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Abstract

We show that any proper coloring of a Kneser graph 𝐾𝐺𝑛,𝑘 with 𝑛 − 2𝑘 + 2 colors
contains a trivial color (i.e., a color consisting of sets that all contain a fixed element),
provided 𝑛 > (2 + 𝜀)𝑘2, where 𝜀 → 0 as 𝑘 → ∞. This bound is essentially tight. This is a
consequence of a more general result on the minimum number of non-trivial colors needed
to properly color 𝐾𝐺𝑛,𝑘.

1 Introduction
Throughout the paper, we use standard notations [𝑛] := {1, . . . , 𝑛}, [𝑎, 𝑏] = {𝑎, 𝑎 + 1, . . . , 𝑏},
2𝑋 for the power set of 𝑋, and

(︀
𝑋
𝑘

)︀
for the collection of all 𝑘-element subsets of 𝑋. Any ℱ ⊂ 2𝑋

we call a family.
Given positive integers 𝑛 > 2𝑘, a Kneser graph 𝐾𝐺𝑛,𝑘 is a graph whose vertex set is the

collection of all 𝑘-element subsets of the set {1, . . . , 𝑛}, with edges connecting pairs of disjoint
sets. One of the classical results in combinatorics, conjectured by Kneser [8] and proved by
Lovász [9], states that the chromatic number of 𝐾𝐺𝑛,𝑘 is equal to 𝑛 − 2𝑘 + 2. The proof of
Lovász, as well as subsequent proofs given by Bárány and Green, rely on the Borsuk–Ulam
theorem and thus on combinatorial topology. There was a “combinatorial” proof given by
Matousek and Ziegler, which used Tucker’s lemma instead of the Borsuk-Ulam theorem, but it
essentially uses the same machinery as the previous proofs. One of the drawbacks of only having
a combinatorial topology proof is that the approach is very sensitive to the setting, and many
related questions seem to be out of reach of that method. In particular, we do not know, how
big is the largest vertex subset of 𝐾𝐺𝑛,𝑘 that we can properly cover in 𝑛− 2𝑘 + 1 colors. This
motivates the quest of searching for a more extremal-combinatorial approach to this question.
One step in this direction is to better understand the structure of proper colorings of 𝐾𝐺𝑛,𝑘

that use few (minimum possible number of) colors.
Note that each color in the coloring of 𝐾𝐺𝑛,𝑘 forms an independent set, which, in turn, is

an intersecting family: i.e., a family of sets in which any two intersect. In this terminology,
a proper coloring of 𝐾𝐺𝑛,𝑘 into 𝑡 colors is the same as a partition of

(︀
[𝑛]
𝑘

)︀
into 𝑡 intersecting

families. We say that an intersecting family is trivial, or a star, if all sets in the family contain
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a fixed element 𝑖. If this is the case, then we say that 𝑖 is a center of ℱ . More generally, we
call two families 𝒜,ℬ ⊂ 2𝑋 cross-intersecting, if 𝐴 ∩𝐵 ̸= ∅ for any 𝐴 ∈ 𝒜, 𝐵 ∈ ℬ.

The standard example of a proper coloring of 𝐾𝐺𝑛,𝑘 consists of 𝑛−2𝑘+1 star 𝒞1, . . . , 𝒞𝑛−2𝑘+1,
where 𝒞𝑖 := {𝐴 ∈

(︀
[𝑛]
𝑘

)︀
: 𝐴 ⊂ [𝑖, 𝑛], 𝑖 ∈ 𝐴}, and the set

(︀
[𝑛−2𝑘+2,𝑛]

𝑘

)︀
. That is, all but one colors

are trivial. The advantage of always having a trivial color in a coloring of 𝐾𝐺𝑛,𝑘 is that one can
remove the color, remove the corresponding center from the ground set, and thus reduce the
study of colorings of 𝐾𝐺𝑛,𝑘 to that of 𝐾𝐺𝑛−1,𝑘. This motivates the following question, asked
by the authors in [7]:

Problem 1. Given 𝑘, what is the largest number 𝑛 = 𝑛(𝑘), such that there exists a proper
coloring of 𝐾𝐺𝑛,𝑘 into 𝑛− 2𝑘 + 2 colors without any trivial colors?

Let us recall two important results from extremal set theory. First, the Erdős–Ko–Rado
theorem [2] states that 𝛼(𝐾𝐺𝑛,𝑘) =

(︀
𝑛−1
𝑘−1

)︀
, provided 𝑛 > 2𝑘. The Hilton–Milner theorem [5]

states that any non-trivial intersecting family of 𝑘-subsets of [𝑛] has size at most
(︀
𝑛−1
𝑘−1

)︀
−(︀

𝑛−𝑘−1
𝑘−1

)︀
+ 1, provided 𝑛 > 2𝑘. Let us use the latter to establish a simple bound on 𝑛(𝑘).

