Partial immunization of trees

Mitre C. Dourado¹

Stefan Ehard² Lucia D. Penso²

Dieter Rautenbach²

 1 Instituto de Matemática

Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, mitre@dcc.ufrj.br

² Institut für Optimierung und Operations Research, Universität Ulm, Ulm, Germany, {stefan.ehard,lucia.penso,dieter.rautenbach}@uni-ulm.de

Abstract

For a graph G and an integer-valued function τ on its vertex set, a dynamic monopoly is a set of vertices of G such that iteratively adding to it vertices u of G that have at least $\tau(u)$ neighbors in it eventually yields the vertex set of G. We study the problem of maximizing the minimum order of a dynamic monopoly by increasing the threshold values of individual vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase. We solve this problem efficiently for trees, which extends a result of Khoshkhah and Zaker (On the largest dynamic monopolies of graphs with a given average threshold, Canadian Mathematical Bulletin 58 (2015) 306-316).

Keywords: Dynamic monopoly; vaccination

1 Introduction

As a simple model for an infection process within a network [12, 13, 16] one can consider a graph G in which each vertex u is assigned a non-negative integral threshold value $\tau(u)$ quantifying how many infected neighbors of u are required to spread the infection to u. In this setting, a dynamic monopoly of (G, τ) is a set D of vertices such that an infection starting in D spreads to all of G, and the smallest order dyn (G, τ) of such a dynamic monopoly measures the vulnerability of G for the given threshold values.

Khoshkhah and Zaker [17] consider the maximum of $dyn(G, \tau)$ over all choices for the function τ such that the average threshold is at most some positive real $\bar{\tau}$. They show that this maximum equals

$$\max\left\{k: \sum_{i=1}^{k} (d_G(u_i) + 1) \le n(G)\bar{\tau}\right\},$$
(1)

where $u_1, \ldots, u_{n(G)}$ is a linear ordering of the vertices of G with non-decreasing vertex degrees $d_G(u_1) \leq \ldots \leq d_G(u_{n(G)})$. To obtain this simple formula one has to allow $d_G(u)+1$ as a threshold value for vertices u, a value that makes these vertices completely immune to the infection, and forces every dynamic monopoly to contain them. Requiring $\tau(u) \leq d_G(u)$ for every vertex u of G leads to a harder problem; Khoshkhah and Zaker [17] show hardness for planar graphs

and describe an efficient algorithm for trees. In the present paper we consider their problem with additional vertex-dependent lower and upper bounds on the threshold values. As our main result, we describe an efficient algorithm for trees based on a completely different approach than the one in [17].

In order to phrase the problem and our results exactly, and to discuss further related work, we introduce some terminology. Let G be a finite, simple, and undirected graph. A threshold function for G is a function from the vertex set V(G) of G to the set of integers. For notational simplicity, we allow negative threshold values. Let $\tau \in \mathbb{Z}^{V(G)}$ be a threshold function for G. For a set D of vertices of G, the hull $H_{(G,\tau)}(D)$ of D in (G,τ) is the smallest set H of vertices of G such that $D \subseteq H$, and $u \in H$ for every vertex u of G with $|H \cap N_G(u)| \ge \tau(u)$. Clearly, the set $H_{(G,\tau)}(D)$ is obtained by starting with D, and iteratively adding vertices u that have at least $\tau(u)$ neighbors in the current set as long as possible. With this notation, the set D is a dynamic monopoly of (G,τ) if $H_{(G,\tau)}(D)$ equals the vertex set of G, and $dyn(G,\tau)$ is the minimum order of such a set. A dynamic monopoly of (G,τ) of order $dyn(G,\tau)$ is minimum. The parameter $dyn(G,\tau)$ is computationally hard [5,10]; next to general bounds [1,9,15] efficient algorithms are only known for essentially tree-structured instances [2,5,7,8,10].

We can now phrase the problem we consider: For a given graph G, two functions $\tau, \iota_{\max} \in \mathbb{Z}^{V(G)}$, and a non-negative integer *budget b*, let $\operatorname{vacc}(G, \tau, \iota_{\max}, b)$ be defined as

$$\max\left\{\operatorname{dyn}(G,\tau+\iota):\iota\in\mathbb{Z}^{V(G)}, 0\leq\iota\leq\iota_{\max}, \text{ and } \iota(V(G))=b\right\},\tag{2}$$

where inequalities between functions are meant pointwise, and $\iota(V(G)) = \sum_{u \in V(G)} \iota(u)$. The function ι is the *increment* of the original threshold function τ . The final threshold function $\tau + \iota$ must lie between τ and $\tau + \iota_{\max}$, which allows to incorporate vertex-dependent lower and upper bounds. Note that no such increment ι exists if $\iota_{\max}(V(G))$ is strictly less than b, in which case $\operatorname{vacc}(G, \tau, \iota_{\max}, b)$ equals $\max \emptyset = -\infty$. Note that we require $\iota(V(G)) = b$ in (2), which determines the average final threshold as $(\tau(V(G)) + b)/n(G)$. Since $\operatorname{dyn}(G, \rho) \leq \operatorname{dyn}(G, \rho')$ for every two threshold functions ρ and ρ' for G with $\rho \leq \rho'$, for $\iota_{\max}(V(G)) \geq b$, the value in (2) remains the same when replacing $\iota(V(G)) = b'$ with $\iota(V(G)) \leq b'$ provided that $b \leq \iota_{\max}(V(G))$.

