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Abstract. A power is a word of the form uu...u
︸ ︷︷ ︸

k times

, where u is a word and

k is a positive integer and a square is a word of the form uu. Fraenkel
and Simpson conjectured in 1998 that the number of distinct squares in
a word is bounded by the length of the word. This conjecture was proven
recently by Brlek and Li. Besides, there exists a stronger upper bound
for binary words conjectured by Jonoska, Manea and Seki stating that
for a word of length n over the alphabet {a, b}, if we let k be the least
of the number of a’s and the number of b’s and k ≥ 2, then the number
of distinct squares is upper bounded by 2k−1

2k+2
n. In this article, we prove

this conjecture by giving a stronger statement on the number of distinct
powers in a binary word.

1 Introduction

A power is a word of the form uu...u
︸ ︷︷ ︸

k times

, where u is a word and k is a positive

integer; the power is also called a k-power and k is its exponent. The upper
bound of the number of distinct k-powers in a finite word was studied in [7,9,10]
and the best known result is as follows:

Theorem 1 (Theorem 1 and Theorem 2 in [10] ) For every finite word w,
let m(w) denote the number of distinct nonempty powers of exponent at least 2
in w, let mk(w) denote the number of distinct nonempty k-powers in w, let |w|
denote the length of w and let |Alph(w)| denote the number of distinct letters in
w, then one has

m(w) ≤ |w| − |Alph(w)|;

Moreover, for any integer k ≥ 2,

mk(w) ≤
|w| − |Alph(w)|

k − 1
.

Particularly, a square is a 2-power and upper bound of the number of distinct
squares in a finite word was studied in [4,5,8,3,11,2]. A conjecture of Fraenkel
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and Simpson [4] states that the number of distinct squares in a word is bounded
by the length of the word. This conjecture is confirmed by the previous theorem.
Besides, there exists a stronger upper bound for binary words conjectured by
Jonoska, Manea and Seki [6]:

Theorem 2 Let w be a finite word over the alphabet {a, b}, let s(w) denote the
number of distinct squares in w and let k denote the least of the number of a’s
and the number of b’s in w. If k ≥ 2, then one has

s(w) ≤
2k − 1

2k + 2
|w|.

In this article, we confirm this conjecture by proving the following result:

Theorem 3 Let w be a finite word over the alphabet {a, b} such that w =
ar1bar2bar3b...arkbark+1 , where r1, r2, ..., rk+1 are nonnegative integers and an =
aa...a
︸ ︷︷ ︸

n times

. Let σ be a permutation of 1, 2, ..., k + 1 such that rσ(1) ≤ rσ(2) ≤ ... ≤

rσ(k+1), let m(w) denote the number of distinct nonempty powers of exponent at
least 2 in w and let |w| denote the length of w. Then one has

m(w) + rσ(k) ≤ |w| − 2.

2 Preliminaries

Let
∑

be an alphabet and
∑∗ be the set of all words over

∑
. Let w ∈

∑∗.
By |w|, we denote its length. A word of length 0 is called the empty word and
it is denoted by ε. A word u is a factor of w if w = pus for some words p, s.
When p = ε (resp. s = ε), u is called a prefix (resp. suffix ) of w. The set of all
nonempty factors of w is denoted by Fac(w). The number of occurrences of a
factor u ∈ w is denoted by |w|u.

Let w be a finite word. For any integer i satisfying 1 ≤ i ≤ |w|, let Lw(i)
be the set of all length-i factors of w and let Cw(i) be the cardinality of Lw(i).
For any natural number k, we define the k-th power of a finite word u to be
uk = uu · · ·u and it consists of the concatenation of k copies of u. A finite word
w is said to be primitive if it is not a power of another word, that is, w = uk

implies k = 1. A square is a 2-power, that is a word w satisfying w = uu for a
certain word u.

