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STABILITY OF GRAPH PAIRS INVOLVING

VERTEX-TRANSITIVE GRAPHS

YAN-LI QIN, BINZHOU XIA, AND SANMING ZHOU

Abstract. A pair of graphs (Γ,Σ) is said to be stable if the full automorphism
group of Γ × Σ is isomorphic to the product of the full automorphism groups of Γ
and Σ and unstable otherwise, where Γ × Σ is the direct product of Γ and Σ. In
this paper, we reduce the study of the stability of any pair of regular graphs (Γ,Σ)

with coprime valencies and vertex-transitive Σ to that of (Γ,K2). Since the latter is
well studied in the literature, this enables us to determine the stability of any pair of
regular graphs (Γ,Σ) with coprime valencies in the case when Σ is vertex-transitve

and the stability of (Γ,K2) is known.
Key words: direct product of graphs; stable graph; stable graph pair

1. Introduction

We only consider finite undirected graphs with no loops or parallel edges. The vertex

set, edge set and full automorphism group of a graph Γ are denoted by V (Γ), E(Γ)

and Aut(Γ), respectively, and the cardinality of V (Γ) is referred to as the order of Γ.

The edge between two adjacent vertices u, v is written as {u, v}. The complete graph

of order m is denoted by Km, and the cycle of order m is denoted by Cm. A graph is

vertex-transitive if its automorphism group is transitive on its vertex set, and a graph

is arc-transitive if its automorphism group is transitive on its arc set, where an arc is

an ordered pair of adjacent vertices.

Let Γ and Σ be graphs. The direct product [2] of Γ and Σ, denoted by Γ × Σ,

is the graph with vertex set V (Γ) × V (Σ) and edge set {{(u, x), (v, y)} : {u, v} ∈

E(Γ) and {x, y} ∈ E(Σ)}. It follows from this definition that the direct product

Aut(Γ)× Aut(Σ) of Aut(Γ) and Aut(Σ) is isomorphic to a subgroup of Aut(Γ× Σ).

Definition 1.1. A graph pair (Γ,Σ) is said to be stable if Aut(Γ)×Aut(Σ) is isomor-

phic to Aut(Γ× Σ) and unstable otherwise.

This concept in its general form was introduced in [11, Definition 1.1] as a gener-

alization of the notion of the stability of graphs introduced in [5]. In fact, a graph

Γ is stable in terms of [5] if and only if the graph pair (Γ, K2) is stable in terms of

Definition 1.1.

The stability of graphs is closely related to symmetric (0, 1) matrices [5], regular

embeddings of canonical double covers [8], two-fold automorphisms of graphs [4], and

generalized Cayley graphs [6]. As such it has received considerable attention especially

in recent years (see, for example, [1, 3, 7, 9, 12, 13, 15]). In [15], Wilson gave four

sufficient conditions for a graph to be unstable and used these results to study the
1
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instability of circulant graphs, generalized Petersen graphs, and three other families

of graphs. In [9], the authors answered an open question in [15] about the stability of

arc-transitive circulant graphs and in the meantime constructed an infinite family of

counterexamples to a conjecture in [5]. Subsequently, a conjecture of the authors in [9]

about unstable circulant graphs of odd order was proved by Fernandez and Hujdurović

in [1], and in turn an open question in [1] about the stability of Cayley graphs on

abelian groups of odd order was recently answered by Morris [7]. A conjecture in [15]

about the stability of generalized Petersen graphs was proved by the authors in [10].

Compared with the stability of graphs, there are only few known results on the

stability of general graph pairs in the literature. It turns out that the stability of

graph pairs is closely related to the following concepts: A graph is called R-thin [2] or

vertex-determining [9, 15] if no two vertices have the same neighborhood in the graph,

and graphs that are not R-thin are said to be R-thick [2]. Two graphs Γ and Σ are said

to be coprime if there is no graph ∆ of order greater than 1 such that Γ ∼= Γ1×∆ and

Σ ∼= Σ1 ×∆ for some graphs Γ1 and Σ1. The following result, which is a special case

of [2, Theorem 8.18], gives sufficient conditions for a graph pair to be stable. (For the

condition of Γ × Σ being connected, non-bipartite and R-thin, respectively, in terms

of Γ and Σ, the reader is referred to Lemma 3.2.)

