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Abstract

A sequence of vertices in a graph G with no isolated vertices is called a total dominating sequence
if every vertex in the sequence totally dominates at least one vertex that was not totally dominated by
preceding vertices in the sequence, and, at the end all vertices of G are totally dominated (by definition
a vertex totally dominates its neighbors). The maximum length of a total dominating sequence is called
the Grundy total domination number, γt

gr(G), of G, as introduced in [B. Brešar, M. A. Henning, and
D. F. Rall, Total dominating sequences in graphs, Discrete Math. 339 (2016), 1165–1676]. In this paper
we continue the investigation of this concept, mainly from the algorithmic point of view. While it was
known that the decision version of the problem is NP-complete in bipartite graphs, we show that this
is also true if we restrict to split graphs. A linear time algorithm for determining the Grundy total
domination number of an arbitrary tree T is presented, based on the formula γt

gr(T ) = 2τ (T ), where
τ (T ) is the vertex cover number of T . A similar efficient algorithm is presented for bipartite distance-
hereditary graphs. Using the modular decomposition of a graph, we present a frame for obtaining
polynomial algorithms for this problem in classes of graphs having relatively simple modular subgraphs.
In particular, a linear algorithm for determining the Grundy total domination number of P4-tidy graphs
is presented. In addition, we prove a realization result by exhibiting a family of graphs Gk such that
γt

gr(Gk) = k, for any k ∈ Z
+ \ {1, 3}, and showing that there are no graphs G with γt

gr(G) ∈ {1, 3}. We
also present such a family, which has minimum possible order and size among all graphs with Grundy
total domination number equal to k.
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1 Introduction

The total domination number, γt(G), of a graph G with no isolated vertices is the smallest cardinality of a
set of vertices S such that every vertex of G has a neighbor in S. (If the condition only requires that vertices
from V (G) \ S have a neighbor in S, then the resulting invariant is the domination number γ(G) of G.)
Let us introduce our main invariant, which is defined for all graphs G without isolated vertices, see [4]. Let
S = (v1, . . . , vk) be a sequence of distinct vertices of G. The corresponding set {v1, . . . , vk} of vertices from

the sequence S will be denoted by Ŝ. The sequence S is a legal (open neighborhood) sequence if

N(vi) \
i−1⋃

j=1

N(vj) 6= ∅. (1)
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holds for every i ∈ {2, . . . , k}. If, in addition, Ŝ is a total dominating set of G, then we call S a total
dominating sequence of G. The maximum length of a total dominating sequence in G is called the Grundy
total domination number of G and denoted by γt

gr(G); the corresponding sequence is called a Grundy total
dominating sequence of G.

A motivation for introducing total dominating sequences came from the so-called total domination
game [12, 13], in which the sequences are a result of two-player game with players having the opposite
goals; one player wants the graph to be totally dominated in as few moves as possible, while the other player
wants to maximize the sequence of moves. The length of the resulting sequence played in such a game is thus
a lower bound for the Grundy total domination number of a graph. A similar game, called the domination
game, was introduced earlier with respect to the standard domination number[5], and was already studied
in a number of papers. In particular, motivated by the domination game, a different version of dominating
sequences was defined in [3], in which legality is considered with respect to closed neighborhoods (i.e., in the
above definition just replace open neighborhoods by closed neighborhoods in (1)); longest sequences in that
sense are called the Grundy dominating sequences, and the corresponding invariant the Grundy domination
number of a graph.

Efficient algorithms for the Grundy domination number of trees, cographs and split graphs have been
presented in [3]. In addition, minimal dominating sets have been characterized through some algebraic
properties of dominating sequences, and some general lower bounds for this parameter were also established.
Similarly, a lower bound was obtained for the Grundy total domination number of an arbitrary graph in [4],
with an improvement for k-regular graphs. Using the connection with covering sequences in hypergraphs,
NP-completeness of the decision version of the Grundy total domination number in bipartite graphs was also
established. Nevertheless, no other algorithmic issues were considered in [4].

In this paper we continue the study of the Grundy total domination number with an emphasis on
algorithmic issues. In Section 3 we start setting new bounds for the Grundy total domination number and
proving a realization theorem about it. We continue in Section 4, in which we first note, how the two
operations on which modular decomposition of a graph depends, namely the join and the disjoint union of
two graphs, effect the Grundy total domination number. We follow with an application of these observations
in Section 5, by presenting a linear algorithm to determine the Grundy total domination number of P4-tidy
graphs. This graph class generalizes several few P4’s graph families, among them cographs, P4-sparse, P4-
extendible and P4-reducible graphs [9]. Besides, we note a first difference between the (standard) Grundy
domination number and the Grundy total domination number in their behavior in the class of trees. For the
former no explicit formula was found [3], and the algorithm for determining the Grundy domination number
of a tree is based on a recursive, dynamic programming approach. In this paper (see Section 5) we prove
that the Grundy total domination number of an arbitrary tree can also be found in linear time, but the
algorithm is much simpler. It is based on the formula, which expresses this number as two times the vertex
cover number of a tree. As it turns out, a similar approach (though no such nice connection with the vertex
cover exists) can be used in determining the Grundy total domination number of an arbitrary bipartite
distance-hereditary graph, which is done in the second part of the same section. To conclude, recall that the
(standard) Grundy domination number problem was proven to be NP-complete in chordal graphs [3]. On the
other hand, in the same paper an efficient algorithm for determining the Grundy domination number of an
arbitrary split graphs was presented. To end this paper (see Section 6) we prove that the total version of this
problem is NP-complete in split graphs, which shows that the two problems have some essential differences,
in spite of the similarity of their definitions.

2 Preliminaries

This section is devoted to notational and preliminary issues. For notation and graph theory terminology, we
in general follow [14]. A non-trivial graph is a graph on at least two vertices. For each positive integer n, Kn

and Pn are, respectively, the complete graph and the path with n vertices. For n ≥ 3, Cn denotes the cycle
with n vertices. Given a graph G, G denotes its complement. The subgraph induced by a set S of vertices
of G is denoted by G[S]. We write G \ S for the subgraph induced by V (G) \ S. If S = {v} we simply write
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G− v.
The degree of a vertex v in G, denoted degG(v), is the number of neighbors, |NG(v)|, of v in G. The

minimum and maximum degree among all the vertices of G are denoted by δ(G) and ∆(G), respectively.
Given U ⊂ V (G), N(U) = ∪v∈UN(v) and, for each k ∈ {1, . . . , |V (G)|}, δk(G) = min{|N(U)| : U ⊂
V (G), |U | = k}. Observe that δ1(G) = δ(G).

