ∈ {±χw} for some v,w ∈ V such that sv, sw ∈ ΦB(p) and sv + sw = α0 +α1. Hence the RHS
of (3.2) can be viewed as a nonnegative combination of α ∈ ΦB(p). Let µ

′ = (µ′
α)α∈ΦB(p) denote

the corresponding coefficient.
For such µ′, we have

∑

{

v(α)µ′
α

∣

∣ α ∈ ΦB(p)
}

=
∑

{v(α)µ∗
α | α ∈ ΦB(p)} − ε(v(α0) + v(α1)− v(α0 + α1))

≤
∑

{v(α)µ∗
α | α ∈ ΦB(p)} − ε,

where the inequality follows from α0(u)α1(u) = −1 and Lemma 5. This contradicts the mini-
mality of µ∗. Therefore, statement (ii) holds.

Statement (iii) immediately follows from the fact [3, Example 1 and Theorem 20] that, for an
integer matrix A = (aij) ∈ Zm×n satisfying

∑n
i=1|aij | ≤ 2 for each column index j and integral

vectors b ∈ Zm and c ∈ Zn, the linear programming min{〈c, x〉 | Ax = b, x ≥ 0} admits a
half-integral optimal solution (if an optimal solution exists). Since our problem (LP) enjoys the
above situation and has an optimal solution by (ii), we obtain statement (iii).
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