The results of Khoshkhah and Zaker [17] mentioned above can be phrased by saying

- (i) that $\operatorname{vacc}(G, 0, d_G + 1, n(G)\bar{\tau})$ equals (1) whenever $n(G)\bar{\tau}$ is a non-negative integer at most $\sum_{u \in V(G)} (d_G(u) + 1) = 2m(G) + n(G), \text{ where } m(G) \text{ is the size of } G, \text{ and}$
- (ii) that $vacc(T, 0, d_T, b)$ can be determined efficiently whenever T is a tree.

Our main result is the following.

Theorem 1.1. For a given tuple $(T, \tau, \iota_{\max}, b)$, where T is a tree of order $n, \tau, \iota_{\max} \in \mathbb{Z}^{V(G)}$, and b is an integer with $0 \le b \le \iota_{\max}(V(T))$, the value $\operatorname{vacc}(T, \tau, \iota_{\max}, b)$ as well as an increment $\iota \in \mathbb{Z}^{V(G)}$ with $0 \le \iota \le \iota_{\max}$ and $\iota(V(G)) = b$ such that $\operatorname{vacc}(T, \tau, \iota_{\max}, b) = \operatorname{dyn}(T, \tau + \iota)$ can be determined in time $O(n^2(b+1)^2)$.

While our approach relies on dynamic programming, Khoshkhah and Zaker show (ii) using the following result in combination with a minimum cost flow algorithm. **Theorem 1.2** (Khoshkhah and Zaker [17]). For a given tree T, and a given integer b with $0 \le b \le 2m(T)$, there is a matching M of T such that $vacc(T, 0, d_T, b) = dyn(G, \tau_M)$ and $\tau_M(V(T)) \le b$, where

 $au_M: V(T) \to \mathbb{Z}: u \mapsto \begin{cases} d_T(u) &, u \text{ is incident with a vertex in } M, and \\ 0 &, otherwise. \end{cases}$

We believe that the threshold function τ_M considered in Theorem 1.2 is a good choice in general, and pose the following.

Conjecture 1.3. For a given graph G, and a given integer b with $0 \le b \le 2m(G)$, there is a matching M of G such that $\operatorname{vacc}(G, 0, d_G, b) \le 2\operatorname{dyn}(G, \tau_M)$ and $\tau_M(V(G)) \le b$, where τ_M is as in Theorem 1.2 (with T replaced by G).

As a second result we show Conjecture 1.3 for some regular graphs.

Theorem 1.4. Conjecture 1.3 holds if G is r-regular and $b \ge (2r-1)(r+1)$.

Before we proceed to the proofs of Theorems 1.1 and 1.4, we mention some further related work. Centeno and Rautenbach [6] establish bounds for the problems considered in [17]. In [14], Ehard and Rautenbach consider the following two variants of (2) for a given triple (G, τ, b) , where G is a graph, τ is a threshold function for G, and b is a non-negative integer:

$$\max\left\{\operatorname{dyn}(G-X,\tau): X \in \binom{V(G)}{b}\right\} \quad \text{and} \quad \max\left\{\operatorname{dyn}(G,\tau_X): X \in \binom{V(G)}{b}\right\},$$

where

$$\tau_X(u) = \begin{cases} d_G(u) + 1 & \text{, if } u \in X, \\ \tau(u) & \text{, if } u \in V(G) \setminus X, \end{cases},$$

and $\binom{V(G)}{b}$ denotes the set of all *b*-element subsets of V(G). For both variants, they describe efficient algorithms for trees. In [3] Bhawalkar et al. study so-called anchored *k*-cores. For a given graph *G*, and a positive integer *k*, the *k*-core of *G* is the largest induced subgraph of *G* of minimum degree at least *k*. It is easy to see that the vertex set of the *k*-core of *G* equals $V(G) \setminus H_{(G,\tau)}(\emptyset)$ for the special threshold function $\tau = d_G - k + 1$. Now, the anchored *k*-core problem [3] is to determine

$$\max\left\{ \left| V(G) \setminus H_{(G,\tau_X)}(\emptyset) \right| : X \in \binom{V(G)}{b} \right\},\tag{3}$$

for a given graph G and non-negative integer b. Bhawalkar et al. show that (3) is hard to approximate in general, but can be determined efficiently for k = 2, and for graphs of bounded treewidth. Vaccination problems in random settings were studied in [4, 11, 16].

