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Abstract. A function f : V → {−1, 0, 1} is a minus-domination function of

a graph G = (V,E) if the values over the vertices in each closed neigh-

borhood sum to a positive number. The weight of f is the sum of f(x)

over all vertices x ∈ V. The minus-domination number γ−(G) is the min-

imum weight over all minus-domination functions. The size of a minus

domination is the number of vertices that are assigned 1. In this paper

we show that the minus-domination problem is fixed-parameter tractable

for d-degenerate graphs when parameterized by the size of the minus-

dominating set and by d. The minus-domination problem is polynomial

for graphs of bounded rankwidth and for strongly chordal graphs. It is

NP-complete for splitgraphs. Unless P = NP there is no fixed-parameter

algorithm for minus-domination.

1 Introduction

A fresh breeze seems to be blowing through the area of domination problems.
This research area is aroused anew by the recent fixed-parameter investigations

(see, eg, [2,6,21,22]).

Let G = (V ,E) be a graph and let f : V → S be a function that assigns some

integer from S ⊆ Z to every vertex of G. For a subset W ⊆ V we write

f(W) =
∑

x∈W

f(x).

The function f is a domination function if for every vertex x, f(N[x]) > 0, where

N[x] = {x} ∪N(x) is the closed neighborhood of x. The weight of f is defined as
the value f(V).
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In this manner, the ordinary domination problem is described by a domi-

nation function that assigns a value of {0, 1} to each element of V . A signed

domination function assigns a value of {−1, 1} to each vertex x. The minimal
weight of a dominating and signed dominating function are denoted by γ(G)

and γs(G). In this paper we look at the minus-domination problem.

Definition 1. Let G = (V ,E) be a graph. A function f : V → {−1, 0, 1} is a minus-

domination function if f(N[x]) > 0 for every vertex x.

In the minus-domination problem one tries to minimize the weight of a
minus-domination function. The minimal weight of a minus-domination func-

tion is denoted as γ−(G). Notice that the weight may be negative. For example,

consider a K4 and add one new vertex for every edge, adjacent to the endpoints
of that edge. Assign a value 1 to every vertex of the K4 and assign a value −1 to

each of the six other vertices. This is a valid signed-domination function and its
weight is −2.

The problem to determine the value of γ−(G) is NP-complete, even when re-
stricted to bipartite graphs, chordal graphs and planar graphs with maximal de-

gree four [3,4]. Sharp bounds for the minimum weight are obtained in, eg, [16].
Damaschke shows that, unless P = NP, the value of γ− cannot be approx-

imated in polynomial time within a factor 1 + ǫ, for some ǫ > 0, not even for

graphs with all degrees at most four [3, Theorem 3].
Famous open problems are the complexity of the minus-domination problem

for splitgraphs and for strongly chordal graphs. In this paper we settle these

questions.

2 Planar graphs

Determining the smallest weight of a minus-dominating function is NP-complete,

even when restricted to planar graphs [4].

Let G = (V ,E) be a graph and let f : V → S be a domination function.

Following Zheng et al. we define the size of f as the number of vertices x ∈ V

with f(x) > 0. We denote the size of a minus-dominating function f as size(f).

Consider signed-domination functions of size at most k. It is easy to see that

|V(G)| = O(k2) (see [21]). It follows that the signed domination problem pa-
rameterized by the size is fixed-parameter tractable. This is not so clear for the

minus domination problem. For example, consider a star and assign to the center

a value of 1 and to every leaf a value of zero. This is a valid minus-domination
function with size 1 but the number of vertices is unbounded.

Theorem 1. For planar graphs the minus-domination problem, parameterized by

the size, is fixed-parameter tractable.
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Proof. Let f : V → {−1, 0, 1} be a minus-domination function. Let

D = { x | x ∈ V and f(x) = 1 }.

Then D is a dominating set in G. It follows that, for all graphs G,

γ−(G) 6 γ(G) 6 min { size(f) | f is a minus-dominating function }.

