
ar
X

iv
:1

81
0.

10
25

8v
1

 [
cs

.D
S]

 2
4

O
ct

 2
01

8

A Maximum Edge-Weight Clique Extraction

Algorithm Based on Branch-and-Bound

Satoshi Shimizu∗, Kazuaki Yamaguchi†, and Sumio Masuda‡

Graduate School of Engineering, Kobe University

October 25, 2018

Abstract

The maximum edge-weight clique problem is to find a clique whose

sum of edge-weight is the maximum for a given edge-weighted undirected

graph. The problem is NP-hard and some branch-and-bound algorithms

have been proposed. In this paper, we propose a new exact algorithm

based on branch-and-bound. It assigns edge-weights to vertices and cal-

culates upper bounds using vertex coloring. By some computational ex-

periments, we confirmed our algorithm is faster than previous algorithms.

1 Introduction

For a simple undirected graph G = (V,E), a vertex subset C ∈ V is called
a clique if any pair of vertices in C are adjacent. Given a simple undirected
graph G = (V,E), the maximum clique problem (MCP) is to find the clique of
maximum cardinality. MCP has lots of practical applications: bioinformatics
[2], coding theory [10, 4], economics [5] and more. MCP is known to be NP-
hard [12], and the decision version is one of the Karp’s 21 NP-complete problems
[15]. Since it has theoretical importance, there have been a number of studies
in decades [31].

Given a simple undirected graph G = (V,E) and non-negative weight w(·, ·)
for each edge, the maximum edge-weight clique problem (MEWCP) is to find
the clique of maximum weight. Obviously, MEWCP is a generalization of MCP.
Because of edge-weights, MEWCP has practical applications that cannot be
handled by MCP: pattern recognition [19] protein side-chain packing [1, 6],
market basket analysis [7], communication analysis [9] and so on.

To obtain exact solutions of MEWCP, there are two approaches in previous
works. One approach is formulating MEWCP into mathematical programming

∗ss81054@gmail.com
†ky@kobe-u.ac.jp
‡masuda@kobe-u.ac.jp

1

http://arxiv.org/abs/1810.10258v1

and solve it by existing solvers. Formulations based on integer programming
(IP) [13] and mixed integer programming (MIP) [23] were proposed.

The other approach is based on branch-and-bound. Branch-and-bound algo-
rithms recursively divide subproblems into smaller subproblems to search opti-
mal solutions. For each subproblem, it calculates upper bounds of the weight of
feasible solutions and prunes unnecessary subproblems that have no possibility
to improve the incumbent (current best solution). Variety of algorithms adopt
different strategies in branching strategy, search strategy and pruning rule. The
branching strategy is how to divide a given problem into subproblems. The
search strategy is the order in which subproblems are explored. The pruning
rule is how to calculate upper bounds to prune unnecessary subproblems. A
survey of branch-and-bound is shown in [18]. For MEWCP, CBQ proposed in
[14] uses quadratic relaxation to obtain upper bounds. Our previous algorithm
EWCLIQUE is also based on the branch-and-bound [24]. EWCLIQUE decom-
poses edge-weights of each subproblem into three components, and calculates
an upper bound for each of them.

In this paper, we propose a new branch-and-bound algorithm MECQ for
MEWCP. For each subproblem, our algorithm assigns weights of edges to ver-
tices. To obtain upper bounds using the assigned vertex weights, our algorithm
calculates vertex coloring that is a procedure to divide the vertex set into a
collection of independent sets. By some computational experiments, we confirm
our algorithm is faster than previous methods.

The remainder of this paper is organized as follows. Our algorithm MECQ is
described in Section 2. The results of computational experiments are in Section
3. We conclude the paper in Section 4.

2 Our algorithm MECQ

The proposed algorithm MECQ is based on the branch-and-bound. Hereafter
let P (C, S) be a subproblem of MEWCP, where C is a constructed clique and
S is a set of candidate vertices to be added to C. Note that C ⊆ N(v) must
be satisfied for any element v ∈ S, where N(v) is the set of adjacent vertices
of v. P (∅, V) corresponds to the instance of MEWCP. In this section, we first
describe pruning rules of our algorithm. Next, we show the branching strategy
that divides P (C, S) into subproblems, and the search strategy to determine
the order of subproblems to be solved.