2 Proofs of Theorem 1.1 and Theorem 1.4

Throughout this section, let T be a tree rooted in some vertex r, and let $\tau, \iota_{\max} \in \mathbb{Z}^{V(T)}$ be two functions. For a vertex u of T, and a function $\rho \in \mathbb{Z}^{V(T)}$, let V_u be the subset of V(T) containing

u and its descendants, let T_u be the subtree of T induced by V_u , and let $\rho^{\to u} \in \mathbb{Z}^{V(T)}$ be the function with

$$\rho^{\to u}(v) = \begin{cases} \rho(v) &, \text{ if } v \in V(T) \setminus \{u\}, \text{ and} \\ \rho(v) - 1 &, \text{ if } v = u. \end{cases}$$

Below we consider threshold functions of the form $\rho|_{V_u} + \rho'|_{V_u}$ for the subtrees T_u , where ρ and ρ' are defined on sets containing V_u . For notational simplicity, we omit the restriction to V_u and write ' $\rho + \rho'$ ' instead of ' $\rho|_{V_u} + \rho'|_{V_u}$ ' in these cases. For an integer k and a non-negative integer b, let [k] be the set of positive integers at most k, and let

$$\mathcal{P}_k(b) = \left\{ (b_1, \dots, b_k) \in \mathbb{N}_0^k : b_1 + \dots + b_k = b \right\}$$

be the set of ordered partitions of b into k non-negative integers.

Our approach to show Theorem 1.1 is similar as in [14] and relies on recursive expressions for the following two quantities: For a vertex u of T and a non-negative integer b, let

- $x_0(u,b)$ be the maximum of $dyn(T_u, \tau + \iota)$ over all $\iota \in \mathbb{Z}^{V_u}$ with $0 \le \iota(v) \le \iota_{\max}(v)$ for every $v \in V_u$, and $\iota(V_u) = b$, and
- $x_1(u,b)$ be the maximum of dyn $(T_u, (\tau + \iota)^{\to u})$ over all $\iota \in \mathbb{Z}^{V_u}$ with $0 \le \iota(v) \le \iota_{\max}(v)$ for every $v \in V_u$, and $\iota(V_u) = b$.

The increment ι captures the local increases of the thresholds within V_u . The value $x_1(u, b)$ corresponds to a situation, where the infection reaches the parent of u before it reaches u, that is, the index 0 or 1 indicates the amount of help that u receives from outside of V_u .

Note that $x_j(u,b) = -\infty$ if and only if $b > \iota_{\max}(V_u)$ for both j in $\{0,1\}$. If $b \le \iota_{\max}(V_u)$, then let $\iota_0(u,b), \iota_1(u,b) \in \mathbb{Z}^{V_u}$ with $0 \le \iota_j(u,b) \le \iota_{\max}$, and $\iota_j(u,b)(V_u) = b$ for both $j \in \{0,1\}$, be such that

$$x_0(u,b) = \operatorname{dyn}\left(T_u, \tau + \iota_0(u,b)\right) \text{ and}$$

$$x_1(u,b) = \operatorname{dyn}\left(T_u, \left(\tau + \iota_1(u,b)\right)^{\to u}\right),$$

where, if possible, let $\iota_0(u, b) = \iota_1(u, b)$. As we show in Corollary 2.4 below, $\iota_0(u, b)$ always equals $\iota_1(u, b)$, which is a key fact for our approach.

Lemma 2.1. $x_0(u,b) \ge x_1(u,b)$, and if $x_0(u,b) = x_1(u,b)$, then $\iota_0(u,b) = \iota_1(u,b)$.

Proof. If $x_1(u, b) = -\infty$, then the statement is trivial. Hence, we may assume that $x_1(u, b) > -\infty$, which implies that the function $\iota_1(u, b)$ is defined. Let D be a minimum dynamic monopoly of $(T_u, \tau + \iota_1(u, b))$. By the definition of $x_0(u, b)$, we have $x_0(u, b) \ge |D|$. Since D is a dynamic monopoly of $(T_u, (\tau + \iota_1(u, b))^{\rightarrow u})$, we obtain $x_0(u, b) \ge |D| \ge \operatorname{dyn}(T_u, (\tau + \iota_1(u, b))^{\rightarrow u}) = x_1(u, b)$. Furthermore, if $x_0(u, b) = x_1(u, b)$, then $x_0(u, b) = |D| = \operatorname{dyn}(T_u, \tau + \iota_1(u, b))$, which implies $\iota_0(u, b) = \iota_1(u, b)$.

