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Abstract. A power is a word of the form wu...u, where u is a word and

k times
k is a positive integer and a square is a word of the form wu. Fraenkel
and Simpson conjectured in 1998 that the number of distinct squares in
a word is bounded by the length of the word. This conjecture was proven
recently by Brlek and Li. Besides, there exists a stronger upper bound
for binary words conjectured by Jonoska, Manea and Seki stating that
for a word of length n over the alphabet {a, b}, if we let k be the least
of the number of a’s and the number of b’s and k£ > 2, then the number
of distinct squares is upper bounded by g’;;; n. In this article, we prove
this conjecture by giving a stronger statement on the number of distinct
powers in a binary word.

1 Introduction

A power is a word of the form wu...u, where u is a word and k is a positive

k times
integer; the power is also called a k-power and k is its exponent. The upper

bound of the number of distinct k-powers in a finite word was studied in [7J9J10]
and the best known result is as follows:

Theorem 1 (Theorem 1 and Theorem 2 in [10] ) For every finite word w,
let m(w) denote the number of distinct nonempty powers of exponent at least 2
in w, let my(w) denote the number of distinct nonempty k-powers in w, let |w|
denote the length of w and let |Alph(w)| denote the number of distinct letters in
w, then one has

m(w) < fu] - |Alph(w)];

Moreover, for any integer k > 2,

|w| — |Alph(w)]

me(w) £ T

Particularly, a square is a 2-power and upper bound of the number of distinct
squares in a finite word was studied in [4U5I8IBITTI2]. A conjecture of Fraenkel
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and Simpson [4] states that the number of distinct squares in a word is bounded
by the length of the word. This conjecture is confirmed by the previous theorem.
Besides, there exists a stronger upper bound for binary words conjectured by
Jonoska, Manea and Seki [0]:

Theorem 2 Let w be a finite word over the alphabet {a, b}, let s(w) denote the
number of distinct squares in w and let k denote the least of the number of a’s
and the number of b’s in w. If k > 2, then one has

2k -1
~2k+2

s(w) |w].

In this article, we confirm this conjecture by proving the following result:

Theorem 3 Let w be a finite word over the alphabet {a,b} such that w
a"ba™ba"b...a"Fba"k+1 | where r1,7a, ..., Tk+1 are nonnegative integers and a” =
aa...a. Let o be a permutation of 1,2,....;k + 1 such that ro(1) < rp2) < ..o <

n times
To(kt1), let m(w) denote the number of distinct nonempty powers of exponent at

least 2 in w and let |w| denote the length of w. Then one has

m(w) + 1) < Jw| — 2.

2 Preliminaries

Let > be an alphabet and " be the set of all words over .. Let w € Y.".
By |w|, we denote its length. A word of length 0 is called the empty word and
it is denoted by . A word u is a factor of w if w = pus for some words p, s.
When p = ¢ (resp. s = ¢), u is called a prefiz (resp. suffiz) of w. The set of all
nonempty factors of w is denoted by Fac(w). The number of occurrences of a
factor u € w is denoted by |w|y.

Let w be a finite word. For any integer ¢ satisfying 1 < i < |w|, let L (7)
be the set of all length-i factors of w and let C,, () be the cardinality of L., (%).
For any natural number k, we define the k-th power of a finite word u to be
u® = wu---u and it consists of the concatenation of k copies of u. A finite word
w is said to be primitive if it is not a power of another word, that is, w = u*
implies kK = 1. A square is a 2-power, that is a word w satisfying w = uu for a
certain word w.

For a finite word w, let Prim(w) denote the set of primitive factors of w, let

M (w) = {p'|p" € Fac(w),p € Prim(w),i € N,i > 2},
S(w) = {p*'|p* € Fac(w),p € Prim(w),i € N,i > 1},

NS(w) = {p*|p**! € Fac(w),p € Prim(w),i € N,i > 1},

and let m(w),s(w) and ns(w) be respectively the cardinality of M (w), S(w) and
NS(w). Obviously, M(w) = S(w) U NS(w), m(w) = s(w) + ns(w) and s(w) is
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the number of distinct nonempty squares in w.