2.1 Pruning Rules

First, we describe an upper bound calculation for graphs where both vertices
and edges are weighted. Then, we show that an upper bound of P (C, S) can be
calculated in the same way.

For a graph G = (V,E), let w(v) and w(u, v) denote the weight of vertex
v and the weight of edge (u, v), respectively. Hereafter we define w(u, v) = 0
for any (u, v) /∈ E for simplicity. Let G(S) be a subgraph of G induced by a

2

v6(3)v5(8)

v4(5)

v3(3)v2(6)

v1(2)

1

5

2

5

6

4
7

8

Figure 1: a graph example Gex

τ(·) σ[·] of equation 1
I1 v1 1 2 = w(v1)

v3 3 = w(v3)
v6 3 = w(v6)

I2 v2 2 8 = w(v2) + max{w(v1, v2), w(v2, v3)}
v4 12 = w(v4) + max{w(v3, v4), w(v4, v6)}

I3 v5 3 21 = w(v5) + max{w(v1, v5), w(v5, v6)}
=+ max{w(v2, v5), w(v4, v5)}

Figure 2: σ[·] for Gex

set of vertices S ⊆ V . E(S) denotes the edge set of G(S). For S ⊆ V , let
W (S) =

∑
v∈S w(v) +

∑
(u,v)∈E(S)w(u, v).

2.1.1 Upper bound of vertex-and-edge-weighted graph

Vertex coloring is to color vertices such that no adjacent vertices have the same
color. A vertex set of each color forms an independent set. The smallest number
of colors needed to color a graph G is called chromatic number χ(G). Let ω(G)
be the clique number (the number of vertices in a maximum clique). Since at
most one vertex can be included in a clique from each independent set, χ(G)
is an upper bound of ω(G). Therefore heuristic vertex coloring is often used to
obtain upper bounds for MCP [27, 29]. For the maximum weight clique problem
(MWCP), the sum of the maximum vertex weight of each independent set is
used as an upper bound [16, 25]. To calculate upper bounds of the MEWCP,
we consider assigning edge weights to incident vertices. Let τ(v) be the index
of the independent set including vertex v. Namely, τ(v) = i for all v ∈ Ii. Let
σ[v] be the total weight assigned to the vertex v as follows:

σ[v] = w(v) +
∑

i<τ(v)

max{w(u, v) | u ∈ Ii ∩N(v)}. (1)

An example Gex of a vertex-and-edge-weighted graph is shown in Figure 1.
Numbers in parentheses are the vertex weights. For Gex, Figure 2 shows the

3

assignment of independent set indices τ(·) and the weight σ[·] of equation 1. At
most one vertex of I1 ∩N(v5) = {v1, v6} can be included in a clique since I1 is
an independent set. Therefore we assign only the larger weight of edges (v1, v5)
and (v5, v6) to v5 for upper bound calculation. We can ignore smaller weights
to tighten upper bounds.

The following lemma shows that an upper bound of the MEWCP can be
calculated by using vertex coloring.

Lemma 1. For a clique C in a vertex-and-edge-weighted graph, the following
inequality holds where k = max{τ(v) | v ∈ V }:

W (C) ≤
k∑

i=1

max{σ[v] | v ∈ Ii}. (2)

Proof. Since at most one vertex in Ii can be included in C, |C ∩ Ii| ≤ 1 holds.
From the definition, C ⊆ N(v) for all v ∈ C. Therefore following inequality is
obtained:

W (C) =
∑

v∈C

w(v) +
∑

(u,v)∈E(C)

w(u, v) (3)

=
∑

v∈C

w(v) +
∑

v∈C

∑

i<τ(v)

∑

u∈C∩Ii

w(u, v) (4)

≤
∑

v∈C

w(v) +
∑

v∈C

∑

i<τ(v)

max{w(u, v) | u ∈ N(v) ∩ Ii} (5)

=
∑

v∈C

σ[v] (6)

