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Abstract

In this paper, we study split graphs and related classes of graphs from the perspective of
their sequence of vertex degrees and an associated lattice under majorization. Following the
work of Merris [16], we define blocks [α(π)|β(π)], where π is the degree sequence of a graph,
and α(π) and β(π) are sequences arising from π. We use the block representation [α(π)|β(π)] to
characterize membership in each of the following classes: unbalanced split graphs, balanced split
graphs, pseudo-split graphs, and three kinds of Nordhaus-Gaddum graphs (defined in [5, 3]).
As in [16], we form a poset under the relation majorization in which the elements are the blocks
[α(π)|β(π)] representing split graphs with a fixed number of edges. We partition this poset in
several interesting ways using what we call amphoras, and prove upward and downward closure
results for blocks arising from different families of graphs. Finally, we show that the poset
becomes a lattice when a maximum and minimum element are added, and we prove properties
of the meet and join of two blocks.

AMS subject classifications: Primary 05C07, 05C17, Secondary: 05A17, 06B99
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1 Introduction

A graph G is a split graph if its vertex set can be partitioned as V (G) = K ∪ S where the vertices
in K form a clique and the vertices in S form a stable set, also known as an independent set.
Földes and Hammer introduced split graphs in [8], and since then they have received considerable
attention. Several authors have written book chapters on split graphs, including [10, 14, 15] and,
more recently, [6]. Hammer and Simeone [11] proved that the class of split graphs is characterized by
degree sequence. For any graph G, Merris [16] proved that additional features of G can be discerned
from its degree sequence π by dividing the Ferrers diagram F (π) into two regions: A(π), consisting
of the rows of boxes starting at and including the main diagonal, and B(π), consisting of the columns
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of boxes below the main diagonal, and identifying the partition α(π) whose parts are the number of
boxes in the rows of A(π), and the partition β(π) whose parts of the number of boxes in the columns
of B(π). Both α(π) and β(π) are partitions into distinct parts. Other authors use α(π) and β(π) to
determine whether a sequence π is graphic, and whether it is the degree sequence of a split graph
or a threshold graph. These results are described in [6].

A KS-partition of a split graph is a partition V (G) = K∪S where K is a clique and S is a stable
set. Let ω(G) denote the size of a largest clique in G and α(G) denote the size of a largest stable set in
G. A KS-partition of G is K-max if |K| = ω(G) and S-max if |S| = α(G). A split graph is balanced
if it has a KS-partition that is simultaneously K-max and S-max, and unbalanced otherwise. A
degree sequence of a split graph is said to be balanced if its split graph is balanced and unbalanced if
its split graph is unbalanced. We determine whether a split graph with degree sequence π is balanced
or unbalanced by examining α(π) and β(π) in Theorem 2.2, and we describe membership in several
classes of graphs related to split graphs in terms of the ordered pairs, [α(π)|β(π)]: threshold graphs,
pseudo-split graphs and Nordhaus-Gaddum graphs (NG-graphs are defined in [5, 3]).

The partitions of an integer form a lattice under the majorization order; see Brylawski [2], and
recent work by Ganter [9], and we describe this in Section 3. Ordered pairs of integer partitions
form a poset and we consider the subposet S-Block(n) corresponding to degree sequences of split
graphs with n edges. We prove upward and downward closure results in S-Block(n) for unbalanced
and balanced pairs [α|β],

determine the meet and join of any two elements of S-Block(n), and characterize when these
are balanced and unbalanced. We prove that S-Block(n) is naturally partitioned into separate
unbalanced and balanced subposets. We call these amphoras since each is shaped like an ancient
Greek amphora, a ceramic pot designed as an efficient shipping container with a pointed bottom
and wider top. These are described in Theorem 4.14 and Corollary 4.17, and are shown for n = 10
in Figures 3 and 4. Further, we show natural partitions into amphoras for threshold graphs, pseudo-
split graphs and NG-graphs.

The remainder of this paper is organized as follows. In Section 2, we provide additional informa-
tion about balanced and unbalanced split graphs and the Ferrers diagrams of their degree sequences,
as well as background and preliminary results about threshold graphs, pseudo-split graphs, and three
kinds of NG-graphs. Membership of a graph in each of these classes is determined by its degree
sequence π, and in later sections we prove additional results about these classes using α(π) and β(π).
Section 3 provides background on the relation majorization between partitions and a resulting poset
Disk(n), whose elements are the partitions of n into k distinct parts. In addition, following the
work of [16], we combine pairs of partitions into blocks, and discuss majorization between blocks,
resulting in the poset S-Block(n). In Section 4, we define an amphora in a poset, and then show
how the poset S-Block(n) is naturally partitioned into amphoras using the categories of balanced,
unbalanced and NG-graphs, and also show upward and downward closure results. In Section 5, we
extend this poset to a lattice by adding a minimum element 0̂ and a maximum element 1̂ and inves-
tigate properties of the meet and join of two blocks. Finally, in Section 6, we show how pseudo-split
graphs and NG-3 graphs with degree sequence π can be characterized by α(π) and β(π).

2 Background and preliminaries

2.1 Ferrers diagrams, balanced and unbalanced split graphs

Recall that a split graph is balanced if it has a KS-partition that is simultaneously K-max and
S-max, and unbalanced otherwise. For example, the graph P4 is a balanced split graph while K1,3 is
unbalanced. For any K-max partition of an unbalanced split graph, there is a vertex k ∈ K so that
S ∪ {k} is a stable set, and for any S-max partition of an unbalanced split graph, there is a vertex
s ∈ S so that K ∪ {s} is a clique. We call such vertices, k or s, swing vertices. For more details, see
[6].
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F (π1) F (π2)

Figure 1: The Ferrers diagrams and illustration of the central rectangles for π1 = (6, 5, 2, 2, 2, 1, 1, 1)
and π2 = (6, 4, 3, 2, 2, 1, 1, 1)

Throughout this paper we will assume that any partition of integers is written in non-increasing
order, so when we write π = (d1, d2, . . . , dr), it follows that d1 ≥ d2 ≥ · · · ≥ dr. We say the
length of π is r and write len(π) = r. The Ferrers diagram F (π) is the diagram with r left-justified
rows and di boxes in row i for 1 ≤ i ≤ r. We are primarily interested in Ferrers diagrams F (π)
when π is the degree sequence of a graph. We will ignore isolated vertices in graphs, so our degree
sequences will consist of positive integers. Figure 1 shows the Ferrers diagrams for π1 and π2, where
π1 = (6, 5, 2, 2, 2, 1, 1, 1) and π2 = (6, 4, 3, 2, 2, 1, 1, 1).

A fundamental parameter in recognizing split graphs from degree sequences is the mark, also
known as the modified Durfee number. If π = (d1, d2, . . . , dr), the mark of π is defined as m(π) =
max{i : di ≥ i − 1} and we write m for m(π) when there is no ambiguity. Since dm ≥ m− 1, there
is a box in F (π) in row m, column m− 1 and we define the central rectangle to be the m× (m− 1)
rectangle in the upper left of F (π). By the definition of m, we know dm+1 < m, so the central
rectangle cannot be extended to an (m + 1) × m rectangle and thus it provides a visual way to
identify m(π) from F (π). For π1 and π2 given above, we have m(π1) = m(π2) = 3 and the 3 × 2
central rectangles are shown in Figure 1.

Additional features of a graph with degree sequence π can be discerned by dividing F (π) into
two regions: A(π), consisting of the rows of boxes starting at and including the main diagonal, and
B(π), consisting of the columns of boxes below the main diagonal. These regions in turn lead to two
partitions derived from π, the partition α(π) whose parts are the number of boxes in the rows of
A(π), and the partition β(π) whose parts of the number of boxes in the columns of B(π). In Figure 1,
the boxes in on the main diagonal are shaded, and α(π1) = (6, 4), β(π1) = (7, 3), α(π2) = (6, 3, 1),
and β(π2) = (7, 3).

By construction, α(π) and β(π) are partitions into distinct parts. As the following theorem
shows, the length of β(π) always equals m(π) − 1 while the length of α(π) depends on whether
or not there is a box on the main diagonal of row m of F (π). Both possibilities are illustrated in
Figure 1; len(α(π1)) = m(π1)− 1 and len(α(π2)) = m(π2). Theorem 2.1 appears in [6].

Theorem 2.1. If π is a partition and m = m(π) then len(β(π)) = m − 1. Furthermore, either
len(α(π)) = len(β(π)) = m− 1, or len(α(π)) = len(β(π)) + 1 = m.

Proof. By the definition of the mark m, we know dm ≥ m−1 and dm+1 < m, so there is a box in row
m, column m− 1 of F (π) and no box in row m+1, column m of F (π). Thus len(β(π)) = m− 1 and
len(α(π)) ≤ m. If there is a box in row m, column m of F (π), then len(α(π)) = len(β(π)) + 1 = m,
and otherwise, len(α(π)) = len(β(π)) = m− 1.

If π is the degree sequence of a split graph G, then the two possibilities described in Theorem 2.1
also determine whether G is balanced or unbalanced.
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Theorem 2.2. If G is a split graph with degree sequence π then G is unbalanced when α(π) and
β(π) have the same length and balanced otherwise.

Proof. Let G be a split graph with degree sequence π = (d1, d2, . . . , dr) and let m = m(π). In
[3], it is shown that a split graph G is unbalanced if dm = m − 1 and balanced if dm > m − 1,
and a short and direct proof of this appears in [6]. Hence if G is unbalanced, then dm = m − 1,
so len(α(π)) = m − 1 = len(β(π)) using Theorem 2.1. If G is balanced, then dm > m − 1, so
len(α(π)) > m− 1 = len(β(π)).

As a result of Theorem 2.2, we can determine whether a split graph with degree sequence π is
balanced or unbalanced by examining α(π) and β(π). Analogous results appear in Theorems 4.18
and 6.1 and Corollary 6.2.

2.2 Threshold graphs, NG-graphs, and pseudo-split graphs

Threshold graphs play a special role in the poset S-Block(n) which we will define in Section 4. The
class of threshold graphs was introduced by Chvátal and Hammer and studied extensively in [14].
A graph G = (V,E) is a threshold graph if there exist a threshold t > 0 and a positive weight ai
assigned to each vertex vi ∈ V , so that S ⊆ V is a stable set of G if and only if

∑

i∈S ai ≤ t.
Split graphs and threshold graphs have similar forbidden subgraph characterizations. A graph G

is a split graph if and only if it contains none of 2K2, C4, or C5 as an induced subgraph [8]. A graph
G is a threshold graph if and only if it contains none of 2K2, C4, or P4 as an induced subgraph
[4]. Since P4 is an induced subgraph of C5, it immediately follows that all threshold graphs are
split graphs. It is natural to ask whether they are balanced or unbalanced. Theorem 2.3 shows that
all balanced split graphs contain an induced P4, and in Corollary 2.4, we conclude that threshold
graphs are unbalanced split graphs.

Theorem 2.3. Balanced split graphs contain an induced P4.