Theorem 1.2. Let Γ and Σ be coprime graphs. If Γ × Σ is connected, non-bipartite

and R-thin, then (Γ,Σ) is stable.

On the other hand, the following result from [11, Theorem 1.3] gives necessary

conditions for a graph pair to be stable.

Theorem 1.3. Let (Γ,Σ) be a stable pair of graphs. Then Γ and Σ are coprime R-thin

graphs. Moreover, if in addition both Aut(Γ) and Aut(Σ) are nontrivial groups, then

both Γ and Σ are connected and at least one of them is non-bipartite.

In studying the stability of graph pairs it is rather natural to investigate the case

when the graphs involved have nontrivial automorphism groups. Under this assump-

tion Theorem 1.3 implies that we can focus on those pairs (Γ,Σ) such that Γ and Σ

are connected coprime R-thin graphs and at least one of them is non-bipartite. This

motivated the following definition which was introduced in [11, Definition 1.4].

Definition 1.4. An unstable graph pair (Γ,Σ) is called nontrivially unstable if Γ and

Σ are connected coprime R-thin graphs and at least one of them is non-bipartite, and

trivially unstable otherwise.

This definition is consistent with its counterpart for graphs: A graph Γ is nontrivially

unstable or trivially unstable in terms of [15] if and only if (Γ, K2) is nontrivially

unstable or trivially unstable, respectively.

In general, it is not easy to test by definition whether two graphs are coprime.

However, there are some sufficient conditions for two graphs to be coprime that are

easy to check. For example, any two graphs of coprime orders must be coprime, and
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any two regular graphs of coprime valencies with at least one non-bipartite must be

coprime. Thus, it is natural to study the following problem.

Problem 1.5. Determine the nontrivial instability of a graph pair (Γ,Σ) such that Γ

and Σ are regular graphs of coprime valencies.

The study of this problem in its general form was initiated by the authors in [11].

Among other things we gave in [11, Theorem 1.8] a characterization of nontrivial

unstable graph pairs (Γ,Σ) in the case when both Γ and Σ are connected, R-thin

and regular with coprime valencies and Σ is vertex-transitive (see Lemma 2.6 in the

next section). The well-studied problem of determining the nontrivial instability of

a regular graph is a special case of Problem 1.5, because Γ and K2 are of coprime

valencies for any regular graph Γ.

In this paper we continue our study of Problem 1.5 with a focus on establishing

connections between the nontrivial instability of a graph pair (Γ,Σ) and that of the

graph Γ. Our main result stated below achieves this goal for all vertex-transitive

graphs Σ.

Theorem 1.6. Let Γ and Σ be regular graphs of coprime valencies with Σ vertex-

transitive.

(a) Suppose that Σ is connected, R-thin and bipartite. Then (Γ,Σ) is nontrivially

unstable if and only if Γ is nontrivially unstable.

(b) Suppose that Σ is disconnected, or R-thick, or non-bipartite. Then (Γ,Σ) cannot

be nontrivially unstable.

This result reduces the quest for nontrivial instability of (Γ,Σ) to that for nontriv-

ial instability of Γ in the case when Γ and Σ are regular of coprime valencies and

Σ is vertex-transitive. This enables us to obtain many nontrivially unstable graph

pairs from known nontrivially unstable graphs. For example, in [15] Wilson gave four

sufficient conditions for a circulant graph to be nontrivially unstable (see [9] for an

amendment to one of these conditions). By Theorem 1.6, any such nontrivially un-

stable circulant Γ and any connected, vertex-transitive, R-thin and bipartite graph Σ

with valency coprime to the valency of Γ give rise to a nontrivially unstable graph pair

(Γ,Σ).