=

k∑

i=1

∑

v∈C∩Ii

σ[v] (7)

≤
k∑

i=1

max{σ[v] | v ∈ Ii} (8)

Our algorithm uses Lemma 1 to obtain upper bounds. In the example Gex,
the clique of maximum weight is {v4, v5, v6} and its weight is 35. Using σ[·] of
Figure 2, an upper bound can be calculated by Lemma 1 as follows:

W (C) ≤ max{σ[v1], σ[v3], σ[v6]}+max{σ[v2], σ[v4]}

+max{σ[v5]} (9)

= 36 (10)

4

2.1.2 Upper bound calculation for MEWCP

Let F be any feasible solution of a subproblem P (C, S) of MEWCP. F is a union
of C and a subset of S. W (F) can be calculated as follows:

W (F) = W (C) +
∑

u∈C

∑

v∈S∩F

w(u, v) +W (S ∩ F). (11)

In the branch-and-bound, our algorithm calculates upper bounds of W (F) to
prune unnecessary subproblems. Since the term W (C) is obviously obtained in
branching steps, we have to calculate an upper bound of

∑
u∈C

∑
v∈S∩F w(u, v)

+ W (S ∩ F).
To obtain vertex-and-edge-weighted graphs, our algorithm assigns edge-

weights of {(u, v) | u ∈ C, v ∈ S ∩ F} to vertices v ∈ S ∩ F . Let wρ(C, v)
be the total edge-weight assigned to v ∈ S ∩ F as follows:

wρ(C, v) =
∑

u∈C

w(u, v). (12)

Hereafter wρ(v) denotes wρ(C, v) when C can be obviously identified. Using
wρ(v) and equation 11, following equation holds:

W (F) = W (C) +
∑

v∈S∩F

wρ(v) +W (S ∩ F). (13)

Note that the assigned weight wρ(·) and equation 13 is originally proposed in
our previous work [24].

For the vertex induced subgraph G(S) of P (C, S), let G(C, S) be the sub-
graph that can be obtained by assigning the weight wρ(v) to each vertex inG(S).
The proposed algorithm uses the vertex-and-edge-weighted graphG(C, S) to cal-
culate an upper bound of W (F). Equation 13 indicates that the sum of W (C)
and an upper bound of clique weight in G(C, S) is an upper bound of W (F).
Hence the proposed algorithm calculates an upper bound of W (F) for P (C, S)
as follows:

1. Obtain the vertex-and-edge-weighted graph G(C, S) using wρ(·) of equa-
tion 12.

2. Divide S into mutually disjoint independent sets I1, I2, . . . , Ik by vertex
coloring.

3. Calculate σ[·] for each vertex in G(C, S) using equation 1.

4. Calculate an upper bound of W (F) using Lemma 1.

2.2 Branch-and-bound

Algorithm 1 shows the main part of the proposed algorithm. The inputs are a
graphG = (V,E), edge-weights w(·, ·) and an initial solution Cinitial . It searches

5

Algorithm 1 MECQ

INPUT: G = (V,E), w(·, ·), Cinitial

OUTPUT: a maximum edge-weight clique Cmax

GLOBAL VARIABLES: Cmax

1: Cmax ← Cinitial

2: expand(∅, V)
3: return Cmax

Algorithm 2 Solving a subproblem

INPUT: a subproblem P (C, S)
OUTPUT: Update Cmax to a better clique if it exists.
GLOBAL VARIABLES: Cmax

1: procedure expand(C, S)
2: if S = ∅ then
3: if W (C) > W (Cmax) then
4: Cmax ← C
5: end if

6: return

7: end if

8: Π, upper[·]← CALC SEQ AND UB(C, S)
9: for each pi in order of Π do ⊲ Π = [p1, p2, . . . , p|S|]

10: if W (C) + upper[pi] > W (Cmax) then
11: expand(C ∪ {pi}, (S \ {pj | j < i}) ∩N(pi))
12: end if

13: end for

14: end procedure

for solutions by the recursive procedure EXPAND. Our algorithm accepts a
feasible solution Cinitial as an initial incumbent. Although our algorithm works
when Cinitial is empty, given non-empty Cinitial , our algorithm can use it as a
lower bound and can efficiently prune subproblems in some cases.