For a finite word w, let Prim(w) denote the set of primitive factors of w, let

M(w) =
{
pi|pi ∈ Fac(w), p ∈ Prim(w), i ∈ N, i ≥ 2

}
,

S(w) =
{
p2i|p2i ∈ Fac(w), p ∈ Prim(w), i ∈ N, i ≥ 1

}
,

NS(w) =
{
p2i+1|p2i+1 ∈ Fac(w), p ∈ Prim(w), i ∈ N, i ≥ 1

}
,

and let m(w),s(w) and ns(w) be respectively the cardinality of M(w), S(w) and
NS(w). Obviously, M(w) = S(w) ∪NS(w), m(w) = s(w) + ns(w) and s(w) is
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the number of distinct nonempty squares in w.

Here we recall some elementary definitions and proprieties concerning graphs
from Berge [1].

A directed graph consists of a nonempty set of vertices V and a set of edges
E. A vertex a represents an endpoint of an edge and an edge joins two vertices
a, b in order. A chain is a sequence of edges e1, e2, · · · , ek, such that there exists
a sequence of vertices v1, v2, · · · , vk+1 and that for each i satisfying 1 ≤ i ≤ k, ei
is either directed from vi to vi+1 or from vi+1 to vi. A cycle is a finite chain such
that vk+1 = v1. A path is a sequence of edges e1, e2, · · · , ek, such that there exists
a sequence of vertices v1, v2, · · · , vk+1 and that for each i satisfying 1 ≤ i ≤ k,
ei is directed from vi to vi+1. A circuit is a finite path such that vk+1 = v1.

A cycle or a circuit is called elementary if, apart from v1 and vk+1, every
vertex which it meets is distinct. A directed graph is called weakly connected if
for any couple of vertices a, b in this graph, there exists a chain connecting a and
b.

LetG be a weakly connected graph and let {e1, e2 · · · el}, {v1, v2 · · · vs} denote
respectively the edge set and the vertex set of G. The number χ(G) = l− s+ 1
is called the cyclomatic number of G.

Let C be a cycle in G. A vector µ(C) = (c1, c2 · · · cl) in the l-dimensional
space R

l is called the vector-cycle corresponding to C if ci is the number of
visits of the edge ei in the cycle C for all i satisfying 1 ≤ i ≤ l. The cycle
C1, C2, · · · , Ck, ... are said to be independent if their corresponding vectors are
linearly independent.

Theorem 4 (Theorem 2, Chapter 4 in [1]) the cyclomatic number of a graph
is the maximum number of independent cycles in this graph.

3 Rauzy graphs

Let w be a finite word. For any integer i satisfying 1 ≤ i ≤ |w|, the i-th Rauzy
graph Γw(i) of w is defined to be an directed graph whose vertex set is Lw(i) and
the edge set is Lw(i+1); an edge e ∈ Lw(i+1) starts at the vertex u and ends at
the vertex v, if u is a prefix and v is a suffix of e. Let us define Γw = ∪k−1

n=1Γw(n).
Let Γw(i) be a Rauzy graph of w for some i, a sub-graph on Γw(i) is called

a small circuit if it is an elementary circuit and the number of its vertices is no
larger than i.

Lemma 5 (Lemma 8 in [2]) Let w be a finite word and let Γw(i) be a Rauzy
graph of w for some i. Then all small circuits on Γw(i) are independent.

Lemma 6 (Lemma 6 in [10]) Let w be a finite word, then there exists an
injection from M(w) to the set of all small circuits on Γw.

Example 7 Let us consider the word u = abaaabaaaabaaba, the Rauzy graph
Γu(4) is as follows:
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aaab aaba

baaa abaa

baabaaaa

aaaab

abaaa

baaab

aaaba

aabaa

baaaa abaab

baaba

In this graph, there are three circuits: C1 = {{aaab, aaba, abaa, baaa} , {aaaba, aabaa, abaaa, baaab}},
C2 = {{aaba, abaa, baab} , {aabaa, abaab, baaba}} and
C3 = {{aaab, aaba, abaa, baaa, aaaa} , {aaaba, aabaa, abaaa, baaaa, aaaab}}. Two
of them are small, they are C1 and C2, while C3 is not small. ⊓⊔

4 Proof of Theorem 3

Lemma 8 Let w ∈ {a, b}∗ and let i be an integer satisfying 1 ≤ i ≤ |w|. If there
exists an elementary circuit on Γw(i) containing the edge aib, then this circuit
is not a small circuit and it is independent with all the small circuits on Γw(i).
Let Csp(i) denote one of these circuits (if any).

