Maximum cliques in a graph without disjoint given

 subgraphFangfang Zhang ${ }^{1}$, Yaojun Chen ${ }^{2}$, Ervin Győri ${ }^{3}$, and Xiutao Zhu ${ }^{4}$
${ }^{1}$ School of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210023, P.R. CHINA
${ }^{2}$ Department of Mathematics, Nanjing University. ${ }^{3}$ Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences. ${ }^{4}$ School of mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P.R. CHINA

Abstract

The generalized Turán number ex $\left(n, K_{s}, F\right)$ denotes the maximum number of copies of K_{s} in an n-vertex F-free graph. Let $k F$ denote k disjoint copies of F. Gerbner, Methuku and Vizer [DM, 2019, 3130-3141] gave a lower bound for $\operatorname{ex}\left(n, K_{3}, 2 C_{5}\right)$ and obtained the magnitude of $\operatorname{ex}\left(n, K_{s}, k K_{r}\right)$. In this paper, we determine the exact value of $\operatorname{ex}\left(n, K_{3}, 2 C_{5}\right)$ and described the unique extremal graph for large n. Moreover, we also determine the exact value of $\operatorname{ex}\left(n, K_{r},(k+\right.$ 1) K_{r}) which generalizes some known results.

Keywords: Generalized Turán number, disjoint union, extremal graph.

1 Introduction

Let G be a graph with the set of vertices $V(G)$. For two graphs G and H, let $G \cup H$ denote the disjoint union of G and H, and $k G$ denote k disjoint copies of G. We write $G+H$ for the join of G and H, the graph obtained from $G \cup H$ by adding all edges between $V(G)$ and $V(H)$. We use K_{n}, C_{n}, P_{n} to denote the complete graph, cycle, and path on n vertices, respectively. Let $K_{s}(G)$ denote the number of copies of K_{s} in G.

For a graph F, the Turán number of F, denote by ex (n, F), is the maximum number of edges in an F-free graph G on n vertex. In 1941, Turán [19] proved that the balanced complete r-partite graph on n vertices, called Turán graph $T_{r}(n)$, is the unique extremal graph of ex $\left(n, K_{r+1}\right)$. Starting from this, the Turán problem has attracted a lot of attention. The study of disjoint copies of a given graph in the context of Turán numbers is very rich. The first result is due to Erdős and Gallai [5] who determined the Turán number of $\operatorname{ex}\left(n, k K_{2}\right)$ for all n. Later Simonovits [18] and independently Moon 17]
determined the Turán number of disjoint copies of cliques. In [10] Gorgol initiated the systematic investigation of Turán numbers of disjoint copies of graphs and proved the following.

Theorem 1 (Gorgol [10]) For every graph F and $k \geq 1$,

$$
\operatorname{ex}(n, k F)=\operatorname{ex}(n, F)+O(n) .
$$

In this paper we study the generalized Turán number of disjoint copies of graphs. The generalized Turán number ex (n, T, F) is the maximum number of copies of T in any F-free graph on n vertices. Obviously, ex $\left(n, K_{2}, F\right)=\operatorname{ex}(n, F)$. The earliest result in this topic is due to Zykov [23] who proved that $\operatorname{ex}\left(n, K_{s}, K_{r}\right)=K_{s}\left(T_{r-1}(n)\right)$.

Theorem 2 (Zykov [23]) For all n,

$$
\operatorname{ex}\left(n, K_{s}, K_{r}\right)=K_{s}\left(T_{r-1}(n)\right),
$$

and $T_{r-1}(n)$ is the unique extremal graph.
In recent years, the problem of estimating generalized Turán number has received a lot of attention. Many classical results have been extended to generalized Turán problem, see [1, 4, 11, 12, 15, 16, 20, 22].