Proposition 2. We have 𝑛(𝑘) < 𝑘3 for 𝑘 > 3.

Proof. The Hilton-Milner theorem states that any non-trivial intersecting family in
(︀
[𝑛]
𝑘

)︀
has

size at most
(︀
𝑛−1
𝑘−1

)︀
−

(︀
𝑛−𝑘−1
𝑘−1

)︀
+ 1 6 𝑘

(︀
𝑛−2
𝑘−2

)︀
. If we have a coloring of 𝐾𝐺𝑛,𝑘 with non-trivial

colors, then we need at least
(︀
𝑛
𝑘

)︀
/
(︀
𝑘
(︀
𝑛−2
𝑘−2

)︀)︀
= 𝑛(𝑛−1)

𝑘2(𝑘−1)
colors cover all vertices. This is larger

than 𝑛− 2𝑘 + 2 for 𝑛 = 𝑘3 and 𝑘 > 3.

Doing a bit more careful calculations, one can show that 𝑛(𝑘) 6 𝑘3 − 𝑘2 − 2𝑘 + 2 for 𝑘 > 3
using the argument above. However, the 𝑘3-barrier for 𝑛 is not easy to improve.

On the other hand, in [7] we provided a construction of a coloring with non-trivial colors,
which gives 𝑛(𝑘) > 2(𝑘 − 1)2 for 𝑘 > 3. For completeness, we will reproduce the construction
in the next section.

After the first version of the paper appeared, it was pointed out to us that a similar question,
but for a very different parameter range, was asked by Katona and partially answered by
Sanders [11]:

Problem 3. Given 𝑛 and 𝑘, what is the smallest number 𝑚 = 𝑚(𝑛, 𝑘), such that there exists
a proper coloring of 𝐾𝐺𝑛,𝑘 into 𝑚 colors without any trivial colors?

Sanders proved the following result.

Theorem 4 ([11]). There is an absolute constant 𝐶 > 0 such that for any fixed 𝑘 > 3,

𝑚(𝑛, 𝑘) >
𝑛2

2𝑘(𝑘 − 1)

(︂
1 − 𝐶𝑘3.5𝑒𝑘

𝑛

)︂
,

𝑚(𝑛, 𝑘) 6
𝑛2

2𝑘(𝑘 − 1)
+ 𝑂(𝑛) when 𝑛 > 𝑘2.
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Remark. In [11], the exact form of the lower bound is stated in the proof of Proposition 2,
and the subtracted term has the form 𝑘𝑘+1(𝑘−2)

2𝑛(𝑘−1)(𝑘−3)!
.

The lower bound in this theorem is meaningful only for very large 𝑛, i.e., for 𝑛 = Ω(𝑘3.5𝑒𝑘),
and this theorem does not give an answer to Problem 1.

The main goal of this paper was to give a satisfactory answer to the question asked in
Problem 1. For the sake of comparison, we also extended our result so that it has the same
form as the result of Sanders.

Theorem 5. Let 𝑛, 𝑘 be sufficiently large integers such that 𝑛 < 𝑒𝑘
0.1/10. Put 𝜀 = 𝜀(𝑛, 𝑘) := 5

ln 𝑘

and 𝑚 := 𝑛2

2𝑘(𝑘−1)

(︀
1 − 𝜀𝑘2

𝑛

)︀
. Then

(︀
[𝑛]
𝑘

)︀
cannot be covered by 𝑚 intersecting non-trivial families.

In particular, 𝑚(𝑛, 𝑘) > 𝑛2

2𝑘(𝑘−1)

(︀
1 − 𝜀𝑘2

𝑛

)︀
for all sufficiently large 𝑛 and 𝑘.

The restriction 𝑛 < 𝑒𝑘
0.1/10 seems to be a technical artifact of the proof. It can be easily

improved to 𝑛 < 𝑒𝑘
0.49 , and it is likely there is a way to get rid of it completely. We decided to

avoid cramming the text with additional details needed to get rid of this condition, since we
think that the case of 𝑛 that is comparable to 𝑘 is the most interesting one.

Corollary 6. Let 𝑛, 𝑘 be sufficiently large integers, and 𝜀 = 𝜀(𝑘) := 5
ln 𝑘

be such that 𝑛 >
(2 + 𝜀)𝑘2. Then

(︀
[𝑛]
𝑘

)︀
cannot be covered by 𝑛 intersecting non-trivial families. In particular,

𝑛(𝑘) < (2 + 𝜀)𝑘2 for all sufficiently large 𝑘.