The first subexponential fixed-parameter algorithm for domination in planar
graphs appeared in [1]. In this paper the authors prove that, if G is a pla-

nar graph with γ(G) 6 k, then the treewidth of G is O(
√
k). Using a treede-

composition of bounded treewidth one can solve the domination problem in

O(215.13
√
k · k + n3 + k4) time (or conclude that γ(G) > k). The results were

generalized to some nonplanar classes of graphs by Demaine, et al.

The minus-domination problem with size bounded by k can be formulated in
monadic second-order logic. By Courcelle’s theorem, any such problem can be

solved in linear time on graphs of bounded treewidth (see, eg, [10,12]). This
proves the theorem. ⊓⊔

2.1 d-Degenerate graphs

Definition 2. A graph is d-degenerate if each of its induced subgraphs has a vertex

of degree at most d.

Graphs with bounded degeneracy contain, eg, graphs that are embeddable

on some fixed surface, families of graphs that exclude some minor, graphs of
bounded treewidth, etc. [20].

In this section we show that, for each fixed d, the minus domination problem,

parameterized by the number k of vertices that receive a 1, is fixed-parameter
tractable for d-degenerate graphs.

In this section, when considering a partition of the vertices, we allow that

some parts of the partition are empty.

In the minus domination problem one searches for a partition of the vertices
into three parts, say red, white and blue. The red vertices are assigned −1, white

are 1 and blue are 0. Zheng et al. proved a lemma similar to the one below for

the signed domination problem in [22, Theorem 2] and [21, Lemma 6].

Lemma 1. Assume that G = (V ,E) has a minus-dominating function with size at
most k. Let R, W and B be the coloring of the vertices into red, white and blue,

defined by this minus-domination function. Then

|W ∪ R| = O(k2).
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Proof. By assumption, the minus-domination function colors at most k vertices

white. Consider the subgraph G′ induced by the red and white vertices. Consider

a vertex x of G′. Then at least half of its neighbors is colored white, otherwise its
closed neighborhood has weight at most zero. Since there are at most k white

vertices, each vertex of G′ has degree less than 2k.

Notice also that each red vertex has at least two white neighbors. Since there

are only k white vertices, and each white vertex has degree less than 2k, the
number of red vertices is less than 2k2. This proves the lemma. ⊓⊔

For algorithmic purposes one usually considers the following generalization

of the domination problem. Consider graphs of which each vertex is either col-

ored black or white. In the parameterized black-and-white domination problem
the objective is to find a set D of at most k vertices such that

for each black vertex x, N[x] ∩D 6= ∅.

Obviously, the domination problem is a special case, in which each vertex is

black.

For the minus-domination problem we describe an algorithm for a black-and-

white version, where the vertices with a 0 or −1 are black and such that each

closed neighborhood of a black vertex has a positive weight. To see that this
solves the minus-domination problem, just consider the case where all vertices

are black.

Alon and Gutner prove, in their seminal paper, that the domination problem

is fixed-parameter tractable for d-degenerate graphs [2]. The main ingredient of
their paper is the following lemma.

Lemma 2. Let G = (V ,E) be a d-degenerate black-and-white colored graph. Let B

and W be the set of black and white vertices. If |B| > (4d + 2)k then the set

Ω =

{

x | x ∈ V and |N[x] ∩ B| >
|B|

k

}

satisfies |Ω| 6 (4d + 2)k.

To prove that the minus-domination problem, parameterized by the size, is

fixed-parameter tractable for d-degenerate graphs, we adapt the proof of [2,
Theorem 1].

Theorem 2. For each d and k, there exists a linear algorithm for finding a minus-

domination of size at most k in a d-degenerate black-and-white graph, if such a set

exists.
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Proof. Let B and W be the set of black and white vertices. First assume that

|B| 6 (4d + 2)k. If there is a minus-domination function of size at most k then

there are k vertices (assigned 1) that dominate all vertices in B.