The rest of this paper is organized as follows. In the next section we will set

up notation and recall a few known results on stability of graphs and stability of

graph pairs. The proof of Theorem 1.6 will be given in Section 3. As applications of

Theorem 1.6, we will discuss the stability of (Γ, Km) and (Γ, Cm) in Section 4.

2. Preliminaries

For a graph Γ and a vertex u of Γ, the neighborhood of u in Γ, denoted by NΓ(u),

is the set of vertices adjacent to u in Γ. For two adjacent vertices u, v in a graph, the

edge between them is denoted by the unordered pair {u, v}.
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2.1. Two-fold automorphisms and stability of graphs. The following definition

was first introduced by Zelinka in [16, 17] for digraphs in his study of isotopies of

digraphs and was extended to mixed graphs by Lauri, Mizzi and Scapellato in [4].

Definition 2.1. Let Γ be a graph. A pair of permutations (α, β) of V (Γ) is called

a two-fold automorphism of Γ if for all u, v ∈ V (Γ), {u, v} ∈ E(Γ) if and only if

{uα, vβ} ∈ E(Γ). A two-fold automorphism (α, β) is said to be nontrivial if α 6= β.

The following lemma is from [5, Proposition 4.2] (see also [4, Theorem 3.2]).

Lemma 2.2. A graph is unstable if and only if it has a nontrivial two-fold automor-

phism.

The next result is essentially known in [4] and [5]. We give its proof for the com-

pleteness of the paper.

Lemma 2.3. Let (α, β) be a two-fold automorphism of a graph Γ. Then the following

statements hold:

(a) (β, α) and (α−1, β−1) are two-fold automorphisms of Γ.

(b) If (γ, δ) is a two-fold automorphism of Γ, then so is (αγ, βδ).

(c) If (α, β) is nontrivial with α = 1 or β = 1, then Γ is R-thick.

(d) If (α, β) is nontrivial with α ∈ Aut(Γ) or β ∈ Aut(Γ), then Γ is R-thick.

Proof. Parts (a) and (b) hold clearly by the definition of two-fold automorphisms.

Suppose that (α, β) is nontrivial with α = 1, that is, (1, β) is a nontrivial two-fold

automorphism of Γ. Then β 6= 1, and for u, v ∈ V (Γ) we have

u ∈ NΓ(v) ⇔ {u, v} ∈ E(Γ) ⇔ {u, v}(1,β) = {u, vβ} ∈ E(Γ) ⇔ u ∈ NΓ(v
β).

This implies that vertices v and vβ have the same neighborhood for each v ∈ V (Γ),

and so Γ is R-thick as β 6= 1. Similarly, the condition that (α, β) is nontrivial with

β = 1 also implies that Γ is R-thick. This completes the proof of part (c).

Next suppose that (α, β) is nontrivial with α ∈ Aut(Γ). Then (α, α) is a two-fold

automorphism of Γ, and so is (1, βα−1) by parts (a) and (b). Moreover, βα−1 6= 1 as

α 6= β. Hence (1, βα−1) is a nontrivial two-fold automorphism of Γ. This implies that Γ

is R-thick by part (c). Similarly, the condition that (α, β) is nontrivial with β ∈ Aut(Γ)

also implies the R-thickness of Γ, which completes the proof of part (d). �

2.2. Σ-automorphisms and stability of graph pairs. The next definition, first

given in [11, Definition 1.7], is a generalization of two-fold automorphisms.

Definition 2.4. Let Γ and Σ be graphs with V (Σ) = {1, . . . , m}, and let α1, . . . , αm be

permutations of V (Γ). We say that them-tuple (α1, . . . , αm) is a Σ-automorphism of Γ

if for all u, v ∈ V (Γ) and {i, j} ∈ E(Σ), {u, v} ∈ E(Γ) if and only if {uαi, vαj} ∈ E(Γ).