Theorem 1 implies that the classical Turán number ex $(n, k F)$ and ex (n, F) always have the same order of magnitude. However, this is not true for generalized Turán number. The function ex $\left(n, K_{3}, C_{5}\right)$ has attracted a lot of attentions, see [2, 6, 7], the best known upper bound is given by Lv and Lu ,

Theorem 3 ($L v$ and $L u$ 14]) ex $\left(n, K_{3}, C_{5}\right) \leq \frac{1}{2 \sqrt{6}} n^{\frac{3}{2}}+o\left(n^{\frac{3}{2}}\right)$.
And Gerbner, Methuku and Vizer [8] proved ex $\left(n, K_{3}, 2 C_{5}\right)=\Theta\left(n^{2}\right)$ [8]. This implies that the order of magnitudes of $\operatorname{ex}(n, H, F)$ and $\operatorname{ex}(n, H, k F)$ may differ. They also obtained a lower bound for $\operatorname{ex}\left(n, K_{3}, 2 C_{5}\right)$ which is obtained by joining a vertex to a copy of $T_{2}(n-1)$. In this paper, we show the graph $K_{1}+T_{2}(n-1)$ is indeed the unique extremal graph for ex $\left(n, K_{3}, 2 C_{5}\right)$.

Theorem 4 For sufficiently large n,

$$
\operatorname{ex}\left(n, K_{3}, 2 C_{5}\right)=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor,
$$

and $K_{1}+T_{2}(n-1)$ is the unique extremal graph.
We also focus on the generalized the Turán number of disjoint copies of cliques. Since ex $\left(n, K_{s}, K_{r}\right)$ is known [23], it is natural to study the function $\operatorname{ex}\left(n, K_{s}, k K_{r}\right)$. Gerbner, Methuku and Vizer [8] obtained the asymptotic value of ex $\left(n, K_{s}, k K_{r}\right)$.

Theorem 5 (Gerbner, Methuku and Vizer [8]) If $s<r$, then

$$
\operatorname{ex}\left(n, K_{s}, k K_{r}\right)=(1+o(1))\binom{r-1}{s}\left(\frac{n}{r-1}\right)^{s}
$$

If $s \geq r \geq 2$ and $k \geq 2$, then

$$
\operatorname{ex}\left(n, K_{s}, k K_{r}\right)=\Theta\left(n^{x}\right),
$$

where $x=\left\lceil\frac{k r-s}{k-1}\right\rceil-1$.
Liu and Wang [13] determined the exact value of $\operatorname{ex}\left(n, K_{r}, 2 K_{r}\right)$ for $r \geq 3$ and n sufficiently large. A new proof of ex $\left(n, K_{r}, 2 K_{r}\right)$ can be found in [21] by Yuan and Yang. Gerbner and Patkós [9] determined ex $\left(n, K_{s}, 2 K_{r}\right)$ for all $s \geq r \geq 3$ and n sufficiently large. In this paper, we determine the value of $\operatorname{ex}\left(n, K_{r},(k+1) K_{r}\right)$ for all $r \geq 2, k \geq 1$ and n sufficiently large.

Theorem 6 There exists a constant $n_{0}(k, r)$ depending on k and $r \geq 2$ such that when $n \geq n_{0}(k, r)$,

$$
\operatorname{ex}\left(n, K_{r},(k+1) K_{r}\right)=K_{r}\left(K_{k}+T_{r-1}(n-k)\right),
$$

and $K_{k}+T_{r-1}(n-k)$ is the unique extremal graph.
The detailed proofs of Theorems 4 and 6 will be presented in Sections 3 and 4, respectively.

2 Proof of Theorem 4

Suppose n is large enough and let G be an n-vertex $2 C_{5}$-free graph with ex $\left(n, K_{3}, 2 C_{5}\right)$ copies of triangles. Since $K_{1}+T_{2}(n-1)$ contains no $2 C_{5}$, thus $K_{3}(G) \geq\left\lfloor(n-1)^{2} / 4\right\rfloor$. Next we will show that $G=K_{1}+T_{2}(n-1)$. Since n is sufficiently large and by Theorem 3. G must contain a copy of C_{5}, say $C=v_{1} v_{2} v_{3} v_{4} v_{5} v_{1}$. Then $G \backslash C$ contains no C_{5}. By Theorem 3 again, we have

$$
K_{3}(G \backslash C) \leq \frac{1}{2 \sqrt{2}}(n-5)^{\frac{3}{2}}+o\left((n-5)^{\frac{3}{2}}\right) .
$$

We claim that there is at least one vertex in $V(C)$ whose neighborhood contains a copy of $6 P_{4}$. To prove this, we need a theorem obtained by Bushaw and Kettle [3].