The algorithm tries all possible subsets R ⊆ B for the set of red vertices (those

are assigned −1). Number the closed neighborhoods of the vertices in R∪B, say

N1, . . . ,Nt,

where t = |B ∪ R| 6 (4d + 2)k. Define an equivalence relation on the vertices

of V \ R by making two vertices equivalent if they are contained in exactly the

same subsets Ni. For each equivalence class that contains more than k vertices
which are not red, remove all of them except at most k vertices. This kerneliza-

tion reduces the graph to an instance H with at most g(k,d) vertices, for some

function g.

Consider all subsets of V(H) with at most k vertices of which none is red. Give

these vertices the value 1 and the remaining vertices that are not red the value
0. Check if this is a valid minus-domination.

Now assume that |B| > (4d + 2)k. Then, by Lemma 2, |Ω| 6 (4d + 2)k. Notice

that at least one vertex of Ω is assigned 1 in any minus-domination function of
size k. In that case the algorithm grows a search tree of size at most (4d+2)k ·k!

before it arrives at the previous case (see [2]). ⊓⊔

3 Cographs

A minus domination with bounded size can be formulated in monadic second-

order logic without quantification over subsets of edges. It follows that there is
a linear-time algorithm to solve the problem for graphs of bounded treewidth

or rankwidth (or cliquewidth) [14]. It is less obvious that γ− is computable for
bounded rankwidth when there is no restriction on the size. In this section we

adapt a method of Yeh and Chang to show this.

It is well-known that the graphs of rankwidth one are the distance-hereditary
graphs. We first analyze the complexity of the minus-domination problem for

the class of cographs. Cographs form a proper subclass of the class of distance-

hereditary graphs.

We denote a path with four vertices by P4.

Definition 3. A cograph is a graph without induced P4.

Cographs are characterized by the property that each induced subgraph with

at least two vertices is either a join or a union of two smaller cographs. It follows

that cographs admit a decomposition tree (T , f) where T is a rooted binary tree
and where f is a bijection from the vertices of G to the leaves of T . Each internal
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node is labeled as ⊗ or ⊕. When the label is ⊗ then all vertices of the left subtree

are adjacent to all vertices of the right subtree. A node that is labeled as ⊗ is

called a join-node. When the label is ⊕ there is no edge between vertices of the
right and left subtree. A node that is labeled as ⊕ is called a union-node. One

refers to a decomposition tree of this type as a cotree. A cotree for a cograph can
be obtained in linear time.

Theorem 3. There exists an efficient algorithm that computes γ− for cographs.

Proof. Let G = (V ,E) be a cograph. We assume that a cotree for G is a part of
the input. Consider a subtree T ′ and let W ⊆ V be the set of vertices that are

mapped to the leaves in T ′.

For three numbers (a,b, c), an (a,b, c)-function is a function f : W → {−1, 0, 1}

such that f assigns a vertices the value −1, b vertices the value 0 and c vertices
the value 1. Obviously, we have that a+ b+ c = |W|.

For an integer t, let

ζ(t,a,b, c) = max | { x | x ∈ W and f(N[x] ∩W) + t > 0 and

where f is an (a,b, c)-function } |. (1)

When the set is empty we let ζ(t,a,b, c) = −∞.

Notice that a minus-domination function with minimum weight can be com-
puted when ζ is known for the root node, that is, when W = V . Namely,

γ−(G) = min { −a+ c | a+ b+ c = n and ζ(0,a,b, c) = n }. (2)

We show how the values ζ(t,a,b, c) can be computed. Assume that G is the
union of two cographs G1 = (V1,E1) and G2 = (V2,E2). We denote the ζ-values

for G1 and G2 by ζ1 and ζ2. Then

ζ(t,a,b, c) = max { ζ1(t,a1,b1, c1) + ζ2(t,a2,b2, c2)

where a1 + a2 = a b1 + b2 = b c1 + c2 = c }. (3)

Now assume that G is the join of G1 and G2. Then

ζ(t,a,b, c) = max { ζ1(t− c2 + a2,a1,b1, c1) + ζ2(t− c1 + a1,a2,b2, c2)

where a1 + a2 = a b1 + b2 = b c1 + c2 = c }. (4)

This proves the theorem. ⊓⊔

Remark 1. Notice that complete multipartite graphs are cographs. Formulas for

the signed and minus domination number of complete multipartite graphs ap-
pear in a recent paper by H. Liang.
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By similar methods we obtain a polynomial algorithm for minus domination

on distance-hereditary graphs. For brevity we put the proof of the next theorem

in an appendix.