Note that the theorem is stated in terms of covering
(︀
[𝑛]
𝑘

)︀
by intersecting families. This is

slightly stronger than the same statement for partitions of
(︀
[𝑛]
𝑘

)︀
(i.e., colorings of 𝐾𝐺𝑛,𝑘) since

any partition is a covering as well.
The methods that we use bear some superficial resemblance to those of Sanders. Similarly

to [11], we construct some graph from a given coloring and work with independent 𝑘-sets of
that graph. However, our way to construct the graph and work with its independent 𝑘-sets
is different and more subtle. In the core of the proof, we combine a graph-theoretic result of
Khadžiivanov and Nikiforov [6] with a certain subtle decomposition of intersecting families.
This approach may be useful for other problems related to intersecting families.

We note that our results are in line with the results that deal with the following problem of
Erdős: for given 𝑛, 𝑘, 𝑡, what is the largest size of a family ℱ ⊂

(︀
[𝑛]
𝑘

)︀
such that ℱ is a union of at

most 𝑡 intersecting families? Note that the result that 𝜒(𝐾𝐺𝑛,𝑘) > 𝑛− 2𝑘 + 2 in this language
states that |ℱ| <

(︀
𝑛
𝑘

)︀
if 𝑡 < 𝑛− 2𝑘 + 2. The natural conjecture here is that, for most triples of

parameters, the extremal example is a union of 𝑡 stars. This was shown for 𝑡 = 2 and 𝑛 > 𝑐𝑘
with 𝑐 ≈ 2.62 by Frankl and Füredi [3] and for any constant 𝑡 and 𝑛 > 2𝑘 + 𝐶𝑡𝑘

2/3 by Ellis
and Lifshitz [1]. Frankl and Füredi also provided examples when this is not true. Our result
does not imply anything for this problem directly, but the proof technique allows for obtaining
results in a very different regime when 𝑛 is quadratic in 𝑘, but 𝑡 is allowed to be large (even
close to 𝜒(𝐾𝐺𝑛,𝑘). This will be investigated in a subsequent paper. We also note that these
questions are related to the Erdős Matching Conjecture (cf. [4] for an up-to-date account of
the problem and related questions).

The rest of the paper is structured as follows. In the next section, we shall present the
lower bound construction from [7]. In Section 3, we will prove a slightly weaker upper bound
on 𝑛(𝑘). In Section 4, we will prove Theorem 5.
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2 Lower bound construction
Proposition 7 ([7]). We have 𝑛(𝑘) > 2(𝑘 − 1)2 for 𝑘 > 3.

Proof. Put 𝑛 := 2(𝑘 − 1)2 and split the ground set [𝑛] into 𝑘 − 1 blocks 𝐴𝑖 of size 2𝑘 − 2. For
each block, say, 𝐴1 := [2𝑘 − 2], consider the following covering by intersecting families: for
𝑖 = 1, . . . , 2𝑘 − 5, define

𝐹𝑖 := {2𝑘 − 4, 2𝑘 − 3, 2𝑘 − 2} ∪ {𝑖 + 1, . . . , 𝑖 + 𝑘 − 3},

where the addition and subtraction in the second part of the set is modulo 2𝑘 − 5 (and thus
the elements belong to [2𝑘 − 5]). Consider the intersecting Hilton-Milner-type families of the
form

ℋ𝑖 :=
{︁
𝐹 ∈

(︂
[𝑛]

𝑘

)︂
: 𝑖 ∈ 𝐹, 𝐹 ∩ 𝐹𝑖 ̸= ∅

}︁
∪ {𝐹𝑖}.

Complement it with the intersecting family

𝒢 :=
{︁
𝐹 ∈

(︂
[𝑛]

𝑘

)︂
: |𝐹 ∩ {2𝑘 − 4, 2𝑘 − 3, 2𝑘 − 2}| > 2

}︁
.

If a set 𝐺 ∩ [2𝑘 − 2] ⊃ {𝑖, 𝑗} for 𝑖 < 𝑗, then 𝐺 is contained in one of the families 𝒢, ℋ𝑙,
𝑙 ∈ [2𝑘 − 5]. Indeed,

• if {𝑖, 𝑗} ⊂ {2𝑘 − 4, 2𝑘 − 3, 2𝑘 − 2}, then 𝐺 ⊂ 𝒢;

• if 𝑖 < 2𝑘 − 4 6 𝑗, then 𝐺 ⊂ ℋ𝑖;

• if 𝑗 < 2𝑘 − 4 and 𝑗 6 𝑖 + 𝑘 − 3, then 𝐺 ⊂ ℋ𝑖;

• if 𝑖+𝑘−2 6 𝑗 < 2𝑘−4, then 𝑗 +𝑘−3 mod 2𝑘−5 is at least 𝑖, and 𝐺 is contained in ℋ𝑗.