A leaf is a vertex of degree 1, while its neighbor is a support vertex. Leaves are also called pendant
vertices. A strong support vertex is a vertex with at least two leaf-neighbors. We denote by L(G) the set of
leaves of G and for each v ∈ V (G), L(v) = L(G) ∩ N(v). Given ℓ ∈ L(G), s(ℓ) is the support vertex of ℓ,
that is, N(ℓ) = {s(ℓ)}.

Two vertices u and v in G are called true (resp. false) twin vertices if N [u] = N [v] (resp. N(u) = N(v)).
A vertex v ∈ V (G) is called a true (resp. false) twin vertex if there exists u ∈ V (G) \ {v}, such that u and
v are true (resp. false) twin vertices.

Given two graphs G and R, and v ∈ V (G), the graph obtained by replacing v by R in G is the graph
whose vertex set is (V (G) \ {v}) ∪ V (R) and whose edges either belong to E(G− v) ∪E(R) or connect any
vertex in V (R) with any vertex in NG(v).

If S = (v1, . . . , vk) is a legal (open neighborhood) sequence in a graph G (recall the condition (1)),
then we say that vi footprints the vertices from N(vi) \ ∪

i−1
j=1N(vj), and that vi is the footprinter of every

vertex u ∈ N(vi) \ ∪
i−1
j=1N(vj). That is, vi footprints vertex u if vi totally dominates u, and u is not totally

dominated by any of the vertices that precede vi in the sequence. Thus the function fS : V (G) → Ŝ that
maps each vertex to its footprinter is well defined. Clearly the length k of a total dominating sequence S is
bounded from below by the total domination number, γt(G), of G. In particular, γt

gr(G) ≥ γt(G).
Clearly, a graph with isolated vertices has no total dominating sequences. In order to obtain consistency

when working with vertex induced subgraphs, we extend the definition of the Grundy total domination
number for such graphs as the maximum length of a legal sequence and a Grundy total dominating sequence
is a legal sequence of maximum length. Clearly, for graphs without isolated vertices this definition coincides
with the one given in [4]. Moreover, if E(G) = ∅, there are no legal sequences except the empty sequence,
denoted by S = () and in this case, we let γt

gr(G) = 0. We also define the parameter η(G) having value zero
if G has no isolated vertices and one, otherwise. This notion, as well as the extension of the Grundy total
domination number to disconnected graphs will be used in Section 4.

Let S1 = (v1, . . . , vn) and S2 = (u1, . . . , um), n,m ≥ 0, be two sequences in G, with Ŝ1 ∩ Ŝ2 = ∅. The
concatenation of S1 and S2 is defined as the sequence S1 ⊕ S2 = (v1, . . . , vn, u1, . . . , um). Clearly ⊕ is an
associative operation on the set of all sequences, but is not commutative. Moreover, () ⊕ S = S ⊕ () = S,
for any sequence S.

A legal sequence S in a graph is said to be maximal if S ⊕ S′ is a legal sequence only if S′ = (). Clearly,
every Grundy total dominating sequence is maximal and thus, the Grundy total domination number is the
maximum length of a maximal legal sequence.

3 New bounds and realization results for γt
gr(G)

3.1 Bounds

For a matching M in a graph G a vertex incident to an edge of M is called strong if its degree is 1 in the
subgraph G[V (M)]. The matching M is called a strong matching (also called an induced matching in the
literature) if every vertex in V (M) is strong. The number of edges in a maximum (strong) matching of G
is the (strong) matching number, (νs(G)) ν(G), of G. The strong matching number is studied, for example,
in [19, 20]. As defined in [10], M is a semistrong matching if every edge in M has a strong vertex. The
number of edges in a maximum semistrong matching of G is the semistrong matching number, νss(G), of G.

We recall the lower bound of the Grundy total domination number based on the semistrong matching
number:

Proposition 3.1 [4] For every graph G, γt
gr(G) ≥ 2νss(G).
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Next, we present an upper bound based on the vertex cover number for arbitrary graphs. Given a graph
G, let τ(G) denote the vertex cover number, that is, the minimum cardinality of a set S of vertices in G such
that each edge in G is incident to a vertex from S.

Proposition 3.2 For every graph G, γt
gr(G) ≤ 2τ(G).

Proof. Let S be a Grundy total dominating sequence of G, and let u be an arbitrary vertex from a maximum
vertex cover C of G. Clearly, exactly one of the vertices from N(u)∩ Ŝ footprints u. Also, u is a footprinter

of some vertices from N(u) if and only if u ∈ Ŝ. In other words, for each u ∈ C, the edges incident with u
are involved in footprinting operation at most twice, from which the desired bound follows. �

By König’s theorem, in bipartite graphs the minimum cardinality of a vertex cover coincides with that
of a maximum matching. Thus, using also Proposition 3.1, we get the following bound.

Corollary 3.3 For every bipartite graph G, 2νss(G) ≤ γt
gr(G) ≤ 2ν(G).

The following result shows how the parameters δk(G) are used to obtain new upper bounds for the
Grundy total domination number.

Lemma 3.4 For each k ∈ {1, . . . , |V (G)|}, γt
gr(G) ≤ k + |V (G)| − δk(G).