Theorem 4. There exists a polynomial algorithm that computes γ− for distance-
hereditary graphs.

Remark 2. It is not hard to see that similar results can be derived for graphs
of bounded rankwidth, that is, γ− is computable in polynomial time for graphs

of bounded rankwidth (see, eg, [12]). The rankwidth appears as a function in

the exponent of n. Graphs of bounded treewidth are contained in the class of
bounded rankwidth and so a similar statement holds for graphs of bounded

treewidth. At the moment we do not believe that there is a fixed-parameter
algorithm, parameterized by treewidth or rankwidth, to compute γ−. The results

of [22, Section 4.2] seem wrong.5

4 Strongly chordal graphs

The minus domination problem is NP-complete for chordal graphs. In this section

we show that the problem can be solved in polynomial time for strongly chordal

graphs.

A graph is chordal if it has no induced cycle of length more than three. A
chord in a cycle is an edge that runs between two vertices that are not consec-

utive in the cycle. Let C = [x1, . . . , x2k] be an even cycle of length 2k. A chord

{xi, xj} in C is odd if the distance in C between xi and xj is odd.

Definition 4. A chordal graph G is strongly chordal if each cycle in G of even
length at least 6 has an odd chord.

There are many characterizations of strongly chordal graphs [5,11]. Perhaps

the best known examples of strongly chordal graphs are the interval graphs.

In strongly chordal graphs the domination number is equal to the 2-packing
number (see, eg, [19, Theorem 7.4.4]). It follows that the domination number

for strongly chordal graphs is polynomial [5].

Theorem 5. The minus domination problem for strongly chordal graphs can be

solved in O(min {n2,m logn}) time. Here n is the number of vertices and m is the

number of edges of the graph.

5 We communicated with the authors of [22] and our ideas about it are now in agree-

ment.
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Proof. Farber describes a linear programming formulation for the domination

problem. In this linear programming formulation we can change the variables

from xi to zi = xi+1. This changes the constraints −1 6 xi 6 1 into 0 6 zi 6 2.
The linear program becomes

Minimize

n∑

i=1

zi

subject to
∑

i∈N[k]

zi > bk for each k

and 0 6 zi 6 2 for each i.

In our case, the variable bk is equal to |N[k]|+ 1.

The closed neighborhood matrix of a strongly chordal graph is totally balanced.

By [8,9,13] (see also, eg, [19, Theorem A.3.4]) the integer program and its

linear relaxation have the same value.

To deal with the constraints zi 6 2 we write the LP as

Minimize jT · z

subject to

(

A

−I

)

z >

(

b
−2 · j

)

and z > 0.

Here, the matrix A is the closed neigborhood matrix, and the vector b is equal

to

b = j + Aj.

The dual of this LP is

Maximize bT · y1 − 2jT · y2

subject to Ay1 6 j + y2 and y1 > 0 and y2 > 0.

Notice that

y2,k = max { 0, −1 +
∑

i∈N[k]

y1,i } for all k.

The complementary slackness conditions are as follows.

y1,k > 0 ⇒
∑

i∈N[k]

zi = 1 + |N[k]|

∑

i∈N[k]

y1,i > 1 ⇒ zk = 2, and

zk > 0 ⇒
∑

i∈N[k]

y1,i > 1.