Theorem 7 (Bushaw and Kettle[3]) For $k \geq 2, \ell \geq 4$ and $n \geq 2 \ell+2 k \ell(\lceil\ell / 2\rceil+$ 1) $\binom{\ell \ell}{\ell / 2\rfloor}$,

$$
\operatorname{ex}\left(n, k P_{\ell}\right)=\binom{k\lfloor\ell / 2\rfloor-1}{2}+(k\lfloor\ell / 2\rfloor-1)(n-k\lfloor\ell / 2\rfloor+1)+\lambda,
$$

where $\lambda=1$ if ℓ is odd, and $\lambda=0$ if ℓ is even.
By Theorem 7 , we know ex $\left(n, 6 P_{4}\right) \leq \max \left\{\binom{872}{2}, 11(n-6)\right\}$. Now suppose no vertex in $V(C)$ contains $6 P_{4}$ in its neighborhood. Then the number of triangles containing v_{i} is at most

$$
e\left(G\left[N\left(v_{i}\right)\right]\right) \leq \operatorname{ex}\left(n, 6 P_{4}\right)=11 n+o(n)
$$

Therefore, the total number of triangles satisfies

$$
\begin{aligned}
K_{3}(G) & \leq \frac{1}{2 \sqrt{2}} n^{\frac{3}{2}}+o\left(n^{\frac{3}{2}}\right)+55 n+o(n) \\
& =\frac{1}{2 \sqrt{2}} n^{\frac{3}{2}}+o\left(n^{\frac{3}{2}}\right) \\
& <\frac{(n-1)^{2}}{4} .
\end{aligned}
$$

The last inequality holds when n is large. A contradiction.
Therefore, we may assume that v_{1} is the vertex in $V(C)$ such that $G\left[N\left(v_{1}\right)\right]$ contains a copy of $6 P_{4}$. If $G \backslash v_{1}$ contains a copy of C_{5}, then at least one copy of P_{4} in $G\left[N\left(v_{1}\right)\right]$ does not intersect with this C_{5} and hence we find two disjoint C_{5}, a contradiction. Thus $G \backslash v_{1}$ is C_{5}-free. So we have

$$
\begin{equation*}
K_{3}(G) \leq e\left(G \backslash v_{1}\right)+K_{3}\left(G \backslash v_{1}\right) . \tag{2.1}
\end{equation*}
$$

So if we have $e\left(G \backslash v_{1}\right)+K_{3}\left(G \backslash v_{1}\right) \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$, then the proof is completed. To prove this, we need the following lemma.

Lemma 1 Let $n \geq 2\binom{68}{3}$. If G is a C_{5}-free graph on n vertices, then

$$
e(G)+K_{3}(G) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor,
$$

and equality holds if and only if $G=T_{2}(n)$.

Proof. For each integer n, let G_{n} be a C_{5}-free graph of n vertices such that $e\left(G_{n}\right)+$ $K_{3}\left(G_{n}\right)$ is maximum. For every n, if G_{n} is also triangle-free, then by Turán Theorem [19], $e\left(G_{n}\right) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$. Hence, $e\left(G_{n}\right)+K_{3}\left(G_{n}\right) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$ and equality holds if and only if $G_{n}=T_{2}(n)$, we are done.