Algorithm 2 shows the recursive procedure EXPAND to update the best
solution so far. When S is empty, it is the base case that updates the op-
timal solution Cmax (lines from 2 to 7). Otherwise, at line 8, the function
CALC SEQ AND UB returns a sequence Π = [p1, p2, . . . , p|S|] of vertices in S
and an array upper[·] of upper bounds using vertex coloring (described in 2.2.1).
In the loop of lines from 9 to 13 in Algorithm 2, it recursively searches solutions
at line 11. The branching strategy, pruning rules and search strategy of our
algorithm are as follows:

Branching Strategy

For each pi of Π, our algorithm generates a child subproblem P (C ∪
{pi}, (S \ {pj | j < i}) ∩ N(pi)). Excepting the order of vertices in Π,
this strategy is same as previous algorithm EWCLIQUE [24] and is widely

6

used in branch-and-bound algorithms of MCP and MWCP [22, 28, 26, 11].

Pruning Rules

For each P (C ∪{pi}, (S \ {pj | j < i})∩N(pi)), an upper bound based on
equation 2 is stored in the array upper[pi].

Search Strategy

In order of Π = [p1, p2, . . . p|S|], our algorithm searches P (C∪{pi}, (S\{pj |
j < i})∩N(pi)). Since Π = [p1, p2, . . . , p|S|] is ordered in non-increasing of
upper[·] (described in 2.2.1), this strategy is to find cliques of large weight
early.

2.2.1 Subroutine CALC SEQ AND UB

Algorithm 3 shows the function CALC SEQ AND UB. It receives a subproblem
P (C, S) and returns a sequence Π = [p1, p2, . . . , p|S|] of vertices in S and an
array upper[·] of upper bounds. The array upper[pi] contains an upper bound
of P (C ∪ {pi}, (S \ {pj | j < i}) ∩N(pi)). It is used at line 10 of Algorithm 2.
Π is ordered in non-increasing of upper[·] and is used in branching strategy and
search strategy.

Here we describe the detail of Algorithm 3. At line 3, it initializes σ[·]
to wρ(·). Each iteration of the while loop from line 7 to 22, it increments k
and constructs a maximal independent set Ik, appends the vertices in Ik to Π,
and updates σ[·]. The loop terminates when all vertices are added to Π. In
the loop of lines from 11 to 18, it constructs a maximal independent set. In
line 15, it appends the vertices in Ik to the head of Π in order of assignment
to independent sets. In the maximal independent set construction, X is the
set of candidate vertices to be added to the independent set. At line 12, our
algorithm picks vertices from X in non-decreasing order of σ[·]. This makes Π
non-increasing order of upper bounds. At line 20, our algorithm updates σ[·] for
vertices that are not added to any independent set and are adjacent to vertices
in the constructed independent set.

3 Computational experiments

We implemented our algorithm MECQ in C++ to compare with previous algo-
rithms. In the experiments, our algorithm received an initial solution Cinitial

calculated by phased local search (PLS) [20]. PLS is a heuristic based on local
search. To avoid to be trapped into local optimums, it switches three phases that
have different search policies. The one iteration of PLS consists of 50 searches
of random phase, 50 searches of penalty phase and 100 searches of degree phase.
Our algorithm used PLS with 10 iterations and used the best solution found by
the PLS as an initial solution.

7

Algorithm 3 Calculate a vertex sequence and upper bounds

INPUT: a subproblem P (C, S)
OUTPUT: a vertex sequence Π and an array upper[·]
1: procedure CALC SEQ AND UB(C, S)
2: for v ∈ S do

3: σ[v]← wρ(v)
4: end for

5: S′ ← S ⊲ uncolored vertex set
6: k ← 0 ⊲ number of independent sets
7: while S′ 6= ∅ do
8: k ← k + 1
9: Ik ← ∅

10: X ← S′ ⊲ candidate vertex set to add to Ik
11: while X 6= ∅ do
12: v ← a vertex of minimum σ[·] in X
13: upper[v]← σ[v] +