Lemma 2.2. If u is a leaf of T, and b is an integer with $0 \le b \le \iota_{\max}(u)$, then, for $j \in \{0, 1\}$,

$$x_j(u,b) = \begin{cases} 0 & , if \tau(u) + b - j \le 0, \\ 1 & , otherwise, and \\ \iota_j(u,b)(u) = b. \end{cases}$$

Proof. These equalities follow immediately from the definitions.

Lemma 2.3. Let u be a vertex of T that is not a leaf, and let b be a non-negative integer. If v_1, \ldots, v_k are the children of u, and $\iota_0(v_i, b_i) = \iota_1(v_i, b_i)$ for every $i \in [k]$ and every integer b_i with $0 \le b_i \le \iota_{\max}(V_{v_i})$, then, for $j \in \{0, 1\}$,

$$x_j(u,b) = z_j(u,b), and \tag{4}$$

$$\iota_0(u,b) = \iota_1(u,b), \text{ if } b \le \iota_{\max}(V_u), \tag{5}$$

where $z_i(u, b)$ is defined as

$$\max\left\{\delta_j(b_u, b_1, \dots, b_k) + \sum_{i=1}^k x_1(v_i, b_i) : (b_u, b_1, \dots, b_k) \in \mathcal{P}_{k+1}(b) \text{ with } b_u \le \iota_{\max}(u)\right\},\$$

and, for $(b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b)$ with $b_u \leq \iota_{\max}(u)$,

$$\delta_j(b_u, b_1, \dots, b_k) := \begin{cases} 0 & , if \left| \left\{ i \in [k] : x_0(v_i, b_i) = x_1(v_i, b_i) \right\} \right| \ge \tau(u) + b_u - j, and \\ 1 & , otherwise. \end{cases}$$

Proof. By symmetry, it suffices to consider the case j = 0.

First, suppose that $b > \iota_{\max}(V_u)$. If $(b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b)$ with $b_u \leq \iota_{\max}(u)$, then $b_i > \iota_{\max}(V_{v_i})$ for some $i \in [k]$, which implies $z_0(u, b) = -\infty = x_0(u, b)$.

Now, let $b \leq n(T_u)$, which implies $x_0(u, b) > -\infty$. The following two claims complete the proof of (4).

Claim 1. $x_0(u, b) \ge z_0(u, b)$.

Proof of Claim 1. It suffices to show that $x_0(u,b) \geq \delta_0(b_u,b_1,\ldots,b_k) + \sum_{i=1}^k x_1(v_i,b_i)$ for every choice of (b_u,b_1,\ldots,b_k) in $\mathcal{P}_{k+1}(b)$ with $b_u \leq \iota_{\max}(u)$ and $b_i \leq \iota_{\max}(V_{v_i})$ for every $i \in [k]$. Let (b_u,b_1,\ldots,b_k) be one such an element. Let $\iota_u \in \mathbb{Z}^{V_u}$ be defined as

$$\iota_u(v) = \begin{cases} b_u & \text{, if } v = u \text{, and} \\ 0 & \text{, otherwise,} \end{cases}$$
(6)

and let $\iota = \iota_u + \sum_{i=1}^k \iota_1(v_i, b_i)$, where $\iota_1(v_i, b_i)(u)$ is set to 0 for every $i \in [k]$. Since $\iota(V_u) = b$ and $0 \le \iota \le \iota_{\max}$, we have $x_0(u, b) \ge \operatorname{dyn}(T_u, \tau + \iota)$.

Let D be a minimum dynamic monopoly of $(T_u, \tau + \iota)$, that is, $|D| \leq x_0(u, b)$. For each $i \in [k]$, it follows that the set $D_i = D \cap V_{v_i}$ is a dynamic monopoly of $(T_{v_i}, (\tau + \iota)^{\rightarrow v_i})$. Since,

restricted to V_{v_i} , the two functions $(\tau + \iota)^{\rightarrow v_i}$ and $(\tau + \iota_1(v_i, b_i))^{\rightarrow v_i}$ coincide, we obtain

$$|D_i| \ge \operatorname{dyn}\left(T_{v_i}, \left(\tau + \iota_1(v_i, b_i)\right)^{\to v_i}\right) \ge x_1(v_i, b_i).$$