Next we shall prove that from $n \geq 2\binom{68}{2}$, each G_{n} is triangle-free. To do this, let us define a function

$$
\phi(n):=e\left(G_{n}\right)+K_{3}\left(G_{n}\right)-\left\lfloor\frac{n^{2}}{4}\right\rfloor .
$$

Since $T_{2}(n)$ is C_{5}-free and $e\left(T_{2}(n)\right)+K_{3}\left(T_{2}(n)\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor$, we have $\phi(n) \geq 0$. We claim
that from $n \geq 68$, if G_{n} contains a triangle, then

$$
\begin{equation*}
\phi(n)<\phi(n-1)-1 \tag{2.2}
\end{equation*}
$$

First suppose that $\delta\left(G_{n}\right) \geq \frac{n}{4}-1$. Let $x y$ be the edge of G_{n} which is contained in the most number of triangles. Set $W=N(x) \cap N(y)=\left\{z_{1}, \ldots, z_{w}\right\}$. Since G_{n} is C_{5}-free, $G_{n}[W]$ contains no edge unless $w \leq 2$. Let $D_{0}=N(x) \backslash(W \cup\{y\}), D_{i}=$ $N\left(z_{i}\right) \backslash(W \cup\{x, y\})$ for $1 \leq i \leq w$ and $D_{w+1}=N(y) \backslash(W \cup\{x\})$. We next show that D_{i} satisfy the following properties for $0 \leq i \leq w+1$.
(P1) $\left|D_{i}\right| \geq \frac{n}{4}-w-2$ for $i=0, w+1$ and $\left|D_{j}\right| \geq \frac{n}{4}-4$ for $1 \leq j \leq w$;
(P2) $D_{i} \cap D_{j}=\emptyset$ for $0 \leq i \neq j \leq w+1$;
(P3) There are no edges between D_{i}, D_{j}.
Since $\delta\left(G_{n}\right) \geq \frac{n}{4}-1,(\mathbf{P} 1)$ is clearly true. Since G_{n} is C_{5}-free, it is easy to see that $D_{i} \cap D_{j}=\emptyset$ for $1 \leq i \neq j \leq w$. Suppose $D_{0} \cap D_{i} \neq \emptyset$ or $D_{w+1} \cap D_{i} \neq \emptyset$ for some $1 \leq i \leq w$, by symmetry, let $v \in D_{0} \cap D_{i}$. Then by the choice of $x y$, we have $w \geq 2$. For $1 \leq j \leq w$ and $j \neq i, v z_{i} y z_{j} x v$ is a copy of C_{5}, a contradiction. Thus (P2) holds. Suppose $u v$ is an edge with $u \in D_{i}, v \in D_{j}$, then $u z_{i} y z_{j} v u$ is a copy of C_{5} if $i, j \in[1, w]$, $u z_{i} y x v u$ or $u z_{i} x y v u$ is a copy of C_{5} if $i \in[1, w]$ and $j \in\{0, w+1\}, u x z_{1} y v u$ is a copy of C_{5} if $i=0, j=w+1$, a contradiction. This implies (P3) holds.

Let $N=V\left(G_{n}\right)-W \cup\{x, y\}-\cup_{i=0}^{w+1} D_{i}$. By (P1) and (P2), we have

$$
n=|N|+\sum_{i=0}^{w+1}\left|D_{i}\right|+w+2 \geq|N|+2\left(\frac{n}{4}-w-2\right)+w\left(\frac{n}{4}-4\right)+w+2
$$

which implies $w \leq 2,|N| \leq \frac{n}{4}+7$ and $D_{i} \neq \emptyset$ when $n \geq 61$. By the choice of $x y$, each vertex of D_{i} has at most two neighbors in $G_{n}\left[D_{i}\right]$ for $0 \leq i \leq w+1$ since there is no edge in 3 triangles. By (P3) and $\delta\left(G_{n}\right) \geq \frac{n}{4}-1$, each vertex in D_{i} has at least $\frac{n}{4}-4$ neighbors in N. Let $v_{0} \in D_{0}$ and $v_{1} \in D_{w+1}$. Because $n \geq 68$, we can deduce that $2\left(\frac{n}{4}-4\right)>\frac{n}{4}+7 \geq|N|$ and hence $N\left(v_{0}\right) \cap N\left(v_{1}\right) \cap N \neq \emptyset$. Then $u v_{0} x y v_{1} u$ is a copy of C_{5}, where $u \in N\left(v_{0}\right) \cap N\left(v_{1}\right) \cap N$, a contradiction. We are done if the minimum degree is at least $\frac{n}{4}-1$.