Therefore, any set intersecting 𝐴1 in at least 2 elements is contained in one of the intersecting
families given above. On the other hand, any 𝑘-set must intersect one of the 𝑘 − 1 blocks in
at least 2 elements. Thus, considering similar collections of intersecting families in the other
blocks, we get that the whole of

(︀
[𝑛]
𝑘

)︀
is covered.

We have 2𝑘 − 4 intersecting families on each block, which gives (2𝑘 − 4)(𝑘 − 1) families in
total. On the other hand, 𝜒(𝐾𝐺𝑛,𝑘) = 2(𝑘− 1)2− 2𝑘+ 2 = 2(𝑘− 2)(𝑘− 1), that is, the number
of intersecting families we used equals the chromatic number of the graph. It is also clear that
none of the families is a star, and we can easily preserve this property when making a coloring
(rather than a covering).

We note that most of the families in the coloring presented above are Hilton–Milner type
families.

3 A weaker upper bound
We say that 𝐶 ⊂ 𝑋 is a cover of a family ℱ ⊂ 2𝑋 if 𝐶 ∩𝐴 ̸= ∅ for any 𝐴 ∈ ℱ . Let 𝜏(ℱ) stand
for the size of the smallest cover of ℱ . Note that saying that 𝜏(ℱ) > 2 is the same as saying
that ℱ is non-trivial. In this section we are going to prove the following theorem.
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Theorem 8. Consider 𝑚 intersecting families ℱ1, . . . ,ℱ𝑚 ⊂
(︀
[𝑛]
𝑘

)︀
with 𝜏(ℱ𝑖) > 2 and such that

ℱ1 ∪ . . . ∪ ℱ𝑚 =
(︀
[𝑛]
𝑘

)︀
. Then 𝑚 > 𝑛2/(8𝑘2).

A simple numerical corollary is as follows.

Corollary 9. If 𝑛 > 8𝑘2, 𝑘 > 2 and 𝐾𝐺𝑛,𝑘 is covered by 𝑛− 2𝑘 + 2 intersecting families, then
one of these families is trivial. In short, 𝑛(𝑘) < 8𝑘2.

In the proof of Theorem 8, we are going to use the following elegant result due to Spencer.
We reproduce its proof for completeness. Note that E stand for the expectation, and for a family
ℋ and a set 𝐴, we denote by ℋ[𝐴] the restriction of ℋ on 𝐴, that is, ℋ[𝐴] = {𝑋 ∈ ℋ : 𝑋 ⊂ 𝐴}.
Given a family ℱ ⊂ 2𝑋 , a subset 𝐼 ⊂ 𝑋 is an independent set in ℱ if no set from ℱ is entirely
contained in 𝐼.

Theorem 10 ([12]). Consider a family ℋ ⊂ 2[𝑛] containing no independent set of size 𝑏 and
let ℋ(𝑘), ℋ(𝑘) ⊂ ℋ, be the family of all 𝑘-sets of ℋ, 1 6 𝑘 6 𝑛. Then for any 0 < 𝑝 < 1 the
following holds:

𝑛∑︁
𝑖=2

|ℋ(𝑖)|𝑝𝑖 > 𝑛𝑝− 𝑏.

Proof. Take a random subset 𝐴 of [𝑛], including each element independently with probability
𝑝. Then, for each set 𝑋 ∈ ℋ[𝐴], remove an arbitrary element 𝑣 ∈ 𝑋 from 𝐴. The resulting set
𝐴′ is clearly independent, therefore |𝐴| − |ℋ[𝐴]| 6 |𝐴′| < 𝑏. Since this holds for any 𝐴, we get
that the same holds on average:

E|𝐴| − E|ℋ[𝐴]| < 𝑏.

The statement of the theorem follows from the inequality above by substituting the values of
the expectations: E|𝐴| = 𝑛𝑝 and E|ℋ[𝐴]| =

∑︀𝑛
𝑖=2 |ℋ(𝑖)|𝑝𝑖.

Note that the bound in Theorem 10 is not sharp, e.g. for a 2-graph it states that the number
of edges is at least 𝑛2/(4𝑏), while Turán’s theorem gives approximately 𝑛2/(2𝑏) edges. This is
a potential direction for improvement, which, unfortunately, does not give results as sharp as
Theorem 5.

We say that a family ℋ set-covers a family ℱ if for each set 𝐹 ∈ ℱ there is a set 𝐻 ∈ ℋ
such that 𝐻 ⊂ 𝐹 . Note that any independent set in ℋ is also independent in ℱ .

Lemma 11. Let ℱ ⊂
(︀
[𝑛]
𝑘

)︀
be an intersecting family with 𝜏(ℱ) = 𝜏 . Then it can be set-covered

by a family of 𝜏 -sets of size 𝜏𝑘𝜏−1.