Solving the linear problem can be done in O(n3.5 logn). Farber’s method can be

used to bring it down to O(n2) or m logn), which is the time needed to compute
a strong elimination ordering. We omit the details; see Remark 4. ⊓⊔
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Remark 3. When G is strongly chordal then G2 is that also [15]. A simple ver-

tex of G is simplicial in G2. The weighted 2-packing problem in G asks for the

maximal weight independent set in G2. This can be solved in linear time [7].
It uses the fact that in any chordal graph, with integer weights on the vertices,

the maximal weight of an independent set equals the minimal number of cliques
that have the property that every vertex is covered at least as many times by

cliques as its weight.

Corollary 1. The exists a linear-time algorithm that solves minus domination on

interval graphs.

Remark 4. After the publication of our draft on arXiv, one of the authors of

their paper, quoted in the footnote, drew our attention to their result. The au-

thors claim a linear algorithm for minus domination on strongly chordal graphs.
(Here, they assume that a strong elimination ordering is a part of the input). 6

5 Splitgraphs

In this section we show that the minus-domination problem is NP-complete for

splitgraphs. We reduce the (3, 2)-hitting set problem to the minus-domination
problem. The (3, 2)-hitting set problem is defined as follows (see, eg, [17]).

Instance: Let C be a collection of sets, each containing exactly three elements
from a universe U.

Question: Find a smallest set U′ ⊆ U such that for each C ∈ C,

|C ∩U′| > 2.

Lemma 3. The (3, 2)-hitting set is NP-complete.

Proof. The reduction is from vertex cover, ie, (2, 1)-hitting set. The (2, 1)-hitting
set is defined similar as above, except that in this case every subset has two

elements and the problem is to find a subset U′ which hits every subset at least
once.

Consider an instance of (2, 1)-hitting set. Let C be the collection of 2-element
subsets of a universe U. Add four vertices to the universe, say α, β, γ and δ.

Add α to every subset of C and add two subsets, {α,β,γ} and {α,β, δ}. We claim

that any solution of this (3, 2)-hitting set problem has α in the hitting set. If not,
then {β,γ, δ} is a subset of the (3, 2)-hitting set. In that case we may replace the

elements β, γ and δ with α and β. Then we obtain a (3, 2)-hitting set with fewer

elements.

Thus, we may assume that α is in the (3, 2)-hitting set. But now the problem is

equivalent to the (2, 1)-hitting set, since every adapted subset contains α. ⊓⊔
6 C. Lee and M. Chang, Variations of Y-dominating functions on graphs, Discrete Math-

ematics 308 (2008), pp. 4185–4204.
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Theorem 6. The minus-domination problem is NP-complete for splitgraphs.

Proof. Consider an instance of the (3, 2)-hitting set. We first construct a split-

graph where U is the clique and where each element C ∈ C is a vertex of the

independent set, and adjacent exactly to the three vertices of C in the clique.
Next, we extend the splitgraph by adding auxiliary vertices in the clique and the

independent set, respectively. Precisely, we add a set X of |U|+ |C|+ 1 vertices in
the clique, and for each vertex x in X, we add a distinct vertex x′ in the indepen-

dent set that connects with x. This completes the description of the splitgraph.

Let V be the set of vertices of this graph, that is

V = U ∪ X ∪ { x′ | x ∈ X } ∪ C.

Consider a minus-domination function f of minimal weight. Notice that, we may

assume that for each vertex x in X, f(x) = 1. Otherwise, by considering the

closed neighborhood N[x′], we require f(x′) + f(x) > 0, so that f(x′) = 1 and
f(x) = 0; in such a case, we can reset f(x′) as 0 and f(x) as 1, while maintaining

validity (i.e., positive total weight for each close neighborhood) and optimality
(ie, minimum total weight) of the assignment.

Notice that for any function f : V → {−1, 0, 1} we have that

∀x∈X f(x) = 1 ⇒ ∀u∈U f(N[u]) > 0

no matter what values the vertices u ∈ U or C ∈ C are assigned.

We may now, further assume that for each vertex C in the independent set

f(C) 6 min { f(u) | u ∈ N(C) }. (5)

If this were not the case, then we could swap the value f(C) with the value of
a vertex in N(C) and obtain a minus-domination function of at most the same

weight, satisfying (5). Note that after the change, we cannot have f(N(C)) = 0.