Such a Σ-automorphism (α1, . . . , αm) of Γ is said to be non-diagonal if there exists at

least one pair of vertices i, j ∈ V (Σ) such that αi 6= αj .

The following lemma is from [11, Lemma 2.6(a)].



STABILITY OF GRAPH PAIRS 5

Lemma 2.5. Let Γ and Σ be graphs. If at least one Σ-automorphism of Γ is non-

diagonal, then (Γ,Σ) is unstable.

The next lemma, which was proved in [11, Theorem 1.8], characterizes nontrivially

unstable graph pairs (Γ,Σ) in the case when Γ and Σ are regular with coprime valencies

and nontrivial automorphism groups and Σ is vertex-transitive.

Lemma 2.6. Let Γ and Σ be regular graphs of coprime valencies with Σ vertex-

transitive. Suppose that both Γ and Σ are connected and R-thin and that at least

one of them is non-bipartite. Then (Γ,Σ) is nontrvially unstable if and only if at least

one Σ-automorphism of Γ is non-diagonal.

3. Proof of Theorem 1.6

Lemma 3.1. Let Γ and Σ be regular graphs of coprime valencies with Σ vertex-

transitive. If (Γ,Σ) is nontrivially unstable, then Γ is unstable.

Proof. Let V (Σ) = {1, . . . , m}. Suppose that (Γ,Σ) is nontrivially unstable. Then

Lemma 2.6 asserts that there exists a non-diagonal Σ-automorphism of Γ, say, (α1, . . . , αm).

Since Σ is connected and the Σ-automorphism (α1, . . . , αm) is non-diagonal, there exist

adjacent vertices i, j of Σ such that αi 6= αj . Since (α1, . . . , αm) is a Σ-automorphism

of Γ, for u, v ∈ V (Γ), {u, v} ∈ E(Γ) if and only if {uαi, vαj} ∈ E(Γ). Thus (αi, αj) is

a nontrivial two-fold automorphism of Γ. This together with Lemma 2.2 implies that

Γ is unstable. �

We are now in a position to prove part (a) of Theorem 1.6.

Proof of part (a). First suppose that (Γ,Σ) is nontrivially unstable. As Σ is bipartite,

we obtain from Definition 1.4 that Γ and Σ are coprime connected R-thin graphs with

Γ non-bipartite. Since Σ is vertex-transitive and the valencies of Γ and Σ are coprime,

Lemma 3.1 implies that Γ is unstable. Hence Γ is nontrivially unstable.

Next suppose that Γ is nontrivially unstable. Then Γ is connected, R-thin and non-

bipartite. Since Γ is unstable, we derive from Lemma 2.2 that there exists a nontrivial

two-fold automorphism (α, β) of Γ, that is, α and β are distinct permutations of V (Γ)

such that

{u, v} ∈ E(Γ) ⇔ {uα, vβ} ∈ E(Γ) (1)

for u, v ∈ V (Γ). Let V (Σ) = {1, . . . , m}. Since Σ is bipartite, V (Σ) can be partitioned

into two nonempty subsets A and B such that every edge of Σ joins a vertex in A

and a vertex in B. For i ∈ {1, . . . , m}, let αi = α if i ∈ A and αi = β if i ∈ B.

Then it follows from (1) that (α1, . . . , αm) is a Σ-automorphism of Γ. Since A and

B are nonempty, the Σ-automorphism (α1, . . . , αm) is non-diagonal. Hence (Γ,Σ) is

nontrivially unstable by Lemma 2.6. �

To prove part (b) of Theorem 1.6, we need the next lemma.

Lemma 3.2. Let Γ and Σ be graphs.
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(a) Γ × Σ is non-bipartite if and only if both Γ and Σ are non-bipartite ([2, Exercise

8.13]).

(b) Γ× Σ is R-thin if and only if both Γ and Σ are R-thin ([9, Lemma 2.3]).