Proof. For any 𝑌 ⊂ [𝑛], we use a standard notation ℱ(𝑌 ) := {𝐹 ∈ ℱ : 𝑌 ⊂ 𝐹}. Consider
a cover 𝑋 of ℱ of size 𝜏 . Define ℋ1 ⊂

(︀
[𝑛]
1

)︀
as follows: ℋ1 := {{𝑖} : 𝑖 ∈ 𝑋}. Then ℱ ⊂

∪𝐺∈ℋ(1)ℱ(𝐺) by the definition of a cover.
For each 1 6 ℓ < 𝜏 , let us show how to construct ℋℓ+1 from ℋℓ. More precisely, assume

that we have a family ℋℓ ⊂
(︀
[𝑛]
ℓ

)︀
of at most 𝜏𝑘ℓ−1 sets such that ℱ ⊂ ∪𝐺∈ℋℓ

ℱ(𝐺). For each
set 𝐺 ∈ ℋℓ, consider a set 𝐹𝐺 ∈ ℱ that is disjoint with 𝐺. Such set must exist since |𝐺| < 𝜏 .
Put ℋℓ+1 := {𝐺 ∪ {𝑖} : 𝐺 ∈ ℋℓ, 𝑖 ∈ 𝐹𝐺}. It should be clear that |ℋℓ+1| 6 𝜏𝑘ℓ and that

ℱ ⊂
⋃︁

𝐺′∈ℋℓ+1

ℱ(𝐺′).

Finally, we put ℋ := ℋ𝜏 .
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Proof of Theorem 8. Consider a collection ℱ1, . . . ,ℱ𝑚 of intersecting families that cover
(︀
[𝑛]
𝑘

)︀
.

Put 𝜏𝑖 := 𝜏(ℱ𝑖) and let ℋ𝑖 be a set-covering of ℱ𝑖 from Lemma 11. Then the union ℋ1∪. . .∪ℋ𝑚

has no independent set of size 𝑘 and from Theorem 10 we have

𝑚∑︁
𝑖=1

𝜏𝑖𝑘
𝜏𝑖−1𝑝𝜏𝑖 > 𝑛𝑝− 𝑘

which is equivalent to
𝑚∑︁
𝑖=1

𝜏𝑖(𝑘𝑝)𝜏𝑖−1 > 𝑛− 𝑘/𝑝.

Note that 𝑥𝑎𝑥−1 < 2𝑎 for 𝑥 > 2 and 𝑎 < 1/
√
𝑒, therefore the inequality above is implied by

the following inequality:
2𝑚𝑘𝑝 > 𝑛− 𝑘/𝑝,

provided that 𝑘𝑝 < 1/
√
𝑒. This is true for our choice of 𝑛 if we take 𝑝 = 2𝑘/𝑛. Substituting

this value of 𝑝 in the last displayed inequality, we get 4𝑚𝑘2/𝑛 > 𝑛/2, which is equivalent to
the statement of the theorem.

4 Proof of Theorem 5
Put 𝑚 = 𝑛2−𝜀𝑛𝑘2

2𝑘(𝑘−1)
and assume that there are intersecting families ℱ1, . . . ,ℱ𝑚 with 𝜏(ℱ𝑖) > 2

such that ℱ1 ∪ . . . ∪ ℱ𝑚 =
(︀
[𝑛]
𝑘

)︀
.

The first step of the proof is to split each color ℱ𝑖 into two parts such that each is easier to
deal with. This is done using the following simple lemma.

Lemma 12. Let 𝒢 be an intersecting family of 𝑘-sets with 𝜏(𝒢) > 2. Then we can split it into
𝒢 ′ ⊔ 𝒢 ′′, where 𝒢 ′ can be set-covered by at most 𝑘 2-edges and 𝒢 ′′ cross-intersects some family
of 𝑡-sets 𝒢× with 𝑡 ∈ {𝑘 − 1, 𝑘} and 𝜏(𝒢×) >

√
𝑘.

Proof. If 𝜏(𝒢) >
√
𝑘, we can put 𝒢 ′′ := 𝒢, since 𝒢 cross-intersects itself. So we will assume

that 2 6 𝜏(𝒢) <
√
𝑘.

Put 𝜏 := 𝜏(𝒢) and let 𝑎1, . . . , 𝑎𝜏 be a piercing set of 𝒢. Put 𝒢𝑖 = {𝐺 ∖ {𝑎𝑖} : 𝐺 ∈ 𝒢, 𝑎𝑖 ∈ 𝐺}.
Note that we can set-cover 𝒢 by 𝑆 :=

∑︀𝜏
𝑖=1 𝜏(𝒢𝑖) edges: for each 𝑖 we draw edges from 𝑎𝑖 to

vertices of a piercing set of 𝒢𝑖.
If 𝑆 6 𝑘 we can put 𝒢 ′ = 𝒢 and 𝒢 ′′ = ∅. Otherwise, for some 𝑖 we have, 𝜏(𝒢𝑖) > 𝑘/𝜏 >

√
𝑘.