∑
i<k max{σ[u] | u ∈ Ii}

14: Ik ← Ik ∪ {v} ⊲ τ(v) = k
15: Append v to the head of Π.
16: X ← X \N(v)
17: S′ ← S′ \ {v}
18: end while

19: for v ∈ S′ do

20: σ[v]← σ[v] + max{w(u, v) | u ∈ N(v) ∩ Ik}
21: end for

22: end while

23: return Π, upper[·]
24: end procedure

3.1 Random graphs

We generated uniform random graphs. Edge-weights were uniform random in-
teger values from 1 to 10. The compared algorithms are EWCLIQUE [24] and
mathematical programming formulations of MIP proposed in [23]. We used the
C++ implementation of EWCLIQUE that was used in our previous work [24].
For the formulations of MIP, we used the mathematical programming solver
IBM CPLEX 12.5.

The compiler is g++ 5.4.0 with optimization option -O2. The OS is Linux
4.4.0. The CPU is Intel R©CoreTMi7-6700 CPU 3.40 GHz. RAM is 16GB. Note
that CPLEX is a multi-thread solver based on branch-and-cut, and our algo-
rithm is a single-thread solver based on branch-and-bound.

Table 1 shows the CPU time for random graphs. The symbol ǫ shows that
the CPU time is less than 0.01 sec. The column LB shows the weight of initial
solutions given by PLS. For all conditions, our algorithm MECQ obtained opti-
mal solutions in a shorter time than previous methods. For the random graphs,
the initial solution given by PLS does not improve performance.

8

Table 1: CPU time for random graphs [sec]

optimal MECQ + PLS MECQ EWCLIQUE MIP
|V | d weight LB PLS MECQ Total without PLS [24] [23]
300 0.1 60.7 60.7 0.01 ǫ 0.01 ǫ ǫ 91.54
350 0.1 64.8 64.8 0.01 ǫ 0.01 ǫ ǫ 190.96

15000 0.1 174.7 148.3 0.73 408.56 409.29 402.75 460.90 >1000
250 0.2 97.3 97.3 0.02 ǫ 0.02 ǫ ǫ 64.26
280 0.2 102.4 102.4 0.02 ǫ 0.02 ǫ ǫ 119.47

5500 0.2 254.8 212.2 0.37 319.27 319.64 319.93 440.29 >1000
200 0.3 150.0 150.0 0.02 ǫ 0.02 ǫ ǫ 39.16
250 0.3 155.5 155.5 0.03 0.01 0.03 0.01 0.01 97.16

2500 0.3 332.8 291.1 0.26 227.70 227.96 232.99 459.05 >1000
160 0.4 185.5 185.5 0.02 0.01 0.03 0.01 0.01 21.98
200 0.4 224.0 224.0 0.03 0.01 0.04 0.01 0.02 57.54

1400 0.4 444.3 406.8 0.21 293.71 293.92 295.09 758.22 >1000
140 0.5 272.7 272.7 0.01 0.01 0.02 0.01 0.02 21.28
170 0.5 300.6 300.6 0.03 0.03 0.06 0.03 0.06 52.72
750 0.5 560.3 546.5 0.15 164.32 164.47 164.76 603.91 >1000
120 0.6 399.0 399.0 0.01 0.02 0.03 0.02 0.05 18.10
130 0.6 424.6 424.6 0.01 0.03 0.04 0.03 0.07 28.57
450 0.6 754.2 745.9 0.03 125.43 125.46 123.59 716.48 >1000
100 0.7 583.5 583.5 0.01 0.03 0.04 0.04 0.11 15.12
110 0.7 607.1 607.1 0.01 0.06 0.07 0.06 0.24 31.23
270 0.7 1049.7 1049.1 0.02 61.97 61.99 62.78 589.15 >1000
80 0.8 879.0 879.0 0.01 0.04 0.05 0.05 0.16 7.28
90 0.8 978.0 978.0 0.01 0.11 0.12 0.12 0.44 21.51
170 0.8 1580.2 1580.2 0.01 35.82 35.83 37.13 485.50 >1000
70 0.9 1708.4 1708.4 0.01 0.09 0.10 0.11 0.62 3.80
80 0.9 2059.2 2059.2 0.01 0.35 0.37 0.37 2.93 14.84
110 0.9 2666.4 2666.4 0.02 22.40 22.41 23.27 590.83 >1000