(c) Suppose that both Γ and Σ are connected with order at least 2. Then Γ × Σ is

connected if at least one of Γ or Σ is non-bipartite, and Γ × Σ has exactly two

components if both Γ and Σ are bipartite ([14], see also [2, Theorem 5.9]).

We are now ready to complete the proof of Theorem 1.6.

Proof of part (b). If Σ is disconnected or R-thick, then by Definition 1.4, the graph

pair (Γ,Σ) cannot be nontrivially unstable. For the rest of the proof, suppose that Σ

is connected and R-thin. Then the assumption in part (b) of Theorem 1.6 implies that

Σ is non-bipartite. Suppose for a contradiction that (Γ,Σ) is nontrivially unstable.

Then Γ is connected and R-thin by Definition 1.4.

If Γ is non-bipartite, then we deduce from Lemma 3.2 that Γ× Σ is connected, R-

thin and non-bipartite, and hence Theorem 1.2 gives Aut(Γ×Σ) ∼= Aut(Γ)×Aut(Σ),

contradicting the assumption that (Γ,Σ) is unstable. Thus Γ is bipartite.

Let V (Σ) = {1, . . . , m}. By Lemma 2.6, there exists a non-diagonal Σ-automorphism

of Γ, denoted by (α1, . . . , αm). Since Σ is non-bipartite and vertex-transitive, we derive

that each vertex of Σ lies in some odd cycle in Σ.

Consider an arbitrary odd cycle C = (i1, . . . , is) in Σ, where s ≥ 3 is odd. Write

βr = αir for r ∈ {1, . . . , s} and count the subscripts of βr modulo s. According to the

definition of a Σ-automorphism (see Definition 2.4), for u, v ∈ V (Γ), we have

{u, v} ∈ E(Γ) ⇔ {uβr , vβr+1} ∈ E(Γ) ⇔ {uβr+1, vβr+2} ∈ E(Γ).

In other words, both (βr, βr+1) and (βr+1, βr+2) are two-fold automorphisms of Γ.

Then by parts (a) and (b) of Lemma 2.3 we conclude that (1, βr+2β
−1
r ) is a two-

fold automorphisms of Γ. Since Γ is R-thin, part (c) of Lemma 2.3 implies that

βr+2β
−1
r = 1, that is, βr+2 = βr. Since this holds for every r ∈ {1, . . . , s} and s is odd,

it follows that β1 = · · · = βs. Consequently, we may assign a permutation αC to the

odd cycle C such that αC = αi1 = · · · = αis .

Define two odd cycles C and D in Σ to be equivalent if αC = αD. Under this

equivalence relation, the set of odd cycles in Σ are partitioned into equivalence classes

C1, . . . , Ct. For i ∈ {1, . . . , t}, let Vi be the union of the vertex sets of the cycles in Ci
and let σi be the assigned permutation to any of the cycles in Ci. Then αk = σi for

all k ∈ Vi, and σi 6= σj for i 6= j. As a consequence, Vi ∩ Vj = ∅ for i 6= j. Since

every vertex of Σ lies in some odd cycle in Σ, the set V (Σ) is covered by {V1, . . . , Vt},

and so {V1, . . . , Vt} is a partition of V (Σ). Since (α1, . . . , αm) is non-diagonal, we have

t ≥ 2. Now the connectivity of Σ implies that there exist distinct i, j ∈ {1, . . . , t} and

vertices x ∈ Vi and y ∈ Vj with {x, y} ∈ E(Σ). By Definition 2.4, for u, v ∈ V (Γ), we

have

{u, v} ∈ E(Γ) ⇔ {uαx , vαy} ∈ E(Γ).
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As αx = σi, αy = σj and σi 6= σj , it follows that (σi, σj) is a nontrivial two-fold

automorphism of Γ. Let {z, w} be an edge of any cycle in Ci. Again, by Definition

2.4, for u, v ∈ V (Γ), we have

{u, v} ∈ E(Γ) ⇔ {uαz , vαw} ∈ E(Γ).