Then we put 𝒢 ′ to be the family of all sets containing 𝑎𝑖, 𝒢 ′′ := 𝒢 ∖ 𝒢 ′ and 𝒢× := 𝒢𝑖.

Using this lemma, we split ℱ𝑖 = ℱ ′
𝑖 ⊔ ℱ ′′

𝑖 for each 𝑖 ∈ [𝑚]. Next, consider a (2-)graph 𝐻
on [𝑛] formed by at most 𝑘𝑚 edges that altogether set-cover ℱ ′

1, . . . ,ℱ ′
𝑚 (the existence of such

𝐻 is guaranteed by the lemma). Since 𝑚𝑘 < 𝑛(𝑛−𝑘+1)
2(𝑘−1)

, by Turán’s theorem 𝐻 has at least one
independent 𝑘-set. Each independent 𝑘-set of 𝐻 should belong to some ℱ𝑖, therefore it must
be contained in the corresponding family ℱ ′′

𝑖 .
The following theorem is the crux of the proof.
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Theorem 13. In the assumptions of Theorem 5, let 𝐺 be a graph on [𝑛] with at most 𝑚𝑘
edges and let ℐ(𝐺) be the family of all 𝑘-sets in [𝑛] that are independent in 𝐺. Let ℱ ⊂ ℐ(𝐺)
be a family of independent 𝑘-sets in G, which cross-intersects some family 𝒢 of 𝑡-sets with
𝜏(𝒢) >

√
𝑘 and 𝑡 6 𝑘. Then |ℐ(𝐺)| > 𝑚 · |ℱ|.

We prove this theorem in a separate subsection. Using this result, it is straightforward to
finish the proof of Theorem 5. Indeed, the 𝑘-sets that are not set-covered by 𝐻 (ℐ(𝐺) in the
notation of Theorem 13) must be contained in the union of ℱ ′′

𝑖 , 𝑖 ∈ [𝑚]. However by Lemma 12,
each ℱ ′′

𝑖 cross-intersects a family of 𝑡-sets 𝒢𝑖, where 𝑡 6 𝑘, with 𝜏(𝒢𝑖) >
√
𝑘. Theorem 13 then

guarantees that ℐ(𝐻) satisfies |ℐ(𝐻)| > 𝑚|ℱ ′′
𝑖 |, and thus ℐ(𝐻) cannot be covered by the union

of ℱ ′′
𝑖 , a contradiction.

4.1 Proof of Theorem 13

We are going to use the following result by Khadžiivanov and Nikiforov [6] (see [10] for a
reformulation and a proof in English):

Theorem 14. For a given graph 𝐺 let 𝛾 be the density |𝐸(𝐺)|
|𝑉 (𝐺)|2 and 𝑁𝑟(𝐺) be the number of

cliques on 𝑟 vertices, 𝑟 6 |𝑉 (𝐺)|. Then, if 𝛾 > 𝑟−2
2(𝑟−1)

, we have

𝑁𝑟(𝐺) >
2(𝑟 − 1)𝛾 − (𝑟 − 2)

𝑟
· |𝑉 (𝐺)| ·𝑁𝑟−1(𝐺) and 𝑁𝑟−1(𝐺) > 0. (1)

Note that if the inequality on 𝛾 in Theorem 14 holds for some 𝑟, then it holds for smaller
𝑟 > 2 as well. That is, we can apply (1) several times to compare 𝑁𝑟(𝐺) with 𝑁𝑟′(𝐺) for
𝑟 > 𝑟′ > 2.

The idea behind the proof is as follows. Similarly to the proof of Lemma 11 we inductively
construct a family that set-covers ℱ of larger and larger uniformity using sets from 𝒢. (These
set-covers are encoded in the families ℋℓ from the proof. We have to be more careful with these
set-covers than in Lemma 11, in order to ensure disjointness of certain families.) At each step
of the procedure, indexed by the uniformity of ℋℓ, we consider the collection of independent
sets that is set-covered by ℋℓ, and bound from below the proportion of these sets that would
be “missed out” by the set-cover ℋℓ+1 of size 1 larger. We use the result of Khadžiivanov and
Nikiforov for this bound.

Proof of Theorem 13. Let ℐ be the family of all independent 𝑘-sets in 𝐺. Put 𝜏 := 𝜏(𝒢). For
𝐴 ⊂ [𝑛], |𝐴| < 𝜏 , fix a set 𝐹𝐴 ∈ 𝒢 which is disjoint with 𝐴. For 𝐴 ⊂ 𝐵 ⊂ [𝑛] and a family
𝒲 ⊂ 2[𝑛], denote

𝒲(𝐴,𝐵) := {𝐹 ∖ 𝐴 : 𝐹 ∈ 𝒲 , 𝐹 ∩𝐵 = 𝐴}.

