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Abstract

The generalized Turán number ex(n,Ks, F ) denotes the maximum number of

copies of Ks in an n-vertex F -free graph. Let kF denote k disjoint copies of

F . Gerbner, Methuku and Vizer [DM, 2019, 3130-3141] gave a lower bound for

ex(n,K3, 2C5) and obtained the magnitude of ex(n,Ks, kKr). In this paper, we

determine the exact value of ex(n,K3, 2C5) and described the unique extremal

graph for large n. Moreover, we also determine the exact value of ex(n,Kr, (k +

1)Kr) which generalizes some known results.
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1 Introduction

Let G be a graph with the set of vertices V (G). For two graphs G and H, let G ∪H

denote the disjoint union of G and H, and kG denote k disjoint copies of G. We write

G + H for the join of G and H, the graph obtained from G ∪ H by adding all edges

between V (G) and V (H). We use Kn, Cn, Pn to denote the complete graph, cycle, and

path on n vertices, respectively. Let Ks(G) denote the number of copies of Ks in G.

For a graph F , the Turán number of F , denote by ex(n, F ), is the maximum number

of edges in an F -free graph G on n vertex. In 1941, Turán [19] proved that the balanced

complete r-partite graph on n vertices, called Turán graph Tr(n), is the unique extremal

graph of ex(n,Kr+1). Starting from this, the Turán problem has attracted a lot of

attention. The study of disjoint copies of a given graph in the context of Turán numbers

is very rich. The first result is due to Erdős and Gallai [5] who determined the Turán

number of ex(n, kK2) for all n. Later Simonovits [18] and independently Moon [17]
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determined the Turán number of disjoint copies of cliques. In [10] Gorgol initiated the

systematic investigation of Turán numbers of disjoint copies of graphs and proved the

following.

Theorem 1 (Gorgol [10]) For every graph F and k ≥ 1,

ex(n, kF ) = ex(n, F ) +O(n).

In this paper we study the generalized Turán number of disjoint copies of graphs.

The generalized Turán number ex(n, T, F ) is the maximum number of copies of T in

any F -free graph on n vertices. Obviously, ex(n,K2, F ) = ex(n, F ). The earliest result

in this topic is due to Zykov [23] who proved that ex(n,Ks,Kr) = Ks(Tr−1(n)).

Theorem 2 (Zykov [23]) For all n,

ex(n,Ks,Kr) = Ks(Tr−1(n)),

and Tr−1(n) is the unique extremal graph.

In recent years, the problem of estimating generalized Turán number has received a lot

of attention. Many classical results have been extended to generalized Turán problem,

see [1, 4, 11, 12, 15, 16, 20, 22].

Theorem 1 implies that the classical Turán number ex(n, kF ) and ex(n, F ) always

have the same order of magnitude. However, this is not true for generalized Turán

number. The function ex(n,K3, C5) has attracted a lot of attentions, see [2, 6, 7], the

best known upper bound is given by Lv and Lu,

Theorem 3 (Lv and Lu [14] ) ex(n,K3, C5) ≤ 1
2
√
6
n

3

2 + o(n
3

2 ).

And Gerbner, Methuku and Vizer [8] proved ex(n,K3, 2C5) = Θ(n2) [8]. This implies

that the order of magnitudes of ex(n,H,F ) and ex(n,H, kF ) may differ. They also

obtained a lower bound for ex(n,K3, 2C5) which is obtained by joining a vertex to a

copy of T2(n−1). In this paper, we show the graph K1+T2(n−1) is indeed the unique

extremal graph for ex(n,K3, 2C5).

Theorem 4 For sufficiently large n,

ex(n,K3, 2C5) =

⌊

(n − 1)2

4

⌋

,

and K1 + T2(n − 1) is the unique extremal graph.

We also focus on the generalized the Turán number of disjoint copies of cliques.

Since ex(n,Ks,Kr) is known [23], it is natural to study the function ex(n,Ks, kKr).

Gerbner, Methuku and Vizer [8] obtained the asymptotic value of ex(n,Ks, kKr).

2



Theorem 5 (Gerbner, Methuku and Vizer [8]) If s < r, then

ex(n,Ks, kKr) = (1 + o(1))

(

r − 1

s

)(

n

r − 1

)s

.

