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Abstract

For a graph G and an integer-valued function τ on its vertex set, a dynamic monopoly is

a set of vertices of G such that iteratively adding to it vertices u of G that have at least τ(u)

neighbors in it eventually yields the vertex set of G. We study the problem of maximizing

the minimum order of a dynamic monopoly by increasing the threshold values of individual

vertices subject to vertex-dependent lower and upper bounds, and fixing the total increase.

We solve this problem efficiently for trees, which extends a result of Khoshkhah and Zaker

(On the largest dynamic monopolies of graphs with a given average threshold, Canadian

Mathematical Bulletin 58 (2015) 306-316).

Keywords: Dynamic monopoly; vaccination

1 Introduction

As a simple model for an infection process within a network [12,13,16] one can consider a graph

G in which each vertex u is assigned a non-negative integral threshold value τ(u) quantifying how

many infected neighbors of u are required to spread the infection to u. In this setting, a dynamic

monopoly of (G, τ) is a set D of vertices such that an infection starting in D spreads to all of

G, and the smallest order dyn(G, τ) of such a dynamic monopoly measures the vulnerability of

G for the given threshold values.

Khoshkhah and Zaker [17] consider the maximum of dyn(G, τ) over all choices for the function

τ such that the average threshold is at most some positive real τ̄ . They show that this maximum

equals

max

{

k :

k
∑

i=1

(dG(ui) + 1) ≤ n(G)τ̄

}

, (1)

where u1, . . . , un(G) is a linear ordering of the vertices of G with non-decreasing vertex degrees

dG(u1) ≤ . . . ≤ dG(un(G)). To obtain this simple formula one has to allow dG(u)+1 as a threshold

value for vertices u, a value that makes these vertices completely immune to the infection, and

forces every dynamic monopoly to contain them. Requiring τ(u) ≤ dG(u) for every vertex u

of G leads to a harder problem; Khoshkhah and Zaker [17] show hardness for planar graphs
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and describe an efficient algorithm for trees. In the present paper we consider their problem

with additional vertex-dependent lower and upper bounds on the threshold values. As our main

result, we describe an efficient algorithm for trees based on a completely different approach than

the one in [17].

In order to phrase the problem and our results exactly, and to discuss further related work,

we introduce some terminology. Let G be a finite, simple, and undirected graph. A threshold

function for G is a function from the vertex set V (G) of G to the set of integers. For notational

simplicity, we allow negative threshold values. Let τ ∈ Z
V (G) be a threshold function for G. For

a set D of vertices of G, the hull H(G,τ)(D) of D in (G, τ) is the smallest set H of vertices of G

such that D ⊆ H, and u ∈ H for every vertex u of G with |H ∩NG(u)| ≥ τ(u). Clearly, the set

H(G,τ)(D) is obtained by starting with D, and iteratively adding vertices u that have at least

τ(u) neighbors in the current set as long as possible. With this notation, the set D is a dynamic

monopoly of (G, τ) if H(G,τ)(D) equals the vertex set of G, and dyn(G, τ) is the minimum order

of such a set. A dynamic monopoly of (G, τ) of order dyn(G, τ) is minimum. The parameter

dyn(G, τ) is computationally hard [5, 10]; next to general bounds [1, 9, 15] efficient algorithms

are only known for essentially tree-structured instances [2, 5, 7, 8, 10].

We can now phrase the problem we consider: For a given graph G, two functions τ, ιmax ∈

Z
V (G), and a non-negative integer budget b, let vacc(G, τ, ιmax, b) be defined as

max
{

dyn(G, τ + ι) : ι ∈ Z
V (G), 0 ≤ ι ≤ ιmax, and ι(V (G)) = b

}

, (2)

where inequalities between functions are meant pointwise, and ι(V (G)) =
∑

u∈V (G)

ι(u). The

function ι is the increment of the original threshold function τ . The final threshold function

τ + ι must lie between τ and τ + ιmax, which allows to incorporate vertex-dependent lower and

upper bounds. Note that no such increment ι exists if ιmax(V (G)) is strictly less than b, in which

case vacc(G, τ, ιmax, b) equals max ∅ = −∞. Note that we require ι(V (G)) = b in (2), which

determines the average final threshold as (τ(V (G)) + b)/n(G). Since dyn(G, ρ) ≤ dyn(G, ρ′)

for every two threshold functions ρ and ρ′ for G with ρ ≤ ρ′, for ιmax(V (G)) ≥ b, the value

in (2) remains the same when replacing ‘ι(V (G)) = b’ with ‘ι(V (G)) ≤ b’ provided that b ≤

ιmax(V (G)).