Put 𝑁ℓ = 𝑡ℓ. First, we are going to construct a sequence of families ℋℓ of pairs (𝐴𝑖, 𝐵𝑖), 𝑖 =
1, . . . , 𝑁ℓ, such that ℱ =

⨆︀𝑁ℓ

𝑖=1ℱ(𝐴𝑖, 𝐵𝑖), ℐ ⊃
⨆︀𝑁ℓ

𝑖=1 ℐ(𝐴𝑖, 𝐵𝑖), |𝐴𝑖| = ℓ, |𝐵𝑖| 6 ℓ𝑘. (Disjointness
is crucial here.)

Construction of ℋℓ. First, we put ℋ0 := {(∅,∅)}.
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For each 0 6 ℓ <
√
𝑘 6 𝜏 , let us show how to construct ℋℓ+1 from ℋℓ. We have ℋℓ :=

{(𝐴1, 𝐵1), . . . , (𝐴𝑁ℓ
, 𝐵𝑁ℓ

)} such that |𝐴𝑖| = ℓ,

ℱ =

𝑁ℓ⨆︁
𝑖=1

ℱ(𝐴𝑖, 𝐵𝑖) and ℐ ⊃
𝑁ℓ⨆︁
𝑖=1

ℐ(𝐴𝑖, 𝐵𝑖).

For each pair (𝐴,𝐵) ∈ ℋℓ put {𝑓1, . . . , 𝑓𝑡} := 𝐹𝐴. Since each set in ℱ intersects 𝐹𝐴, we can
decompose

ℱ(𝐴,𝐵) =
𝑡⨆︁

𝑗=1

ℱ
(︀
𝐴 ∪ {𝑓𝑗}, 𝐵 ∪ {𝑓1, . . . , 𝑓𝑗}

)︀
and

ℐ(𝐴,𝐵) = ℐ(𝐴,𝐵 ∪ 𝐹𝐴) ⊔
𝑡⨆︁

𝑗=1

ℐ(𝐴 ∪ {𝑓𝑗}, 𝐵 ∪ {𝑓1, . . . , 𝑓𝑗}) (2)

Then we put

ℋℓ+1 :=
⋃︁

(𝐴,𝐵)∈ℋℓ

{︁(︀
𝐴 ∪ {𝑓𝑗}, 𝐵 ∪ {𝑓1, . . . , 𝑓𝑗}

)︀
: 𝑗 = 1, . . . , 𝑡, where {𝑓1, . . . , 𝑓𝑡} = 𝐹𝐴

}︁
.

This completes the construction of ℋℓ.

Put ℐℓ :=
⨆︀

(𝐴,𝐵)∈ℋℓ
ℐ(𝐴,𝐵). Note that, since ℱ(𝐴,𝐵) ⊂ ℐ(𝐴,𝐵), we have ℱ ⊂ ℐℓ for any

ℓ 6 𝜏 .
Let 𝑐ℓ > 0 be such that for any (𝐴,𝐵) ∈ ℋℓ, {𝑓1, . . . , 𝑓𝑡} = 𝐹𝐴, we have

ℐ(𝐴,𝐵 ∪ 𝐹𝐴) > 𝑐ℓ ·
𝑡∑︁

𝑗=1

⃒⃒
ℐ(𝐴 ∪ {𝑓𝑗}, 𝐵 ∪ {𝑓1, . . . , 𝑓𝑗})

⃒⃒
. (3)

Note that by the definition of 𝑐ℓ and (2) we have

|ℐℓ| > (1 + 𝑐ℓ) · |ℐℓ+1|

for any 0 6 ℓ <
√
𝑘 6 𝜏 and, therefore,

|ℐ| = |ℐ0| > |ℐ𝜏 | ·

√
𝑘−1∏︁
ℓ=0

(1 + 𝑐ℓ) > |ℱ| ·

√
𝑘−1∏︁
ℓ=0

(1 + 𝑐ℓ). (4)

Now we are going to show that we can put 𝑐ℓ := 𝑒−1/𝜀 in (3).
Consider a pair (𝐴,𝐵) from ℋℓ and put {𝑓1, . . . , 𝑓𝑡} = 𝐹 := 𝐹𝐴. For convenience, put

ℐ ′ := ℐ(𝐴,𝐵). We can decompose

𝑡⨆︁
𝑗=1

ℐ ′({𝑓𝑗}, {𝑓1, . . . , 𝑓𝑗}) =
⨆︁

∅̸=𝐴′⊂𝐹

ℐ ′(𝐴′, 𝐹 ).

