Maximum cliques in a graph without disjoint given subgraph

Fangfang Zhang¹, Yaojun Chen², Ervin Győri³, and Xiutao Zhu⁴

¹School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023, P.R. CHINA

²Department of Mathematics, Nanjing University.

³Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences.

⁴School of mathematics, Nanjing University of Aeronautics and Astronautics,

Nanjing 211106, P.R. CHINA

Abstract

The generalized Turán number $ex(n, K_s, F)$ denotes the maximum number of copies of K_s in an *n*-vertex *F*-free graph. Let kF denote *k* disjoint copies of *F*. Gerbner, Methuku and Vizer [DM, 2019, 3130-3141] gave a lower bound for $ex(n, K_3, 2C_5)$ and obtained the magnitude of $ex(n, K_s, kK_r)$. In this paper, we determine the exact value of $ex(n, K_3, 2C_5)$ and described the unique extremal graph for large *n*. Moreover, we also determine the exact value of $ex(n, K_r, (k + 1)K_r)$ which generalizes some known results.

Keywords: Generalized Turán number, disjoint union, extremal graph.

1 Introduction

Let G be a graph with the set of vertices V(G). For two graphs G and H, let $G \cup H$ denote the disjoint union of G and H, and kG denote k disjoint copies of G. We write G + H for the join of G and H, the graph obtained from $G \cup H$ by adding all edges between V(G) and V(H). We use K_n , C_n , P_n to denote the complete graph, cycle, and path on n vertices, respectively. Let $K_s(G)$ denote the number of copies of K_s in G.

For a graph F, the Turán number of F, denote by ex(n, F), is the maximum number of edges in an F-free graph G on n vertex. In 1941, Turán [19] proved that the balanced complete r-partite graph on n vertices, called Turán graph $T_r(n)$, is the unique extremal graph of $ex(n, K_{r+1})$. Starting from this, the Turán problem has attracted a lot of attention. The study of disjoint copies of a given graph in the context of Turán numbers is very rich. The first result is due to Erdős and Gallai [5] who determined the Turán number of $ex(n, kK_2)$ for all n. Later Simonovits [18] and independently Moon [17] determined the Turán number of disjoint copies of cliques. In [10] Gorgol initiated the systematic investigation of Turán numbers of disjoint copies of graphs and proved the following.

Theorem 1 (Gorgol [10]) For every graph F and $k \ge 1$,

ex(n, kF) = ex(n, F) + O(n).

In this paper we study the generalized Turán number of disjoint copies of graphs. The generalized Turán number ex(n, T, F) is the maximum number of copies of T in any F-free graph on n vertices. Obviously, $ex(n, K_2, F) = ex(n, F)$. The earliest result in this topic is due to Zykov [23] who proved that $ex(n, K_s, K_r) = K_s(T_{r-1}(n))$.

Theorem 2 (Zykov [23]) For all n,

$$\operatorname{ex}(n, K_s, K_r) = K_s(T_{r-1}(n)),$$

and $T_{r-1}(n)$ is the unique extremal graph.

In recent years, the problem of estimating generalized Turán number has received a lot of attention. Many classical results have been extended to generalized Turán problem, see [1, 4, 11, 12, 15, 16, 20, 22].

Theorem 1 implies that the classical Turán number ex(n, kF) and ex(n, F) always have the same order of magnitude. However, this is not true for generalized Turán number. The function $ex(n, K_3, C_5)$ has attracted a lot of attentions, see [2, 6, 7], the best known upper bound is given by Lv and Lu,

Theorem 3 (Lv and Lu [14]) $ex(n, K_3, C_5) \leq \frac{1}{2\sqrt{6}}n^{\frac{3}{2}} + o(n^{\frac{3}{2}}).$

And Gerbner, Methuku and Vizer [8] proved $ex(n, K_3, 2C_5) = \Theta(n^2)$ [8]. This implies that the order of magnitudes of ex(n, H, F) and ex(n, H, kF) may differ. They also obtained a lower bound for $ex(n, K_3, 2C_5)$ which is obtained by joining a vertex to a copy of $T_2(n-1)$. In this paper, we show the graph $K_1 + T_2(n-1)$ is indeed the unique extremal graph for $ex(n, K_3, 2C_5)$.