If $\delta_0(b_u, b_1, \dots, b_k) = 0$, then $|D| \ge \sum_{i=1}^k |D_i| \ge \delta_0(b_u, b_1, \dots, b_k) + \sum_{i=1}^k x_1(v_i, b_i)$. Similarly, if $u \in D$, then $|D| = 1 + \sum_{i=1}^k |D_i| \ge \delta_0(b_u, b_1, \dots, b_k) + \sum_{i=1}^k x_1(v_i, b_i)$. Therefore, we may assume that $\delta_0(b_u, b_1, \dots, b_k) = 1$ and that $u \notin D$. This implies that there is some $\ell \in [k]$ with $x_0(v_\ell, b_\ell) > x_1(v_\ell, b_\ell)$ such that $D_\ell = D \cap V_{v_\ell}$ is a dynamic monopoly of $(T_{v_\ell}, \tau + \iota)$. Since, by assumption, $\iota_0(v_\ell, b_\ell) = \iota_1(v_\ell, b_\ell)$, we obtain that, restricted to V_{v_ℓ} , the two functions $\tau + \iota$ and $\tau + \iota_0(v_\ell, b_\ell)$ coincide, which implies $|D_\ell| \ge dyn(T_{v_\ell}, \tau + \iota_0(v_\ell, b_\ell)) = x_0(v_\ell, b_\ell) \ge 1 + x_1(v_\ell, b_\ell)$. Therefore, also in this case, $|D| = |D_\ell| + \sum_{i \in [k] \setminus \{\ell\}} |D_i| \ge \delta_0(b_u, b_1, \dots, b_k) + \sum_{i=1}^k x_1(v_i, b_i)$.

Claim 2. $x_0(u, b) \le z_0(u, b)$.

Proof of Claim 2. Let $\iota = \iota_0(u, b)$, that is, $x_0(u, b) = \operatorname{dyn}(T_u, \tau + \iota)$. Let $b_i = \iota(V_{v_i})$ for every $i \in [k]$, and let $b_u = b - \sum_{i=1}^k b_i$. Clearly, $(b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b)$ and $b_u \leq \iota_{\max}(u)$. Let D_i be a minimum dynamic monopoly of $(T_{v_i}, (\tau + \iota)^{\rightarrow v_i})$ for every $i \in [k]$. By the definition of $x_1(v_i, b_i)$, we obtain $|D_i| \leq x_1(v_i, b_i)$. Let $D = \{u\} \cup \bigcup_{i=1}^k D_i$. The set D is a dynamic monopoly of $(T_u, \tau + \iota)$, which implies $x_0(u, b) \leq |D|$.

If $\delta_0(b_u, b_1, ..., b_k) = 1$, then

$$x_0(u,b) \le |D| = 1 + \sum_{i=1}^k |D_i| \le \delta_0(b_u, b_1, \dots, b_k) + \sum_{i=1}^k x_1(v_i, b_i) \le z_0(u, b)$$

Therefore, we may assume that $\delta_0(b_u, b_1, \ldots, b_k) = 0$. By symmetry, we may assume that $x_0(v_i, b_i) = x_1(v_i, b_i)$ for every $i \in [\tau(u) + b_u]$. Let D'_i be a minimum dynamic monopoly of $(T_{v_i}, \tau + \iota)$ for every $i \in [\tau(u) + b_u]$. By the definition of $x_0(v_i, b_i)$, we obtain $|D'_i| \leq x_0(v_i, b_i) = x_1(v_i, b_i)$. Let $D' = \bigcup_{i \in [\tau(u) + b_u]} D'_i \cup \bigcup_{i \in [k] \setminus [\tau(u) + b_u]} D_i$. The set D' is a dynamic monopoly of $(T_u, \tau + \iota)$. This implies

$$x_0(u,b) \le |D'| = \sum_{i \in [\tau(u)+b_u]} |D'_i| + \sum_{i \in [k] \setminus [\tau(u)+b_u]} |D_i| \le \sum_{i \in [k]} x_1(v_i,b_i) \le z_0(u,b),$$

which completes the proof of the claim.

It remains to show (5). If $x_0(u,b) = x_1(u,b)$, then (5) follows from Lemma 2.1. Hence, we may assume that $x_0(u,b) > x_1(u,b)$. Since, by definition,

$$\delta_1(b_u, b_1, \dots, b_k) \le \delta_0(b_u, b_1, \dots, b_k) \le \delta_1(b_u, b_1, \dots, b_k) + 1$$

for every $(b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b)$ with $b_u \leq \iota_{\max}(u)$, we obtain $z_1(u, b) \leq z_0(u, b) \leq z_1(u, b) + 1$.

Together with (4), the inequality $x_0(u,b) > x_1(u,b)$ implies that

$$x_0(u,b) = z_0(u,b) > z_1(u,b) = x_1(u,b)$$
 and
 $z_1(u,b) = z_0(u,b) - 1.$

Let $(b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b)$ with $b_u \leq \iota_{\max}(u)$ be such that

$$z_0(u,b) = \delta_0(b_u, b_1, \dots, b_k) + \sum_{i=1}^k x_1(v_i, b_i).$$

We obtain

$$z_{1}(u,b) \geq \delta_{1}(b_{u},b_{1},\ldots,b_{k}) + \sum_{i=1}^{k} x_{1}(v_{i},b_{i})$$

$$\geq \delta_{0}(b_{u},b_{1},\ldots,b_{k}) - 1 + \sum_{i=1}^{k} x_{1}(v_{i},b_{i})$$

$$= z_{0}(u,b) - 1$$

$$= z_{1}(u,b),$$

which implies $z_1(u, b) = \delta_1(b_u, b_1, \dots, b_k) + \sum_{i=1}^k x_1(v_i, b_i)$, that is, the same choice of (b_u, b_1, \dots, b_k) in $\mathcal{P}_{k+1}(b)$ with $b_u \leq \iota_{\max}(u)$ maximizes the terms defining $z_0(u, b)$ and $z_1(u, b)$.