Since αz = αw = σi, this means that σi ∈ Aut(Γ). So part (d) of Lemma 2.3 yields

that Γ is R-thick, a contradiction. �

4. Applications and concluding remarks

Proposition 4.1. Let m ≥ 3 be an integer, and let Γ be a graph of valency coprime

to m− 1 such that Aut(Γ) 6= 1. Then the following statements hold:

(a) If Γ is connected and R-thin, then (Γ, Km) is stable.

(b) If Γ is disconnected or R-thick, then (Γ, Km) is trivially unstable.

Proof. Since the complete graphKm is vertex-transitive and non-bipartite with valency

m− 1, we conclude from part (b) of Theorem 1.6 that the graph pair (Γ, Km) cannot

be nontrivially unstable. In view of Definition 1.4, this implies that if Γ is connected

and R-thin, then (Γ, Km) is stable. On the other hand, if Γ is disconnected or R-thick,

then (Γ, Km) is trivially unstable by Theorem 1.3 and Definition 1.4. �

Proposition 4.1 is not true if the valency of Γ is not coprime to m−1. For example,

let Γ = Km ×K2. Then Γ is a connected R-thin graph of valency m − 1. However,

(Γ, Km) is trivially unstable as Γ and Km are not coprime. Note also that we do need

m ≥ 3 in Proposition 4.1, as any nontrivially unstable graph Γ with Aut(Γ) 6= 1 would

satisfy the assumption but not the conclusion of part (b) if m = 2 in Proposition 4.1.

Since Km is non-bipartite when m ≥ 3, the condition that Γ is of valency coprime

to m − 1 in Proposition 4.1 implies that Γ and Km are coprime. So it is natural to

ask whether the results in Proposition 4.1 are still true if this condition is replaced

by the weaker condition that Γ and Km are coprime. In fact, by Theorem 1.3 and

Definition 1.4, we know that part (b) of Proposition 4.1 is true if Γ and Km (m ≥ 3)

are coprime and Aut(Γ) 6= 1. We conjecture that part (a) of Proposition 4.1 is also

true under the same condition.

Conjecture 4.2. Let m ≥ 3 be an integer, and let Γ be a graph coprime to Km such

that Aut(Γ) 6= 1. If Γ is connected and R-thin, then (Γ, Km) is stable.

All connected arc-transitive graphs of order 2 to 47 are known (see the list https://www.math.auckland.ac.nz/~conder/symmetricgraphs-orderupto47-byedges.txt

constructed by M. Conder). Computing in Magma shows that Conjecture 4.2 is true

when Γ is one of these graphs and 3 ≤ m ≤ 25, or Γ is a connected arc-transitive

graph with order at most 31 and 3 ≤ m ≤ 100. Our computing also shows that Con-

jecture 4.2 is true when Γ is any connected bipartite graph of order at most 47 in the

database https://hog.grinvin.org and 3 ≤ m ≤ 100. It is not difficult to see that

this conjecture is true if Γ is non-bipartite and m ≥ 3.

https://www.math.auckland.ac.nz/~conder/symmetricgraphs-orderupto47-byedges.txt
https://hog.grinvin.org
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Proposition 4.3. Let m ≥ 3 be an integer, and let Γ be a connected R-thin graph of

odd valency such that Aut(Γ) 6= 1. Then the following statements hold:

(a) If m is odd, then (Γ, Cm) is stable.

(b) If m = 4, then (Γ, Cm) is trivially unstable.

(c) If m ≥ 6 is even, then (Γ, Cm) is stable or nontrivially unstable or trivially un-

stable, respectively, if and only if Γ is stable or nontrivially unstable or trivially

unstable.