Proof. If k ≥ γt
gr(G) the result immediately follows. Let k < γt

gr(G) and S = (x1, . . . , xk, . . . , xt) a Grundy
total dominating sequence of G. Consider U = {x1, . . . , xk}. Clearly, γ

t
gr(G)−k = t−k ≤ |V (G)|−|N(U)| ≤

|V (G)| − δk(G). Then, γt
gr(G) ≤ k + |V (G)| − δk(G). �

Note that γt
gr(Kn) = 1 + n − δ1(G) = 2 + n − δ2(G) = 2. Moreover, for Pn, with n even, and Cn with

n odd, the Grundy total domination number coincides with these upper bounds, for all k ∈ {1, . . . , n}. On
the other hand, observe that there exist graphs with Grundy total domination number strictly smaller than
these upper bound for every k ∈ {1, . . . , |V (G)|}. For instance, consider Pn with n odd. In these cases
δk(Pn) ≤ k for every k ∈ {1, . . . , n} but γt

gr(Pn) = n− 1.

Next, the following bounds concern the deletion of an arbitrary vertex of a graph.

Lemma 3.5 If G is a graph, v ∈ V (G) and G′ = G− v, then

γt
gr(G)− 2 ≤ γt

gr(G
′) ≤ γt

gr(G).

Proof. The upper bound follows from the fact that every legal sequence of G − v is a legal sequence of
G. On the other hand, if S is a total dominating sequence of G and u is the vertex that footprints v, then
S \ {u, v} is a total dominating sequence of G− v and the lower bound follows. �

To see that the lower bound is tight note that if G is the net graph (i.e., the graph obtained from the
triangle by adding a pendant vertex to each vertex of the triangle), then γt

gr(G) = γt
gr(G− v) + 2 = 6 where

v is a pendant vertex of G. It is also easy to find examples where the upper bound in Lemma 3.5 is attained.
In particular, considering false twin vertices we have the following result.

Proposition 3.6 Let G be a graph and v, v′ a pair of false twins in G. Let G′ = G − v′ and S′ be
a Grundy total dominating sequence in G′. Then, S′ is a Grundy total dominating sequence in G and
γt
gr(G) = γt

gr (G− v′).

Proof. The results follow from the facts that for every legal sequence S, we have |Ŝ ∩ {v, v′}| ≤ 1, and that

if w ∈ Ŝ footprints v, then w also footprints v′. �

We finally study the total domination number of graphs with pendant vertices. Note that if v is a vertex
in G such that L(v) 6= ∅, then v belongs to every maximal legal sequence of G. Moreover, the following
result can be proven for vertices with leaf-neighbors.
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Proposition 3.7 Let G be a graph, v ∈ V (G) such that L(v) 6= ∅, G′ = G \ ({v} ∪ L(v)), and S′ a Grundy
total dominating sequence of G′. Then, for any ℓ ∈ L(v), S = (ℓ) ⊕ S′ ⊕ (v) is a Grundy total dominating
sequence of G and γt

gr(G) = γt
gr(G

′) + 2.

Proof. Let G,G′ and S′ be defined as in the statement of the proposition. Clearly, (l)⊕ S′ ⊕ (v) is a legal
sequence of G for every l ∈ L(v). Hence, γt

gr(G) ≥ γt
gr(G

′) + 2. On the other hand, if T is an arbitrary
maximal legal sequence of G and u the footprinter of v in T , then T \ {u, v} is a legal sequence of G′.

Thus, |T̂ | ≤ γt
gr(G

′) + 2, which implies γt
gr(G) ≤ γt

gr(G
′) + 2. Since |Ŝ| = γt

gr(G
′) + 2, S is a Grundy total

dominating sequence of G. �

3.2 Realization of Grundy total domination numbers

Since for any graph G we have 2 ≤ γt(G) ≤ γt
gr(G), it is clear that there are no graphs G with Grundy total

domination number equal to 1. We will prove that there are also no graphs G such that γt
gr(G) = 3, and

one may wonder, whether there are any graphs G such that their Grundy total domination number is odd.
(It is easy to find graphs with even total domination numbers of arbitrary size, for instance among paths,
because γt

gr(Pn) = 2⌊n/2⌋.) As we will show next, number 3 is exceptional here, since all other odd numbers
greater than 3 can be realized as the total domination numbers of some graphs.

First, let us present a result, which shows, why even numbers are in some sense much easier to be realized
as total domination numbers of graphs than the odd numbers.

Proposition 3.8 Let G be a graph, and S a Grundy total dominating sequence. Suppose that S = S1 ⊕ S2,
and Ŝ1 is a maximal independent set in G. Then |Ŝ2| = |Ŝ1|, and so γt

gr(G) is even.

Proof. Let S = (s1, . . . , sr, sr+1, . . . , st), where Ŝ1 = {s1, . . . , sr} is a maximal independent set in G. Note

that S1 totally dominates exactly the vertices from V (G) \ Ŝ1, and so |Ŝ2| = t − r is at most r. We claim

that |Ŝ2| = r.
Note that a vertex ui from f−1

S (si) (i.e., a vertex footprinted by si within the sequence S) is not adjacent to
any of the vertices from {s1, . . . , si−1}, where i ∈ {1, . . . , r}. Hence the sequence (s1, . . . , sr, ur, ur−1, . . . , u1)
is a legal open neighborhood sequence of the largest possible length. Since S is a Grundy dominating sequence
of G, we derive that |S2| = r. �

Now, we are ready to prove that there are no graphs G with Grundy total domination number equal to
3.

Proposition 3.9 There exists no graph G such that γt
gr(G) = 3.

Proof. Suppose that S = (s1, s2, s3) is a Grundy total dominating sequence of a graph G. If s1 and s2
are not adjacent, the corresponding set Ŝ1 = {s1, s2} is a subset of a maximal independent set I in G. We
derive, by using Proposition 3.8 and its proof, that there exists a total dominating sequence in G of legth
2|I|, which is clearly greater than 3, a contradiction. Hence, we may assume that s1 and s2 are adjacent,
and let u be a vertex footprinted by s3. Then (u, s1, s2, s3) is a legal sequence, because u footprints s3, s1
footprints s2, s2 footprints s1 and s3 footprints u, a contradiction with S being a Grundy total dominating
sequence. We infer that there is no such graph G. �

Moreover, we prove that exactly the integers from Z
+ \{1, 3} can be realized as Grundy total domination

numbers of some graphs.

Theorem 3.10 For any n ∈ Z
+ \ {1, 3} there exists a graph Gn such that γt

gr(Gn) = n.