Proof. Let G be a balanced split graph and V = K ∪ S be its unique KS-partition. For vertices
v ∈ K, we denote the set of vertices in S that are adjacent to v by NS(v). Let x be a vertex of K
with minimum degree. If NS(x) = ∅ then x is a swing vertex, a contradiction because G is balanced.
Thus NS(x) 6= ∅ and there exists z ∈ NS(x). Since z is not a swing vertex, there exists a vertex
y ∈ K that is not adjacent to z, and thus z ∈ NS(x) −NS(y). However, deg(x) ≤ deg(y), so there
exists w ∈ NS(y)−NS(x). Now vertices x, y, z, w induce a path P4 in G as desired.

Corollary 2.4. Threshold graphs are unbalanced split graphs.

Proof. As noted above, it follows from the forbidden graph characterizations that all threshold graphs
are split graphs. By Theorem 2.3, all balanced split graphs contain an induced P4, and therefore
threshold graphs cannot be balanced split graphs, so they must be unbalanced split graphs.

An alternate proof of Corollary 2.4 can be obtained by combining Theorems 2.2, 3.16 and 3.17.
As we will see in Section 4, threshold graphs play a fundamental role as the maximal elements in
the split block poset.

A well-known theorem by Nordhaus and Gaddum [13] relates the chromatic number of any graph
G and its complement G to the number of vertices:

2
√

|V (G)| ≤ χ(G) + χ(Ḡ) ≤ |V (G)| + 1.

We call G a Nordhaus-Gaddum graph or NG-graph if χ(G) +χ(Ḡ) = |V (G)|+1. Finck [7] and Starr
and Turner [18] provide two different characterizations of NG-graphs. Collins and Trenk [5] define
the ABC-partition of a graph and characterize NG-graphs in terms of this partition.
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Definition 2.5. For a graph G, the ABC-partition of V (G) (or of G) is
AG = {v ∈ V (G) : deg(v) = χ(G) − 1}
BG = {v ∈ V (G) : deg(v) > χ(G)− 1}
CG = {v ∈ V (G) : deg(v) < χ(G) − 1}.
When it is unambiguous, we write A = AG, B = BG, C = CG.

For a graph G and any subset of vertices V ′ ⊆ V (G), let G[V ′] denote the subgraph induced in
G by V ′. The following theorem from [5] characterizes NG-graphs using ABC-partitions.

Theorem 2.6. (Collins and Trenk [5]) A graph G is an NG-graph if and only if its ABC-partition
satisfies

(i) A 6= ∅ and G[A] is a clique, a stable set, or a 5-cycle
(ii) G[B] is a clique
(iii) G[C] is a stable set
(iv) uv ∈ E(G) for all u ∈ A, v ∈ B

(v) uw 6∈ E(G) for all u ∈ A, w ∈ C.

By (i) of Theorem 2.6, there are three possible forms of an NG-graph, and they are defined as
follows.

Definition 2.7. A graph G is an NG-1 graph if G[A] is a clique, an NG-2 graph if G[A] is a stable
set, and an NG-3 graph if G[A] is a 5-cycle.

It is shown in [3] that if G is any NG-graph then χ(G) = m(G). This leads to the following
remark.

Remark 2.8. If G is an NG-graph, then we may replace χ(G) by m(G) in its ABC-partition.

Note that NG-3 graphs are not split graphs because they contain a 5-cycle. However, NG-1
graphs (resp. NG-2 graphs) are split graphs with KS-partition K = A ∪B, S = C (resp. K = B,
S = A∪C). Indeed, they are unbalanced split graphs because the vertices in the non-empty AG are
swing vertices by conditions (iv) and (v) of Theorem 2.6. Conversely, it is shown in [3] and, later,
in Corollary 4.20 that every unbalanced split graph is an NG-1 graph or an NG-2 graph (or both).
We record this equivalence below in Proposition 2.9.

Proposition 2.9. The class of unbalanced split graphs is the union of the classes of NG-1 graphs
and NG-2 graphs.

A graph is a pseudo-split graph if it contains neither C4 nor 2K2 as an induced subgraph. This
class was first studied by Blázsik et. al. in [1] and its connection to NG-graphs was proven in the
following theorem in [3].

Theorem 2.10. The class of pseudo-split graphs equals the following disjoint unions.

(i) {NG-graphs} ∪̇ {balanced split graphs}
(ii) {split graphs} ∪̇ {NG-3 graphs}

In section 4 we characterize all three types of NG-graphs in terms of the α(π) and β(π) of their
degree sequence π, and do the same for pseudo-split graphs in Section 6.

3 Majorization in Disk(n) and S-Block(n)

In this section we provide background definitions and results about majorization and the resulting
posets Disk(n) and S-Block(n). Both of these are related to the lattice of partitions of an integer
under majorization, introduced by Brylawski [2] and further developed by Ganter [9], who provided
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an algorithm for determining meets and joins, enumerated meet- and join-irreducible elements, and
computed a number of lattice statistics. Le and Phan [12] proved that the poset of partitions of an
integer into distinct parts is a lattice. In Section 3.1 we primarily focus on the lattice of partitions of
n into distinct parts and in Section 3.2 we form blocks containing two of these partitions to construct
the poset S-Block(n).

3.1 The lattices Dis(n) and Disk(n)

We first define the well-known relations of weak majorization and majorization (also known as
dominance).

Definition 3.1. Let α be a partition of n1 and β be a partition of n2, where α = (α1, α2, . . . , αs)
and β = (β1, β2, . . . , βt). We say β weakly majorizes α, denoted β �w α, if n2 ≥ n1 and

k
∑

i=1

βi ≥
k

∑

i=1

αi for all k ≤ min{s, t}.

Furthermore, β majorizes α, denoted β � α if in addition n1 = n2. If β � α and β 6= α, we write
β ≻ α, and similarly for weak majorization.

As an example, note that (7, 4, 1) �w (5, 3, 2, 1) and (7, 4, 1) � (6, 3, 2, 1).
It is not hard to check that the set of partitions of n into parts that are positive and distinct

forms a poset under majorization. We denote this poset by Dis(n) and denote by Disk(n) the
subposet of Dis(n) of partitions into exactly k parts. It is well-known that the set of partitions of
an integer n form a lattice under the majorization order [2] and Dis(n) is shown to be a lattice in
[12]. We record the latter below.

Theorem 3.2. The poset Dis(n) is a lattice.

In Proposition 3.12 we show the poset Disk(n) is also a lattice. Our proof is a consequence of
identifying minimum and maximum elements τk(n) and τ ′k(n) of Disk(n). The partitions τk(n) and
τ ′k(n) will also play a fundamental role in later sections.

Figure 2 shows Dis(10), Dis(12), and a sublattice of Dis(14). In Section 3.2 we will use pairs of
elements of Dis(n) to form a new poset, S-Block(n). The poset S-Block(10) is shown in Figure 3.
Observe that lower elements of Dis(n) have longer lengths, as we make precise in the next lemma.

Lemma 3.3. If γ1, γ2 ∈ Dis(n) and γ1 � γ2 then len(γ1) ≤ len(γ2).

Proof. Let γ1 = (b1, b2, . . . , br) for integers b1 > b2 > · · · > br > 0, and let γ2 = (c1, c2, . . . , cs) for
integers c1 > c2 > · · · > cs > 0. We wish to show r ≤ s. For a contradiction, assume r > s. Then
∑r

i=s+1
bi > 0 so

s
∑

i=1

ci = n =

r
∑

i=1

bi >

s
∑

i=1

bi

contradicting the hypothesis that γ1 � γ2 when we sum s terms.

We next show there exist maximum and minimum elements of Disk(n) when Disk(n) 6= ∅. If
α = (a1, a2, . . . , ak) ∈ Disk(n), then ak ≥ 1, ak−1 ≥ 2, . . . , a2 ≥ k − 1, and a1 ≥ k; thus if Disk(n)
is not empty, we have n ≥ 1 + 2 + · · · + k =

(

k+1

2

)

. We will see that in this case, Disk(n) has
a maximum element τ ′k(n), given in Definition 3.4, in which the first part is as large as possible.
Likewise, Disk(n) has a minimum element τk(n), defined in Definition 3.7, in which the parts are
as equal in size as possible. For n = 10 and k = 3, we have τ ′3(10) = (7, 2, 1) and τ3(10) = (5, 3, 2).
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(4,3,2,1)

(5,3,2)

(5,4,1)

(6,3,1)

(7,3)

(8,2)

(9,1)

(10)

(6,4)(7,2,1)

(a)

(5,4,2,1)

(5,4,3)

(6,4,2)

(6,5,1)

(7,4,1)

(6,3,2,1)

(7,3,2)

(8,3,1)

(9,2,1)

(7,5)

(8,4)

(9,3)

(10,2)

(11,1)

(12)

(b)

(7,4,2,1)

(7,4,3)

(7,5,2)
(8,3,2,1)

(8,4,2)

(c)

Figure 2: The Hasse Diagrams for (a) Dis(10), (b) Dis(12), and (c) a portion of Dis(14).

Definition 3.4. For n ≥
(

k+1

2

)

, let τ ′k(n) = (n−
(

k
2

)

, k − 1, k − 2, . . . , 3, 2, 1).

Lemma 3.5. If n ≥
(

k+1

2

)

then τ ′k(n) is the maximum element of Disk(n).

Proof. Let τ ′k(n) = (t′1, t
′

2, . . . , t
′

k) and note that τ ′k(n) ∈ Disk(n), since t
′

1 = n−
(

k

2

)

≥
(

k+1

2

)

−
(

k

2

)

=
k. We let α = (a1, a2, a3, . . . , ak) ∈ Disk(n) and show τ ′k(n) � α. Since the parts of α are decreasing
in size, we have ak ≥ 1 = t′k, ak−1 ≥ 2 = t′k−1

, . . . , a2 ≥ k−1 = t′2, and a1 = n−(a2+a3+ · · ·+ak).
Then for all r with 1 ≤ r ≤ k,

r
∑

i=1

ai =

k
∑

i=1

ai −
k

∑

i=r+1

ai = n−
k
∑

i=r+1

ai ≤
k
∑

i=1

t′i −
k

∑

i=r+1

t′i =

r
∑

i=1

t′i.

So α � τ ′k(n).

In the next lemma we prove that the elements τ ′k(n) form a chain in Dis(n).

Lemma 3.6. Suppose n, j and k are positive integers with n ≥
(

k+1

2

)

. If k > j then τ ′k(n) � τ ′j(n).

Proof. For k > j, the last j− 1 parts of τ ′k(n) and τ ′j(n) are equal, and the sum of the first k− j+1
parts of τ ′k(n) equals the first part of τ ′j(n). Thus τ

′

j(n) � τ ′k(n).

We are now ready to define τk(n) and prove it is the minimum element in Disk(n). Intuitively,
we can think of constructing τk(n) by first assigning 1 to the smallest part, 2 to the next smallest
part, etc. and then dividing the remaining n−

(

k+1

2

)

as evenly as possible among the k parts, starting
at the largest parts.