Therefore, there is one vertex v in G_{n} such that $d(v)<\frac{n}{4}-1$ when $n \geq 68$. Because G_{n} is C_{5}-free, $G_{n}[N(v)]$ is the disjoint union of stars and triangles which implies $e\left(G_{n}[N(v)]\right) \leq d(v)$. If we delete v from G_{n}, it will destroy at most $d(v)$
triangles and delete $d(v)$ edges. Hence,

$$
\begin{aligned}
& \phi(n-1)-\phi(n) \\
= & \left\lfloor\frac{n^{2}}{4}\right\rfloor-\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor-\left\{\left(e\left(G_{n}\right)+K_{3}\left(G_{n}\right)\right)-\left(e\left(G_{n-1}\right)+K_{3}\left(G_{n-1}\right)\right)\right\} \\
\geq & \frac{2 n-2}{4}-\left\{\left(e\left(G_{n}\right)+K_{3}\left(G_{n}\right)\right)-\left(e\left(G_{n}-v\right)+K_{3}\left(G_{n}-v\right)\right)\right\} \\
\geq & \frac{2 n-2}{4}-2 d(v)>\frac{2 n-2}{4}-2\left(\frac{n}{4}-1\right)>1 .
\end{aligned}
$$

Hence our claim(inequality (2.2) holds for $n \geq 68$.
Note that for $n_{0} \geq 68$, if $G_{n_{0}}$ contains no triangle, then $\phi\left(n_{0}\right)=0$. Moreover, for every $n \geq n_{0}$, we have that G_{n} contains no triangles, either. Otherwise, we can find an integer n such that G_{n} contains a triangle but G_{n-1} is triangle-free. But then $\phi(n) \leq \phi(n-1)-1<0$ by inequality [2.2, which is contrary to $\phi(n) \geq 0$. Now let n_{0} be the first integer after 68 such that $G_{n_{0}}$ is triangle-free. Then

$$
0 \leq \phi\left(n_{0}\right) \leq \phi\left(n_{0}-1\right)-1<\phi(68)-\left(n_{0}-68\right) \leq\binom{ 68}{2}+\binom{68}{3}+68-n_{0} .
$$

This implies $n_{0} \leq 2\binom{68}{3}$. Thus G_{n} must be triangle-free for $n \geq 2\binom{68}{3} \geq n_{0}$. So $e\left(G_{n}\right)+K_{3}\left(G_{n}\right)=e\left(G_{n}\right)=\left\lfloor n^{2} / 4\right\rfloor$ and $G_{n}=T_{2}(n)$ by Turán Theorem [19]. The proof of Lemma 1 is completed.

Combining equation (2.1) and Lemma 1, we can see that when n is large, $K_{3}(G) \leq$ $\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor$ and equality holds if and only if $G=K_{1}+T_{2}(n-1)$. The proof of Theorem 4 is completed.

3 Proof of Theorem 6

We prove it by induction on r and in each case, we always assume $n \geq n_{0}(k, r)=$. The base case $r=2$ is the celebrated Erdős-Gallai Theorem [5], which says that

$$
\operatorname{ex}\left(n, K_{2},(k+1) K_{2}\right)=\max \left\{\binom{2 k+1}{2},(n-k) k+\binom{k}{2}\right\} .
$$