5



Proof. Let Gn be the prism Kn�K2, and denote the vertices of one n-clique by a1, . . . , an and of the other
n-clique by b1, . . . , bn and for each i let ai be adjacent exactly to bi among all vertices from the other clique.

Observe that G2 = C4 and so γt
gr(G2) = 2.

Consider now Gn for n ≥ 4. It is easy to see that (a1, . . . , an) is a legal sequence of Gn. Besides, notice
that δ2(Gn) = n+2. From the upper bound given in Lemma 3.4 we have that γt

gr(Gn) ≤ 2+2n−δ2(Gn) = n
and the result follows. �

In addition, we now consider the problem of finding connected graphs Gn with minimum number of
vertices and edges verifying γt

gr(Gn) = n. Clearly, if n is even, Gn = Pn.
If n is odd, we know that n ≥ 5. From [4, Theorem 4.2] it is known that if a graph G verifies γt

gr(G) =
|V (G)| then |V (G)| is even, and so |V (Gn)| ≥ n+1. Considering the number of edges, it can be proved that
|E(Gn)| ≥ |V (Gn)| + 1. In fact, since Gn is connected and the Grundy total domination number of trees
is even (see Theorem 5.1, we have that |E(Gn)| ≥ |V (Gn)|. However, if |E(Gn)| = |V (Gn)|, then Gn is a
tree with an additional edge defining a cycle. Applying Proposition 3.7 and knowing that the Grundy total
domination numbers of cycles and paths are even, it follows that if |E(Gn)| = |V (Gn)|, γt

gr(Gn) is even.
Thus, |E(Gn)| ≥ |V (Gn)|+ 1, as claimed.

For n = 5, we consider the graph G5 with 6 vertices defined by two disjoint triangles and one edge
between one vertex in each triangle. This graph clearly has the minimum number of vertices and edges.

Now, for n = 5+ 2k, let Gn be the graph obtained from G5 by adding P2k to a vertex of G5 with degree
2 (see Figure 1). From Proposition 3.7, we have that γt

gr(Gn) = γt
gr(G5) + 2k = 5 + 2k = n, and so Gn has

minimum number of vertices and edges.

P2k

Figure 1: Graphs G5+2k.

4 Grundy total dominating sequences under modular decomposi-

tion

Clearly, if a graph G (resp. G) is not connected, it can be obtained by disjoint union (resp. join) of two
non-empty graphs. If G and its complement are connected, we say that G is modular. Given a graph family
F , we denote by M(F) the family of modular graphs in F .

Let us first analyze the behaviour of the Grundy total domination number under disjoint union and join
of two graphs. Given non-empty graphs G1 and G2 with disjoint sets of vertices, G1 ⊕ G2 denotes their
disjoint union and G1 ∨ G2 their join. (Recall that in this section we consider Grundy total dominating
sequence to be the longest legal open neighborhood sequence, which coincides with the definition in graphs
without isolated vertices.)

The result for the disjoint union of graphs easily follows:

Proposition 4.1 Let G1 and G2 be non-empty graphs with disjoint set of vertices. If S1 and S2 are Grundy
total dominating sequences of G1 and G2, respectively, then S1 ⊕ S2 is a Grundy total dominating sequence
of G1 ⊕G2. Therefore, γt

gr(G1 ⊕G2) = γt
gr(G1) + γt

gr(G2).
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Considering the join of graphs, we need to distinguish between the graphs with and those without isolated
vertices. In this line, remind that the parameter η(G) has value one if the graph has isolated vertices and
zero, otherwise.

Proposition 4.2 Let S1 and S2 be, respectively, Grundy total dominating sequences of non-empty graphs
G1 and G2 with disjoint set of vertices. Let G = G1 ∨G2.

1. If η(G1) = η(G2) = 0 and |Ŝ1| ≥ |Ŝ2|, S1 is a Grundy total dominating sequence of G.

2. If η(G1) = η(G2) = 1, |Ŝ1| ≥ |Ŝ2| and v is an isolated vertex of G1, then S = (v) ⊕ S1 ⊕ (w) is a
Grundy total dominating sequence of G, for any w ∈ V (G2).

3. If η(G1) = 1, η(G2) = 0, |Ŝ1| + 2 ≥ |Ŝ2| (resp. |Ŝ1| + 2 ≤ |Ŝ2| − 1) then S = (v) ⊕ S1 ⊕ (w), for any
isolated vertex v of G1 and any w ∈ V (G2), (resp. S = S2) is a Grundy total dominating sequence of
G.

Hence,
γt
gr(G) = max{γt

gr(G1) + 2η(G1), γ
t
gr(G2) + 2η(G2)}.

Proof. First observe that, for i = 1, 2, Si is a legal sequence of G. Moreover, if Gi has an isolated vertex v
then (v)⊕ Si ⊕ (w) is a legal sequence of G, for every w ∈ V (Gj), j = 1, 2, j 6= i. Therefore,

γt
gr(G) ≥ max{γt

gr(G1) + 2η(G1), γ
t
gr(G2) + 2η(G2)}.

In order to prove the three items, it only remains to prove the opposite inequality.
Let S = (x1, . . . , xk−1, xk) be a legal sequence of G. If Ŝ∩V (Gi) 6= ∅ for i = 1, 2, without loss of generality

we can assume that x1 ∈ V (G2). Let j = min{i : 2 ≤ j ≤ k , xi ∈ V (G1)}. Since ∪
j
i=1N(xi) = V (G), j = k.

Then, Ŝ ∩ V (G1) = {xk}.

If v is an isolated vertex of G2 and v ∈ Ŝ, v = x1 and (x2, . . . , xk−1) is a legal sequence of G2. Otherwise,

if no isolated vertex of G2 belongs to Ŝ, (x1, . . . , xk−1) is a legal sequence of G2. In both cases, k ≤
γt
gr(G2) + 2η(G2).

It only remains to consider the cases Ŝ ∩ V (Gi) = ∅ for some i ∈ {1, 2}. Following the same reasoning as

before, if v is an isolated vertex of Gi and v ∈ Ŝ, v = x1 and (x2, . . . , xk) is a legal sequence of Gi. Otherwise,
(x1, . . . , xk) is a legal sequence of Gi. In both cases the inequality k ≤ γt

gr(Gi) + 2η(Gi) is satisfied. �

We introduce the concept of a modular decomposition tree of a graph G, slightly different to that defined
by V. Giakoumakis et al. in [9].