Table 2 shows the number of recursive iterations of MECQ and EWCLIQUE.
The value of the time [µs] is calculated by CPU time per iteration. The value
of the iteration ratio is the ratio of iterations of MECQ and EWCLIQUE. From
the result, we confirm that although the computation time of upper bounds of
MECQ is longer than EWCLIQUE, the iterations of MECQ is less than our
previous algorithm EWCLIQUE. The difference of CPU time can be explained
by this. One reason is MECQ calculates upper bounds of equation 13 at once.
EWCLIQUE calculates upper bounds in two steps and calculates the sum of
two upper bounds.

3.2 DIMACS benchmarks

DIMACS is a set of benchmarks for MCP [30]. We used them as benchmarks
of MEWCP by giving weights to edges in the same way as [24, 20, 13, 14]. For
each edge (vi, vj), we gave the weight w(vi, vj) = (i+ j) mod 200 + 1.

For the DIMACS benchmarks, the results of computational experiments for
previous methods are shown in [14, 13]. Hence we also compared our algorithm
with the branch-and-bound algorithm CBQ [14] and mathematical programming
formulations proposed in [13]. We quote the results shown in [14, 13] to our

9

Table 2: Iterations for random graphs

MECQ EWCLIQUE
MECQ

EWCLIQUE
with PLS without PLS iteration

|V | d iterations iterations time [µs] iterations time [µs] ratio
300 0.1 312.6 357.2 ǫ 1835.1 ǫ 19.46%
350 0.1 443.4 514.5 ǫ 2721.0 ǫ 18.91%

15000 0.1 56824211.6 56842808.1 7.09 702255007.1 0.66 8.09%
250 0.2 974.5 1043.8 ǫ 6412.8 ǫ 16.28%
280 0.2 1424.7 1515.2 ǫ 9862.9 ǫ 15.36%

5500 0.2 75843118.8 75882002.3 4.22 1537843711.0 0.29 4.93%
200 0.3 1547.8 1644.2 ǫ 14169.8 ǫ 11.60%
250 0.3 3449.5 3896.9 2.57 34844.2 0.29 11.18%

2500 0.3 65558818.2 65637225.6 3.55 1824084938.8 0.25 3.60%
160 0.4 2740.6 2895.5 3.45 31813.3 0.31 9.10%
200 0.4 5062.9 5868.7 1.70 70701.9 0.28 8.30%

1400 0.4 73127999.6 73361911.2 4.02 2993314273.1 0.25 2.45%
140 0.5 4541.5 5200.1 1.92 88105.7 0.23 5.90%
170 0.5 11374.6 11829.1 2.54 224608.1 0.27 5.27%
750 0.5 37702959.2 38847817.4 4.24 2342210511.1 0.26 1.66%
120 0.6 8166.3 8804.9 2.27 208388.4 0.24 4.23%
130 0.6 11338.8 13157.6 2.28 288494.1 0.24 4.56%
450 0.6 27505132.9 28469833.9 4.34 2725875895.6 0.26 1.04%
100 0.7 12737.1 13792.0 2.90 437892.1 0.25 3.15%
110 0.7 24203.6 26032.4 2.30 950029.7 0.25 2.74%
270 0.7 13547235.5 14604499.2 4.30 2141882035.0 0.28 0.68%
80 0.8 17659.5 20083.0 2.49 617626.3 0.26 3.25%
90 0.8 37616.7 45298.8 2.65 1578193.4 0.28 2.87%
170 0.8 7947844.6 8715999.5 4.26 1510657832.0 0.32 0.58%
70 0.9 30957.5 37263.2 2.95 2355972.7 0.26 1.58%
80 0.9 102852.5 111080.3 3.33 9974393.5 0.29 1.11%
110 0.9 5009165.9 5402618.4 4.31 1951189872.0 0.30 0.28%

result tables. The CPU used in [14] is Intel R©CoreTMi7 2.90 GHz. The CPU
used in [13] is Intel R©CoreTMi7 3.40 GHz.