Here we recall some elementary definitions and proprieties concerning graphs
from Berge [I].

A directed graph consists of a nonempty set of vertices V and a set of edges
E. A vertex a represents an endpoint of an edge and an edge joins two vertices
a,b in order. A chain is a sequence of edges e, es, - - - , ek, such that there exists
a sequence of vertices v, va, - -+, vkp41 and that for each ¢ satisfying 1 <1i <k, e;
is either directed from v; to v;41 or from v;41 to v;. A cycle is a finite chain such
that vg+1 = v1. A pathis a sequence of edges ey, €2, - - , ek, such that there exists
a sequence of vertices vy, va, -+ ,vr4+1 and that for each i satisfying 1 <1 < k,
e; is directed from v; to v;41. A circuit is a finite path such that vg11 = vy.

A cycle or a circuit is called elementary if, apart from v; and wvg41, every
vertex which it meets is distinct. A directed graph is called weakly connected if
for any couple of vertices a, b in this graph, there exists a chain connecting a and
b.

Let G be a weakly connected graph and let {e1,ea--- ¢}, {v1,v2 - - vs} denote
respectively the edge set and the vertex set of G. The number x(G) =1—s+1
is called the cyclomatic number of G.

Let C be a cycle in G. A vector u(C) = (c1,¢2---¢;) in the [-dimensional
space R! is called the wvector-cycle corresponding to C if ¢; is the number of
visits of the edge e; in the cycle C for all ¢ satisfying 1 < ¢ < [. The cycle
C1,C5,-+ ,Cy, ... are said to be independent if their corresponding vectors are
linearly independent.

Theorem 4 (Theorem 2, Chapter 4 in [I]) the cyclomatic number of a graph
is the maximum number of independent cycles in this graph.

3 Rauzy graphs

Let w be a finite word. For any integer i satisfying 1 <4 < |w|, the i-th Rauzy
graph I, (i) of w is defined to be an directed graph whose vertex set is L., (¢) and
the edge set is Ly, (¢ +1); an edge e € Ly, (i+1) starts at the vertex u and ends at
the vertex v, if u is a prefix and v is a suffix of e. Let us define I, = Uﬁ;ﬁfw(n).

Let I, (7) be a Rauzy graph of w for some 4, a sub-graph on I, () is called
a small circuit if it is an elementary circuit and the number of its vertices is no
larger than .

Lemma 5 (Lemma 8 in [2]) Let w be a finite word and let I',(i) be a Rauzy
graph of w for some i. Then all small circuits on I'y (i) are independent.

Lemma 6 (Lemma 6 in [10]) Let w be a finite word, then there exists an
injection from M (w) to the set of all small circuits on Iy,.

Example 7 Let us consider the word u = abaaabaaaabaaba, the Rauzy graph
I, (4) is as follows:



4 Shuo Li

In this graph, there are three circuits: C1 = {{aaab, aaba, abaa, baaa} , {aaaba, aabaa, abaaa, baaab}},
Cy = {{aaba, abaa, baadb} , {aabaa, abaab, baaba}} and
C3 = {{aaab, aaba, abaa, baaa, acaa} , {aaaba, aabaa, abaaa, baaaa, aaaadb}}. Two
of them are small, they are Cy1 and Ca, while C3 is not small. O

4 Proof of Theorem

Lemma 8 Let w € {a,b}" and let i be an integer satisfying 1 <14 < |w|. If there
exists an elementary circuit on I, (i) containing the edge a'b, then this circuit
is mot a small circuit and it is independent with all the small circuits on Ly (4).
Let Csp (i) denote one of these circuits (if any).