Definition 3.7. Suppose n and k are positive integers with n ≥
(

k+1

2

)

. Let nk = n−
(

k+1

2

)

and write
nk = qk + r where q and r are non-negative integers and 0 ≤ r < k. Let τ̂k(nk) = (ŝ1, ŝ2, . . . , ŝk)
where ŝi = q+1 for 1 ≤ i ≤ r, and ŝi = q for r < i ≤ k. Finally, let τk(n) = (ŝ1, ŝ2, . . . , ŝk)+ (k, k−
1, k − 2, . . . , 1).
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We give an example of the construction for n = 20 and k = 3. In this case, n3 = 20−
(

4

2

)

= 14,
we write 14 = 4 · 3 + 2 and get τ̂3(14) = (5, 5, 4). Thus τ3(20) = (5, 5, 4) + (3, 2, 1) = (8, 7, 5).
Alternatively, τk(n) is the unique element (t1, t2, t3, . . . , tk) of Disk(n) for which t1 − tk ≤ k. It is
not hard to show the following results about τ̂k(nk), which we record in a remark.

Remark 3.8. The unique minimum partition of nk into at most k parts under majorization is
τ̂k(nk), and τ̂k(nk) � τ̂k−1(nk).

Lemma 3.9. If n ≥
(

k+1

2

)

then τk(n) is the unique minimum element of Disk(n).

Proof. We let α ∈ Disk(n) and show τk(n) � α. Write α = (a1, a2, a3, . . . , ak), and let a′1 = a1 − k,
a′2 = a2 − (k − 1), . . . , a′k = ak − 1. By construction, a′1 ≥ a′2 ≥ · · · ≥ a′k ≥ 0 and the a′i sum to

nk = n−
(

k+1

2

)

. The non-zero a′i form a partition α̂ of nk into at most k parts. Since τ̂k(nk), defined
in Definition 3.7, is the unique minimum partition of nk into at most k parts, then τ̂k(nk) � α̂. It
follows that τk(n) � α, and τk(n) is the unique minimum element of Disk(n).

The next lemma is analogous to Lemma 3.6 and proves that the elements τ ′k(n) also form a chain
in Dis(n).

Lemma 3.10. Suppose n, j, and k are positive integers with n ≥
(

k+1

2

)

. If k > j, then τk(n) � τj(n).

Proof. We will show that τk(n) � τk−1(n); the result in the lemma then follows by transitivity. First
note that n = nk +

(

k+1

2

)

and n = nk−1 +
(

k
2

)

, so nk−1 = nk + k. Then using Definition 3.7 and
Remark 3.8 we have,

τk−1(n) = τ̂k−1(nk−1) + (k − 1, k − 2, . . . , 2, 1)

= τ̂k−1(nk−1 − (k − 1)) + (k, k − 1, . . . , 3, 2)

= τ̂k−1(nk + 1) + (k, k − 1, . . . , 3, 2)

� τ̂k(nk + 1) + (k, k − 1, . . . , 3, 2, 0)

� τ̂k(nk) + (k, k − 1, . . . , 3, 2, 1) = τk(n).

The next result specifies the lengths of the meet (∧) and join (∨) of two elements in the lattice
Dis(n).

Proposition 3.11. If γ1 ∈ Disk(n) and γ2 ∈ Disj(n) then len(γ1 ∨ γ2) = min{j, k} and len(γ1 ∧
γ2) = max{j, k}. Moreover, if γ1, γ2 ∈ Disk(n) then len(γ1 ∨ γ2) = len(γ1 ∧ γ2) = k.

Proof. The last sentence follows immediately, so we prove the first sentence of the proposition.
Suppose γ1 ∈ Disk(n) and γ2 ∈ Disj(n) where j ≤ k, and let τk(n), τj(n), τ

′

k(n), τ
′

j(n) be the
partitions in Dis(n) defined in Definitions 3.4 and 3.7.

We know (γ1 ∨ γ2) � γ2, so len(γ1 ∨ γ2) ≤ len(γ2) = j by Lemma 3.3. By Lemma 3.6 and
Lemma 3.5, τ ′j(n) � τ ′k(n) � γ1, and τ ′j(n) � γ2. So τ ′j(n) is an upper bound for γ1 and γ2, and
thus τ ′j(n) � (γ1 ∨ γ2). Therefore, j = len(τ ′j(n)) ≤ len(γ1 ∨ γ2) ≤ j, so equality holds throughout
and len(γ1 ∨ γ2) = j = min{j, k}.

The second proof is analogous.

Proposition 3.12. The poset Disk(n) is a lattice, and a sublattice of Dis(n).

Proof. By definition, Disk(n) is a subposet of Dis(n). Since Dis(n) is a lattice, any two elements
have both a meet and a join. By Proposition 3.11, for any two elements in Disk(n), their meet and
join are in Disk(n).
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We end this section with a remark that follows from the identity
(

k+2

2

)

− 2 =
(

k+1

2

)

+ k− 1. This
remark will be useful in describing partitions of the S-block lattice in Section 4.

Remark 3.13. Let n, k be integers so that n ≥ 2, k ≥ 2 and n ≥
(

k+1

2

)

.

(i) If n ≤
(

k+2

2

)

− 2 then all elements of Disk(n) have last part equal to 1.

(ii) If n ≥
(

k+2

2

)

− 1, then Disk(n) contains a partition with last part equal to 2.

For example, we see in Figure 2 that all elements of Dis4(12) have last part equal to 1 and there
exist elements of Dis3(12) with last part equal to 2.

3.2 The poset S-Block(n)

When n1 and n2 are positive integers of the same parity with n2 ≥ n1, we combine elements of
Dis(n1) and Dis(n2) into ordered pairs that we call blocks as follows.

Definition 3.14. Let n1, n2 be positive integers of the same parity and let α ∈ Dis(n1) and
β ∈ Dis(n2). The ordered pair [α|β] forms a block if the following three conditions hold.

(i) n2 ≥ n1

(ii) β �w α

(iii) len(α) = len(β) or len(α) = len(β) + 1.

If in addition, n1 = n2, then [α|β] is a split-block (or S-block) and in this case, (ii) is equivalent to
β � α.

In addition to the majorization that occurs within a block, there is also majorization between
blocks.

Definition 3.15. If α1, α2 ∈ Dis(n1) and β1, β2 ∈ Dis(n2), then [α1|β1] majorizes [α2|β2] (denoted
[α1|β1] � [α2|β2]) if α1 � α2 and β1 � β2.

In Section 6 we consider blocks for which n1 6= n2; until then, we study S-blocks. It is not hard to
check that for a fixed n, the set of S-blocks forms a poset under the majorization in Definition 3.15
(with n1 = n2), and we denote this poset by S-Block(n). The poset S-Block(10) is shown in Figure 3
and is constructed from pairs of elements of Dis(10). As shown in Figure 2(a), Dis(10) is ranked
and has left-right symmetry, and as a result, S-Block(10) is also ranked and has left-right symmetry.
However, in general, Dis(n) has neither of these properties. Figure 2(b) shows that Dis(12) does
not have left-right symmetry and Figure 2(c) shows that Dis(14) is not ranked. As a consequence,
S-Block(12) does not have left-right symmetry and S-Block(14) is not ranked.

Merris [16] studies a larger class of posets and translates classical characterization results for
split graphs and threshold graphs into conditions about split blocks, as we record in Theorems 3.16
and 3.17. We provide a short proof of Theorem 3.16 that translates between our terminology and
that in [16].

Theorem 3.16. The partition π is the degree sequence of a split graph if and only if [α(π)|β(π)] is
an S-block.

Proof. If π is the degree sequence of a split graph, then β(π) � α(π) (see for example, Theorem 4.4
of [6]). The first two conditions of Definition 3.14 follow immediately, and the third condition follows
from Theorem 2.1.

Conversely, suppose [α(π)|β(π)] is an S-block. By Definition 3.14, we have β(π) � α(π) and
α(π), β(π) ∈ Dis(n) for some integer n, thus π partitions 2n. Since β(π) �w α(π) and π partitions an
even integer, we know π is graphic (see for example, Theorem 4.2 of [6]) and then since β(π) � α(π)
we conclude that π is the degree sequence of a split graph (again, see Theorem 4.4 of [6]).

9



Theorem 3.16 provides our motivation for the name S-block and is possible because membership
in the class of split graphs is determined by degree sequence. Similarly, membership in the classes
balanced split graphs, unbalanced split graphs, threshold graphs, NG-1 graphs, NG-2 graphs, NG-3
graphs, and pseudo-split graphs can also be determined by degree sequences. The characterization
theorem for threshold graphs from [16] is recorded in Theorem 3.17 below and the analogous results
for the remaining classes are proven in Theorems 2.2, 4.18, and 6.1 and Corollary 6.2. Merris and
Roby [17] focus on posets whose elements are α(π) where π is the degree sequence of a threshold
graph; they refer to A(π) as a shifted shape.

Theorem 3.17. The partition π is the degree sequence of a threshold graph if and only if [α(π)|β(π)]
is an S-block and α(π) = β(π).

We refer to an S-block [α|β] as balanced if there is a balanced split graph that has degree sequence
π with α = α(π) and β = β(π). Analogously, we refer to S-blocks as being unbalanced, threshold,
NG-1, NG-2, NG-3, or pseudo-split.

We conclude this section by showing that the set of balanced S-blocks is downward closed (i.e.,
any S-block below a balanced S-block is balanced) and the set of unbalanced S-blocks is upward-
closed, i.e., any S-block above an unbalanced S-block is unbalanced.

Theorem 3.18. Let [α1|β1], [α2|β2] ∈ S-Block(n) with [α1|β1] � [α2|β2]. If [α1|β1] is balanced,
then [α2|β2] is balanced. If [α2|β2] is unbalanced, then [α1|β1] is unbalanced.

Proof. Using Lemma 3.3 we know len(α1) ≤ len(α2) and len(β1) ≥ len(β2). In the case that [α1|β1]
is balanced, Theorem 2.2 implies that len(α1) = len(β1)+1. Thus len(α2) ≥ len(α1) = len(β1)+1 ≥
len(β2) + 1. Since [α2|β2] is an S-block, by Definition 3.14 we conclude len(α2) = len(β2) + 1 and
thus [α2|β2] is balanced by Theorem 2.2. The last sentence then follows as the contrapositive.

4 Partitioning S-Block(n) into Amphoras

In this section, we study the structure of S-Block(n) and provide our main theorems which link
subposets called amphoras to sets of S-blocks representing subclasses of split graphs. Amphoras
are ceramic pots used in ancient Greece to transport oils and other liquids in shipping. They have
a pointed bottom and are wider in the middle and at the top, but do not always have a cone
shape. Their shape allowed for them to be packed in the hold of ships in two layers so that there
was minimal movement during travel. In a similar manner, our amphoras will each have a unique
minimum element, an antichain of maximal elements, and contain everything between the minimum
element and one or more of the maximal elements. Figure 3 shows S-Block(10) partitioned into
amphoras outlined in solid and dotted lines.

Definition 4.1. Given a poset P , a subposet P ′ forms an amphora if there exists an antichain A

in P and an element x less than or equal to every element of A so that P ′ consists of all elements
of P that are greater than or equal to x and less than or equal to some element of A.