A labeled rooted complete binary tree is a triple (T, v, L) where T is a complete binary tree, v is an internal
vertex of T and L = {l(w) : w ∈ V (T )} is a list of labels associated with its vertices. Given (T1, v1, L1)
and (T2, v2, L2) with V (T1) ∩ V (T2) = ∅ and v /∈ V (T1) ∪ V (T2), we define (T1, v1, L1) v (T2, v2, L2) as the
labeled rooted complete binary tree (T, v, L) such that V (T ) = V (T1)∪V (T2)∪{v}, E(T ) = E(T1)∪E(T2)∪
{(v, v1), (v, v2)} and L = L1 ∪ L2 ∪ {l(v)}.

A graph decomposition tree is a labeled rooted complete binary tree such that the labels corresponding
with the leaves are vertex disjoint graphs and those corresponding with internal nodes belong to {⊕,∨}.
Given a graph G, a modular decomposition tree T (G) of G is a graph decomposition tree constructed
recursively as Algorithm 1 shows.

It is not hard to see that Algorithm 1 is linear (see [9]). Also, the postorder traversal of T (G) is done in
O(|V (T (G))|) time and |V (T (G))| < 2|V (G)|.

Moreover, from Propositions 4.1 and 4.2 we have that Grundy total dominating sequences of G1⊕G2 and
G1 ∨ G2 can be obtained in linear time from Grundy total dominating sequences of G1 and G2. Therefore,
given a graph class F , if the problem of finding a Grundy total dominating sequence for graphs in M(F) is
polynomial (linear) then it is polynomial (linear) for graphs in F .

In particular, if F is the family of cographs, i.e., the graphs that do not contain P4 as an induced subgraph,
it is known that M(F) only contain trivial graphs for which S = () is the Grundy total dominating sequence.
This implies the following result.
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Algorithm 1: MDT (G, T, v, L)

Input: G, a graph.
Output: (T, v, L), a modular decomposition tree of G.

1 if G is modular then
2 v is an arbitrary vertex, T = (v, ∅), L = {G}
3 STOP

4 if G is not connected then
5 ∗ = ⊕

6 if G is not connected then
7 ∗ = ∨

8 Let G1, G2 be two graphs such that G = G1 ∗G2

9 Execute MDT (G1, T1, v1, L1)
10 Execute MDT (G2, T2, v2, L2)
11 Choose v /∈ V (T1) ∪ V (T2)
12 l(v) = ∗
13 (T, v, L) = (T1, v1, L1) v (T2, v2, L2)

Theorem 4.3 The Grundy total domination number can be obtained in linear time for cographs.

Several generalizations of cographs have been defined in the literature, such as P4-sparse [15], P4-lite [16],
P4-extendible [18] and P4-reducible graphs [17]. A graph class generalizing all of them is the class of P4-tidy
graphs [9], and we deal with this class of graphs, by using the mentioned approach, in the subsection 5.3.

5 Efficient algorithms for Grundy total dominating sequences

5.1 Trees

In this section we present an efficient algorithm to determine the Grundy total domination number of an
arbitrary tree. As opposed to the algorithm for the (non-total) Grundy domination number of a tree as
presented in [3], which was very involved, the algorithm we present here is quite straightforward. The
algorithm is based on the formula that connects the Grundy total domination number of a tree to its vertex
cover number.

Theorem 5.1 Algorithm 2 returns a Grundy total dominating sequence of an arbitrary tree T , with length
twice the vertex cover number of T . In particular, for any tree T ,

γt
gr(T ) = 2τ(T ).

The complexity of Algorithm 2 is O(|V (T )|).

Proof. Let us start the proof by showing that the sequence S produced by Algorithm 2 is legal; i.e. every
vertex in the sequence footprints some vertex in T . Clearly, when a leaf u of a tree T ′ is chosen in some step
of the algorithm, it is clear that its unique neighbor w in T has not yet been totally dominated in previous
step (this is because in each step of the first WHILE loop, only one vertex becomes totally dominated and
then it is removed from T ′ together with the leaf that footrprinted it). This implies that u footprints w
(for later purposes denoted also by wi), and so the first half of the sequence S is legal. The second half is
constructed from vertices wi that are footprinted in the first part, only that they are listed in the reversed
order. At the time vertex wi appears in S, its neighbor u (let us denote it by ui) that footprinted wi, is not
yet dominated. Indeed, let T ′ be the tree at the time rigth before ui is added to the sequence. Clearly, ui
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Algorithm 2: Grundy total dominating sequence of a tree with no isolated vertices.

Input: A tree T .
Output: A Grundy dominating sequence S of T .

1 S = ();
2 T ′ = T;
3 i = 0;
4 while T ′ has non-isolated vertices do
5 Choose a leaf u ∈ T ′, and let {w} = NT ′(u);
6 S = S ⊕ (u);
7 i = i+ 1;
8 wi = w;
9 T ′ = T ′ \ {u,w}

10 while i > 0 do
11 S = S ⊕ (wi);
12 i = i− 1;

is a leaf of T ′, and wi is its support vertex. Now, all vertices wj that appear in S before wi (if any) are
from T ′. This proves that the vertex wi footprints the vertex ui, that footprinted wi, i.e. fS(wi) = ui and
fS(ui) = wi. This yields that S is a legal sequence.

The proof of the correctness and also of the formula γt
gr(T ) = 2τ(T ) is based on the Proposition 3.2,

which states that twice the vertex cover number is an upper bound for the Grundy total domination number
of any graph. We will prove that the set W of vertices wi (support vertices of the chosen leaves) that are
produced by the algorithm forms a vertex cover of the tree T . Since the length of the sequence S produced
by the algorithm is twice the cardinality of W , this implies that |Ŝ| ≥ 2τ(T ). Now, combining this with

Proposition 3.2 we infer that |Ŝ| = 2τ(T ), which at the same time also implies that S is indeed the longest
possible legal sequence, hence S is a Grundy total dominating sequence of T .