Theorem 4 For sufficiently large n,

$$\operatorname{ex}(n, K_3, 2C_5) = \left\lfloor \frac{(n-1)^2}{4} \right\rfloor,$$

and $K_1 + T_2(n-1)$ is the unique extremal graph.

We also focus on the generalized the Turán number of disjoint copies of cliques. Since $ex(n, K_s, K_r)$ is known [23], it is natural to study the function $ex(n, K_s, kK_r)$. Gerbner, Methuku and Vizer [8] obtained the asymptotic value of $ex(n, K_s, kK_r)$. **Theorem 5** (Gerbner, Methuku and Vizer [8]) If s < r, then

$$\operatorname{ex}(n, K_s, kK_r) = (1 + o(1)) \binom{r-1}{s} \left(\frac{n}{r-1}\right)^s$$

If $s \ge r \ge 2$ and $k \ge 2$, then

$$\operatorname{ex}(n, K_s, kK_r) = \Theta(n^x),$$

where $x = \left\lceil \frac{kr-s}{k-1} \right\rceil - 1.$

Liu and Wang [13] determined the exact value of $ex(n, K_r, 2K_r)$ for $r \ge 3$ and n sufficiently large. A new proof of $ex(n, K_r, 2K_r)$ can be found in [21] by Yuan and Yang. Gerbner and Patkós [9] determined $ex(n, K_s, 2K_r)$ for all $s \ge r \ge 3$ and n sufficiently large. In this paper, we determine the value of $ex(n, K_r, (k+1)K_r)$ for all $r \ge 2, k \ge 1$ and n sufficiently large.

Theorem 6 There exists a constant $n_0(k, r)$ depending on k and $r \ge 2$ such that when $n \ge n_0(k, r)$,

$$ex(n, K_r, (k+1)K_r) = K_r(K_k + T_{r-1}(n-k)),$$

and $K_k + T_{r-1}(n-k)$ is the unique extremal graph.

The detailed proofs of Theorems 4 and 6 will be presented in Sections 3 and 4, respectively.

2 Proof of Theorem 4

Suppose *n* is large enough and let *G* be an *n*-vertex $2C_5$ -free graph with $ex(n, K_3, 2C_5)$ copies of triangles. Since $K_1 + T_2(n-1)$ contains no $2C_5$, thus $K_3(G) \ge \lfloor (n-1)^2/4 \rfloor$. Next we will show that $G = K_1 + T_2(n-1)$. Since *n* is sufficiently large and by Theorem 3, *G* must contain a copy of C_5 , say $C = v_1v_2v_3v_4v_5v_1$. Then $G \setminus C$ contains no C_5 . By Theorem 3 again, we have

$$K_3(G \setminus C) \le \frac{1}{2\sqrt{2}}(n-5)^{\frac{3}{2}} + o((n-5)^{\frac{3}{2}}).$$

We claim that there is at least one vertex in V(C) whose neighborhood contains a copy of $6P_4$. To prove this, we need a theorem obtained by Bushaw and Kettle [3].

Theorem 7 (Bushaw and Kettle[3]) For $k \ge 2$, $\ell \ge 4$ and $n \ge 2\ell + 2k\ell(\lceil \ell/2 \rceil + 1)\binom{\ell}{\lfloor \ell/2 \rfloor}$,

$$\operatorname{ex}(n, kP_{\ell}) = \binom{k\lfloor \ell/2 \rfloor - 1}{2} + (k\lfloor \ell/2 \rfloor - 1)(n - k\lfloor \ell/2 \rfloor + 1) + \lambda,$$

where $\lambda = 1$ if ℓ is odd, and $\lambda = 0$ if ℓ is even.