If s ≥ r ≥ 2 and k ≥ 2, then

ex(n,Ks, kKr) = Θ(nx),

where x =
⌈

kr−s
k−1

⌉

− 1.

Liu and Wang [13] determined the exact value of ex(n,Kr, 2Kr) for r ≥ 3 and n

sufficiently large. A new proof of ex(n,Kr, 2Kr) can be found in [21] by Yuan and Yang.

Gerbner and Patkós [9] determined ex(n,Ks, 2Kr) for all s ≥ r ≥ 3 and n sufficiently

large. In this paper, we determine the value of ex(n,Kr, (k+1)Kr) for all r ≥ 2, k ≥ 1

and n sufficiently large.

Theorem 6 There exists a constant n0(k, r) depending on k and r ≥ 2 such that when

n ≥ n0(k, r),

ex(n,Kr, (k + 1)Kr) = Kr(Kk + Tr−1(n− k)),

and Kk + Tr−1(n− k) is the unique extremal graph.

The detailed proofs of Theorems 4 and 6 will be presented in Sections 3 and 4,

respectively.

2 Proof of Theorem 4

Suppose n is large enough and let G be an n-vertex 2C5-free graph with ex(n,K3, 2C5)

copies of triangles. Since K1 + T2(n− 1) contains no 2C5, thus K3(G) ≥ ⌊(n− 1)2/4⌋.
Next we will show that G = K1+T2(n−1). Since n is sufficiently large and by Theorem

3, G must contain a copy of C5, say C = v1v2v3v4v5v1. Then G\C contains no C5. By

Theorem 3 again, we have

K3(G \ C) ≤ 1

2
√
2
(n− 5)

3

2 + o((n− 5)
3

2 ).

We claim that there is at least one vertex in V (C) whose neighborhood contains a copy

of 6P4. To prove this, we need a theorem obtained by Bushaw and Kettle [3].

Theorem 7 (Bushaw and Kettle[3]) For k ≥ 2, ℓ ≥ 4 and n ≥ 2ℓ + 2kℓ(⌈ℓ/2⌉ +

1)
( ℓ
⌊ℓ/2⌋

)

,

ex(n, kPℓ) =

(

k⌊ℓ/2⌋ − 1

2

)

+ (k⌊ℓ/2⌋ − 1)(n − k⌊ℓ/2⌋ + 1) + λ,
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where λ = 1 if ℓ is odd, and λ = 0 if ℓ is even.

By Theorem 7, we know ex(n, 6P4) ≤ max
{(872

2

)

, 11(n − 6)
}

. Now suppose no vertex

in V (C) contains 6P4 in its neighborhood. Then the number of triangles containing vi
is at most

e(G[N(vi)]) ≤ ex(n, 6P4) = 11n + o(n).

Therefore, the total number of triangles satisfies

K3(G) ≤ 1

2
√
2
n

3

2 + o(n
3

2 ) + 55n + o(n)

=
1

2
√
2
n

3

2 + o(n
3

2 )

<
(n− 1)2

4
.

The last inequality holds when n is large. A contradiction.

Therefore, we may assume that v1 is the vertex in V (C) such that G[N(v1)] contains

a copy of 6P4. If G \ v1 contains a copy of C5, then at least one copy of P4 in G[N(v1)]

does not intersect with this C5 and hence we find two disjoint C5, a contradiction. Thus

G \ v1 is C5-free. So we have

K3(G) ≤ e(G \ v1) +K3(G \ v1). (2.1)

So if we have e(G \ v1)+K3(G \ v1) ≤
⌊

(n−1)2

4

⌋

, then the proof is completed. To prove

this, we need the following lemma.

Lemma 1 Let n ≥ 2
(

68
3

)

. If G is a C5-free graph on n vertices, then

e(G) +K3(G) ≤
⌊

n2

4

⌋

,

and equality holds if and only if G = T2(n).

Proof. For each integer n, let Gn be a C5-free graph of n vertices such that e(Gn) +

K3(Gn) is maximum. For every n, if Gn is also triangle-free, then by Turán Theorem

[19], e(Gn) ≤
⌊

n2

4

⌋

. Hence, e(Gn) +K3(Gn) ≤
⌊

n2

4

⌋

and equality holds if and only if

Gn = T2(n), we are done.