To complete the proof we thus need to show that the set W of vertices wi from S is a vertex cover of
T . Note that at the end of Algorithm 2 the remaining tree T ′ is either empty or it consists of the set I of
isolated vertices. Since T has no isolated vertices, each vertex from I has a neighbor in T . We claim that
each of the neighbors of a vertex x from I is in W . Suppose that x has a neighbor u that is not from W .
Then, as u is in S, it must be in the first half of S, i.e., at the time it was added to S, u was a leaf of some
subtree T ′ of T . But then u had only one neighbor in T ′, which is a vertex in W . This implies that all edges,
incident with vertices from I are also incident with a vertex from W . Now, if u is a vertex from the first
half of S, then u is not adjacent to some u′, which is also in the first half of S. Indeed, u′ cannot appear in
S after u, because then u′ would also be in the tree T ′ at the time u is added to S; but at that time, u is
adjacent only to a vertex w in T ′ (where w ∈ W ). Now, if u′ appears in S before u, then again, by arguing
in the same way, we find that u is not adjacent to u′. Hence, each edge of T is incident to at least one vertex
from W . This implies that W is a vertex cover of T , which completes the proof (time complexity O(|V (T )|)
is obvious). �

5.2 Bipartite distance-hereditary graphs

A graph G is distance-hereditary if for each induced connected subgraph G′ of G and all x, y ∈ V (G′),
dG′(x, y) = dG(x, y), where dG′(x, y) is the distance in G′ between x and y, i.e. the length of a shortest
path in G′ between x and y. Then, a graph is bipartite distance-hereditary if it is distance-hereditary and
bipartite.

It is known that a graph G is distance-hereditary if and only if it can be constructed from K1 by a
sequence of three operation: adding a pendant vertex, creating a true twin vertex and creating a false twin
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vertex [2].
In [11] Hammer andMafray defined a pruning sequence of a graphG as a total ordering σ = [x1, . . . , x|V (G)|]

of V (G) and a sequence Q of triples qi = (xi, Z, yi) for i = 1, . . . , |V (G)| − 1, where Z ∈ {P, F, T } and such
that, for i ∈ {1, . . . , |V (G)| − 1}, if Gi = G \ {x1, . . . , xi−1} then,

• Z = P , if xi is a leaf and yi = s(xi) in Gi,

• Z = F , if xi and yi are false twins in Gi,

• Z = T , if xi and yi are true twins in Gi.

In [11] distance hereditary graphs are characterized as the graphs which admit a pruning sequence.
Later, in [8] it is showed that distance hereditary graphs can be recognized in O(|V (G)|+ |E(G)|) and given
a distance hereditary graph G, a pruning sequence of G can be computed in O(|V (G)| + |E(G)|).

Analogously, bipartite distance-hereditary graphs are characterized as the graphs that can be constructed
fromK1 by a sequence of additions of false twin and pendant vertices. Then, a pruning sequence of a bipartite
distance hereditary graph has no words (x, T, y).

From Propositions 3.6 and 3.7 we derive the recursive Algorithm 3, which determines a Grundy total
dominating sequence of an arbitrary bipartite distance-hereditary graph.

Algorithm 3: GrundyBDH(G,S)

Input: A bipartite distance-hereditary graph G.
Output: A Grundy total dominating sequence S of G.

1 if E(G) = ∅ then
2 S = ()
3 STOP.

4 Obtain a pruning sequence Q = [q1, . . . , q|V (G)|−1] of G
5 for i = 1 to |V (G)| − 1 do
6 if qi 6= (xi, F, yi) then
7 G′ = G \ {x1, . . . , xi, yi}
8 Execute GrundyBDH(G′,S′)
9 S = (xi)⊕ S′ ⊕ (yi)

10 STOP.

Theorem 5.2 Algorithm 3 returns a Grundy total dominating sequence of an arbitrary bipartite distance-
hereditary graph G. The complexity of Algorithm 3 is O(|V (G)|(|V (G)|+ |E(G)|)).

Proof. Note that if E(G) 6= ∅ there exists i ∈ {1, . . . , |V (G)| − 1} such that qi = (xi, P, yi). Then,
Proposition 3.7 and Proposition 3.6 guarantee the correctness of the algorithm.

Finally, as we have mentioned, a pruning sequence of a (bipartite) distance hereditary graph G can be
computed in O(|V (G)| + |E(G)|) [8]. Thus, the time complexity O(|V (G)|(|V (G)| + |E(G)|)) follows from
the fact that step in line 5 runs at most |V (G)| − 1 times. �

Forest graphs are bipartite distance hereditary graphs for which proposition 3.7 allows us to simplify
Algorithm 3 (see Algorithm 4).

Note that, when the input is a tree, Algorithm 4 uses the same steps, and returns the same sequence of
vertices as Algorithm 2. The only difference is that the former algorithm keeps isolated vertices, while the
latter deletes them, when they appear as leaves of the support vertex s(ℓ).
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Algorithm 4: GrundyForest(T, S)

Input: A forest T .
Output: A Grundy total dominating sequence S of T .

1 if E(T ) = ∅ then
2 S = (),
3 STOP.

4 Choose ℓ ∈ L(T ) and let T ′ = T \ (s(ℓ) ∪ L(s(ℓ)))
5 Execute GrundyForest(T ′,S′)
6 S = (ℓ)⊕ S′ ⊕ (s(ℓ))
7 STOP.

5.3 P4-tidy graphs.

We start by defining P4-tidy graphs. Let U be a subset of vertices inducing a P4 in G. A partner of U is a
vertex v ∈ G − U such that U ∪ {v} induces at least two P4s in G. A graph G is P4-tidy if any P4 has at
most one partner. It is known that the class of P4-tidy graphs is self-complementary and hereditary [9].

Non-trivial modular P4-tidy graphs are the graphs C5, P5 and P̄5 and the spider and quasi-spider graphs
with P4-tidy heads defined below [9]. We will analyze the behaviour of the Grundy total dominating sequences
for these particular classes of modular graphs.