Equivalently, we can think of an amphora as a union of intervals in a poset where the bottom
element of each interval is the same and the top elements are the members of an antichain. We are
interested in amphoras that partition the poset S-Block(n) according to length. For each k (with
n ≥

(

k+1

2

)

) we will show that there is a unique minimal unbalanced S-block [α|β] where len(α) =
len(β) = k. Similarly, there is a unique minimal balanced S-block [α|β] where len(α) = k and
len(β) = k − 1. These minimal elements will not be minimum in the full poset S-Block(n), but
will be within certain amphoras. Our partition will result in two layers, with balanced S-blocks on
the bottom and unbalanced S-blocks above. In Figure 3, the amphoras for balanced S-blocks are
outlined in blue dotted lines and those for unbalanced S-blocks are outlined in solid yellow lines.
We define the sets A(n, k) and A(n, k, k − 1) in Definitions 4.4 and 4.11 and show that they are
amphoras and that they partition the unbalanced S-blocks and the balanced S-blocks respectively.
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4.1 The Amphoras A(n, k) and A(n, k, k − 1)

The maximal elements of S-Block(n) are characterized in Lemma 4.2 and correspond to threshold
graphs by Theorem 3.17.

Lemma 4.2. The set of maximal elements of S-Block(n) is {[γ|γ] : γ ∈ Dis(n)}.

Proof. Suppose γ ∈ Dis(n) and [α|β] ∈ S-Block(n) with [α|β] � [γ|γ]. By Definition 3.14, β � α,
and by Definition 3.15, α � γ � β, thus α = β = γ and [γ|γ] is maximal in S-Block(n). For any
[α′|β′] ∈ S-Block(n), Definition 3.14 implies that [α′|β′] � [α′|α′], thus the only maximal elements
of S-Block(n) are those of the form [γ|γ].

We partition the antichain of maximal elements of S-Block(n) according to length as follows.

Definition 4.3. (Max)nk = {[γ|γ] ∈ S-Block(n): γ ∈ Disk(n)}

In the next definition, we give a partition of the unbalanced elements of S-Block(n), and Theo-
rem 4.5 shows that these sets are amphoras and characterizes their minimum and maximal elements.

Definition 4.4. For n ≥
(

k+1

2

)

, define A(n, k) to be the subposet of S-Block(n) consisting of all
(unbalanced) S-blocks [α|β] where α, β ∈ Disk(n).

For example, A(10, 3) is outlined in solid yellow in Figure 3 and has maximal elements [5, 3, 2 | 5, 3, 2],
[5, 4, 1 | 5, 4, 1], [6, 3, 1 | 6, 3, 1], [7, 2, 1 | 7, 2, 1]. It has minimum element [5, 3, 2 | 7, 2, 1]. Note that
[5, 3, 2 | 7, 2, 1] is minimum in A(10, 3) but not in S-Block(10). More generally, A(n, k) has minimum
element [τk(n)|τ ′k(n)], where τk(n) and τ ′k(n) are defined in Definitions 3.4 and 3.7.

Theorem 4.5. The set A(n, k) of S-Block(n) is an amphora with minimum element [τk(n)|τ ′k(n)]
and whose antichain of maximal elements is (Max)nk .

Proof. First consider [α|β] ∈ A(n, k), so β � α and α, β ∈ Disk(n). By Definition 3.15, [α|β] is
majorized by the elements [α|α] and [β|β] of (Max)nk , and by Lemmas 3.5, 3.9, and Definition 3.15,
[α|β] majorizes [τk(n)|τ ′k(n)].

Conversely, let [α|β] be an S-block that majorizes [τk(n)|τ ′k(n)] and is majorized by an element
of (Max)nk . Since τk(n), τ

′

k(n), and all elements of (Max)nk are in Disk(n), Lemma 3.3 implies that
α, β ∈ Disk(n) and thus [α|β] ∈ A(n, k).

As a consequence of the proof of Theorem 4.5, we can specify the set of all minimal unbalanced
split blocks as follows.

Corollary 4.6. In S-Block(n), the minimal unbalanced split blocks are the elements [τk(n)|τ ′k(n)]

for which n ≥
(

k+1

2

)

.

In order to describe the antichain of maximal elements of the amphoras for balanced S-blocks
we refer to the covering relation in the posets Dis(n) and S-Block(n).

We denote by ⋗ the covering relation in Dis(n) and S-Block(n). Observe that in Figure 3, when one
block covers another in S-Block(10), either the first components of the blocks are equal and the second
components are a covering relation in Dis(n), or vice versa. We make this more precise in Proposition 4.7.

Proposition 4.7. Let [α1|β1], [α2|β2] ∈ S-Block(n) for some integer n. If [α1|β1] ⋗ [α2|β2] then either (i)
α1 = α2 and β1 ⋖ β2 or (ii) β1 = β2 and α1 ⋗ α2.

Proof. If α1 6= α2 and β1 6= β2, then [α1|β1] ≻ [α1|β2] ≻ [α2|β2], contradicting the hypothesis. Thus
α1 = α2 or β1 = β2. In the first case, if there exists β ∈ Dis(n) that is distinct from β1 and β2 and satisfies
β1 ≺ β ≺ β2, then [α1|β1] ≻ [α1|β] ≻ [α2|β2], again contradicting the hypothesis. Thus α1 = α2 implies
β1 ⋖ β2. The second case is analogous.
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Figure 3: The poset S-Block(10) partitioned into amphoras. Unbalanced amphoras are outlined in
a solid line and balanced amphoras are outlined in a dashed line.

We next wish to partition the balanced elements of S-Block(n) into amphoras, and to do so, we need to
identify the elements that will be maximal in these amphoras. These arise from the set of threshold-covered
S-blocks, studied in [16].

Definition 4.8. The set of threshold-covered members of S-Block(n) is
TC(n) = {[α|β] ∈ S-Block(n) : β ⋗ α}.

The name threshold-covered comes from that fact that the elements of TC(n) are precisely the members
of S-Block(n) that are covered by an S-block of a threshold graph. This follows as a consequence of the
proof of the next result.

Proposition 4.9. TC(n) is an antichain.

Proof. Let [α|β] ∈ TC(n), thus β ⋗ α. We will show that distinct elements of TC(n) are incomparable by
showing that there are precisely two elements of S-Block(n) that are greater than [α|β], namely [α|α] and
[β|β]. Suppose [α′|β′] ∈ S-Block(n) and [α|β] � [α′|β′]. By the definition of majorization and [α′|β′] being
an S-block, we have α � α′ � β′ � β. If two of these inequalities are strict, we contradict β ⋗ α. Thus at
most one of the inequalities is strict and we get [α′|β′] equal to either [α|β], [α|α] or [β|β]. Thus the only
S-blocks greater than [α|β] are [α|α] or [β|β]. The result follows immediately since elements of TC(n) do
not have the form [γ|γ].

We partition the subset of balanced S-blocks in TC(n) according to lengths as follows.

Definition 4.10. (Max)nk,k−1 = {[α|β] ∈ TC(n) : α ∈ Disk(n), β ∈ Disk−1(n)}.

The next definition partitions the balanced elements of S-Block(n), and Theorem 4.12 shows that each
part is an amphora and characterizes the minimum and maximal elements.

Definition 4.11. For n ≥
(

k+1
2

)

, define A(n, k, k − 1) to be the subposet of S-Block(n) consisting of the
(balanced) S-blocks [α|β] where α ∈ Disk(n) and β ∈ Disk−1(n).

For example, A(10, 3, 2) is outlined in dashed blue lines in Figure 3 and has maximal elements [6, 3, 1 | 6, 4]
and [7, 2, 1 | 7, 3] and minimum element [5, 3, 2 | 9, 1]. The next proposition specifies these values more
generally.
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Theorem 4.12. The set A(n, k, k − 1) is an amphora with minimum element [τk(n)|τ
′

k−1(n)] and whose
antichain of maximal elements is (Max)nk,k−1.

Proof. First consider [α|β] ∈ A(n, k, k − 1), so β � α and α ∈ Disk(n) and β ∈ Disk−1(n). By Lemma 3.5,
β � τ ′

k−1(n), and by Lemma 3.9, α � τk(n), thus [α|β] � [τk(n)|τ
′

k−1(n)] by Definition 3.15.
We next show that [α|β] is majorized by an element of (Max)nk,k−1. In Dis(n) there exists a chain of

covering relations: β = γ1 ⋗ γ2 ⋗ γ3 ⋗ · · · ⋗ γm = α. Since β has length k − 1 and α has length k, by
Lemma 3.3 there exists r : 1 ≤ r < m for which γi ∈ Disk−1(n) for i ≤ r and γi ∈ Disk(n) for i > r. Then
[γr+1|γr] ∈ (Max)nk,k−1 and [α|β] � [γr+1|γr].

Conversely, let [α|β] be an S-block that majorizes [τk(n)|τ
′

k−1(n)] and is majorized by an element [α′|β′]
of (Max)nk,k−1. Since α′, τk(n) ∈ Disk(n) and α′ � α � τk(n) we know α ∈ Disk(n) by Lemma 3.3, and
similarly β ∈ Disk−1(n). So [α|β] ∈ A(n, k, k − 1).

A consequence of the proof of Theorem 4.12 is that we can specify the set of all minimal balanced split
blocks.

Corollary 4.13. In S-Block(n), the set of minimal balanced split blocks is {[τk(n)|τ
′

k−1(n)] : n ≥
(

k+1
2

)

}.

We now arrive at one of our main results. Combining the results in Theorems 4.5 and 4.12 we conclude
that S-Block(n) is partitioned into amphoras as we state below.

Theorem 4.14. The poset S-Block(n) is the disjoint union of the amphoras A(n, k) and A(n, k, k − 1) for
all k ≥ 1 satisfying

(

k+1
2

)

≤ n.

4.2 The poset W (n) of amphoras

In this section, we describe the interaction between the amphoras of balanced and unbalanced S-blocks. For
S-Block(10), these are highlighted in Figure 3 and the overall structure is captured in Figure 4. We form a
height one poset W (n) whose elements are the amphoras A(n, k), A(n, k, k − 1) for n ≥

(

k+1
2

)

. The set of

minimal elements of W (n) is {A(n, k, k − 1) : n ≥
(

k+1
2

)

}, the amphoras containing the balanced S-blocks,

and the set of maximal elements of W (n) is {A(n, k) : n ≥
(

k+1
2

)

}, the amphoras containing the unbalanced
S-blocks. The only comparabilities in W (n) are A(n, k, k − 1) ≺ A(n, k) and A(n, k, k − 1) ≺ A(n, k − 1),
giving W (n) the look of a zigzag. The poset W (10) is shown in Figure 4. The comparabilities in W (n)
are interpreted as statements about elements of S-Block(n) in the following theorem. In particular, we can
combine the amphora A(n, k, k − 1) of balanced S-blocks with either one or both of the two surrounding
amphoras for unbalanced S-blocks to get a larger amphora.

Theorem 4.15. Any amphora in W (n) corresponds to an amphora in S-Block(n). In particular, A(n, k)∪
A(n, k, k − 1), A(n, k, k − 1) ∪ A(n, k − 1), and A(n, k) ∪ A(n, k, k − 1) ∪ A(n, k − 1) are all amphoras of
S-Block(n).