Proof. We first prove that, if there exists a small circuit passing through the
vertex ai, then it should be the sub-graph

{{
ai
}
,
{
ai+1

}}
of Γw(i). In fact, if

there exists a path e1, e2, ..., ek from ai to ai satisfying k ≤ i, let p = l1l2...lk be
a word such that lj is the last letter of ej for all j satisfying that 1 ≤ j ≤ k.
From the hypothesis that e1, e2, ..., ek form a circuit, we can deduce that ai is a
suffix of aip. Moreover, as |p| = k ≤ i, lj = a for all j. Consequently, ej = ai+1

for all j. Thus, from the unicity of each edge, we prove that there exists only
one edge on the path and the graph is given by

{{
ai
}
,
{
ai+1

}}
.

If their exists an elementary circuit C on Γw(i) containing the edge aib, from
the fact that aib cannot be contained in any small circuit on Γw(i), we conclude
that C is not a small circuit and independent with all the small circuits on Γw(i).

⊓⊔

Lemma 9 Let w ∈ {a, b}
∗
such that w = ar1bar2bar3b...arkbark+1 with rj ≥ 0

for all j satisfying 1 ≤ j ≤ k + 1. Let σ be a permutation of 1, 2, ..., k + 1 such
that rσ(1) ≤ rσ(2) ≤ ... ≤ rσ(k+1). Then for any integer i satisfying 1 ≤ i ≤ σ(k),
there exists a Csp(i) on Γw(i).
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Proof. From the hypothesis that i ≤ rσ(k) ≤ rσ(k+1), there exists a nonempty
word X such that aiXai ∈ Fac(w) and that

X =

{

bY b if |X | ≥ 2;

b otherwise.

Moreover, we can suppose that ai 6∈ Fac(Y ). Indeed, there exists a circuit on
ΓaiXai(i) containing the edge aib and ΓaiXai(i) is a sub-graph of Γw(i). Thus,
there exists a Csp(i) on Γw(i). ⊓⊔

Lemma 10 Let w ∈ {a, b}
∗
and let Iw be the cardinality of

Sw = {i|1 ≤ i ≤ |w|, there exists a circuit Csp(i) on Γw(i)} ,

then
m(w) + Iw ≤ |w| − |Alph(w)|.

Proof. Let scw(i) denote the number of small circuits on Γw(i). From Lemma 5,
Lemma 8 and Theorem 4, for any i ∈ Sw,

scw(i) + 1 ≤ Cw(i+ 1)− Cw(i) + 1;

and for any i 6∈ Sw,

scw(i) ≤ Cw(i + 1)− Cw(i) + 1.

Consequently,

|w|
∑

i=1

scw(i) + Iw ≤

|w|
∑

i=1

Cw(i+ 1)− Cw(i) + 1 = |w| − |Alph(w)|.

Moreover, from 6, m(w) ≤
∑|w|

i=1 sc(i), thus, m(w) + Iw ≤ |w| − |Alph(w)|. ⊓⊔

Proof (of Theorem 3). It is a direct consequence of Lemma 10 and Lemma 9. ⊓⊔

5 Proof of Theorem 2

In this section, Let w ∈ {a, b}
∗
such that |w|a ≥ |w|b, that |w|b = k and that

w = ar1bar2bar3b...arkbark+1 with rj ≥ 0 for all j satisfying 1 ≤ j ≤ k + 1.
Let δ be an integer such that |w|a = k+ δ. From the hypothesis |w|a ≥ |w|b,

we can suppose δ ≥ 0 and |w| = 2k + δ. Let δ = n(k + 1) + i with n ≥ 0 and
0 ≤ i ≤ k.