Proof. We first prove that, if there exists a small circuit passing through the
vertex a’, then it should be the sub-graph {{a’},{a""'}} of I',(i). In fact, if
there exists a path ej, es, ..., ex from a’ to a’ satisfying k < i, let p = [115...l; be
a word such that [; is the last letter of e; for all j satisfying that 1 < j < k.
From the hypothesis that eq, e, ..., e, form a circuit, we can deduce that o’ is a
suffix of a’p. Moreover, as |p| = k <4, I; = a for all j. Consequently, e; = a’!
for all j. Thus, from the unicity of each edge, we prove that there exists only
one edge on the path and the graph is given by {{a’}, {a’™}}.

If their exists an elementary circuit C on I, (i) containing the edge a’b, from
the fact that a’b cannot be contained in any small circuit on I, (), we conclude
that C'is not a small circuit and independent with all the small circuits on I, (7).

O

Lemma 9 Let w € {a,b}" such that w = a™ba™ba"*b...a" ba™+1 with r; > 0
for all j satisfying 1 < j < k+ 1. Let o be a permutation of 1,2,....k + 1 such
that 741y < To2) < oo < Tokt1)- Then for any integer i satisfying 1 <i < o(k),
there exists a Cep(i) on I, (3).
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Proof. From the hypothesis that i < r,4) < ro(k41), there exists a nonempty
word X such that ¢’Xa' € Fac(w) and that

¥ — bYb if | X| > 2;
"~ |b  otherwise.

Moreover, we can suppose that a® ¢ Fac(Y). Indeed, there exists a circuit on
Tixqi (i) containing the edge a’b and I,ix,i(i) is a sub-graph of I, (7). Thus,
there exists a Cy(2) on Iy (7). O

Lemma 10 Let w € {a,b}" and let I,, be the cardinality of
Sw = {i|1 < i <|w|, there exists a circuit Cgy(i) on I,(i)},

then
m(w) + I, < |w| — |Alph(w)|.

Proof. Let scy, (i) denote the number of small circuits on I, (7). From Lemma 5]
Lemma [§ and Theorem [ for any ¢ € S,,,

scw(i) +1 < Cyp(i+1) — Cyp(i) + 1;
and for any i € Sy,
8Cw (1) < Cy(i+ 1) — Cw (i) + 1.
Consequently,

|w] |w]

> sew(i) + 1w <Y Cu(i+1) = Cy(i) + 1 = [w] — |Alph(w)].

i=1 i=1
Moreover, from [@, m(w) < Z‘;ﬂl sc(?), thus, m(w) + I, < |w| — |Alph(w)|. O

Proof (of Theorem[3). It is a direct consequence of Lemma[I0land Lemma@ O

5 Proof of Theorem

In this section, Let w € {a,b}” such that |w|, > |w|,, that |w|, = k and that
w =a"ba"ba"b...a"ba" 1 with r; > 0 for all j satisfying 1 < j < k4 1.

Let 0 be an integer such that |w|, = k 4 0. From the hypothesis |w|, > |w]p,
we can suppose 6 > 0 and |w| = 2k + 0. Let § = n(k+ 1) + ¢ with n > 0 and
0<i<k.

Let o be a permutation of 1,2, ..., k+1 such that r,(1) <72 < oo < ro(g1)-

For any real number z, let |2 to be the integer part of x.

Lemma 11 (Proposition 2 in [6] ) Theorem[2 holds if k < 9.
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Lemma 12

3n 3t 2k —1
1 — — | < —2 < .
s(w) + +L2 +2(k+1)J_|w| = s(w)_2k+2|w|
Proof.
2k —1
<
() < I
2k —1
< -
=s(w) < |2l
< — 2
() < ol — Lo (2 40)]
3k 30
< _
=s(w) < ful = =7 + 20k + 1)J
k—2 30
<lw|—2—
=s(w) < Jul S 20k + 1)J
k—2 30
< -2
e=s(w) + Ll<:+1 + 2(k + 1)J < |l
(W) + 1+ 5] < fu] -2
s(w — w| — 2.
2(k+1)" —
From the definition, § = n(k 4+ 1) 4 ¢, thus,
3n 3t 2k —1
1 — — | < -2 < .
s(w) + +L2 +2(k+1)J_|w| = s(w)_2k+2|w|
O
Lemma 13
3n 31 2k —1
1 — 4+ — | < < —|w]|. 1
Moreover,
3(n+1) To(kt1) — 1 2k —1