Proof. First we show that [τk(n)|τ
′

k−1(n)] is below every element in A(n, k)∪A(n, k, k−1)∪A(n, k−1). By
Lemma 3.6 we have τ ′

k(n) � τ ′

k−1(n), and by Lemma 3.10 we have τk−1(n) � τk(n). Thus [τk(n)|τ
′

k(n)] �
[τk(n)|τ

′

k−1(n)] and [τk−1(n)|τ
′

k−1(n)] � [τk(n)|τ
′

k−1(n)]. However, [τk(n)|τ
′

k(n)] is the minimum element of
A(n, k), [τk(n)|τ

′

k−1(n)] is the minimum element of A(n, k, k − 1), and [τk−1(n)|τ
′

k−1(n)] is the minimum
element of A(n, k − 1) by Theorems 4.5 and 4.12. Thus we have shown that [τk(n)|τ

′

k−1(n)] � y for every
y ∈ A(n, k) ∪ A(n, k, k − 1) ∪A(n, k − 1).

Next we consider maximal elements. For any [α|β] ∈ A(n, k, k − 1) we have [α|β] ≺ [α|α] where
[α|α] ∈ A(n, k), and [α|β] ≺ [β|β] where [β|β] ∈ A(n, k − 1). Thus A(n, k) ∪ A(n, k, k − 1) (respectively,
A(n, k, k−1)∪A(n, k−1)) is an amphora consisting of those S-blocks that majorize [τk(n)|τ

′

k−1(n)] and are
majorized by an element of (Max)nk (respectively (Max)nk−1). Similarly, the set A(n, k) ∪ A(n, k, k − 1) ∪
A(n, k − 1) is an amphora consisting of those S-blocks that majorize [τk(n)|τ

′

k−1(n)] and are majorized by
an element of (Max)nk ∪ (Max)nk−1.

In Figure 3 it is easy to see that every S-block in A(10, 3) is incomparable to every S-block in A(10, 2),
and this is also seen in the incomparabilities in W (10) shown in Figure 4. A more general statement is
given in Theorem 4.16 below where we use the symbol ‖ to denote incomparability. The proof follows from
Lemma 3.3 and Definition 3.15.
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A(10, 4) A(10, 3) A(10, 2) A(10, 1)

A(10, 4, 3) A(10, 3, 2) A(10, 2, 1)

Figure 4: The poset W (10).

Theorem 4.16. Suppose [α1|β1] and [α2|β2] are S-blocks and A1, A2 are amphoras in W (n) with [α1|β1] ∈
A1 and [α2|β2] ∈ A2.

(i) If A1 ‖ A2 in W (n) then [α1|β1] ‖ [α2|β2] in S-Block(n).
(ii) If A1 � A2 in W (n) then either [α1|β1] ≺ [α2|β2] or [α1|β1] ‖ [α2|β2] in S-Block(n).
(iii) If [α1|β1] ≺ [α2|β2] then A1 � A2.

Corollary 4.17. There is a comparability A1 ≺ A2 in poset W (n) precisely when there is an S-block
[α1|β1] ∈ A1 and an S-block [α2|β2] ∈ A2 for which [α1|β1] ≺ [α2|β2].

4.3 Amphoras for NG-1 and NG-2 S-blocks

For a split graph G with degree sequence π, Theorem 2.2 allows us to determine whether G is balanced
or unbalanced directly from α(π) and β(π). The next theorem does the same for NG-1 and NG-2 graphs.
Recall from Proposition 2.9 that NG-1 and NG-2 graphs are unbalanced split graphs; thus we need not
consider balanced split graphs.

Theorem 4.18. Let [α|β] be an S-block corresponding to the degree sequence of an unbalanced split graph
G. Then G is an NG-1 graph if and only if the last part of partition β is 1 and G is an NG-2 graph if and
only if the last part of partition α is at least 2.

Proof. Let the degree sequence of G be π : d1 ≥ d2 ≥ · · · ≥ dk, and let α = α(π) and β = β(π). Furthermore,
let m = max{i : di ≥ i − 1}, thus dm ≥ m − 1 and dm+1 < m. By Theorem 2.1, len(β) = m − 1, so there
is a box in F (π) in row m, column m− 1, and hence also above it in row m− 1, column m− 1. Since G is
unbalanced, Theorem 2.2 implies that len(α) = m − 1, thus there is no box in row m, column m in F (π).
Now the definition of α implies that dm = m− 1. The last part of β equals 1 precisely when there is no box
in F (π) in row m+1, column m−1. This occurs if and only if m is the largest index i for which di = m−1,
and by Theorem 16 of [3] this happens exactly when G is an NG-1 graph.

Similarly, the last part of α(π) is at least 2 precisely when there is a box in F (π) in row m− 1, column
m. This occurs if and only if dm−1 ≥ m or equivalently when m is the smallest index i for which di = m−1,
and this happens exactly when G is an NG-2 graph, again using Theorem 16 of [3].

The following examples illustrate Theorem 4.18 and its proof. In Figure 1, π1 = (6, 5, 2, 2, 2, 1, 1, 1),
[α(π1)|β(π1)] = [6, 4 | 7, 3], and a graph with degree sequence π1 is NG-2 but not NG-1. In Figure 5,
π3 = (5, 4, 4, 3, 2, 1, 1), [α(π3)|β(π3)] = [5, 3, 2 | 6, 3, 1] and a graph with degree sequence π3 is both NG-1
and NG-2. Again in Figure 5, π4 = (5, 5, 3, 3, 2, 1, 1), [α(π4)|β(π4)] = [5, 4, 1 | 6, 3, 1] and a graph with degree
sequence π4 is NG-1 but not NG-2.

The next lemma follows from the definition of majorization and is useful in proving results about NG-1
and NG-2 S-blocks.

Lemma 4.19. Suppose γ1, γ2 ∈ Disk(n) with γ1 = (e1, e2, . . . , ek), γ2 = (f1, f2, . . . , fk), and γ2 � γ1. If
ek = 1 then fk = 1, and if fk ≥ 2 then ek ≥ 2.

Corollary 4.20 appears in [3] with a proof that relies directly on the definition of NG-graphs. Below we
present a new and short proof that takes advantage of Theorem 4.18.

Corollary 4.20. Every unbalanced split graph is NG-1 or NG-2 or both.
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F (π3) F (π4)

Figure 5: The Ferrers diagrams for π3 = (5, 4, 4, 3, 2, 1, 1) and π4 = (5, 5, 3, 3, 2, 1, 1).

Proof. Let [α|β] be an unbalanced S-block, thus β � α. If [α|β] is not NG-2 then by Theorem 4.18, the
last part of α is 1. Now applying Lemma 4.19, we know that the last part of β is 1, so [α|β] is NG-1 by
Theorem 4.18.

From Corollary 4.20 we know that every unbalanced S-block is NG-1 or NG-2 or both. This means that
the amphora A(n, k) can be divided into sets of S-blocks that are NG-1, NG-2, or both. We next show
that these sets themselves are amphoras consisting of the elements majorizing [τk(n)|τ

′

k(n)] and majorized
by elements coming from (Max)nk .

Definition 4.21. For n ≥
(

k+1
2

)

, define NG1(n, k) to be the subposet of A(n, k) consisting of NG-1 S-blocks
and similarly define NG2(n, k). Further, define NG∗

1(n, k) to be the subposet of NG1(n, k) consisting of
those S-blocks that are not in NG2(n, k), and similarly define NG∗

2(n, k).

We note that some of these sets may be empty. For example, the only S-block in A(10, 4) is [4321|4321],
so NG2(10, 4) = ∅. Similarly, NG1(10, 1) = ∅. In Proposition 4.3 we determine exactly which of these sets
are nonempty.

Proposition 4.22. Let n, k be integers with n ≥ 2, k ≥ 1, and n ≥
(

k+1
2

)

.

If k = 1 then A(n, k) consists of a single S-block which is in NG-2.

If k ≥ 2 and n ≤
(

k+2
2

)

− 2, then A(n, k) consists entirely of NG-1 S-blocks.

If k ≥ 2 and n ≥
(

k+2
2

)

− 1, then A(n, k) contains S-blocks in each of the following sets: NG∗

1(n, k),
NG∗

2(n, k), and NG1(n, k) ∩NG2(n, k).

Proof. For k = 1 the only S-block in A(n, k) is [n|n] which is NG-2 by Theorem 4.18. For k ≥ 2 the result
follows from Remark 3.13 and the observations that [τk(n)|τk(n)] ∈ NG∗

2(n, k), [τ
′

k(n)|τ
′

k(n)] ∈ NG∗

1(n, k),
and [τk(n)|τ

′

k(n)] ∈ NG1(n, k) ∩NG2(n, k).

Theorem 4.23. The subposet NG1(n, k) of S-Block(n) is an amphora consisting of those S-blocks that
majorize [τk(n)|τ

′

k(n)] and are majorized by some NG-1 element of (Max)nk . Similarly, NG2(n, k) is an
amphora consisting of those S-blocks that majorize [τk(n)|τ

′

k(n)] and are majorized by some NG-2 element
of (Max)nk .

Proof. First consider [α|β] ∈ NG1(n, k). By Theorem 4.5, [α|β] majorizes [τk(n)|τ
′

k(n)], and is majorized
by [β|β] in (Max)nk .

Conversely, let [α|β] be in S-Block(n) such that it majorizes [τk(n)|τ
′

k(n)] and is majorized by an NG-1
element [α′|β′] ∈ (Max)nk . Then, by Definition 4.4, [α|β] ∈ A(n, k) and by Theorem 4.18, the last part of β′

is 1. Now by Definition 3.15 and Lemma 4.19, the last part of β is 1, and so [α|β] ∈ NG1(n, k).
The proof for NG2(n, k) is analogous.

Theorem 4.24. The intersection NG1(n, k) ∩ NG2(n, k) is an amphora consisting of those S-blocks that
majorize [τk(n)|τ

′

k(n)] and are majorized by an S-block [α|β] where α, β ∈ Disk(n), the last part of α is at
least 2, the last part of β equals 1, and β ⋗ α.
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Proof. Let M be the set of S-blocks [α′|β′] for which α′, β′ ∈ Disk(n), the last part of α′ is at least 2, the
last part of β′ equals 1, and β′

⋗ α′.
First consider [α|β] ∈ NG1(n, k) ∩NG2(n, k). By Theorem 4.23, [α|β] � [τk(n)|τ

′

k−1(n)]. Next we show
[α|β] is majorized by an element of M and that M is an antichain in S-Block(n). We know β � α, so in
Disk(n) there exists a chain of covering relations: β = γ1 ⋗ γ2 ⋗ γ3 ⋗ · · · ⋗ γm = α. Since the last part
of α is at least 2, and the last part of β equals 1, there exists r : 1 ≤ r < m for which the last part of
γr is 1 and the last part of γr+1 is at least 2. Thus [γr+1|γr] ∈ M and [α|β] � [γr+1|γr]. Now to show
that M is an antichain, suppose for a contradiction that [α1|β1], [α2|β2] ∈ M with [α1|β1] ≺ [α2|β2]. Then
α1 � α2 � β2 � β1 and α2 6= β2 since the last part of α2 is at least 2 and the last part of β2 equals 1.
However, β1 ⋗ α1, so α1 = α2 and β1 = β2, contradicting [α1|β1] ≺ [α2|β2].