We claim that there is a domination function of minimal weight with f(C) = −1

for every C ∈ C. To see that, consider the following cases. If f(N(C)) = 3, then
we have f(C) = −1. If f(N(C)) = 2, then N(C) has two ones and one zero.

Also in that case we have f(C) = −1. The only case that is left is where N(C)

contains one 1 and two zeroes and f(C) = 0. In that case we may change the
value of a zero in N(C) to one, and f(C) to −1. Repeated application of this

type of exchange produces a minus domination function of the same weight and

satisfying the claim.

So, we may assume that for C ∈ C, f(C) = −1 and that for each vertex u ∈ U,
f(u) ∈ {0, 1}. Since f(C) = −1, the minus-domination function has at least two

plus ones in N(C).

This proves the theorem. ⊓⊔
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5.1 Minus domination is not FPT

Consider the following problem.

Instance: A graph G.

Question: Does G have a minus domination of weight at most 0?

Following Hattingh et al., we call this ‘the zero minus-domination problem.’

Consider the graph L in Figure 1.
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Fig. 1: The graph L. It has γ−(L) = −1.

Lemma 4. The graph L has minus-domination weight γ−(L) = −1. The minus-

domination function that achieves this weight is unique; it is the one depicted in

Figure 1.

Theorem 7. The zero minus-domination problem is NP-complete.

Proof. Let H be a graph and let G be the union of H and k disjoint copies of L.

Obviously

γ−(G) = γ−(H) + k · γ−(L) = γ−(H) − k.

It follows that γ−(G) 6 0 if and only if γ−(H) 6 k. By Theorem 6, given a graph

H and a positive k it is NP-complete to decide whether γ−(H) 6 k. ⊓⊔

Theorem 8. The minus-domination problem is not fixed-parameter tractable, un-

less P = NP.

Proof. Assume there exists an algorithm which runs in time O(f(k) · nc) and
that determines whether a graph G has a minus domination of weight at most

k. Then the zero minus-domination problem would be solvable in polynomial

time. ⊓⊔
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A Distance-hereditary graphs

Distance-hereditary graphs are the graphs of rankwidth one (see, eg, [12]). They
were introduced in 1977 by Howorka as those graphs in which, for every pair of

nonadjacent vertices, all the cordless paths between them have the same length.
They have a decomposition tree (T , f) where T is a rooted binary tree and f is

a bijection from the vertices to the leaves of T . For each branch, the ‘twinset’ of

that branch is defined as those vertices in the leaves that have neighbors in leaves
outside that branch. Each twinset induces a cograph. Each internal node of T is

labeled as ⊕ or ⊗. When the label is ⊗ then all the vertices in the twinset of

the left branch are adjacent to all the vertices in the twinset of the right branch.
When the label is ⊕ there are no edges between vertices mapped to different

branches. The twinset of a parent is either empty, or the twinset of one of the
two children or the union of the twinsets at the two children.

Theorem 9. There exists a polynomial algorithm that computes γ− for distance-

hereditary graphs.

Proof. Consider a branch B and let W be the set of vertices that are mapped to
leaves of B. Let Q be the twinset of B, that is, the set of vertices in W that have

neighbors in V \W.

An (a,b, c)-function is a function f : W → {−1, 0, 1} such that f assigns to a

vertices of Q the value −1, to b vertices of Q the value 0 and to c vertices of Q

the value 1. Furthermore,

for all x ∈ W \Q f(N[x]) > 0. (6)

For an integer t let ζ(t,a,b, c) be defined as

ζ(t,a,b, c) = max | { x | x ∈ Q and f(N[x] ∩W) + t > 0 and

where f is an (a,b, c)-function } |. (7)

It is a nice, easy exercise to see that the arguments given in the proof of Theo-
rem 3 extend to show that these definitions lead to an efficient computation of

γ− for distance-hereditary graphs. For brevity we omit the details. ⊓⊔
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