The results of Khoshkhah and Zaker [17] mentioned above can be phrased by saying

(i) that vacc(G, 0, dG+1, n(G)τ̄ ) equals (1) whenever n(G)τ̄ is a non-negative integer at most
∑

u∈V (G)

(dG(u) + 1) = 2m(G) + n(G), where m(G) is the size of G, and

(ii) that vacc(T, 0, dT , b) can be determined efficiently whenever T is a tree.

Our main result is the following.

Theorem 1.1. For a given tuple (T, τ, ιmax, b), where T is a tree of order n, τ, ιmax ∈ Z
V (G),

and b is an integer with 0 ≤ b ≤ ιmax(V (T )), the value vacc(T, τ, ιmax, b) as well as an increment

ι ∈ Z
V (G) with 0 ≤ ι ≤ ιmax and ι(V (G)) = b such that vacc(T, τ, ιmax, b) = dyn (T, τ + ι) can

be determined in time O
(

n2(b+ 1)2
)

.

While our approach relies on dynamic programming, Khoshkhah and Zaker show (ii) using

the following result in combination with a minimum cost flow algorithm.
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Theorem 1.2 (Khoshkhah and Zaker [17]). For a given tree T , and a given integer b with

0 ≤ b ≤ 2m(T ), there is a matching M of T such that vacc(T, 0, dT , b) = dyn(G, τM ) and

τM(V (T )) ≤ b, where

τM : V (T ) → Z : u 7→







dT (u) , u is incident with a vertex in M , and

0 , otherwise.

We believe that the threshold function τM considered in Theorem 1.2 is a good choice in

general, and pose the following.

Conjecture 1.3. For a given graph G, and a given integer b with 0 ≤ b ≤ 2m(G), there is a

matching M of G such that vacc(G, 0, dG, b) ≤ 2dyn(G, τM ) and τM (V (G)) ≤ b, where τM is as

in Theorem 1.2 (with T replaced by G).

As a second result we show Conjecture 1.3 for some regular graphs.

Theorem 1.4. Conjecture 1.3 holds if G is r-regular and b ≥ (2r − 1)(r + 1).

Before we proceed to the proofs of Theorems 1.1 and 1.4, we mention some further related

work. Centeno and Rautenbach [6] establish bounds for the problems considered in [17]. In [14],

Ehard and Rautenbach consider the following two variants of (2) for a given triple (G, τ, b),

where G is a graph, τ is a threshold function for G, and b is a non-negative integer:

max

{

dyn(G−X, τ) : X ∈

(

V (G)

b

)}

and max

{

dyn(G, τX) : X ∈

(

V (G)

b

)}

,

where

τX(u) =







dG(u) + 1 , if u ∈ X,

τ(u) , if u ∈ V (G) \X,
,

and
(

V (G)
b

)

denotes the set of all b-element subsets of V (G). For both variants, they describe

efficient algorithms for trees. In [3] Bhawalkar et al. study so-called anchored k-cores. For a

given graph G, and a positive integer k, the k-core of G is the largest induced subgraph of G

of minimum degree at least k. It is easy to see that the vertex set of the k-core of G equals

V (G) \H(G,τ)(∅) for the special threshold function τ = dG − k + 1. Now, the anchored k-core

problem [3] is to determine

max

{

∣

∣

∣
V (G) \H(G,τX)(∅)

∣

∣

∣
: X ∈

(

V (G)

b

)}

, (3)

for a given graph G and non-negative integer b. Bhawalkar et al. show that (3) is hard to

approximate in general, but can be determined efficiently for k = 2, and for graphs of bounded

treewidth. Vaccination problems in random settings were studied in [4, 11,16].