By Theorem 7, we know $ex(n, 6P_4) \le max\left\{\binom{872}{2}, 11(n-6)\right\}$. Now suppose no vertex in V(C) contains $6P_4$ in its neighborhood. Then the number of triangles containing v_i is at most

$$e(G[N(v_i)]) \le ex(n, 6P_4) = 11n + o(n).$$

Therefore, the total number of triangles satisfies

$$K_{3}(G) \leq \frac{1}{2\sqrt{2}}n^{\frac{3}{2}} + o(n^{\frac{3}{2}}) + 55n + o(n)$$
$$= \frac{1}{2\sqrt{2}}n^{\frac{3}{2}} + o(n^{\frac{3}{2}})$$
$$< \frac{(n-1)^{2}}{4}.$$

The last inequality holds when n is large. A contradiction.

Therefore, we may assume that v_1 is the vertex in V(C) such that $G[N(v_1)]$ contains a copy of $6P_4$. If $G \setminus v_1$ contains a copy of C_5 , then at least one copy of P_4 in $G[N(v_1)]$ does not intersect with this C_5 and hence we find two disjoint C_5 , a contradiction. Thus $G \setminus v_1$ is C_5 -free. So we have

$$K_3(G) \le e(G \setminus v_1) + K_3(G \setminus v_1). \tag{2.1}$$

So if we have $e(G \setminus v_1) + K_3(G \setminus v_1) \leq \lfloor \frac{(n-1)^2}{4} \rfloor$, then the proof is completed. To prove this, we need the following lemma.

Lemma 1 Let $n \ge 2\binom{68}{3}$. If G is a C₅-free graph on n vertices, then

$$e(G) + K_3(G) \le \left\lfloor \frac{n^2}{4} \right\rfloor,$$

and equality holds if and only if $G = T_2(n)$.

Proof. For each integer n, let G_n be a C_5 -free graph of n vertices such that $e(G_n) + K_3(G_n)$ is maximum. For every n, if G_n is also triangle-free, then by Turán Theorem [19], $e(G_n) \leq \lfloor \frac{n^2}{4} \rfloor$. Hence, $e(G_n) + K_3(G_n) \leq \lfloor \frac{n^2}{4} \rfloor$ and equality holds if and only if $G_n = T_2(n)$, we are done.

Next we shall prove that from $n \ge 2\binom{68}{2}$, each G_n is triangle-free. To do this, let us define a function

$$\phi(n) := e(G_n) + K_3(G_n) - \left\lfloor \frac{n^2}{4} \right\rfloor$$

Since $T_2(n)$ is C_5 -free and $e(T_2(n)) + K_3(T_2(n)) = \lfloor \frac{n^2}{4} \rfloor$, we have $\phi(n) \ge 0$. We claim

that from $n \ge 68$, if G_n contains a triangle, then

$$\phi(n) < \phi(n-1) - 1. \tag{2.2}$$

First suppose that $\delta(G_n) \geq \frac{n}{4} - 1$. Let xy be the edge of G_n which is contained in the most number of triangles. Set $W = N(x) \cap N(y) = \{z_1, \ldots, z_w\}$. Since G_n is C_5 -free, $G_n[W]$ contains no edge unless $w \leq 2$. Let $D_0 = N(x) \setminus (W \cup \{y\}), D_i =$ $N(z_i) \setminus (W \cup \{x, y\})$ for $1 \leq i \leq w$ and $D_{w+1} = N(y) \setminus (W \cup \{x\})$. We next show that D_i satisfy the following properties for $0 \leq i \leq w + 1$.

- (**P1**) $|D_i| \ge \frac{n}{4} w 2$ for i = 0, w + 1 and $|D_j| \ge \frac{n}{4} 4$ for $1 \le j \le w$;
- (**P2**) $D_i \cap D_j = \emptyset$ for $0 \le i \ne j \le w + 1$;
- (**P3**) There are no edges between D_i, D_j .