Since $z_0(u,b) > z_1(u,b)$, we obtain $\delta_1(b_u, b_1, \ldots, b_k) = 0$ and $\delta_0(b_u, b_1, \ldots, b_k) = 1$, which, by the definition of δ_j , implies that there are exactly $\tau(u) + b_u - 1$ indices i in [k] with $x_0(v_i, b_i) = x_1(v_i, b_i)$. By symmetry, we may assume that $x_0(v_i, b_i) = x_1(v_i, b_i)$ for $i \in [\tau(u) + b_u - 1]$ and $x_0(v_i, b_i) > x_1(v_i, b_i)$ for $i \in [k] \setminus [\tau(u) + b_u - 1]$.

Let $\iota = \iota_u + \sum_{i=1}^k \iota_0(v_i, b_i)$, where $\iota_0(v_i, b_i)(u)$ is set to 0 for every $i \in [k]$ and ι_u is as in (6). Note

that, by assumption, we have $\iota = \iota_u + \sum_{i=1}^k \iota_1(v_i, b_i)$. Let D be a minimum dynamic monopoly of $(T_u, \tau + \iota)$. By the definition of $x_0(u, b)$, we have $|D| \leq x_0(u, b)$. Let $D_i = D \cap V_{v_i}$ for every $i \in [k]$. Since D_i is a dynamic monopoly of $(T_{v_i}, (\tau + \iota)^{\rightarrow v_i})$ for every $i \in [k]$, we obtain $|D_i| \geq x_1(v_i, b_i)$. Note that

- either $u \in D$,
- or $u \notin D$ and there is some index $\ell \in [k] \setminus [\tau(u) + b_u 1]$ such that $D_\ell = D \cap V_{v_\ell}$ is a dynamic monopoly of $(T_{v_\ell}, \tau + \iota)$.

In the first case, we obtain

$$z_0(u,b) = x_0(u,b) \ge |D| = 1 + \sum_{i=1}^k |D_i| \ge 1 + \sum_{i=1}^k x_1(v_i,b_i) = z_0(u,b),$$

and, in the second case, we obtain $|D_{\ell}| \ge x_0(v_{\ell}, b_{\ell}) \ge x_1(v_{\ell}, b_{\ell}) + 1$, and, hence,

$$z_0(u,b) = x_0(u,b) \ge |D| = |D_\ell| + \sum_{i \in [k] \setminus \{\ell\}} |D_i| \ge 1 + \sum_{i=1}^k x_1(v_i,b_i) = z_0(u,b).$$

In both cases we obtain $|D| = x_0(u, b)$, which implies that $\iota_0(u, b)$ may be chosen equal to ι .

Now, let D^- be a minimum dynamic monopoly of $(T_u, (\tau + \iota)^{\to u})$. By the definition of $x_1(u, b)$, we have $|D^-| \leq x_1(u, b)$. Let $D_i^- = D^- \cap V_{v_i}$ for every $i \in [k]$. Since D_i^- is a dynamic monopoly of $(T_{v_i}, (\tau + \iota)^{\to v_i})$ for every $i \in [k]$, we obtain $|D_i^-| \geq x_1(v_i, b_i)$. Now,

$$z_1(u,b) = x_1(u,b) \ge |D^-| \ge \sum_{i=1}^k x_1(v_i,b_i) = z_1(u,b),$$

which implies that $|D^-| = x_1(u, b)$, and that $\iota_1(u, b)$ may be chosen equal to ι . Altogether, the two functions $\iota_0(u, b)$ and $\iota_1(u, b)$ may be chosen equal, which implies (5).

Applying induction using Lemma 2.2 and Lemma 2.3, we obtain the following.

Corollary 2.4. $\iota_0(u,b) = \iota_1(u,b)$ for every vertex u of T, and every integer b with $0 \le b \le \iota_{\max}(V_u)$.

Apart from the specific values of $x_0(u, b)$ and $x_1(u, b)$, the arguments in the proof of Lemma 2.3 also yield feasible recursive choices for $\iota_0(u, b)$. In fact, if

$$x_0(u,b) = \delta_0(b_u, b_1, \dots, b_k) + \sum_{i=1}^k x_1(v_i, b_i) > -\infty$$

for $(b_u, b_1, \ldots, b_k) \in \mathcal{P}_{k+1}(b)$ with $b_u \leq \iota_{\max}(u)$, and ι_u is as in (6), then $\iota_u + \sum_{i=1}^k \iota_0(v_i, b_i)$ is a feasible choice for $\iota_0(u, b)$.