A graph is a spider graph if its vertex set can be partitioned into three sets S, C and H (H possible
empty), where S is a stable set, C is a clique, |S| = |C| = r ≥ 2, H is completely joined to C, and no vertex
of H is adjacent to a vertex in S. Moreover, if S = {s1, . . . , sr} and C = {c1, . . . , cr} one of the following
conditions must holds:

1. thin spider : si is adjacent to cj if and only if i = j.

2. thick spider : si is adjacent to cj if and only if i 6= j.

The size of C (and S) is called the weight of G and the set H in the partition is called the head of the spider.
A spider graph G with the partition S,C,H will be denoted G = (S,C,H).

Notice that if r = 2 thin and thick spider graphs are both P4. In what follows we consider thick spider
graphs with r ≥ 3.

Now, if G = (S,C,H) is a thin (resp. thick) spider graph, the graph obtained by replacing one vertex
v ∈ S ∪ C by K2 or K2 is called thin (resp. thick) quasi-spider graph. without loss of generality we assume
that the vertex replaced in S is sr and the vertex replaced in C is cr. Note that the replacement byK2 (K2) is
equivalent to add a false (true) twin vertex s′r or c

′
r of sr or cr, respectively. We denote by (S ←֓ W,C,H) and

(S,C ←֓ W,H) the quasi-spider graph obtaining from a spider graph with partition (S,C,H) by replacing
one vertex in S by W ∈ {K2,K2} or one vertex in C by W ∈ {K2,K2}, respectively. The weight of a
quasi-spider graph is the weight of the original spider graph.

It is known that the partition for spider and quasi-spider graphs is unique and its recognition as well as
its partition can be performed in linear time (see [9]).

From Proposition 3.6 we infer that γt
gr(S ←֓ K2, C,H) = γt

gr(S,C ←֓ K2, H) = γt
gr(S,C,H). Thus it

only remains to compute the Grundy total domination number for spider graphs and quasi-spider graphs of
the type (S ←֓ K2, C,H) and (S,C ←֓ K2, H).

Proposition 5.3 Let G = (S,C,H) be a thin spider graph of weight r ≥ 2 and T a Grundy total dominating
sequence of G[H ]. Then:

1. T ′ = (s1, . . . , sr) ⊕ T ⊕ (c1, . . . , cr) is a Grundy total dominating sequence of G and (S,C ←֓ K2, H).
Besides,

γt
gr(G) = γt

gr(S,C ←֓ K2, H) = γt
gr(G[H ]) + 2r.
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2. If G[H ] has an isolated vertex v, then T ′ = (s1, . . . , sr−1) ⊕ (v) ⊕ T ⊕ (c1, . . . , cr−1) ⊕ (sr) ⊕ (cr) is a
Grundy total dominating sequence of (S ←֓ K2, C,H). Otherwise, T ′ = (s1, . . . , sr)⊕ T ⊕ (c1, . . . , cr)
is a Grundy total dominating sequence of (S ←֓ K2, C,H). Besides,

γt
gr(S ←֓ K2, C,H) = γt

gr(G) + 2η(G[H ]).

Proof.

1. Observe that T ′ is a legal sequence of G and (S,C ←֓ K2, H).

The equality γt
gr(G) = γt

gr(G[H ]) + 2r follows immediately from Proposition 3.7.

Now consider the thin quasi-spider graph (S,C ←֓ K2, H). From Proposition 3.7, it is enough to analyze
the graph G′ obtained by deletion of the r− 1 pendant vertices s1, . . . , sr−1 and their neighbours. It is
easy to see that G′ is the join ofK2 and the graph obtained by the disjoint union of G[H ] and the trivial
graph having sr as its vertex. By Proposition 4.2, γt

gr(G
′) = max{2, γt

gr(G[H ]) + 2} = γt
gr(G[H ]) + 2.

Then, γt
gr(S,C ←֓ K2, H) = γt

gr(G[H ]) + 2r = γt
gr(G).

2. Observe that T ′ is a legal sequence of (S ←֓ K2, C,H).

Following the same reasoning that in the previous item, in this case G′ is the join of the graph
G[H ]⊕K2 and the trivial graph having cr as its vertex. By Proposition 4.2, γt

gr(G
′) = γt

gr(G[H ]⊕K2)+
2η(G[H ]⊕K2) = γt

gr(G[H ])+2η(G[H ])+2. Then, γt
gr(S ←֓ K2, C,H) = γt

gr(G[H ])+2η(G[H ])+2r =
γt
gr(G) + 2η(G[H ]).

�

Considering thick spider and quasi-spider graphs we have the following result.

Proposition 5.4 Let G = (S,C,H) be a thick spider graph of weight r ≥ 3 and Z a Grundy total dominating
sequence of G[H ]. Then,

1. Z ′ = (s1, s2)⊕Z ⊕ (c1, c2) is a Grundy total dominating sequence of G and (S,C ←֓ K2, H). Besides,

γt
gr(G) = γt

gr(S,C ←֓ K2, H) = 4 + γt
gr(G[H ]).

2. Z ′ = (s1, s2, sr, s
′
r)⊕ Z ⊕ (c1, c2) is a Grundy total dominating sequence of (S ←֓ K2, C,H). Besides,

γt
gr(S ←֓ K2, C,H) = γt

gr(G) + 2 = 6 + γt
gr(G[H ]).

Proof.

1. We obtain the lower bound from the fact that the sequence Z ′ is a Grundy total dominating sequence
of G and (S,C ←֓ K2, H).

For the upper bound, we first consider the thick spider graph G.

Let T be a legal sequence of G. Since for all i 6= j, N(ci) ∪ N(cj) = V (G), |T̂ ∩ C| ≤ 2. Let I

be the set of isolated vertices of G[H ]. It is not hard to see that |T̂ ∩ (S ∪ I)| ≤ 2. Finally, since

|T̂ ∩ (H \ I)| ≤ γt
gr(G[H ]), γt

gr(G) ≤ 4 + γt
gr(G[H ]).

Now, consider T a legal sequence of the thick quasi-spider graph (S,C ←֓ K2, H). As before, |T̂ ∩

(S ∪ I)| ≤ 2 and |T̂ ∩ (H \ I)| ≤ γt
gr(G[H ]). If |T̂ ∩ {c1, c2, . . . , cr, c

′
r}| ≤ 2 then γt

gr(S,C ←֓ K2, H) ≤
4 + γt

gr(G[H ]).