Since $\delta(G_n) \geq \frac{n}{4} - 1$, (**P1**) is clearly true. Since G_n is C_5 -free, it is easy to see that $D_i \cap D_j = \emptyset$ for $1 \leq i \neq j \leq w$. Suppose $D_0 \cap D_i \neq \emptyset$ or $D_{w+1} \cap D_i \neq \emptyset$ for some $1 \leq i \leq w$, by symmetry, let $v \in D_0 \cap D_i$. Then by the choice of xy, we have $w \geq 2$. For $1 \leq j \leq w$ and $j \neq i$, vz_iyz_jxv is a copy of C_5 , a contradiction. Thus (**P2**) holds. Suppose uv is an edge with $u \in D_i, v \in D_j$, then uz_iyz_jvu is a copy of C_5 if $i, j \in [1, w]$, uz_iyxvu or uz_ixyvu is a copy of C_5 if $i \in [1, w]$ and $j \in \{0, w + 1\}$, uxz_1yvu is a copy of C_5 if i = 0, j = w + 1, a contradiction. This implies (**P3**) holds.

Let
$$N = V(G_n) - W \cup \{x, y\} - \bigcup_{i=0}^{w+1} D_i$$
. By **(P1)** and **(P2)**, we have

$$n = |N| + \sum_{i=0}^{w+1} |D_i| + w + 2 \ge |N| + 2(\frac{n}{4} - w - 2) + w(\frac{n}{4} - 4) + w + 2,$$

which implies $w \leq 2$, $|N| \leq \frac{n}{4} + 7$ and $D_i \neq \emptyset$ when $n \geq 61$. By the choice of xy, each vertex of D_i has at most two neighbors in $G_n[D_i]$ for $0 \leq i \leq w + 1$ since there is no edge in 3 triangles. By **(P3)** and $\delta(G_n) \geq \frac{n}{4} - 1$, each vertex in D_i has at least $\frac{n}{4} - 4$ neighbors in N. Let $v_0 \in D_0$ and $v_1 \in D_{w+1}$. Because $n \geq 68$, we can deduce that $2(\frac{n}{4} - 4) > \frac{n}{4} + 7 \geq |N|$ and hence $N(v_0) \cap N(v_1) \cap N \neq \emptyset$. Then uv_0xyv_1u is a copy of C_5 , where $u \in N(v_0) \cap N(v_1) \cap N$, a contradiction. We are done if the minimum degree is at least $\frac{n}{4} - 1$.

Therefore, there is one vertex v in G_n such that $d(v) < \frac{n}{4} - 1$ when $n \ge 68$. Because G_n is C_5 -free, $G_n[N(v)]$ is the disjoint union of stars and triangles which implies $e(G_n[N(v)]) \le d(v)$. If we delete v from G_n , it will destroy at most d(v) triangles and delete d(v) edges. Hence,

$$\begin{split} \phi(n-1) &- \phi(n) \\ &= \left\lfloor \frac{n^2}{4} \right\rfloor - \left\lfloor \frac{(n-1)^2}{4} \right\rfloor - \left\{ (e(G_n) + K_3(G_n)) - (e(G_{n-1}) + K_3(G_{n-1})) \right\} \\ &\geq \frac{2n-2}{4} - \left\{ (e(G_n) + K_3(G_n)) - (e(G_n - v) + K_3(G_n - v)) \right\} \\ &\geq \frac{2n-2}{4} - 2d(v) > \frac{2n-2}{4} - 2(\frac{n}{4} - 1) > 1. \end{split}$$

Hence our claim(inequality 2.2) holds for $n \ge 68$.