Let σ be a permutation of 1, 2, ..., k+1 such that rσ(1) ≤ rσ(2) ≤ ... ≤ rσ(k+1).
For any real number x, let ⌊x⌋ to be the integer part of x.

Lemma 11 (Proposition 2 in [6] ) Theorem 2 holds if k ≤ 9.
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Lemma 12

s(w) + 1 + ⌊
3n

2
+

3i

2(k + 1)
⌋ ≤ |w| − 2 =⇒ s(w) ≤

2k − 1

2k + 2
|w|.

Proof.

s(w) ≤
2k − 1

2k + 2
|w|

⇐=s(w) ≤ ⌊
2k − 1

2k + 2
|w|⌋

⇐=s(w) ≤ |w| − ⌊
3

2k + 2
(2k + δ)⌋

⇐=s(w) ≤ |w| − ⌊
3k

k + 1
+

3δ

2(k + 1)
⌋

⇐=s(w) ≤ |w| − 2− ⌊
k − 2

k + 1
+

3δ

2(k + 1)
⌋

⇐=s(w) + ⌊
k − 2

k + 1
+

3δ

2(k + 1)
⌋ ≤ |w| − 2

⇐=s(w) + 1 + ⌊
3δ

2(k + 1)
⌋ ≤ |w| − 2.

From the definition, δ = n(k + 1) + i, thus,

s(w) + 1 + ⌊
3n

2
+

3i

2(k + 1)
⌋ ≤ |w| − 2 =⇒ s(w) ≤

2k − 1

2k + 2
|w|.

⊓⊔

Lemma 13

s(w) + 1 + ⌊
3n

2
+

3i

2(k + 1)
⌋ ≤ m(w) + rσ(k) =⇒ s(w) ≤

2k − 1

2k + 2
|w|. (1)

Moreover,

1 + ⌊
3(n+ 1)

2
⌋ ≤ ⌊

rσ(k+1) − 1

2
⌋+ rσ(k) =⇒ s(w) ≤

2k − 1

2k + 2
|w|. (2)

Proof. The first part is a direct consequence of Theorem 3 and Lemma 12.
For the second part, from the hypothesis that i ≤ k, we have

⌊
3n

2
+

3i

2(k + 1)
⌋ ≤ ⌊

3(n+ 1)

2
⌋.

Moreover, from the fact that
{

a2i+1|1 ≤ i ≤ ⌊
rσ(k+1) − 1

2
⌋

}

⊂ NS(w),

we have

s(w) + ⌊
rσ(k+1) − 1

2
⌋ ≤ m(s).

⊓⊔
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Lemma 14 If rσ(k) ≥ n+ 2, then

1 + ⌊
3(n+ 1)

2
⌋ ≤ rσ(k) + ⌊

rσ(k+1) − 1

2
⌋.

Proof. If rσ(k) ≥ n+ 2, then rσ(k+1) ≥ n+ 2.
If n is odd, let n = 2t+ 1, then

rσ(k) + ⌊
rσ(k+1) − 1

2
⌋ ≥ (2t+ 1) + 2 + ⌊

(2t+ 1) + 2− 1

2
⌋

≥ 3t+ 4

≥ ⌊
3((2t+ 1) + 1)

2
⌋+ 1.

If n is even, let n = 2t, then

rσ(k) + ⌊
rσ(k+1) − 1

2
⌋ ≥ (2t) + 2 + ⌊

(2t) + 2− 1

2
⌋

≥ 3t+ 2

≥ ⌊
3((2t) + 1)

2
⌋+ 1.

⊓⊔

Lemma 15 If rσ(k) ≤ n and k ≥ 8 then

1 + ⌊
3(n+ 1)

2
⌋ ≤ rσ(k) + ⌊

rσ(k+1) − 1

2
⌋.

Proof. If rσ(k) ≤ n, let us suppose rσ(k) = m. Then

k∑

j=1

rσ(j) ≤ mk.