2 Proofs of Theorem 1.1 and Theorem 1.4

Throughout this section, let T be a tree rooted in some vertex r, and let τ, ιmax ∈ Z
V (T ) be two

functions. For a vertex u of T , and a function ρ ∈ Z
V (T ), let Vu be the subset of V (T ) containing
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u and its descendants, let Tu be the subtree of T induced by Vu, and let ρ→u ∈ Z
V (T ) be the

function with

ρ→u(v) =







ρ(v) , if v ∈ V (T ) \ {u}, and

ρ(v) − 1 , if v = u.

Below we consider threshold functions of the form ρ|Vu
+ ρ′|Vu

for the subtrees Tu, where ρ and

ρ′ are defined on sets containing Vu. For notational simplicity, we omit the restriction to Vu and

write ‘ρ+ ρ′’ instead of ‘ρ|Vu
+ ρ′|Vu

’ in these cases. For an integer k and a non-negative integer

b, let [k] be the set of positive integers at most k, and let

Pk(b) =
{

(b1, . . . , bk) ∈ N
k
0 : b1 + · · ·+ bk = b

}

be the set of ordered partitions of b into k non-negative integers.

Our approach to show Theorem 1.1 is similar as in [14] and relies on recursive expressions

for the following two quantities: For a vertex u of T and a non-negative integer b, let

• x0(u, b) be the maximum of dyn(Tu, τ + ι) over all ι ∈ Z
Vu with 0 ≤ ι(v) ≤ ιmax(v) for

every v ∈ Vu , and ι(Vu) = b, and

• x1(u, b) be the maximum of dyn (Tu, (τ + ι)→u) over all ι ∈ Z
Vu with 0 ≤ ι(v) ≤ ιmax(v)

for every v ∈ Vu , and ι(Vu) = b.

The increment ι captures the local increases of the thresholds within Vu. The value x1(u, b)

corresponds to a situation, where the infection reaches the parent of u before it reaches u, that

is, the index 0 or 1 indicates the amount of help that u receives from outside of Vu.

Note that xj(u, b) = −∞ if and only if b > ιmax(Vu) for both j in {0, 1}. If b ≤ ιmax(Vu),

then let ι0(u, b), ι1(u, b) ∈ Z
Vu with 0 ≤ ιj(u, b) ≤ ιmax, and ιj(u, b)(Vu) = b for both j ∈ {0, 1},

be such that

x0(u, b) = dyn
(

Tu, τ + ι0(u, b)
)

and

x1(u, b) = dyn
(

Tu,
(

τ + ι1(u, b)
)→u)

,

where, if possible, let ι0(u, b) = ι1(u, b). As we show in Corollary 2.4 below, ι0(u, b) always

equals ι1(u, b), which is a key fact for our approach.

Lemma 2.1. x0(u, b) ≥ x1(u, b), and if x0(u, b) = x1(u, b), then ι0(u, b) = ι1(u, b).

Proof. If x1(u, b) = −∞, then the statement is trivial. Hence, we may assume that x1(u, b) >

−∞, which implies that the function ι1(u, b) is defined. Let D be a minimum dynamic monopoly

of (Tu, τ + ι1(u, b)). By the definition of x0(u, b), we have x0(u, b) ≥ |D|. Since D is a dynamic

monopoly of (Tu, (τ + ι1(u, b))
→u), we obtain x0(u, b) ≥ |D| ≥ dyn (Tu, (τ + ι1(u, b))

→u) =

x1(u, b). Furthermore, if x0(u, b) = x1(u, b), then x0(u, b) = |D| = dyn (Tu, τ + ι1(u, b)), which

implies ι0(u, b) = ι1(u, b).
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Lemma 2.2. If u is a leaf of T , and b is an integer with 0 ≤ b ≤ ιmax(u), then, for j ∈ {0, 1},

xj(u, b) =







0 , if τ(u) + b− j ≤ 0,

1 , otherwise, and

ιj(u, b)(u) = b.

Proof. These equalities follow immediately from the definitions.