Note that for $n_0 \ge 68$, if G_{n_0} contains no triangle, then $\phi(n_0) = 0$. Moreover, for every $n \ge n_0$, we have that G_n contains no triangles, either. Otherwise, we can find an integer n such that G_n contains a triangle but G_{n-1} is triangle-free. But then $\phi(n) \le \phi(n-1) - 1 < 0$ by inequality 2.2, which is contrary to $\phi(n) \ge 0$. Now let n_0 be the first integer after 68 such that G_{n_0} is triangle-free. Then

$$0 \le \phi(n_0) \le \phi(n_0 - 1) - 1 < \phi(68) - (n_0 - 68) \le \binom{68}{2} + \binom{68}{3} + 68 - n_0$$

This implies $n_0 \leq 2\binom{68}{3}$. Thus G_n must be triangle-free for $n \geq 2\binom{68}{3} \geq n_0$. So $e(G_n) + K_3(G_n) = e(G_n) = \lfloor n^2/4 \rfloor$ and $G_n = T_2(n)$ by Turán Theorem [19]. The proof of Lemma 1 is completed.

Combining equation (2.1) and Lemma 1, we can see that when n is large, $K_3(G) \leq \left\lfloor \frac{(n-1)^2}{4} \right\rfloor$ and equality holds if and only if $G = K_1 + T_2(n-1)$. The proof of Theorem 4 is completed.

3 Proof of Theorem 6

We prove it by induction on r and in each case, we always assume $n \ge n_0(k, r) =$. The base case r = 2 is the celebrated Erdős-Gallai Theorem [5], which says that

$$\exp(n, K_2, (k+1)K_2) = \max\left\{\binom{2k+1}{2}, (n-k)k + \binom{k}{2}\right\}.$$

As $n \ge n_0(k, 2)$, we know $ex(n, K_2, (k+1)K_2) = K_2(K_k + T_1(n-k))$.

Let $r \geq 3$ and suppose that the result holds for all r' < r. Next we consider the case $ex(n, K_r, (k+1)K_r)$. Let G be a $(k+1)K_r$ -free graph on n vertices with $ex(n, K_r, (k+1)K_r)$ copies of K_r . We may assume that G contains k disjoint copies of K_r . Otherwise we can add some edges into G unit the resulting graph contains k disjoint K_r . But at least one K_r in these k disjoint K_r is new which implies that the number of K_r is increased, a contradiction. Let

$$I = \{X_1, \ldots, X_k\}$$

be a set of k disjoint r-cliques in G, where X_i is a copy of K_r . Let $V(I) = \bigcup_{i=1}^k V(X_i)$ and $N = G \setminus V(I)$. Clearly, N contains no K_r . We say a vertex v in I is joined to an (r-1)-clique in N if v is adjacent to all vertices of this (r-1)-clique. For each X_i , $i \in [k]$, we have the following property.

Claim 1 Each X_i contains at most one vertex which is joined to at least kr+1 disjoint (r-1)-cliques in N.

Proof. If not, suppose $u_1, u'_1 \in V(X_1)$ are both joined to kr + 1 disjoint (r-1)-cliques. First we can find an (r-1)-clique joined to u_1 in N. Since u'_1 is also joined to at least kr + 1 disjoint (r-1)-cliques in N, we can find another (r-1)-clique joined to u'_1 which does not intersect with the (r-1)-clique joined to u. Together with $\{X_2, \ldots, X_k\}$, we find a copy of $(k+1)K_r$, a contradiction.

By Claim 1, let $A = \{X_1, \ldots, X_a\}$ be a subset of I such that there exists a vertex in X_i , say u_i , that is joined to at least kr + 1 disjoint (r-1)-cliques in N for each $i \in [a]$. Let $U = \{u_1, \ldots, u_a\}$.

Since N is K_r -free, each K_r in G must intersect with some vertices in V(I). Then all r-cliques can be divided into two classes: the set of cliques in which all vertices are contained in $V(N) \cup U$, and the set of cliques containing at least one vertex in $V(I) \setminus U$. We simply use $K_r(U)$ and $K_r(\overline{U})$ to denote the number of copies of K_r in these two classes, respectively.