From the fact that
∑k+1

j=1 rσ(j) = k + δ,

rσ(k+1) ≥ k + δ −mk ≥ n(k + 1)−mk + k.

Thus,

1 + ⌊
3(n+ 1)

2
⌋ ≤ rσ(k) + ⌊

rσ(k+1) − 1

2
⌋

⇐=1 +
3(n+ 1)

2
≤ rσ(k) +

rσ(k+1) − 1

2
− 1

⇐=
5

2
+

3n

2
≤ m+

n(k + 1)−mk + k − 1

2
− 1

⇐=3n+ 5 ≤ 2m+ n(k + 1)−mk + k − 1− 2

⇐=3n+ 5 ≤ n(k + 1)−m(k − 2) + k − 3

⇐=3n+ 5 ≤ n(k + 1)− n(k − 2) + k − 3 (∗)

⇐=3n+ 5 ≤ 3n+ k − 3

⇐=8 ≤ k.
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The relation (*) holds because k − 2 ≥ 0 and m ≤ n from hypothesis. ⊓⊔

Lemma 16 If rσ(k) = n+ 1 and rσ(k+1) ≥ n+ 4, then

1 + ⌊
3(n+ 1)

2
⌋ ≤ rσ(k) + ⌊

rσ(k+1) − 1

2
⌋.

Proof. If n is odd, let n = 2t+ 1, then

rσ(k) + ⌊
rσ(k+1) − 1

2
⌋ ≥ (2t+ 1) + 1 + ⌊

(2t+ 1) + 4− 1

2
⌋

≥ 3t+ 4

≥ ⌊
3((2t+ 1) + 1)

2
⌋+ 1.

If n is even, let n = 2t, then

rσ(k) + ⌊
rσ(k+1) − 1

2
⌋ ≥ (2t) + 1 + ⌊

(2t) + 4− 1

2
⌋

≥ 3t+ 2

≥ ⌊
3((2t) + 1)

2
⌋+ 1.

⊓⊔

Lemma 17 If rσ(k) = n+ 1, rσ(k+1) ≤ n+ 3 and k ≥ 10 then

s(w) + 1 + ⌊
3n

2
+

3i

2(k + 1)
⌋ ≤ s(w) + rσ(k) + ⌊

rσ(k+1) − 1

2
⌋ ≤ m(w) + rσ(k).

Proof. From the fact that

k+1∑

j=1

rσ(j) = |w|a = k + δ = k + n(k + 1) + i,

we have

k + n(k + 1) + i ≤ (
k∑

j=1

n+ 1) + n+ 3.

Consequently, i ≤ 3 and 3i
2(k+1) < 1

2 . Thus, ⌊
3n
2 + 3i

2(k+1)⌋ = ⌊ 3n
2 ⌋.

We only need to prove

⌊
3n

2
⌋+ 1 ≤ rσ(k) + ⌊

rσ(k+1) − 1

2
⌋.

If n is odd, let n = 2t+ 1, then

rσ(k) + ⌊
rσ(k+1) − 1

2
⌋ ≥ (2t+ 1) + 1 + ⌊

(2t+ 1) + 1− 1

2
⌋

≥ 3t+ 2

≥ ⌊
3(2t+ 1)

2
⌋+ 1.
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If n is even, let n = 2t, then

rσ(k) + ⌊
rσ(k+1) − 1

2
⌋ ≥ (2t) + 1 + ⌊

(2t) + 1− 1

2
⌋

≥ 3t+ 1

≥ ⌊
3((2t))

2
⌋+ 1.

⊓⊔

Proof (of Theorem 2). From Lemma 13, Lemma 14, Lemma 15, Lemma 16 and
Lemma 17, Theorem 2 holds if:

rσ(k) ≥ n+ 2;

rσ(k) ≤ n and k ≥ 8;

rσ(k) = n+ 1 and rσ(k+1) ≥ n+ 4;

rσ(k) = n+ 1, rσ(k+1) ≤ n+ 3 and k ≥ 10.

Combining with Lemma 11, we conclude.
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