As $n \geq n_{0}(k, 2)$, we know ex $\left(n, K_{2},(k+1) K_{2}\right)=K_{2}\left(K_{k}+T_{1}(n-k)\right)$.
Let $r \geq 3$ and suppose that the result holds for all $r^{\prime}<r$. Next we consider the case ex $\left(n, K_{r},(k+1) K_{r}\right)$. Let G be a $(k+1) K_{r}$-free graph on n vertices with $\operatorname{ex}\left(n, K_{r},(k+1) K_{r}\right)$ copies of K_{r}. We may assume that G contains k disjoint copies of K_{r}. Otherwise we can add some edges into G unit the resulting graph contains k disjoint K_{r}. But at least one K_{r} in these k disjoint K_{r} is new which implies that the
number of K_{r} is increased, a contradiction. Let

$$
I=\left\{X_{1}, \ldots, X_{k}\right\}
$$

be a set of k disjoint r-cliques in G, where X_{i} is a copy of K_{r}. Let $V(I)=\cup_{i=1}^{k} V\left(X_{i}\right)$ and $N=G \backslash V(I)$. Clearly, N contains no K_{r}. We say a vertex v in I is joined to an $(r-1)$-clique in N if v is adjacent to all vertices of this $(r-1)$-clique. For each X_{i}, $i \in[k]$, we have the following property.

Claim 1 Each X_{i} contains at most one vertex which is joined to at least $k r+1$ disjoint $(r-1)$-cliques in N.

Proof. If not, suppose $u_{1}, u_{1}^{\prime} \in V\left(X_{1}\right)$ are both joined to $k r+1$ disjoint ($r-1$)-cliques. First we can find an $(r-1)$-clique joined to u_{1} in N. Since u_{1}^{\prime} is also joined to at least $k r+1$ disjoint ($r-1$)-cliques in N, we can find another $(r-1)$-clique joined to u_{1}^{\prime} which does not intersect with the $(r-1)$-clique joined to u. Together with $\left\{X_{2}, \ldots, X_{k}\right\}$, we find a copy of $(k+1) K_{r}$, a contradiction.

By Claim 1, let $A=\left\{X_{1}, \ldots, X_{a}\right\}$ be a subset of I such that there exists a vertex in X_{i}, say u_{i}, that is joined to at least $k r+1$ disjoint $(r-1)$-cliques in N for each $i \in[a]$. Let $U=\left\{u_{1}, \ldots, u_{a}\right\}$.

Since N is K_{r}-free, each K_{r} in G must intersect with some vertices in $V(I)$. Then all r-cliques can be divided into two classes: the set of cliques in which all vertices are contained in $V(N) \cup U$, ant the set of cliques containing at least one vertex in $V(I) \backslash U$. We simply use $K_{r}(U)$ and $K_{r}(\bar{U})$ to denote the number of copies of K_{r} in these two classes, respectively.

Suppose a K_{r} in the first class contains s vertices in U and $r-s$ vertices in N, the number of K_{r} 's of this type is at most $\binom{a}{s} K_{r-s}(N)$. Since N is K_{r}-free and by Theorem 22, which says ex $\left(n, K_{s}, K_{r}\right)=K_{s}\left(T_{r-1}(n)\right)$, we have $K_{r-s}(N) \leq K_{r-s}\left(T_{r-1}(n-k r)\right) \leq$ $\binom{r-1}{r-s}\left(\frac{n-k r}{r-1}\right)^{r-s}$. Then

$$
\begin{align*}
K_{r}(U) & \leq \sum_{s=1}^{r}\binom{a}{s} K_{r-s}(N) \\
& \leq a\left(\frac{n-k r}{r-1}\right)^{r-1}+\binom{a}{2}\binom{r-1}{r-2}\left(\frac{n-k r}{r-1}\right)^{r-2}+O\left(n^{r-3}\right) \tag{3.1}
\end{align*}
$$