Conversely, let [α|β] be an S-block that majorizes [τk(n)|τ
′

k−1(n)] and is majorized by an element [α′|β′]
of M . Then [τk(n)|τ

′

k(n)] � [α|β] ≤ [α′|β′] � [α′|α′] so [α|β] ∈ A(n, k). Since β � β′ and [α′|β′] ∈ M ,
Lemma 4.19 implies that the last part of β is 1, so [α|β] ∈ NG1(n, k) by Theorem 4.18. Similarly, α � α′

and [α′|β′] ∈ M , so Lemma 4.19 also implies that the last part of α is at least 2. Thus [α|β] ∈ NG2(n, k)
and by Theorem 4.18, and we conclude that [α|β] ∈ NG1(n, k) ∩NG2(n, k).

Theorem 4.25. The posets of NG∗

1(n, k) and NG∗

2(n, k) are amphoras. Moreover, there is a bijection that
preserves majorization between the first poset and the amphora A(n− k, k − 1) and one between the second
poset and the amphora A(n− k, k).

Proof. For any S-block [α|β] in NG∗

1(n, k), the last part of α and the last part of β will be 1 by Theo-
rem 4.18. Similarly, for any [α|β] in NG∗

2(n, k), the last part of α and the last part of β will be at least 2
by Theorem 4.18. Now, it is not hard to see that the following are bijections that preserve majorization. In
the first case, for each [α|β] ∈ NG∗

1(n, k), eliminate the kth part of α and the kth part of β, each of which is
1, and subtract 1 from each of the other parts. This results in an S-block in A(n− k, k − 1). In the second
case, for each [α|β] ∈ NG∗

2(n, k), each part of α and each part of β is at least 2, so subtract 1 from each
part; this results in an S-block in A(n− k, k).

In Theorem 3.18 we showed that the property of being unbalanced is upward closed, and we next show
that within the class of unbalanced S-blocks, the properties of being NG-1 and NG-2 are downward closed.

Theorem 4.26. Let [α1|β1], [α2|β2] be unbalanced elements of S-Block(n) with [α1|β1] � [α2|β2]. If [α1|β1]
is NG-1 then [α2|β2] is also NG-1. If [α1|β1] is NG-2 then [α2|β2] is also NG-2.

Proof. When j 6= k, any S-block in A(n, k) is incomparable to any S-block in A(n, j) by Theorem 4.16.
Therefore, [α1|β1] and [α2|β2] both belong to A(n, k) for some k and by Theorem 4.5 they both majorize
[τk(n)|τ

′

k(n)]. Since [α1|β1] is NG-1, by Theorem 4.23, it is majorized by some NG-1 S-block [γ|γ] ∈ (Max)kn.
Then by transitivity, [α1|β1] is also majorized by [γ|γ] ∈ (Max)kn, thus [α2|β2] ∈ NG1(n, k) and is an NG-1
S-block. The proof of the second part is analogous.

5 The split block lattice

In this section, we add a maximum and minimum element to the split block poset in order to form a lattice,
and determine where the meets and joins of balanced and unbalanced S-blocks occur. The meet operation is
not well-defined on the poset S-Block(n). For example, if [α|β] = [4321|721] ∧ [532|73] then len(α) ≥ 4 and
len(β) ≤ 2 by Lemma 3.3 and Definition 3.15, and thus [α|β] is not an S-Block. Similarly, it is not possible
to take the join of two maximal elements in S-Block(n). However, S-Block(n) can be extended to a lattice
when a maximum element 1̂ and a minimum element 0̂ are added, and in the next theorem, we show that
the meet and join are well-defined.

Theorem 5.1. The poset S-Block(n) ∪ {0̂, 1̂} is a lattice. If [α1|β1] and [α2|β2] are S-blocks and ℓ =
max{len(α1)− len(β2), len(α2)− len(β1)} then the meet and join of [α1|β1] and [α2|β2] are given as follows.

(i) If ℓ = 0 or 1, then [α1|β1] ∧ [α2|β2] = [α1 ∧ α2 | β1 ∨ β2], which is an S-block. Otherwise, [α1|β1] ∧
[α2|β2] = 0̂.

(ii) If (β1 ∧β2) � (α1 ∨α2), then [α1|β1]∨ [α2|β2] = [α1 ∨α2 | β1 ∧β2], which is an S-block. Otherwise,
[α1|β1] ∨ [α2|β2] = 1̂.
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Proof. We begin by proving (i). Let [α1|β1] and [α2|β2] be S-blocks. Thus β1 � α1 and β2 � α2, so
len(β1) ≤ len(α1) and len(β2) ≤ len(α2) by Lemma 3.3. We next observe that ℓ ≥ 0 for otherwise, len(β1) ≤
len(α1) < len(β2) ≤ len(α2) < len(β1), a contradiction.

If ℓ ≥ 2, we show there is no S-block below both [α1|β1] and [α2|β2] in S-Block(n). For a contradiction,
suppose ℓ ≥ 2 and there exists an S-block [α̂|β̂] with [α̂|β̂] � [α1|β1] and [α̂|β̂] � [α2|β2]. Without loss
of generality, we may assume len(α1)− len(β2) ≥ 2. Then α̂ � α1 and β̂ � β2 so len(β̂) ≤ len(β2) ≤
len(α1)−2 ≤ len(α̂)−2, contradicting the assumption that [α̂|β̂] is an S-block. Thus if ℓ 6∈ {0, 1} then there
is no S-block below both [α1|β1] and [α2|β2].

Next consider the case that ℓ = 0 or ℓ = 1. First we show [α1 ∧ α2 | β1 ∨ β2] is an S-block and
then we show it is the greatest lower bound of [α1|β1] and [α2|β2]. Since Dis(n) is a lattice, we know
(α1 ∧ α2), (β1 ∨ β2) ∈ Dis(n). Furthermore, (β1 ∨ β2) � β1 � α1 � (α1 ∧ α2), thus (β1 ∨ β2) � (α1 ∧ α2).
By Proposition 3.11, len(α1 ∧ α2) = max{len(α1),len(α2)} and len(β1 ∨ β2) = min{len(β1),len(β2)}, so
0 ≤len(α1 ∧ α2)−len(β1 ∨ β2) ≤ 1. Thus [α1 ∧ α2 | β1 ∨ β2] satisfies the conditions of Definition 3.14, i.e., is
an S-block.

We know [α1 ∧ α2 | β1 ∨ β2] is a lower bound for [α1|β1] and [α2|β2] and it remains to show it is the
greatest lower bound. Supppose [α̂|β̂] � [α1|β1] and [α̂|β̂] � [α2|β2]. The first implies β̂ � β1 and α̂ � α1,
and the second implies that β̂ � β2 and α̂ � α2. Therefore, β̂ � (β1 ∨ β2) and α̂ � (α1 ∧ α2), which implies
[α1 ∧ α2 | β1 ∨ β2] � [α̂|β̂].

In proving (ii), note that (β1 ∧ β2), (α1 ∨ α2) ∈ Dis(n). If (β1 ∧ β2) � (α1 ∨ α2) then len(β1 ∧ β2) ≤
len(α1 ∨ α2) and len(α1 ∨ α2) ≤len(α1) ≤len(β1) + 1 ≤len(β1 ∧ β2) + 1, so [α1 ∨ α2 |β1 ∧ β2] satisfies the
length condition of Definition 3.14. Thus [α1 ∨α2 |β1 ∧β2] is an S-block if and only if (β1 ∧β2) � (α1 ∨α2).
The remainder of the proof is analogous to (i).

Recall that the unbalanced S-blocks are in amphoras of the form A(n, k) (Definition 4.4) and the balanced
S-blocks are in amphoras of the form A(n, k, k−1) (Definition 4.11). Tables 1 and 2 show how the properties
balanced, unbalanced, NG-1 and NG-2 are passed down by the meet and join operations. The results are
proven in Theorem 5.2 and Theorem 5.5, and examples of each possibility can be found in S-Block(10)
illustrated in Figure 3. Since amphoras have a (unique) minimum element but can have multiple maximal
elements, the results for the meet of two S-blocks is simpler than those for the join.

[α1|β1] [α2|β2] [α1|β1] ∧ [α2|β2] [α1|β1] ∨ [α2|β2]

1. A(n, k) A(n, k) A(n, k) A(n, k) or 1̂

2. A(n, k, k−1) A(n, k, k−1) A(n, k, k−1) A(n, k, k−1) or 1̂

3a. k > j+1 A(n, k) A(n, j) 0̂ 1̂

3b. k = j+1 A(n, k) A(n, k−1) A(n, k, k−1) 1̂

4a. k > j+1 A(n, k, k−1) A(n, j, j−1) 0̂ 1̂

4b. k = j+1 A(n, k, k−1) A(n, k−1, k−2) 0̂ A(n, k−1) or 1̂

5. k∈{j, j−1} A(n, k) A(n, j, j−1) A(n, j, j−1) A(n, k) or 1̂

6. k 6∈{j, j−1} A(n, k) A(n, j, j−1) 0̂ 1̂

Table 1: When len(α1) = k, len(α2) = j, and [α1|β1] and [α2|β2] belong to the amphoras specified
in columns 2 and 3, their meet and join are specified in columns 4 and 5.

Theorem 5.2. Let [α1|β1], [α2|β2] ∈ S-Block(n), with k = len(α1) and j = len(α2). The results for
[α1|β1] ∧ [α2|β2] and [α1|β1] ∨ [α2|β2] shown in Table 1 are correct and in each case the join is 1̂ precisely
when (β1 ∧ β2) 6� (α1 ∨ α2).

Proof. First we show the results for [α1|β1] ∧ [α2|β2]. If [α1|β1] and [α2|β2] are elements of an amphora A

then the minimum element of A is a lower bound for [α1|β1] and [α2|β2]. Thus the greatest lower bound is
also in A by Definition 4.1. This immediately proves cases (1) and (2). It also proves cases (3b) and (5)
when we apply Theorem 4.16 and consider the amphora in Theorem 4.15.
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Now suppose [α1|β1] is an element of amphora A1 and [α2|β2] is an element of amphora A2, where
A1, A2 ∈ W (n) and have no lower bound in W (n). Then by Theorem 4.16, [α1|β1] and [α2|β2] have no
lower bound in S-Block(n) and consequently, [α1|β1]∧ [α2|β2] = 0̂ in S-Block(n). This proves the remaining
cases: (3a), (4a), (4b), and (6).

It remains to show the results for [α1|β1] ∨ [α2|β2], which we denote by [α′|β′]. Suppose [α1|β1] is an
element of amphora A1 and [α2|β2] is an element of amphora A2, where A1, A2 ∈ W (n). If there is no upper
bound for A1 and A2 in W (n), then by Theorems 4.14 and 4.16 there is no S-block above both [α1|β1] and
[α2|β2], and hence [α1|β1] ∨ [α2|β2] = 1̂. This proves cases (3a), (3b), (4a) and (6).