Lemma 2.3. Let u be a vertex of T that is not a leaf, and let b be a non-negative integer. If

v1, . . . , vk are the children of u, and ι0(vi, bi) = ι1(vi, bi) for every i ∈ [k] and every integer bi

with 0 ≤ bi ≤ ιmax(Vvi), then, for j ∈ {0, 1},

xj(u, b) = zj(u, b), and (4)

ι0(u, b) = ι1(u, b), if b ≤ ιmax(Vu), (5)

where zj(u, b) is defined as

max

{

δj(bu, b1, . . . , bk) +

k
∑

i=1

x1(vi, bi) : (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u)

}

,

and, for (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u),

δj(bu, b1, . . . , bk) :=







0 , if
∣

∣

∣

{

i ∈ [k] : x0(vi, bi) = x1(vi, bi)
}∣

∣

∣
≥ τ(u) + bu − j, and

1 , otherwise.

Proof. By symmetry, it suffices to consider the case j = 0.

First, suppose that b > ιmax(Vu). If (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u), then

bi > ιmax(Vvi) for some i ∈ [k], which implies z0(u, b) = −∞ = x0(u, b).

Now, let b ≤ n(Tu), which implies x0(u, b) > −∞. The following two claims complete the

proof of (4).

Claim 1. x0(u, b) ≥ z0(u, b).

Proof of Claim 1. It suffices to show that x0(u, b) ≥ δ0(bu, b1, . . . , bk) +
k
∑

i=1
x1(vi, bi) for every

choice of (bu, b1, . . . , bk) in Pk+1(b) with bu ≤ ιmax(u) and bi ≤ ιmax(Vvi) for every i ∈ [k]. Let

(bu, b1, . . . , bk) be one such an element. Let ιu ∈ Z
Vu be defined as

ιu(v) =







bu , if v = u, and

0 , otherwise,
(6)

and let ι = ιu +
k
∑

i=1
ι1(vi, bi), where ι1(vi, bi)(u) is set to 0 for every i ∈ [k]. Since ι(Vu) = b and

0 ≤ ι ≤ ιmax, we have x0(u, b) ≥ dyn(Tu, τ + ι).

Let D be a minimum dynamic monopoly of (Tu, τ + ι), that is, |D| ≤ x0(u, b). For each

i ∈ [k], it follows that the set Di = D ∩ Vvi is a dynamic monopoly of (Tvi , (τ + ι)→vi). Since,
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restricted to Vvi , the two functions (τ + ι)→vi and (τ + ι1(vi, bi))
→vi coincide, we obtain

|Di| ≥ dyn
(

Tvi ,
(

τ + ι1(vi, bi)
)→vi

)

≥ x1(vi, bi).

If δ0(bu, b1, . . . , bk) = 0, then |D| ≥
k
∑

i=1
|Di| ≥ δ0(bu, b1, . . . , bk) +

k
∑

i=1
x1(vi, bi). Similarly, if

u ∈ D, then |D| = 1 +
k
∑

i=1
|Di| ≥ δ0(bu, b1, . . . , bk) +

k
∑

i=1
x1(vi, bi). Therefore, we may assume

that δ0(bu, b1, . . . , bk) = 1 and that u 6∈ D. This implies that there is some ℓ ∈ [k] with

x0(vℓ, bℓ) > x1(vℓ, bℓ) such that Dℓ = D ∩ Vvℓ is a dynamic monopoly of (Tvℓ , τ + ι). Since, by

assumption, ι0(vℓ, bℓ) = ι1(vℓ, bℓ), we obtain that, restricted to Vvℓ , the two functions τ + ι and

τ + ι0(vℓ, bℓ) coincide, which implies |Dℓ| ≥ dyn (Tvℓ , τ + ι0(vℓ, bℓ)) = x0(vℓ, bℓ) ≥ 1 + x1(vℓ, bℓ).

Therefore, also in this case, |D| = |Dℓ|+
∑

i∈[k]\{ℓ}

|Di| ≥ δ0(bu, b1, . . . , bk) +
k
∑

i=1
x1(vi, bi).

Claim 2. x0(u, b) ≤ z0(u, b).