Next we calculate the size of $K_{r}(\bar{U})$. Each vertex $v \in V(I) \backslash U$ is joined to at most $k r$ independent $(r-1)$-cliques in N. Hence the number of K_{r} containing v and $r-1$
vertices of N is at most

$$
\begin{aligned}
K_{r-1}(G[N(v) \cap V(N)]) & \leq \operatorname{ex}\left(n-k r, K_{r-1},(k r+1) \cdot K_{r-1}\right) \\
& =K_{r-1}\left(K_{k r}+T_{r-2}(n-2 k r)\right) \\
& \leq(k r)\left(\frac{n-2 k r}{r-2}\right)^{r-2},
\end{aligned}
$$

the second equality comes from the induction hypothesis. Any other copies of K_{r} in $K_{r}(\bar{U})$ contains at most $r-2$ vertices in N and at least one vertex in $V(I) \backslash U$. So the number of such r-cliques is at most

$$
\sum_{s=2}^{r}\left(\binom{k r}{s}-\binom{a}{s}\right) K_{r-s}(N) \leq\left(\binom{k r}{2}-\binom{a}{2}\right)\binom{r-1}{r-2}\left(\frac{n-k r}{r-1}\right)^{r-2}+O\left(n^{r-3}\right)
$$

Hence,

$$
\begin{equation*}
K_{r}(\bar{U}) \leq\left(k r+\left(\binom{k r}{2}-\binom{a}{2}\right)\binom{r-1}{r-2}\right)\left(\frac{n-k r}{r-1}\right)^{r-2}+O\left(n^{r-3}\right) \tag{3.2}
\end{equation*}
$$

Therefore, by inequality (3.1) and (3.2), we have

$$
\begin{equation*}
K_{r}(G) \leq a\left(\frac{n-k r}{r-1}\right)^{r-1}+\left(k r+\binom{k r}{2}\binom{r-1}{r-2}\right)\left(\frac{n-k r}{r-1}\right)^{r-2}+O\left(n^{r-3}\right) \tag{3.3}
\end{equation*}
$$

On the other hand, since $K_{k}+T_{r-1}(n-k)$ is $(k+1) K_{r}$-free, we know that

$$
\begin{equation*}
K_{r}(G) \geq k\left(\frac{n-k}{r-1}\right)^{r-1}+O\left(n^{r-2}\right) \tag{3.4}
\end{equation*}
$$

When n is greater than some constant $n_{0}(k, r)$, inequalites (3.3) and (3.4) hold mean $a=k$ and then $U=\left\{u_{1}, \ldots, u_{k}\right\}$.

Let $G^{\prime}=G \backslash U$. We claim that G^{\prime} is also K_{r}-free. Suppose not, G^{\prime} contains a r-clique, denote by X_{0}^{\prime}. Since each u_{i} is joined to at least $k r+1$ independent copies of K_{r-1} 's in N, at least $(k-1) r+1$ of whom are disjoint with X_{0}^{\prime} for each $i \in[k]$. Then we can find a r-clique X_{1}^{\prime} such that $u_{1} \in X_{1}^{\prime}$ and $V\left(X_{1}^{\prime}\right) \cap V\left(X_{0}^{\prime}\right)=\emptyset$. Next, we claim that we may find another k independent r-cliques such that each is disjoint with X_{0}^{\prime}. Suppose we have found pairwise disjoint r-cliques $X_{1}^{\prime}, \ldots, X_{i-1}^{\prime}$ such that $u_{j} \in X_{j}^{\prime}$ for $j \in[i-1]$ and $i \leq k$. Then, in $G^{\prime}\left[N\left(u_{i}\right)\right]$, there are at least $(k-1) r+1-(i-1)(r-1) \geq 1$ independent $(r-1)$-cliques which disjoint with $\left\{X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{i-1}^{\prime}\right\}$. That is we can choose a $(r-1)$-clique and thus a r-clique X_{i}^{\prime} such $u_{i} \in X_{i}^{\prime}$ and $X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{i}^{\prime}$ are pairwise disjoint. The procedure can keep going until we find k independent r-cliques $X_{1}^{\prime}, \ldots, X_{k}^{\prime}$. Then $X_{0}^{\prime}, X_{1}^{\prime}, \ldots, X_{k}^{\prime}$ forms a $(k+1) K_{r}$, a contradiction.