In case (1) we have [α1|β1], [α2|β2] ∈ A(n, k) for some k. By Proposition 3.11, α′, β′ ∈ Disk(n). Thus
[α′|β′] ∈ A(n, k) if β′ � α′ and otherwise [α′|β′] = 1̂ by Theorem 5.1. The proof in case (2) is analogous.

To prove (4b), let [α1|β1] ∈ A(n, k, k − 1) and [α2|β2] ∈ A(n, k − 1, k − 2). In this case, len(α1) = k,
len(α2) = k−1, len(β1) = k−1 and len(β2) = k−2. By Proposition 3.11, len(α′) = k−1 and len(β′) = k−1.
If β′ � α′, then by Theorem 5.1, [α′|β′] is in S-Block(n) and by Definition 4.4 [α′|β′] ∈ A(n, k−1). Otherwise
[α′|β′] = 1̂.

Finally, to prove (5), let [α1|β1] ∈ A(n, k) and [α2|β2] ∈ A(n, j, j − 1) where k = j or k = j − 1. If
β′ 6� α′, then [α′|β′] not an S-block and [α′|β′] = 1̂. Otherwise, β′ � α′, so [α′|β′] is an S-block. Since
[α1|β1] ∈ A(n, k) and [α1|β1] � [α′|β′], Theorem 4.16 implies that [α′|β′] ∈ A(n, k). This completes the
proof.

Recall that the class of unbalanced split graphs is the union of the classes of NG-1 and NG-2 graphs. In
Theorem 5.5, we refine the results in Theorem 5.2 in the case that k = j. The table in Figure 2 summarizes
the results.

i [α1|β1] [α2|β2] [α1|β1] ∧ [α2|β2] [α1|β1] ∨ [α2|β2]

1, 2 NGi(n, k) NGi(n, k) NGi(n, k) NGi(n, k) or 1̂

1, 2 NG∗

i (n, k) NG∗

i (n, k) NG∗

i (n, k) NG∗

i (n, k) or 1̂

NG∗

1(n, k) NG∗

2(n, k) NG1(n, k) ∩NG2(n, k) 1̂

Table 2: For i = 1 or 2, when [α1|β1] and [α2|β2] belong to the amphoras specified in columns 2 and
3, then their meet and join are specified in columns 4 and 5.

Before proving Theorem 5.5, we introduce several technical lemmas that help us determine when the
meet and join of two partitions are NG-1 or NG-2.

Lemma 5.3. Suppose γ1, γ2 ∈ Disk(n), with γ1 = (a1, a2, . . . , ak) and γ2 = (b1, b2, . . . , bk) and ak = bk = 1.
Then the last part of γ1 ∨ γ2 is 1 and the last part of γ1 ∧ γ2 is 1.

Proof. Let α = γ1 ∨ γ2 and β = γ1 ∧ γ2. By Proposition 3.11, we know α, β ∈ Disk(n). By Lemma 4.19,
since α � γ1 and α, γ1 ∈ Disk(n), then the last part of α is 1.

Let γ̂1 = (a1 − 1, a2 − 1, . . . , ak−1 − 1) and γ̂2 = (b1 − 1, b2 − 1, . . . , bk−1 − 1) and note that γ̂1, γ̂2 ∈
Disk−1(n − k). Let β̂ = γ̂1 ∧ γ̂2. By Proposition 3.11, β̂ ∈ Disk−1(n − k). Write β̂ = (d1, d2, . . . , dk−1),
and let β̃ = (d1 +1, d2 + 1 . . . , dk−1 + 1, 1). Since adding 1 to each distinct part preserves distinctness, then
β̃ ∈ Disk(n). It is straightforward to see that γ1, γ2 � β̃. By the property of greatest lower bound, β � β̃,
and by Lemma 4.19, the last part of β is 1.

Lemma 5.4. Suppose γ1, γ2 ∈ Disk(n), with γ1 = (a1, a2, . . . , ak) and γ2 = (b1, b2, . . . , bk) and ak ≥ bk ≥ 2.
Then the last part of γ1 ∨ γ2 is at least 2 and the last part of γ1 ∧ γ2 is at least 2.

Proof. Let α = γ1 ∨ γ2 and β = γ1 ∧ γ2. By Proposition 3.11, we know α, β ∈ Disk(n). By Lemma 4.19,
since β � γ1 and β, γ1 ∈ Disk(n), then the last part of β is at least 2.

Let γ̂1 = γ1 − (bk − 1)(1, 1, . . . , 1) = (a1 − bk + 1, a2 − bk + 1, . . . , ak − bk + 1) and γ̂2 = γ2 − (bk −
1)(1, 1, . . . , 1) = (b1 − bk +1, b2 − bk +1, . . . , 1) and note that γ̂1, γ̂2 ∈ Disk(n− k(bk − 1)). Let α̂ = γ̂1 ∨ γ̂2.
By Proposition 3.11, α̂ ∈ Disk(n−k(bk−1)). Write α̂ = (d1, d2, . . . , dk), and let α̃ = α̂+(bk−1)(1, 1, . . . , 1) =
(d1 + bk − 1, d2 + bk − 1 . . . , dk + bk − 1), and note that dk + bk − 1 ≥ 2. Since adding bk − k + 1 to each
distinct part preserves distinctness, then α̃ ∈ Disk(n). It is straightforward to see that γ1, γ2 � α̃. By the
property of the least upper bound, α � α̃, and by Lemma 4.19, the last part of α is at least 2.
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Theorem 5.5. The results for [α1|β1] ∧ [α2|β2] and [α1|β1] ∨ [α2|β2] shown in Table 2 are correct and the
latter value is 1̂ precisely when (β1 ∧ β2) 6� (α1 ∨ α2).

Proof. We first prove the results for [α1|β1] ∧ [α2|β2] in the first three rows of the table. By Theorems 4.23
and 4.24, we know that NGi(n, k) and NG∗

i (n, k) are amphoras for i = 1, 2, so as in the proof of Theorem 5.2,
this proves the results for [α1|β1]∧ [α2|β2] in rows 1 and 2 of the table. In the third row, [α1|β1]∧ [α2|β2] ∈
NGi(n, k) because NGi(n, k) is an amphora, and then the result follows from Proposition 4.26.

We next prove the results for the join in the first three rows of the table, and in all remaining cases we
denote [α1|β1]∨ [α2|β2] by [α′|β′]. First let [α1|β1] and [α2|β2] be elements of NG1(n, k). By Theorem 4.18,
the last part of β1 is 1 (and likewise for β2). By Lemma 5.3, the last part of β′ is 1. Thus if β′ � α′, then
[α′|β′] ∈ NG1(n, k), and otherwise, [α′|β′] = 1̂. The result for NG2(n, k) is analogous and uses Lemma 5.4
to conclude that the last part of α′ is at least 2. This completes the join result for row 1 of the table.

In row 2 of the table, let [α1|β1] and [α2|β2] be elements of NG∗

1(n, k). By Theorem 4.18, the last part
of each of α1, β1, α2, and β2 is 1, so by Lemma 5.3, the last part of α′ and of β′ is 1. Thus if β′ � α′, then
[α′|β′] is in NG∗

1(n, k), and otherwise, [α′|β′] = 1̂. The result for elements of NG∗

2(n, k) is analogous and
uses Lemma 5.4 to conclude that the last part of each of α′ and β′ is at least 2.

In row 3 of the table, let [α1|β1] ∈ NG∗

i (n, k) and [α2|β2] ∈ NG1(n, k) ∩ NG2(n, k). Since [α1|β1] and
[α2|β2] are both elements of A(n, k), Theorem 5.2 implies that [α′|β′] ∈ A(n, k) when β′ � α′ and [α′|β′] = 1̂
otherwise. In the former case, we know [α′|β′] ∈ NG∗

i (n, k) by Proposition 4.26.
Finally, we prove the meet and join results for row 4 of the table. We have [α1|β1], [α2|β2] ∈ A(n, k), so

Theorem 5.2 implies that [α1|β1] ∧ [α2|β2] ∈ A(n, k). Furthermore, Theorem 4.26 tells us that each of the
classes of NG-1 and NG-2 graphs are downward closed within unbalanced S-blocks, therefore [α1|β1]∧[α2|β2]
is in NG1(n, k) ∩ NG2(n, k). For [α′|β′], we know (α1 ∨ α2) � α1, and the last part of α1 equals 1, so by
Lemma 4.19, the last part of (α1 ∨ α2) equals 1. Similarly, (β1 ∧ β2) � β2, and the last part of β2 is at
least 2, so by Lemma 4.19, the last part of (β1 ∧ β2) is at least 2. Now again using Lemma 4.19, we know
(β1 ∧ β2) 6� (α1 ∨ α2), so [α′|β′] = 1̂.

6 Pseudo-split graphs and NG-3 graphs

Pseudo-split graphs and NG-3 graphs were introduced in Section 2.2 and now we study blocks [α|β] that
arise from these two families of graphs. Recall from Definition 3.14 that β �w α for blocks [α|β] and that α
and β are partitions of integers n1 and n2 respectively where n2 ≥ n1.

6.1 Characterization results

Both NG-3 graphs and pseudo-split graphs have degree sequence characterizations, and in this section we
give characterizations of these classes based on the [α|β] form of their degree sequences. NG-3 graphs are
not split graphs because they contain an induced 5-cycle. However, an NG-3 graph G becomes a split graph
when the vertices in AG are removed, and this facilitates our characterization theorem. Figure 6 shows the
Ferrers diagram for the degree sequence (7, 6, 4, 4, 4, 4, 4, 1) of an NG-3 graph. If the ten boxes marked with
×s are removed, the result is the Ferrers diagram of a split graph.

Theorem 6.1. Let G be a graph with degree sequence π. Graph G is an NG-3 graph if and only if the
following four conditions all hold:

(i) α(π) ends in 2, 1
(ii) β(π) ends in 4, 3
(iii) len(α(π)) = len(β(π))
(iv) β̃ � α̃ where β̃ is β(π) with the smallest two parts removed and α̃ is α(π) with the smallest two parts

removed.

Proof. First suppose that G is an NG-3 graph, let π be its degree sequence, and let π = (d1, d2, . . . , dr).
Let α = α(π), β = β(π), m = m(π), and write V (G) = {v1, v2, . . . , vr}, where deg(vi) = di for each i.
By Theorem 21 of [3], di = m − 1 if and only if i ∈ {m − 2, m − 1, m,m + 1,m + 2}. Now Remark 2.8
and Definition 2.5 imply that the sets AG = {vm−2, vm−1, vm, vm+1, vm+2}, BG = {v1, v2, . . . , vm−3}, CG =
{vm+3, vm+4, . . . , vr} form the ABC-partition of G. Since dm−1 = dm = m − 1, we know that len(α) =
len(β) = m−1. In addition, dm−2 = m−1, so the smallest two parts of α are 2, 1. Finally, using Theorem 2.6,
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there are no edges in G between vertices in AG and vertices in CG, so dm+3 = deg(vm+3) ≤ |BG| = m− 3,
and this means that the smallest two parts of β are 4, 3. It remains to show (iv).