Proof of Claim 2. Let ι = ι0(u, b), that is, x0(u, b) = dyn(Tu, τ + ι). Let bi = ι(Vvi) for every

i ∈ [k], and let bu = b −
k
∑

i=1
bi. Clearly, (bu, b1, . . . , bk) ∈ Pk+1(b) and bu ≤ ιmax(u). Let Di

be a minimum dynamic monopoly of (Tvi , (τ + ι)→vi) for every i ∈ [k]. By the definition of

x1(vi, bi), we obtain |Di| ≤ x1(vi, bi). Let D = {u} ∪
k
⋃

i=1
Di. The set D is a dynamic monopoly

of (Tu, τ + ι), which implies x0(u, b) ≤ |D|.

If δ0(bu, b1, . . . , bk) = 1, then

x0(u, b) ≤ |D| = 1 +
k

∑

i=1

|Di| ≤ δ0(bu, b1, . . . , bk) +
k

∑

i=1

x1(vi, bi) ≤ z0(u, b).

Therefore, we may assume that δ0(bu, b1, . . . , bk) = 0. By symmetry, we may assume that

x0(vi, bi) = x1(vi, bi) for every i ∈ [τ(u) + bu]. Let D′
i be a minimum dynamic monopoly of

(Tvi , τ + ι) for every i ∈ [τ(u) + bu]. By the definition of x0(vi, bi), we obtain |D′
i| ≤ x0(vi, bi) =

x1(vi, bi). Let D′ =
⋃

i∈[τ(u)+bu]

D′
i ∪

⋃

i∈[k]\[τ(u)+bu]

Di. The set D′ is a dynamic monopoly of

(Tu, τ + ι). This implies

x0(u, b) ≤ |D′| =
∑

i∈[τ(u)+bu]

|D′
i|+

∑

i∈[k]\[τ(u)+bu]

|Di| ≤
∑

i∈[k]

x1(vi, bi) ≤ z0(u, b),

which completes the proof of the claim.

It remains to show (5). If x0(u, b) = x1(u, b), then (5) follows from Lemma 2.1. Hence, we

may assume that x0(u, b) > x1(u, b). Since, by definition,

δ1(bu, b1, . . . , bk) ≤ δ0(bu, b1, . . . , bk) ≤ δ1(bu, b1, . . . , bk) + 1

for every (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u), we obtain z1(u, b) ≤ z0(u, b) ≤ z1(u, b)+1.
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Together with (4), the inequality x0(u, b) > x1(u, b) implies that

x0(u, b) = z0(u, b) > z1(u, b) = x1(u, b) and

z1(u, b) = z0(u, b)− 1.

Let (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u) be such that

z0(u, b) = δ0(bu, b1, . . . , bk) +

k
∑

i=1

x1(vi, bi).

We obtain

z1(u, b) ≥ δ1(bu, b1, . . . , bk) +
k

∑

i=1

x1(vi, bi)

≥ δ0(bu, b1, . . . , bk)− 1 +
k

∑

i=1

x1(vi, bi)

= z0(u, b)− 1

= z1(u, b),

which implies z1(u, b) = δ1(bu, b1, . . . , bk)+
k
∑

i=1
x1(vi, bi), that is, the same choice of (bu, b1, . . . , bk)

in Pk+1(b) with bu ≤ ιmax(u) maximizes the terms defining z0(u, b) and z1(u, b).

Since z0(u, b) > z1(u, b), we obtain δ1(bu, b1, . . . , bk) = 0 and δ0(bu, b1, . . . , bk) = 1, which, by

the definition of δj , implies that there are exactly τ(u) + bu − 1 indices i in [k] with x0(vi, bi) =

x1(vi, bi). By symmetry, we may assume that x0(vi, bi) = x1(vi, bi) for i ∈ [τ(u) + bu − 1] and

x0(vi, bi) > x1(vi, bi) for i ∈ [k] \ [τ(u) + bu − 1].