If |T̂ ∩ {c1, c2, . . . , cr, c′r}| > 2 then cr and c′r belong to T̂ and |T̂ ∩ {c1, c2, . . . , cr, c′r}| = 3. Let

i ∈ {1, . . . , r − 1} such that {cr, c′r, ci} = T̂ ∩ {c1, c2, . . . , cr, c′r}. Note that cr and c′r must appear
before ci in T . without loss of generality we assume that c′r appears after cr in T . Therefore, since
{c1, c2, . . . , cr, c′r} ⊆ N(cr) ∪ N(c′r), there is no vertex of I ∪ S in T after c′r. Besides, since c′r only

footprints cr, the only possible vertex of I ∪ S in T before c′r is sr. Then, |T̂ ∩ (S ∪ I)| ≤ 1 and thus
γt
gr(S,C ←֓ K2, H) ≤ 4 + γt

gr(G[H ]).
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2. Let us consider the thick quasi-spider graph (S ←֓ K2, C,H). Clearly, by deleting the true twin vertex
s′r we obtain G. Then, by Lemma 3.5, we have γt

gr(S ←֓ K2, C,H) ≤ γt
gr(G) + 2. To complete the

proof we only need to observe that Z ′ is a Grundy total dominating sequence of (S ←֓ K2, C,H).

�

As we have already mentioned, non-trivial modular P4-tidy graphs are spider and quasi-spider graphs
with P4-tidy heads and the graphs C5, P5 and P̄5. Therefore, combining Propositions 5.3 and 5.4, and the
aproach given in Section 4, we derive the following theorem.

Theorem 5.5 A Grundy total dominating sequence can be obtained in linear time for P4-tidy graphs.

6 NP-completeness in split graphs

The following problem was studied in [3].

Grundy Domination Number Problem

Input: G = (V,E) , k ∈ Z
+.

Question: Is there a Grundy dominating sequence of G of length at least k?

It was shown that Grundy Domination Number Problem is NP-complete, even when restricted to
chordal graphs. On the other hand, the following problem

Grundy Total Domination Number Problem

Input: G = (V,E) , k ∈ Z
+.

Question: Is there a Grundy total dominating sequence of G of length at least k?

was shown to be NP-complete even when restricted to bipartite graphs [4]. In the proof a translation
from a certain covering problem in hypergraphs was used. As the next theorem shows, Grundy Total

Domination Number Problem remains NP-complete, when restricted to split graphs, which contrasts
the result from [3], showing that Grundy Domination Number Problem is polynomial time solvable in
split graphs. (Recall that a graph G is a split graph, if its vertex set can be partitioned into two subsets, one
of which induces a clique and the other is a stable set.)

Theorem 6.1 Grundy Total Domination Number is NP-complete, even when restricted to split graphs.

Proof. It is clear that the problem is in NP.
Given a graph G = (V,E) with no isolated vertices, we construct the split graph G′ = (V1 ∪ V2, E

′) as
follows: V1 = {v1 : v ∈ V } is a stable set, V2 = {v2 : v ∈ V } induces a clique and NG′(v1i ) = {v

2 ∈ V2 : v ∈
NG(vi)}.

We will prove that γt
gr(G

′) = 2γt
gr(G), which by the NP-completeness result on Grundy Total Domi-

nation Number Problem from [3] readily implies that the problem is NP-complete even when restricted
to split graphs.

If (v1, . . . , vk) is a Grundy total dominating sequence of G, then (v11 , . . . , v
1
k, v

2
1 , . . . , v

2
k) is a legal sequence

of G′. Hence γt
gr(G

′) ≥ 2γt
gr(G).

Now, let S = (w1, . . . , wk) be a maximal legal sequence of G′. Let t = min{j : wj ∈ V2} and r = min{j :
j > t, wj ∈ V2}. It is clear that, for all j ≥ r, wj ∈ V2. We can thus write

S = (v11 , . . . , v
1
t−1, v

2
1′ , v

1
t , . . . , v

1
r−2, v

2
2′ , . . . , v

2
(k−r+2)′),

where wt = v21′ , wr = v22′ appear in S as the first and the second vertex from Ŝ ∩ V2. (Note that we allow
t− 1 = r − 2, in which case all vertices from V2 appear in S after all vertices from V1.)
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Consider the subsequence (v11 , . . . , v
1
r−2) of the vertices in S that are taken from Ŝ ∩ V1. Clearly, the

corresponding sequence (v1, . . . , vr−2) in G is a legal sequence in G (not necessarily total dominating se-

quence). Thus |Ŝ ∩ V1| ≤ γt
gr(G). In addition, the sequence (v2′ , . . . , v(k−r+2)′) in G that corresponds to the

sequence (v22′ , . . . , v
2
(k−r+2)′) of vertices from S that are taken from Ŝ ∩ V2 \ {wt}, is a legal sequence of G

(not necessarily total dominating sequence). Hence |Ŝ ∩ V2| ≤ γt
gr(G) + 1.

Now, if NG(v2′ ) \ NG(v1′) 6= ∅, then the sequence (v1′ , . . . , v(k−r+2)′) in G, which corresponds to the

sequence of vertices from Ŝ ∩ V2, is also a legal sequence in G, hence k − r + 2 ≤ γt
gr(G); or, in other

words, |Ŝ ∩ V2| ≤ γt
gr(G). Thus, we infer that |Ŝ| = |Ŝ ∩ V1| + |Ŝ ∩ V2| ≤ 2γt

gr(G). Finally, suppose that
NG(v2′) \ NG(v1′) = ∅. This implies that v22′ footprints only v21′ . But then the sequence (v11 , . . . , v

1
r−2)

does not footprint v21′ , which implies that (v1, . . . , vr−2) is not a total dominating sequence of G, and so

r− 2 = |Ŝ ∩V1| ≤ γt
gr(G)− 1. We again infer |Ŝ| = |Ŝ ∩V1|+ |Ŝ ∩V2| ≤ 2γt

gr(G), which completes the proof.
�
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