Next we shall prove that from n ≥ 2
(68
2

)

, each Gn is triangle-free. To do this, let us

define a function

φ(n) := e(Gn) +K3(Gn)−
⌊

n2

4

⌋

.

Since T2(n) is C5-free and e(T2(n)) +K3(T2(n)) =
⌊

n2

4

⌋

, we have φ(n) ≥ 0. We claim
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that from n ≥ 68, if Gn contains a triangle, then

φ(n) < φ(n− 1)− 1. (2.2)

First suppose that δ(Gn) ≥ n
4 − 1. Let xy be the edge of Gn which is contained

in the most number of triangles. Set W = N(x) ∩ N(y) = {z1, . . . , zw}. Since Gn is

C5-free, Gn[W ] contains no edge unless w ≤ 2. Let D0 = N(x) \ (W ∪ {y}), Di =

N(zi) \ (W ∪ {x, y}) for 1 ≤ i ≤ w and Dw+1 = N(y) \ (W ∪ {x}). We next show that

Di satisfy the following properties for 0 ≤ i ≤ w + 1.

(P1) |Di| ≥ n
4 − w − 2 for i = 0, w + 1 and |Dj | ≥ n

4 − 4 for 1 ≤ j ≤ w;

(P2) Di ∩Dj = ∅ for 0 ≤ i 6= j ≤ w + 1;

(P3) There are no edges between Di,Dj .

Since δ(Gn) ≥ n
4 − 1, (P1) is clearly true. Since Gn is C5-free, it is easy to see that

Di ∩ Dj = ∅ for 1 ≤ i 6= j ≤ w. Suppose D0 ∩ Di 6= ∅ or Dw+1 ∩ Di 6= ∅ for some

1 ≤ i ≤ w, by symmetry, let v ∈ D0 ∩Di. Then by the choice of xy, we have w ≥ 2.

For 1 ≤ j ≤ w and j 6= i, vziyzjxv is a copy of C5, a contradiction. Thus (P2) holds.

Suppose uv is an edge with u ∈ Di, v ∈ Dj , then uziyzjvu is a copy of C5 if i, j ∈ [1, w],

uziyxvu or uzixyvu is a copy of C5 if i ∈ [1, w] and j ∈ {0, w + 1}, uxz1yvu is a copy

of C5 if i = 0, j = w + 1, a contradiction. This implies (P3) holds.

Let N = V (Gn)−W ∪ {x, y} − ∪w+1
i=0 Di. By (P1) and (P2), we have

n = |N |+
w+1
∑

i=0

|Di|+w + 2 ≥ |N |+ 2(
n

4
− w − 2) + w(

n

4
− 4) + w + 2,

which implies w ≤ 2, |N | ≤ n
4 + 7 and Di 6= ∅ when n ≥ 61. By the choice of xy, each

vertex of Di has at most two neighbors in Gn[Di] for 0 ≤ i ≤ w + 1 since there is no

edge in 3 triangles. By (P3) and δ(Gn) ≥ n
4 − 1, each vertex in Di has at least

n
4 − 4

neighbors in N . Let v0 ∈ D0 and v1 ∈ Dw+1. Because n ≥ 68, we can deduce that

2(n4 − 4) > n
4 +7 ≥ |N | and hence N(v0)∩N(v1)∩N 6= ∅. Then uv0xyv1u is a copy of

C5, where u ∈ N(v0)∩N(v1)∩N , a contradiction. We are done if the minimum degree

is at least n
4 − 1.

Therefore, there is one vertex v in Gn such that d(v) < n
4 − 1 when n ≥ 68.

Because Gn is C5-free, Gn[N(v)] is the disjoint union of stars and triangles which

implies e(Gn[N(v)]) ≤ d(v). If we delete v from Gn, it will destroy at most d(v)
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triangles and delete d(v) edges. Hence,

φ(n− 1)− φ(n)

=

⌊

n2

4

⌋

−
⌊

(n− 1)2

4

⌋

− {(e(Gn) +K3(Gn))− (e(Gn−1) +K3(Gn−1))}

≥2n− 2

4
− {(e(Gn) +K3(Gn))− (e(Gn − v) +K3(Gn − v))}

≥2n− 2

4
− 2d(v) >

2n− 2

4
− 2(

n

4
− 1) > 1.