Let ι = ιu+
k
∑

i=1
ι0(vi, bi), where ι0(vi, bi)(u) is set to 0 for every i ∈ [k] and ιu is as in (6). Note

that, by assumption, we have ι = ιu +
k
∑

i=1
ι1(vi, bi). Let D be a minimum dynamic monopoly

of (Tu, τ + ι). By the definition of x0(u, b), we have |D| ≤ x0(u, b). Let Di = D ∩ Vvi for

every i ∈ [k]. Since Di is a dynamic monopoly of (Tvi , (τ + ι)→vi) for every i ∈ [k], we obtain

|Di| ≥ x1(vi, bi). Note that

• either u ∈ D,

• or u 6∈ D and there is some index ℓ ∈ [k] \ [τ(u) + bu − 1] such that Dℓ = D ∩ Vvℓ is a

dynamic monopoly of (Tvℓ , τ + ι).

In the first case, we obtain

z0(u, b) = x0(u, b) ≥ |D| = 1 +

k
∑

i=1

|Di| ≥ 1 +

k
∑

i=1

x1(vi, bi) = z0(u, b),

7



and, in the second case, we obtain |Dℓ| ≥ x0(vℓ, bℓ) ≥ x1(vℓ, bℓ) + 1, and, hence,

z0(u, b) = x0(u, b) ≥ |D| = |Dℓ|+
∑

i∈[k]\{ℓ}

|Di| ≥ 1 +

k
∑

i=1

x1(vi, bi) = z0(u, b).

In both cases we obtain |D| = x0(u, b), which implies that ι0(u, b) may be chosen equal to ι.

Now, let D− be a minimum dynamic monopoly of (Tu, (τ + ι)→u). By the definition of

x1(u, b), we have |D−| ≤ x1(u, b). Let D
−
i = D− ∩ Vvi for every i ∈ [k]. Since D−

i is a dynamic

monopoly of (Tvi , (τ + ι)→vi) for every i ∈ [k], we obtain |D−
i | ≥ x1(vi, bi). Now,

z1(u, b) = x1(u, b) ≥ |D−| ≥
k

∑

i=1

x1(vi, bi) = z1(u, b),

which implies that |D−| = x1(u, b), and that ι1(u, b) may be chosen equal to ι. Altogether, the

two functions ι0(u, b) and ι1(u, b) may be chosen equal, which implies (5).

Applying induction using Lemma 2.2 and Lemma 2.3, we obtain the following.

Corollary 2.4. ι0(u, b) = ι1(u, b) for every vertex u of T , and every integer b with 0 ≤ b ≤

ιmax(Vu).

Apart from the specific values of x0(u, b) and x1(u, b), the arguments in the proof of Lemma 2.3

also yield feasible recursive choices for ι0(u, b). In fact, if

x0(u, b) = δ0(bu, b1, . . . , bk) +
k

∑

i=1

x1(vi, bi) > −∞

for (bu, b1, . . . , bk) ∈ Pk+1(b) with bu ≤ ιmax(u), and ιu is as in (6), then ιu +
k
∑

i=1
ι0(vi, bi) is a

feasible choice for ι0(u, b).

Our next lemma explains how to efficiently compute the expressions in Lemma 2.3.

Lemma 2.5. Let u be a vertex of T that is not a leaf, let b be an integer with 0 ≤ b ≤ ιmax(Vu),

and let v1, . . . , vk be the children of u. If the values x1(vi, bi) are given for every i ∈ [k] and

every integer bi with 0 ≤ bi ≤ ιmax(Vvi), then x0(u, b) and x1(u, b) can be computed in time

O
(

k2(b+ 1)2
)

.

Proof. By symmetry, it suffices to explain how to compute z0(u, b).

For p ∈ {0}∪ [k], an integer p=, an integer b′ ∈ {0}∪ [b], and bu ∈ {0}∪ [min{ιmax(u), b
′}], let

M(p, p=, b
′, bu) be defined as the maximum of the expression

p
∑

i=1
x1(vi, bi) over all (b1, . . . , bp) ∈

Pp(b
′−bu) such that p= equals

∣

∣

∣

{

i ∈ [p] : x0(vi, bi) = x1(vi, bi)
}∣

∣

∣
. Clearly, M(p, p=, b

′, bu) = −∞

if p < p= or p= < 0 or b′ − bu >
p
∑

i=1
ιmax(Vvi), and

M(0, 0, b′, bu) =







0 , if b′ = bu, and

−∞ , otherwise.
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For p ∈ [k], the value of M(p, p=, b
′, bu) is the maximum of the following two values:

• The maximum of M(p− 1, p= − 1, b≤p−1, bu) + x1(vp, bp) over all (b≤p−1, bp) ∈ P2(b
′ − bu)

with x0(vp, bp) = x1(vp, bp), and

• the maximum of M(p− 1, p=, b≤p−1, bu) + x1(vp, bp) over all (b≤p−1, bp) ∈ P2(b
′ − bu) with

x0(vp, bp) > x1(vp, bp),

which implies that M(p, p=, b
′, bu) can be determined in O(b′ + 1) time given the values

M(p− 1, p=, b≤p−1, bu), M(p − 1, p= − 1, b≤p−1, bu), x0(vp, bp), and x1(vp, bp).

Altogether, the valuesM(k, p=, b, bu) for all p= ∈ {0}∪[k] can be determined in timeO
(

k2(b+ 1)
)

.

For bu ∈ {0} ∪ [min{ιmax(u), b}], let m(bu) be the maximum of the two expressions

1 + max
{

M(k, p=, b, bu) : p= ∈ {0} ∪ [τ(u)− bu − 1]
}

and

max
{

M(k, p=, b, bu) : p= ∈ [k] \ [τ(u) − bu − 1]
}

.

Now, by the definition of δ0(bu, b1, . . . , bk), the value of z0(u, b) equals max
{

m(bu) : bu ∈ {0} ∪

[min{ιmax(u), b}]
}

. Hence, z0(u, b) can be computed in time O
(

k2(b+ 1)2
)

.

We proceed to the proof of our first theorem.

Proof of Theorem 1.1. Given (T, τ, ιmax, b), Lemma 2.2 to Lemma 2.5 imply that the values of

x0(u, b
′) and of x1(u, b

′) for all u ∈ V (T ) and all b′ ∈ {0} ∪ [b] can be determined in time

O





∑

u∈V (T )

dT (u)
2(b+ 1)2



 .

It is a simple folklore exercise that
∑

u∈V (T )

dT (u)
2 ≤ n2 − n for every tree T of order n, which

implies the statement about the running time. Since vacc(T, τ, ιmax, b) = x0(r, b), the statement

about the value of vacc(T, τ, ιmax, b) follows. The statement about the increment ι follows easily

from the remark after Corollary 2.4 concerning the function ι0(u, b), and the proof of Lemma 2.5,

where, next to the values M(p, p=, b
′, bu), one may also memorize suitable increments.

We conclude with the proof of our second theorem.

Proof of Theorem 1.4. Let G be an r-regular graph of order n, and let b be an integer with

(2r − 1)(r + 1) ≤ b ≤ rn = 2m(G).

Let ι ∈ Z
V (G) with 0 ≤ ι ≤ dG and ι(V (G)) = b be such that vacc(G, 0, dG, b) = dyn(G, ι).

By a result of Ackerman et al. [1],

vacc(G, 0, dG, b) = dyn(G, ι) ≤
∑

u∈V (G)

ι(u)

dG(u) + 1
=

ι(V (G))

r + 1
=

b

r + 1
.
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First, suppose that the matching number ν of G satisfies 2rν > b. In this case, G has a matching

M with τM (V (G)) = 2r|M | ≤ b and 2r(|M | + 1) ≥ b + 1, where τM is as in the statement.

We obtain 2dyn(G, τM ) ≥ 2|M | ≥ 2
(

b+1
2r − 1

)

≥ b
r+1 ≥ vacc(G, 0, dG, b). Next, suppose that

2rν ≤ b. IfM is a maximum matching andD is a minimum vertex cover, then |D| ≤ 2|M |. Since

D is a dynamic monopoly of (G, dG), we obtain 2dyn(G, τM ) ≥ 2|M | ≥ |D| ≥ dyn(G, dG) ≥

vacc(G, 0, dG, b), that is, 2dyn(G, τM ) ≥ vacc(G, 0, dG, b) holds in both cases.
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