Since G^{\prime} is K_{r}-free, by Zykov's Theorem, $K_{r-i}\left(G^{\prime}\right) \leq K_{r-i}\left(T_{r-1}(n-k)\right)$ and the
equality holds if and only if $G^{\prime}=T_{r-1}(n-k)$. Thus

$$
K_{r}\left(K_{k}+T_{r-1}(n-k)\right) \leq K_{r}(G) \leq \sum_{i=0}^{r}\binom{k}{i} K_{r-i}\left(G^{\prime}\right)=K_{r}\left(K_{k}+T_{r-1}(n-k)\right)
$$

The condition of the equality holds means $G=K_{k}+T_{r-1}(n-k)$. The proof of Theorem 6] is completed.

4 Acknowledge

The research of the authors Győri is partially supported by the National Research, Development and Innovation Office NKFIH, grants K132696, SNN-135643 and K126853, Chen is supported by SNFC under grant numbers 12161141003 and 11931006, Zhang is supported by NSFC under grant numbers 12101298.

References

[1] N. Alon and C. Shikhelman, Many T copies in H-free graphs, J. Combin. Theory Ser. B 121(2016), 146-172.
[2] B. Bollobás and E. Győri, Pentagons vs. triangles, Discrete Math. 308(2008), 4332-4336.
[3] N. Bushaw and N. Kettle, Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20(2011), 837-853.
[4] Z. Chase, The maximum number of triangles in a graph of given maximum degree, Adv. Com. (2020), paper No.10, 5pp.
[5] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10(1959), 337-356.
[6] B. Ergemlized, E. Győri, A. Methuku and N. Salia, A note on the maximum number of triangles in a C_{5}-free graph, J. Graph Theory 90(2019), 227-230.
[7] B. Ergemlized and A. Methuku, Triangles in C_{5}-free graphs and hypergraphs of girth six. J. Graph Theory 99(2022), 26-39.
[8] D. Gerbner, A. Methuku and M. Vizer, Generalized Turán problems for disjoint copies of graphs, Discrete Math. 342(2019), 3130-3141.
[9] D. Gerbner and B. Patkós, Generalized Turán results for intersecting cliques, arXiv preprint (2021), arXiv:2105.07297v1.
[10] I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27(2011), 661-667.
[11] A. Grzesik, On the maximum number of five-cycles in a triangle-free graph, J. Combin. Theory Ser. B 102(2012), 1061-1066.
[12] H. Hatami, J. Hladký, D. Král, S. Norine and A. Razborov, On the number of Pentagons in triangle-free graphs, J. Combin. Theory Ser. A 120(2013), 722-732.
[13] E.L. Liu and J. Wang, The generalized Turán problem of two intersecting cliques, arXiv preprint (2021), arXiv:2101.08004.
[14] Z. Lv and M.Lu, Many triangles in C_{5}-free graphs, personal communication.
[15] R. Luo, The maximum number of cliques in graphs without long cycles, J. Combin. Theory Ser. B 128(2017), 219-226.
[16] J. Ma and Y. Qiu, Some sharp results on the generalized Turán numbers, European J. Combin. 84(2020), 103026, 16pp.
[17] J.W. Moon, On independent complete subgraphs in a graph, Canad. J. Math 20(1968), 95-102.
[18] M. Simonovits, A method for solving extremal problems in extremal graph theory, In Theory of graphs, Acadenic Press (1966), 279-319.
[19] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48(1941), 436-452.
[20] J. Wang, The shifting method and generalized Turán number of matchings, European J. Combin. 85(2020), 7pp.
[21] X.L. Yuan and W.H. Yang, On generalized Turán number of two disjoint cliques, Graphs and Combin. 38(2022), 116, 9pp.
[22] X.T. Zhu and Y.J. Chen, Generalized Turán number for linear forests. Discrete Math. 345(2022), 112997, 12pp.
[23] A. Zykov, On some properties of linear complexes, Mat. Sbornik N. S. 24(1949), 163-188.