Proof. First suppose that m is odd. In this case, Cm is a connected R-thin vertex-

transitive non-bipartite graph of valency 2. Since the valency of Γ is odd, (Γ, Cm)

cannot be nontrivially unstable by part (b) of Theorem 1.6. Since Γ is connected and

R-thin, it follows from Definition 1.4 that (Γ, Cm) is stable, as part (a) asserts.

Next suppose that m = 4. Then Cm is R-thick, and so (Γ,Σ) is trivially unstable

by Theorem 1.3 and Definition 1.4. This proves part (b).

Finally, suppose thatm ≥ 6 is even. Then Cm is a connected R-thin vertex-transitive

bipartite graph of valency 2. Since Γ has odd valency, part (a) of Theorem 1.6 shows

that (Γ, Cm) is nontrivially unstable if and only if Γ is nontrivially unstable. Moreover,

it follows from Theorem 1.3 and Definition 1.4 that (Γ, Cm) is trivially unstable if and

only if Γ is disconnected or R-thick or bipartite, which happens exactly when Γ is

trivially unstable. This completes the proof of part (c). �

Note that the condition that Γ is of odd valency in Proposition 4.3 ensures that

Γ and Cm are coprime. It is natural to ask whether Proposition 4.3 is still true for

graphs Γ of even valency under the additional condition that Γ and Cm are coprime.

In particular, we pose the following question.

Question 4.4. For a stable graph Γ and an even integer m ≥ 6, under what condition

is (Γ, Cm) nontrivially unstable?

Theorem 1.6 relates the nontrivial instability of (Γ,Σ) to that of Γ in the case when

Γ and Σ are of coprime valencies and Σ is vertex-transitive. It would be interesting to

study when a similar relation exists if the valencies of Γ and Σ are not coprime or Σ

is not vertex-transitive. In general, we pose the following question.

Question 4.5. Let Γ and Σ be regular graphs. Under what condition does it hold that

(Γ,Σ) is nontrivially unstable if and only if Γ is nontrivially unstable?
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[8] R. Nedela and M. Škoviera, Regular embeddings of canonical double coverings of graphs, J.

Combin. Theory Ser. B 67 (1996), 249–277.

[9] Y-L. Qin, B. Xia and S. Zhou, Stability of circulant graphs, J. Combin. Theory Ser. B 136 (2019),
154–169.

[10] Y-L. Qin, B. Xia and S. Zhou, Canonical double covers of generalized Petersen graphs, and

double generalized Petersen graphs, J. Graph Theory 97 (2021), 70–81.

[11] Y-L. Qin, B. Xia, J-X. Zhou and S. Zhou, Stability of graph pairs, J. Combin. Theory Ser. B

147 (2021), 71–95.

[12] D. Surowski, Stability of arc-transitive graphs, J. Graph Theory 38 (2001), 95–110.

[13] D. Surowski, Automorphism groups of certain unstable graphs, Math. Slovaca 53 (2003), 215–
232.

[14] P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc. 13 (1962), 47–52.

[15] S. Wilson, Unexpected symmetries in unstable graphs, J. Combin. Theory Ser. B 98 (2008),
359–383.

[16] B. Zelinka, The group of autotopies of a digraph, Czech Math. J. 21 (1971), 619–624.

[17] B. Zelinka, Isotopy of digraphs, Czech Math. J. 22 (1972), 353–360.

School of Statistics, Capital University of Economics and Business, Beijing, 100070,

P.R. China

Email address : ylqin@cueb.edu.cn

School of Mathematics and Statistics, The University of Melbourne, Parkville,

VIC 3010, Australia

Email address : binzhoux@unimelb.edu.au

School of Mathematics and Statistics, The University of Melbourne, Parkville,

VIC 3010, Australia

Email address : sanming@unimelb.edu.au


	1. Introduction
	2. Preliminaries
	2.1. Two-fold automorphisms and stability of graphs
	2.2. -automorphisms and stability of graph pairs

	3. Proof of Theorem 1.6
	4. Applications and concluding remarks
	References