Let us compare |ℐ ′(∅, 𝐹 )| and |ℐ ′(𝐴′, 𝐹 )|, for 𝐴′ ⊂ 𝐹 , 𝐴′ ̸= ∅ using Theorem 14.
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Put 𝑋 := [𝑛] ∖ (𝐵 ∪ 𝐹 ). We are going to apply Theorem 14 on the graph 𝐺[𝑋], i.e., the
complement of 𝐺 induced on 𝑋. Put 𝛾 = 1

2
− 1

2|𝑋| − 𝜌, where 𝜌 is the density of edges in 𝐺[𝑋].
Note that, first, 𝛾 is exactly the density of 𝐺[𝑋] and, second, 1

2|𝑋| + 𝜌 6 |𝑋|/2+|𝑒(𝐺)|
|𝑋|2 6 𝑛/2+𝑚𝑘

|𝑋|2 .
Recall that ℐ ′(∅, 𝐹 ) is the family of independent (𝑘 − ℓ)-sets in 𝐺[𝑋]. Note that each set

from ℐ ′(𝐴′, 𝐹 ) is the intersection (of size 𝑘− ℓ− |𝐴′|) of a 𝑘-element independent set in 𝐺 with
𝑋, and thus |ℐ ′(𝐴′, 𝐹 )| is bounded from above by the number of independent (𝑘− ℓ− |𝐴|)-sets
in 𝐺[𝑋]. Applying (1), we have

|ℐ ′(∅, 𝐹 )| > |ℐ ′(𝐴′, 𝐹 )| · |𝑋||𝐴′|
|𝐴′|−1∏︁
𝑖=0

2(𝑘 − ℓ− 𝑖− 1)𝛾 − (𝑘 − ℓ− 𝑖− 2)

𝑘 − ℓ− 𝑖
=

= |ℐ ′(𝐴′, 𝐹 )| · |𝑋||𝐴′|
|𝐴′|−1∏︁
𝑖=0

1 − 2(𝑘 − ℓ− 𝑖− 1)(𝜌 + 1/2|𝑋|)
𝑘 − ℓ− 𝑖

.

Claim 15. We have 1 − 2(𝑘 − ℓ− 𝑖− 1)(𝜌 + 1/2|𝑋|) > 𝜀𝑘2

2|𝑋| .

Proof. Indeed,

1 − 2(𝑘 − ℓ− 𝑖− 1)(𝜌 + 1/2|𝑋|) > (𝑛− 𝑘(ℓ + 1))2 − 2(𝑛/2 + 𝑚𝑘)(𝑘 − ℓ− 𝑖− 1)

|𝑋|2
>

𝑛2 −𝑂(𝑛𝑘3/2) − 2𝑚𝑘(𝑘 − 1)

𝑛|𝑋|
>

𝜀𝑛𝑘2/2

𝑛|𝑋|
=

𝜀𝑘2

2|𝑋|
.

Then we have

|ℐ ′(∅, 𝐹 )| > |ℐ ′(𝐴′, 𝐹 )| · |𝑋||𝐴′|
|𝐴′|−1∏︁
𝑖=0

𝜀𝑘2

2|𝑋|(𝑘 − ℓ− 𝑖)
> |ℐ ′(𝐴′, 𝐹 )| · (𝜀𝑘/2)|𝐴

′|

Recall that |𝐹 | = 𝑡 6 𝑘. Rewriting, we get∑︁
∅̸=𝐴′⊂𝐹

|ℐ ′(𝐴′, 𝐹 )|
|ℐ ′(∅, 𝐹 )|

6
∑︁

∅̸=𝐴′⊂𝐹

(𝜀𝑘/2)−|𝐴′| =

6
𝑡∑︁

𝑎=1

(︂
𝑡

𝑎

)︂
(𝜀𝑘/2)−𝑎 = (1 + 2/(𝜀𝑘))𝑡 − 1 6 𝑒2/𝜀.

We used 𝑡 6 𝑘 and 1 + 𝑥 6 𝑒𝑥 in the last inequality. So we can put 𝑐ℓ := 𝑒−2/𝜀 in (3).

Finally, from (4), using that 1 + 𝑥 > 𝑒𝑥−𝑥2 for |𝑥| 6 1/2, we have

|ℐ| > |ℱ| ·

√
𝑘−1∏︁
ℓ=0

(1 + 𝑐ℓ) = |ℱ| · (1 + 𝑒−2/𝜀)
√
𝑘 > |ℱ| · exp

(︀√
𝑘 · (𝑒−2/𝜀 − 𝑒−4/𝜀)

)︀
=

|ℱ| · exp
(︀√

𝑘 · (𝑘−0.4 − 𝑘−0.8)
)︀
> |ℱ| ·𝑚,

where the last inequality holds for 𝑘 large enough and 𝑚 < 𝑒𝑘
0.1/2. This completes the proof.
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