Hence our claim(inequality 2.2) holds for n ≥ 68.

Note that for n0 ≥ 68, if Gn0
contains no triangle, then φ(n0) = 0. Moreover,

for every n ≥ n0, we have that Gn contains no triangles, either. Otherwise, we can

find an integer n such that Gn contains a triangle but Gn−1 is triangle-free. But then

φ(n) ≤ φ(n − 1) − 1 < 0 by inequality 2.2, which is contrary to φ(n) ≥ 0. Now let n0

be the first integer after 68 such that Gn0
is triangle-free. Then

0 ≤ φ(n0) ≤ φ(n0 − 1)− 1 < φ(68) − (n0 − 68) ≤
(

68

2

)

+

(

68

3

)

+ 68− n0.

This implies n0 ≤ 2
(

68
3

)

. Thus Gn must be triangle-free for n ≥ 2
(

68
3

)

≥ n0. So

e(Gn)+K3(Gn) = e(Gn) = ⌊n2/4⌋ and Gn = T2(n) by Turán Theorem [19]. The proof

of Lemma 1 is completed.

Combining equation (2.1) and Lemma 1, we can see that when n is large, K3(G) ≤
⌊

(n−1)2

4

⌋

and equality holds if and only if G = K1 + T2(n− 1). The proof of Theorem

4 is completed. �

3 Proof of Theorem 6

We prove it by induction on r and in each case, we always assume n ≥ n0(k, r) =. The

base case r = 2 is the celebrated Erdős-Gallai Theorem [5], which says that

ex(n,K2, (k + 1)K2) = max

{(

2k + 1

2

)

, (n − k)k +

(

k

2

)}

.

As n ≥ n0(k, 2), we know ex(n,K2, (k + 1)K2) = K2(Kk + T1(n− k)).

Let r ≥ 3 and suppose that the result holds for all r′ < r. Next we consider

the case ex(n,Kr, (k + 1)Kr). Let G be a (k + 1)Kr-free graph on n vertices with

ex(n,Kr, (k + 1)Kr) copies of Kr. We may assume that G contains k disjoint copies

of Kr. Otherwise we can add some edges into G unit the resulting graph contains k

disjoint Kr. But at least one Kr in these k disjoint Kr is new which implies that the
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number of Kr is increased, a contradiction. Let

I = {X1, . . . ,Xk}

be a set of k disjoint r-cliques in G, where Xi is a copy of Kr. Let V (I) = ∪k
i=1V (Xi)

and N = G \ V (I). Clearly, N contains no Kr. We say a vertex v in I is joined to an

(r − 1)-clique in N if v is adjacent to all vertices of this (r − 1)-clique. For each Xi,

i ∈ [k], we have the following property.

Claim 1 Each Xi contains at most one vertex which is joined to at least kr+1 disjoint

(r − 1)-cliques in N .

Proof. If not, suppose u1, u
′
1 ∈ V (X1) are both joined to kr+1 disjoint (r−1)-cliques.

First we can find an (r− 1)-clique joined to u1 in N . Since u′1 is also joined to at least

kr+1 disjoint (r−1)-cliques in N , we can find another (r−1)-clique joined to u′1 which
does not intersect with the (r − 1)-clique joined to u. Together with {X2, . . . ,Xk}, we
find a copy of (k + 1)Kr, a contradiction.

By Claim 1, let A = {X1, . . . ,Xa} be a subset of I such that there exists a vertex in

Xi, say ui, that is joined to at least kr+1 disjoint (r− 1)-cliques in N for each i ∈ [a].

Let U = {u1, . . . , ua}.
Since N is Kr-free, each Kr in G must intersect with some vertices in V (I). Then

all r-cliques can be divided into two classes: the set of cliques in which all vertices are

contained in V (N)∪U , ant the set of cliques containing at least one vertex in V (I)\U .

We simply use Kr(U) and Kr(U) to denote the number of copies of Kr in these two

classes, respectively.