Our next lemma explains how to efficiently compute the expressions in Lemma 2.3.

Lemma 2.5. Let u be a vertex of T that is not a leaf, let b be an integer with $0 \le b \le \iota_{\max}(V_u)$, and let v_1, \ldots, v_k be the children of u. If the values $x_1(v_i, b_i)$ are given for every $i \in [k]$ and every integer b_i with $0 \le b_i \le \iota_{\max}(V_{v_i})$, then $x_0(u, b)$ and $x_1(u, b)$ can be computed in time $O(k^2(b+1)^2)$.

Proof. By symmetry, it suffices to explain how to compute $z_0(u, b)$.

For $p \in \{0\} \cup [k]$, an integer $p_{=}$, an integer $b' \in \{0\} \cup [b]$, and $b_u \in \{0\} \cup [\min\{\iota_{\max}(u), b'\}]$, let $M(p, p_{=}, b', b_u)$ be defined as the maximum of the expression $\sum_{i=1}^{p} x_1(v_i, b_i)$ over all $(b_1, \ldots, b_p) \in \mathcal{P}_p(b'-b_u)$ such that $p_{=}$ equals $\left|\left\{i \in [p] : x_0(v_i, b_i) = x_1(v_i, b_i)\right\}\right|$. Clearly, $M(p, p_{=}, b', b_u) = -\infty$ if $p < p_{=}$ or $p_{=} < 0$ or $b' - b_u > \sum_{i=1}^{p} \iota_{\max}(V_{v_i})$, and

$$M(0,0,b',b_u) = \begin{cases} 0 & , \text{ if } b' = b_u, \text{ and} \\ -\infty & , \text{ otherwise.} \end{cases}$$

For $p \in [k]$, the value of $M(p, p_{=}, b', b_u)$ is the maximum of the following two values:

- The maximum of $M(p-1, p_{=}-1, b_{\leq p-1}, b_u) + x_1(v_p, b_p)$ over all $(b_{\leq p-1}, b_p) \in \mathcal{P}_2(b'-b_u)$ with $x_0(v_p, b_p) = x_1(v_p, b_p)$, and
- the maximum of $M(p-1, p_{=}, b_{\leq p-1}, b_u) + x_1(v_p, b_p)$ over all $(b_{\leq p-1}, b_p) \in \mathcal{P}_2(b'-b_u)$ with $x_0(v_p, b_p) > x_1(v_p, b_p)$,

which implies that $M(p, p_{=}, b', b_{u})$ can be determined in O(b' + 1) time given the values

$$M(p-1, p_{=}, b_{\leq p-1}, b_u), M(p-1, p_{=}-1, b_{\leq p-1}, b_u), x_0(v_p, b_p), \text{ and } x_1(v_p, b_p).$$

Altogether, the values $M(k, p_{=}, b, b_u)$ for all $p_{=} \in \{0\} \cup [k]$ can be determined in time $O(k^2(b+1))$.

For $b_u \in \{0\} \cup [\min\{\iota_{\max}(u), b\}]$, let $m(b_u)$ be the maximum of the two expressions

$$1 + \max\left\{M(k, p_{=}, b, b_{u}) : p_{=} \in \{0\} \cup [\tau(u) - b_{u} - 1]\right\}$$

and

$$\max\Big\{M(k, p_{=}, b, b_{u}) : p_{=} \in [k] \setminus [\tau(u) - b_{u} - 1]\Big\}.$$

Now, by the definition of $\delta_0(b_u, b_1, \dots, b_k)$, the value of $z_0(u, b)$ equals $\max \{m(b_u) : b_u \in \{0\} \cup [\min\{\iota_{\max}(u), b\}]\}$. Hence, $z_0(u, b)$ can be computed in time $O(k^2(b+1)^2)$.

We proceed to the proof of our first theorem.

Proof of Theorem 1.1. Given $(T, \tau, \iota_{\max}, b)$, Lemma 2.2 to Lemma 2.5 imply that the values of $x_0(u, b')$ and of $x_1(u, b')$ for all $u \in V(T)$ and all $b' \in \{0\} \cup [b]$ can be determined in time

$$O\left(\sum_{u\in V(T)} d_T(u)^2(b+1)^2\right).$$

It is a simple folklore exercise that $\sum_{u \in V(T)} d_T(u)^2 \leq n^2 - n$ for every tree T of order n, which implies the statement about the running time. Since $\operatorname{vacc}(T, \tau, \iota_{\max}, b) = x_0(r, b)$, the statement about the value of $\operatorname{vacc}(T, \tau, \iota_{\max}, b)$ follows. The statement about the increment ι follows easily from the remark after Corollary 2.4 concerning the function $\iota_0(u, b)$, and the proof of Lemma 2.5, where, next to the values $M(p, p_{=}, b', b_u)$, one may also memorize suitable increments.