Suppose a K_r in the first class contains s vertices in U and r-s vertices in N, the number of K_r 's of this type is at most $\binom{a}{s}K_{r-s}(N)$. Since N is K_r -free and by Theorem 2, which says $\exp(n, K_s, K_r) = K_s(T_{r-1}(n))$, we have $K_{r-s}(N) \leq K_{r-s}(T_{r-1}(n-kr)) \leq \binom{r-1}{r-s} \left(\frac{n-kr}{r-1}\right)^{r-s}$. Then

$$K_{r}(U) \leq \sum_{s=1}^{r} {\binom{a}{s}} K_{r-s}(N)$$

$$\leq a \left(\frac{n-kr}{r-1}\right)^{r-1} + {\binom{a}{2}} {\binom{r-1}{r-2}} \left(\frac{n-kr}{r-1}\right)^{r-2} + O(n^{r-3}).$$
(3.1)

Next we calculate the size of $K_r(\overline{U})$. Each vertex $v \in V(I) \setminus U$ is joined to at most kr independent (r-1)-cliques in N. Hence the number of K_r containing v and r-1

vertices of N is at most

$$K_{r-1}(G[N(v) \cap V(N)]) \le \exp(n - kr, K_{r-1}, (kr+1) \cdot K_{r-1})$$

= $K_{r-1}(K_{kr} + T_{r-2}(n-2kr))$
 $\le (kr)\left(\frac{n-2kr}{r-2}\right)^{r-2},$

the second equality comes from the induction hypothesis. Any other copies of K_r in $K_r(\overline{U})$ contains at most r-2 vertices in N and at least one vertex in $V(I) \setminus U$. So the number of such r-cliques is at most

$$\sum_{s=2}^{r} \left(\binom{kr}{s} - \binom{a}{s} \right) K_{r-s}(N) \le \left(\binom{kr}{2} - \binom{a}{2} \right) \binom{r-1}{r-2} \left(\frac{n-kr}{r-1} \right)^{r-2} + O(n^{r-3}).$$

Hence,

$$K_r(\overline{U}) \le \left(kr + \left(\binom{kr}{2} - \binom{a}{2}\right)\binom{r-1}{r-2} \left(\frac{n-kr}{r-1}\right)^{r-2} + O(n^{r-3}).$$
(3.2)

Therefore, by inequality (3.1) and (3.2), we have

$$K_r(G) \le a \left(\frac{n-kr}{r-1}\right)^{r-1} + \left(kr + \binom{kr}{2}\binom{r-1}{r-2}\right) \left(\frac{n-kr}{r-1}\right)^{r-2} + O(n^{r-3}).$$
(3.3)

On the other hand, since $K_k + T_{r-1}(n-k)$ is $(k+1)K_r$ -free, we know that

$$K_r(G) \ge k \left(\frac{n-k}{r-1}\right)^{r-1} + O(n^{r-2}).$$
 (3.4)

When n is greater than some constant $n_0(k,r)$, inequalities (3.3) and (3.4) hold mean a = k and then $U = \{u_1, \ldots, u_k\}$.

Let $G' = G \setminus U$. We claim that G' is also K_r -free. Suppose not, G' contains a r-clique, denote by X'_0 . Since each u_i is joined to at least kr + 1 independent copies of K_{r-1} 's in N, at least (k-1)r+1 of whom are disjoint with X'_0 for each $i \in [k]$. Then we can find a r-clique X'_1 such that $u_1 \in X'_1$ and $V(X'_1) \cap V(X'_0) = \emptyset$. Next, we claim that we may find another k independent r-cliques such that each is disjoint with X'_0 . Suppose we have found pairwise disjoint r-cliques X'_1, \ldots, X'_{i-1} such that $u_j \in X'_j$ for $j \in [i-1]$ and $i \leq k$. Then, in $G'[N(u_i)]$, there are at least $(k-1)r+1-(i-1)(r-1) \geq 1$ independent (r-1)-cliques which disjoint with $\{X'_0, X'_1, \ldots, X'_{i-1}\}$. That is we can choose a (r-1)-clique and thus a r-clique X'_i such $u_i \in X'_i$ and X'_0, X'_1, \ldots, X'_i are pairwise disjoint. The procedure can keep going until we find k independent r-cliques X'_1, \ldots, X'_k forms a $(k+1)K_r$, a contradiction.