Suppose a Kr in the first class contains s vertices in U and r− s vertices in N , the

number of Kr’s of this type is at most
(a
s

)

Kr−s(N). Since N is Kr-free and by Theorem

2, which says ex(n,Ks,Kr) = Ks(Tr−1(n)), we have Kr−s(N) ≤ Kr−s (Tr−1(n− kr)) ≤
(r−1
r−s

)

(

n−kr
r−1

)r−s
. Then

Kr(U) ≤
r

∑

s=1

(

a

s

)

Kr−s(N)

≤ a

(

n− kr

r − 1

)r−1

+

(

a

2

)(

r − 1

r − 2

)(

n− kr

r − 1

)r−2

+O(nr−3). (3.1)

Next we calculate the size of Kr(U ). Each vertex v ∈ V (I) \U is joined to at most

kr independent (r − 1)-cliques in N . Hence the number of Kr containing v and r − 1

7



vertices of N is at most

Kr−1(G[N(v) ∩ V (N)]) ≤ ex(n− kr,Kr−1, (kr + 1) ·Kr−1)

= Kr−1 (Kkr + Tr−2(n− 2kr))

≤ (kr)

(

n− 2kr

r − 2

)r−2

,

the second equality comes from the induction hypothesis. Any other copies of Kr in

Kr(U) contains at most r− 2 vertices in N and at least one vertex in V (I) \U . So the

number of such r-cliques is at most

r
∑

s=2

((

kr

s

)

−
(

a

s

))

Kr−s(N) ≤
((

kr

2

)

−
(

a

2

))(

r − 1

r − 2

)(

n− kr

r − 1

)r−2

+O(nr−3).

Hence,

Kr(U ) ≤
(

kr +

((

kr

2

)

−
(

a

2

))(

r − 1

r − 2

))(

n− kr

r − 1

)r−2

+O(nr−3). (3.2)

Therefore, by inequality (3.1) and (3.2), we have

Kr(G) ≤ a

(

n− kr

r − 1

)r−1

+

(

kr +

(

kr

2

)(

r − 1

r − 2

))(

n− kr

r − 1

)r−2

+O(nr−3). (3.3)

On the other hand, since Kk + Tr−1(n− k) is (k + 1)Kr-free, we know that

Kr(G) ≥ k

(

n− k

r − 1

)r−1

+O(nr−2). (3.4)

When n is greater than some constant n0(k, r), inequalites (3.3) and (3.4) hold mean

a = k and then U = {u1, . . . , uk}.
Let G′ = G \ U . We claim that G′ is also Kr-free. Suppose not, G′ contains a

r-clique, denote by X ′
0. Since each ui is joined to at least kr+ 1 independent copies of

Kr−1’s in N , at least (k−1)r+1 of whom are disjoint with X ′
0 for each i ∈ [k]. Then we

can find a r-clique X ′
1 such that u1 ∈ X ′

1 and V (X ′
1)∩V (X ′

0) = ∅. Next, we claim that

we may find another k independent r-cliques such that each is disjoint withX ′
0. Suppose

we have found pairwise disjoint r-cliques X ′
1, . . . ,X

′
i−1 such that uj ∈ X ′

j for j ∈ [i− 1]

and i ≤ k. Then, in G′[N(ui)], there are at least (k − 1)r + 1 − (i − 1)(r − 1) ≥ 1

independent (r − 1)-cliques which disjoint with {X ′
0,X

′
1, . . . ,X

′
i−1}. That is we can

choose a (r − 1)-clique and thus a r-clique X ′
i such ui ∈ X ′

i and X ′
0,X

′
1, . . . ,X

′
i are

pairwise disjoint. The procedure can keep going until we find k independent r-cliques

X ′
1, . . . ,X

′
k. Then X ′

0,X
′
1, . . . ,X

′
k forms a (k + 1)Kr, a contradiction.

Since G′ is Kr-free, by Zykov’s Theorem, Kr−i(G
′) ≤ Kr−i(Tr−1(n − k)) and the
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equality holds if and only if G′ = Tr−1(n− k). Thus

Kr(Kk + Tr−1(n− k)) ≤ Kr(G) ≤
r

∑

i=0

(

k

i

)

Kr−i(G
′) = Kr(Kk + Tr−1(n− k)).

The condition of the equality holds means G = Kk+Tr−1(n−k). The proof of Theorem

6 is completed. �
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