We conclude with the proof of our second theorem.

Proof of Theorem 1.4. Let G be an r-regular graph of order n, and let b be an integer with $(2r-1)(r+1) \le b \le rn = 2m(G)$.

Let $\iota \in \mathbb{Z}^{V(G)}$ with $0 \leq \iota \leq d_G$ and $\iota(V(G)) = b$ be such that $\operatorname{vacc}(G, 0, d_G, b) = \operatorname{dyn}(G, \iota)$. By a result of Ackerman et al. [1],

$$\operatorname{vacc}(G, 0, d_G, b) = \operatorname{dyn}(G, \iota) \le \sum_{u \in V(G)} \frac{\iota(u)}{d_G(u) + 1} = \frac{\iota(V(G))}{r + 1} = \frac{b}{r + 1}.$$

First, suppose that the matching number ν of G satisfies $2r\nu > b$. In this case, G has a matching M with $\tau_M(V(G)) = 2r|M| \leq b$ and $2r(|M|+1) \geq b+1$, where τ_M is as in the statement. We obtain $2dyn(G, \tau_M) \geq 2|M| \geq 2\left(\frac{b+1}{2r}-1\right) \geq \frac{b}{r+1} \geq vacc(G, 0, d_G, b)$. Next, suppose that $2r\nu \leq b$. If M is a maximum matching and D is a minimum vertex cover, then $|D| \leq 2|M|$. Since D is a dynamic monopoly of (G, d_G) , we obtain $2dyn(G, \tau_M) \geq 2|M| \geq |D| \geq dyn(G, d_G) \geq vacc(G, 0, d_G, b)$, that is, $2dyn(G, \tau_M) \geq vacc(G, 0, d_G, b)$ holds in both cases. \Box

References

- [1] E. Ackerman, O. Ben-Zwi, G. Wolfovitz, Combinatorial model and bounds for target set selection, Theoretical Computer Science 411 (2010) 4017-4022.
- [2] O. Ben-Zwi, D. Hermelin, D. Lokshtanov, I. Newman, Treewidth governs the complexity of target set selection, Discrete Optimization 8 (2011) 87-96
- [3] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, A. Sharma, Preventing unraveling in social networks: the anchored k-core problem, SIAM Journal on Discrete Mathematics 29 (2015) 1452-1475.
- [4] T. Britton, S. Janson, A. Martin-Löf, Graphs with specified degree distributions, simple epidemics, and local vaccination strategies, Advances in Applied Probability 39 (2007) 922-948.
- [5] C.C. Centeno, M.C. Dourado, L.D. Penso, D. Rautenbach, J.L. Szwarcfiter, Irreversible conversion of graphs, Theoretical Computer Science 412 (2011) 3693-3700.
- [6] C.C. Centeno, D. Rautenbach, Remarks on dynamic monopolies with given average thresholds, Discussiones Mathematicae Graph Theory 35 (2015) 133-140.
- [7] C.-Y. Chiang, L.-H. Huang, B.-J. Li. J. Wu, H.-G. Yeh, Some results on the target set selection problem, Journal of Combinatorial Optimization 25 (2013) 702-715.
- [8] F. Cicalese, G. Cordasco, L. Gargano, M. Milanič, J. Peters, U. Vaccaro, Spread of influence in weighted networks under time and budget constraints, Theoretical Computer Science 586 (2015) 40-58.
- [9] C.-L. Chang, Y.-D. Lyuu, Triggering cascades on strongly connected directed graphs, Theoretical Computer Science 593 (2015) 62-69.
- [10] N. Chen, On the approximability of influence in social networks, SIAM Journal on Discrete Mathematics 23 (2009) 1400-1415.
- [11] M. Deijfen, Epidemics and vaccination on weighted graphs, Mathematical Biosciences 232 (2011) 57-65.
- [12] P. Domingos, M. Richardson, Mining the network value of customers, Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2001) 57-66.

- [13] P.A. Dreyer Jr., F.S. Roberts, Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion, Discrete Applied Mathematics 157 (2009) 1615-1627.
- [14] S. Ehard, D. Rautenbach, Vaccinate your trees!, arXiv:1801.08705.
- [15] M. Gentner, D. Rautenbach, Dynamic monopolies for degree proportional thresholds in connected graphs of girth at least five and trees, Theoretical Computer Science 667 (2017) 93-100.
- [16] D. Kempe, J. Kleinberg, E. Tardos, Maximizing the spread of influence through a social network, Theory of Computing 11 (2015) 105-147.
- [17] K. Khoshkhah, M. Zaker, On the largest dynamic monopolies of graphs with a given average threshold, Canadian Mathematical Bulletin 58 (2015) 306-316.