Removing the smallest two parts of α and the smallest two parts of β corresponds to removing a 5× 2
rectangle from F (π), consisting of the boxes in the rows m − 2 through m + 2 that are in columns m − 2
and m− 1. This transforms the degree sequence π by removing 2 from each of dm−2, dm−1, dm, dm+1, dm+2,
corresponding to the five vertices in the set AG. The resulting degree sequence π̃ is the degree sequence of a
split graph, since removing the edges in AG (a 5-cycle) gives a split graph H with KS-partition as follows:
K = BG and S = AG ∪CG. Thus β̃ � α̃ by Theorem 3.16, and this establishes (iv) and completes the proof
of the forward direction.

To prove the converse, we assume that graph G with degree sequence π satisfies the four conditions and
show G is an NG-3 graph. It will suffice to show that G has the same degree sequence as an NG-3 graph,
since membership in the class of NG-3 graphs can be recognized by degree sequences [3].

Let (d1, d2, . . . , dr) be the degree sequence π and let m = m(π). Let α = α(G), β = β(G), and
k = len(α). By condition (iii), we have len(β) = k. Since α ends in 2, 1, and β ends in 4, 3, we know
dk−1 = dk = dk+1 = dk+2 = dk+3 = k and if r ≥ k+4 then dk+4 ≤ k−2 (for example, see Figure 6). By the
definition of m(π) we know m = k+1. Let π̃ be the sequence d̃1, d̃2, d̃3, . . . , d̃r defined as follows: d̃i = di−2
for k − 1 ≤ i ≤ k + 3 and otherwise, d̃i = di. Since π is non-increasing and dk+4 ≤ k − 2 ≤ dk+3 − 2 (if
r ≥ k + 4) we conclude that π̃ is also non-increasing. The Ferrers diagram F (π̃) is obtained from F (π) be
removing the 5 × 2 rectangle consisting of the boxes in rows k − 1 through k + 4 that are in columns k

and k − 1. As a result, boxes on the diagonal in rows k and k − 1 are removed from F (π) and len(α(π̃)) =
len(β(π̃)) = k − 2.

By construction, β̃ = β(π̃) and α̃ = α(π̃), and by hypothesis, β̃ � α̃. Thus Theorem 3.16 and Def-
inition 3.14 imply that π̃ is the degree sequence of a split graph. Let G̃ be a split graph with degree
sequence π̃ with vertex set v1, v2, · · · , vr, where deg(vi) = d̃i. In π̃ we have d̃k−1 = k − 2 = (k − 1)− 1 and
d̃k = k − 2 < k − 1, so m(G̃) = k − 1 = m− 2.

The partition K̃ = {v1, v2, . . . , vk−1} and S̃ = {vk, vk+1, . . . , vr} is a K-max partition of G̃ (see, for
example, Remark 14 of [3]). Since vertex vk−1 has degree k − 2 in G̃, all of its neighbors are in K and
thus {vk−1, vk, vk+1, vk+2, vk+3} forms a stable set in G̃. Starting with graph G̃, add five edges to form
a 5-cycle among the vertices vk−1, vk, vk+1, vk+2, vk+3 and call the resulting graph H . By construction,
H has the same degree sequence as G, and furthermore, H is an NG-3 graph with the following ABC-
partition: AH = {vk−1, vk, vk+1, vk+2, vk+3}, BH = {v1, v2, . . . , vk−2}, and CH = {vk+4, vk+5, . . . , vr}. Since
membership in the class of NG-3 graphs is completely determined by degree sequence [3], we conclude that
G is an NG-3 graph.

A more algebraic proof of Theorem 6.1 can be obtained by using the summation condition of the char-
acterization theorem for NG-3 graphs, which appears in [3].

We now characterize pseudo-split graphs from the [α|β] form of their degree sequence.

Corollary 6.2. Let G be a graph with degree sequence π. Graph G is a pseudo-split graph if and only if
β(π) � α(π) or the four conditions of Theorem 6.1 are satisfied.

Proof. First suppose G is a pseudo-split graph. By Theorem 2.10, G is either a split graph or an NG-3
graph. In the first case, Theorem 3.16 and Definition 3.14 imply that β(π) � α(π). The second case follows
from Theorem 6.1.

Conversely, if β(π) � α(π), then by Theorem 2.1, Definition 3.14, and Theorem 3.16, we know that π is
the degree sequence of a split graph. Since membership in the class of split graphs is determined by degree
sequence, G is a split graph. The second case again follows immediately from Theorem 6.1.

The following example shows that in contrast to Theorem 4.26, the class of NG-3 graphs is neither
upward nor downward closed under the majorization of Definition 3.15.

Example 6.3. Let α = (10, 8, 6, 2, 1), β = (11, 8, 5, 4, 3), α1 = (10, 8, 5, 3, 1), and β1 = (11, 8, 6, 4, 2). It
is not hard to check that [α|β1], [α|β], and [α1|β] are all blocks with n1 = 27 and n2 = 31 and that
[α|β1] ≻ [α|β] ≻ [α1|β]. Using Theorem 6.1 one can check that [α|β] is an NG-3 graph while [α1|β] and
[α|β1] are not.
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Figure 6: The Ferrers diagram and central rectangle for an NG-3 graph G with degree sequence
π5 = (7, 6, 4, 4, 4, 4, 4, 1). The boxes marked with an × represent the edges in the 5-cycle induced by
AG.

6.2 The amphora NG3(n, k)

In Theorem 4.23 we show that NG1(n, k) and NG2(n, k) are amphoras, and in this section we prove an
analogous result for NG-3 graphs. It follows from Theorem 6.1 and its proof that if π is the degree sequence
of an NG-3 graph and α(π) ∈ Dis(n1) and β(π) ∈ Dis(n2) then n2 = n1+4. When α̃ is formed by removing
the parts 2, 1 from α(π) and β̃ is formed by removing the parts 4, 3 from β(π), then α̃ and β̃ both partition
n where n = n1 − 3 = n2 − 7. This motivates our definition of the poset NG3(n, k).

Definition 6.4. The elements of poset NG3(n, k) are the NG-3 blocks [α|β] for which α has smallest parts
2, 1; β has smallest parts 4, 3; and the partitions α̃, β̃ obtained by removing the smallest two parts of α and
β respectively satisfy the following:
(i) α̃, β̃ ∈ Disk(n),
(ii) The smallest part of α̃ is at least 3, and
(iii) The smallest part of β̃ is at least 5.

The poset relation in NG3(n, k) is the majorization given in Definition 3.15

Our first result establishes when NG3(n, k) is non-empty.

Proposition 6.5. The set NG3(n, k) is non-empty if and only if n ≥ 4k +
(

k+1
2

)

.

Proof. Suppose [α|β] ∈ NG3(n, k) and write β = (b1, b2, . . . , bk, 4, 3). Then bk ≥ 5 and (b1, b2, . . . , bk) ∈
Disk(n), hence bk ≥ 5, bk−1 ≥ 6, bk−2 ≥ 7, . . . , b1 ≥ k + 4. So n =

∑k

i=1 bi ≥ 5 + 6 + 7 + · · ·+ (k + 4) =
4k + (1 + 2 + · · ·+ k) = 4k +

(

k+1
2

)

.

Conversely, if n ≥ 4k+
(

k+1
2

)

then write n = 4k+
(

k+1
2

)

+x. For bk = 5, bk−1 = 6, bk−2 = 7, . . . , b2 = k+3
and b′1 = k + 4+ x, we have (b′1, b2, . . . , bk) ∈ Disk(n) using the above calculation. Thus [α|β] ∈ NG3(n, k),
where α = (b′1, b2, . . . , bk, 2, 1) and β = (b′1, b2, . . . , bk, 4, 3), and NG3(n, k) is non-empty.

Lemma 6.6. If [α|β] ∈ NG3(n, k) then the smallest part of α̃ is at least 5.

Proof. By Definition 6.4, we know α̃, β̃ ∈ Disk(n). Let α̃ = (a1, a2, . . . , ak) and β̃ = (b1, b2, . . . , bk), thus
n = ak +

∑k−1
i=1 ai = bk +

∑k−1
i=1 bi = n. Since β̃ � α̃ we have

∑k−1
i=1 bi ≥

∑k−1
i=1 ai and thus bk ≤ ak. Since

bk ≥ 5 in Definition 6.4, we conclude that ak ≥ 5.

For positive integers n, k, r, let Dis(k,r)(n) be the set of partitions of n into k distinct parts each of
which is greater than r. Define the function f : Dis(k,r)(n) → Disk(n − kr), which subtracts r from
each part, as follows: if (a1, a2, . . . , ak) ∈ Dis(k,r)(n) with a1 > a2 > · · · > ak then f(a1, a2, . . . , ak) =
(a1 − r, a2 − r, . . . , ak − r). It is not hard to see that f is well-defined and preserves majorization, that is, if
σ, γ ∈ Dis(k,r)(n), then σ � γ if and only if f(σ) � f(γ).

Theorem 6.7. Let n ≥ 4k+
(

k+1
2

)

. The set NG3(n, k) is an amphora under majorization. Moreover, there
is a bijection that preserves majorization between NG3(n, k) and the amphora A(n− 4k, k) of split blocks.
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Proof. By Proposition 6.5, the set NG3(n, k) is non-empty. For any [α|β] ∈ NG3(n, k), let α̃, β̃ be obtained
by removing the smallest two parts of α and β respectively. We know the smallest two parts of α̃ and β̃

are at least 5 by Lemma 6.6 and Definition 6.4, thus α̃, β̃ ∈ Dis(k,4)(n). The function f defined above with

r = 4 is an order-preserving bijection from Dis(k,4)(n) to Disk(n− 4k), thus f(α̃), f(β̃) ∈ Disk(n− 4k) and

f(β̃) � f(α̃). Hence [f(α̃)|f(β̃)] ∈ A(n−4k, k) and the resulting bijection [α|β] → [f(α̃)|f(β̃)] also preserves
majorization by Definition 3.15.

We illustrate this bijection in the following example.

Example 6.8. Let n = 38 and k = 5, so n − 4k = 20. Observe that 20 +
(

6
2

)

= 35 ≤ 38, so NG3(38, 5)
is non-empty. There are three elements in Dis5(18), namely, (8, 4, 3, 2, 1) � (7, 5, 3, 2, 1) � (6, 5, 4, 2, 1).
These correspond to adding each of the partitions of 3 to the partition (5, 4, 3, 2, 1). Next we add 4 to
each component to find the possibilities for α̃ and β̃ as follows: γ1 � γ2 � γ3 where γ1 = (12, 8, 7, 6, 5),
γ2 = (11, 9, 7, 6, 5) and γ3 = (10, 9, 8, 6, 5). We append 2, 1 and 4, 3 to each of these to get the possibilities
for α and β, respectively, and then combine these to get the elements of NG3(38, 5) as shown in Figure 7.

[γ3, 2, 1|γ3, 4, 3] [γ2, 2, 1|γ2, 4, 3] [γ1, 2, 1|γ1, 4, 3]

[γ3, 2, 1|γ2, 4, 3] [γ2, 2, 1|γ1, 4, 3]

[γ3, 2, 1|γ1, 4, 3]

Figure 7: The poset NG3(38, 5) from Example 6.8

In future work, we expect to see more connections between the structure of graphs, based on their degree
sequences, and the structure of lattices of partitions of integers.
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