Since G' is K_r -free, by Zykov's Theorem, $K_{r-i}(G') \leq K_{r-i}(T_{r-1}(n-k))$ and the

equality holds if and only if $G' = T_{r-1}(n-k)$. Thus

$$K_r(K_k + T_{r-1}(n-k)) \le K_r(G) \le \sum_{i=0}^r \binom{k}{i} K_{r-i}(G') = K_r(K_k + T_{r-1}(n-k)).$$

The condition of the equality holds means $G = K_k + T_{r-1}(n-k)$. The proof of Theorem 6 is completed.

4 Acknowledge

The research of the authors Győri is partially supported by the National Research, Development and Innovation Office NKFIH, grants K132696, SNN-135643 and K126853, Chen is supported by SNFC under grant numbers 12161141003 and 11931006, Zhang is supported by NSFC under grant numbers 12101298.

References

- N. Alon and C. Shikhelman, Many T copies in H-free graphs, J. Combin. Theory Ser. B 121(2016), 146-172.
- [2] B. Bollobás and E. Győri, Pentagons vs. triangles, Discrete Math. 308(2008), 4332-4336.
- [3] N. Bushaw and N. Kettle, Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20(2011), 837-853.
- [4] Z. Chase, The maximum number of triangles in a graph of given maximum degree, Adv. Com. (2020), paper No.10, 5pp.
- [5] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10(1959), 337-356.
- [6] B. Ergemlized, E. Győri, A. Methuku and N. Salia, A note on the maximum number of triangles in a C₅-free graph, J. Graph Theory 90(2019), 227-230.
- [7] B. Ergemlized and A. Methuku, Triangles in C₅-free graphs and hypergraphs of girth six. J. Graph Theory 99(2022), 26-39.
- [8] D. Gerbner, A. Methuku and M. Vizer, Generalized Turán problems for disjoint copies of graphs, *Discrete Math.* 342(2019), 3130-3141.
- [9] D. Gerbner and B. Patkós, Generalized Turán results for intersecting cliques, arXiv preprint (2021), arXiv:2105.07297v1.
- [10] I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27(2011), 661-667.
- [11] A. Grzesik, On the maximum number of five-cycles in a triangle-free graph, J. Combin. Theory Ser. B 102(2012), 1061-1066.
- [12] H. Hatami, J. Hladký, D. Král, S. Norine and A. Razborov, On the number of Pentagons in triangle-free graphs, J. Combin. Theory Ser. A 120(2013), 722-732.
- [13] E.L. Liu and J. Wang, The generalized Turán problem of two intersecting cliques, arXiv preprint (2021), arXiv:2101.08004.

- [14] Z. Lv and M.Lu, Many triangles in C_5 -free graphs, personal communication.
- [15] R. Luo, The maximum number of cliques in graphs without long cycles, J. Combin. Theory Ser. B 128(2017), 219-226.
- [16] J. Ma and Y. Qiu, Some sharp results on the generalized Turán numbers, European J. Combin. 84(2020), 103026, 16pp.
- [17] J.W. Moon, On independent complete subgraphs in a graph, Canad. J. Math 20(1968), 95-102.
- [18] M. Simonovits, A method for solving extremal problems in extremal graph theory, In Theory of graphs, Acadenic Press (1966), 279-319.
- [19] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48(1941), 436-452.
- [20] J. Wang, The shifting method and generalized Turán number of matchings, European J. Combin. 85(2020), 7pp.
- [21] X.L. Yuan and W.H. Yang, On generalized Turán number of two disjoint cliques, Graphs and Combin. 38(2022), 116, 9pp.
- [22] X.T. Zhu and Y.J. Chen, Generalized Turán number for linear forests. Discrete Math. 345(2022), 112997, 12pp.
- [23] A. Zykov, On some properties of linear complexes, Mat. Sbornik N. S. 24(1949), 163-188.