L [ < T gy = () < Sl (2)

Proof. The first part is a direct consequence of Theorem Bl and Lemma
For the second part, from the hypothesis that i < k, we have

3n 3 3(n+1)
5+ 2(k+1)J sl=—=—

Moreover, from the fact that

) -1
{a2”1|1 <i< LTU(’C%J} C NS(w),

we have
To(k+1) — 1 |

s(w) + |22

< mf(s).
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Lemma 14 If r,4) > n+ 2, then

1+ L@J STy + L

Proof. f ro) > n + 2, then rogy1) > n+ 2.
If n is odd, let n = 2t + 1, then

To(k+1) — 1J
-

2t+1)+2-1

Ty —1
rd@+t4ﬁ$——J2@ﬁ+D+2+L 5 ]
>3t+4
3(2t+1)+1
ZL—(( 2) )J+1.
If n is even, let n = 2t, then
To(k+1) — 1 (2t)+2-1
oy + [T 2 20) + 24 |
>3t+2
3((2t) +1
> 3Dy
2
Lemma 15 Ifry) <n and k > 8 then
3(n+1) To(k+1) — 1
1+LTJ§TU(1C)+L%J-

Proof. If r1) < n, let us suppose 74(;) = m. Then

k

Z To(5) < mk.

j=1
k41
From the fact that ijl To(j) = k49,
To(ht1) = k+ 0 —mk >n(k+1) —mk + k.

Thus,
37L+1 To(k -1
1 (20D g 4 P =
3(n+1) To(h+1) — 1
<:§+3_n§m+n(k+1)fmk+kflil
2 2 2
=3n+5<2m+nk+1)—mk+k—-1-2
—=3n+5<nk+1)—mk—2)+k—3

—=3n+5<nk+1)—nk-2)+k—-3 (%)
=3n+5<3n+k-3
—8 < k.
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The relation (*) holds because k — 2 > 0 and m < n from hypothesis.

Lemma 16 If roy =n+1 and 7541y = n + 4, then

3(” + 1) To(k+1) — 1J

1
+ [ 5

J < To(k) + I_
Proof. If n is odd, let n = 2t + 1, then

(2t+1)+4-1

Ty -1
rogy + R 2 Qe+ 1) + 14 [ ]
>3t+4
3((2t+1)+1
NECEHES I
If n is even, let n = 2¢, then
To'kJrl -1 (2t)+4—1
oy + [T 2 (20) + 14 |
> 3t+2
2 1
ZLWJ‘*‘L

Lemma 17 If roy =n+ 1,75k11) <n+3 and k > 10 then

3n 3i To(kt1) — 1
s(w) +1+ L7 + mJ < s(w) + o) + L%J <m(w) + 7o)
Proof. From the fact that
k+1
ZTa(j) =lwle.=k+d=k+nk+1)+1,
j=1
we have
k
k+n(k+1)+i< (O n+1)+n+3.
j=1
Consequently, i < 3 and % < i Thus, [32 + 2(l§i1)J =[3].
We only need to prove
3 Ty —1
|5+ 1 S rop + | HEHL— ).

If n is odd, let n = 2t + 1, then

To(k+1) — 1 (2t+1)+1-1
r(,(k)ﬂ%J > 2+ 1) + 14 [
>3t 42
>L3(2t—|—1)

1.
> 5+
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If n is even, let n = 2t, then

Totk) + Lir“““*; s p1 g BT +21 —1
>3t+1
NI

a

Proof (of Theorem[3). From Lemma [[3] Lemma [[4] Lemma [[5] Lemma [I6 and
Lemma [I7] Theorem [2] holds if:

Tok) = N+ 2;

Tok) < mand k > 8;

Tok) =N+ 1and rygy1) > n+4;

To(ky =N+ 1, To(es1) < n+3andk > 10.

Combining with Lemma [Tl we conclude.
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