Table 3 shows the CPU time for DIMACS. Table 4 shows the number of
recursive iterations of MECQ and EWCLIQUE. Except for hamming8-2 and
san200 0.9 1, our algorithm MECQ obtained optimal solutions in a shorter
time than others. For hamming8-2 and san200 0.9 1, MECQ has usable perfor-
mance. Only the MECQ with PLS solved all instances in the table in 1000 sec.
Although the initial solutions given by PLS did not improve performance in ran-
dom graphs, they worked well in DIMACS. Especially for benchmark families
gen and san, it reduced a lot of computation time.

10

Table 3: CPU time for DIMACS (sec)

optimal MECQ + PLS MECQ EWCLIQUE MIP CBQ G&M IPbase

|V | d weight LB PLS MECQ Total without PLS [24] [23] [14] [13] [13, 14]
brock200 1 200 0.75 21230 21230 0.02 24.81 24.82 24.12 338.31 >1000 3047.565 >10800 >10800
brock200 2 200 0.50 6542 6542 0.04 0.04 0.08 0.06 0.10 109.66 7.436 9464.24 >10800
brock200 3 200 0.61 10303 10303 0.01 0.40 0.41 0.42 1.27 743.58 55.905 >10800 >10800
brock200 4 200 0.66 13967 13967 0.01 1.16 1.17 1.17 4.84 >1000 188.031 >10800 >10800

C125.9 125 0.90 66248 66248 0.02 24.21 24.23 24.83 >1000 >1000 4558.170 >10800 >10800
c-fat200-1 200 0.08 7734 7734 0.01 ǫ 0.01 ǫ ǫ 4.80 0.483 3.870 31.296
c-fat200-2 200 0.16 26389 26389 0.02 ǫ 0.02 ǫ ǫ 4.72 0.890 33.260 49.671
c-fat200-5 200 0.43 168200 168200 0.07 ǫ 0.07 ǫ 74.31 7.06 >10800 155.300 134.578
c-fat500-10 500 0.37 804000 804000 0.31 0.23 0.54 0.24 >1000 745.93
c-fat500-1 500 0.04 10738 10738 0.01 ǫ 0.01 ǫ ǫ 171.91
c-fat500-2 500 0.07 38350 38350 0.02 ǫ 0.03 ǫ ǫ 399.90
c-fat500-5 500 0.19 205864 205864 0.10 0.01 0.11 0.01 0.43 264.44

DSJC500 5 500 1.00 9626 9626 0.03 10.14 10.17 10.00 44.43 >1000
gen200 p0.9 55 200 0.90 150839 150839 0.02 236.94 236.96 >1000 >1000 >1000

hamming6-2 64 0.90 32736 32736 0.01 ǫ 0.01 ǫ ǫ 0.07 4.437 0.300 17.000
hamming6-4 64 0.35 396 396 0.00 ǫ ǫ ǫ ǫ 0.22 0.031 1.970 6.468
hamming8-2 256 0.97 800624 800624 0.05 20.63 20.67 20.34 0.23 7.80 >10800 >10800 >10800
hamming8-4 256 0.64 12360 12360 0.01 0.54 0.55 0.55 1.46 276.15 439.437 >10800 >10800

johnson16-2-4 120 0.76 3808 3766 ǫ 0.17 0.17 0.18 0.25 57.40 84.687 >10800 >10800
johnson8-2-4 28 0.56 192 192 ǫ ǫ ǫ ǫ ǫ 0.03 ǫ 0.140 0.421
johnson8-4-4 70 0.77 6552 6552 ǫ ǫ ǫ ǫ ǫ 0.40 0.687 2.340 65.171

keller4 171 0.65 6745 6745 0.02 0.20 0.22 0.21 0.70 167.84 42.218 >10800 >10800
MANN a9 45 0.93 5460 5460 0.01 0.02 0.03 0.02 0.02 1.22 1.906 9.390 130.344

p hat1000-1 1000 0.24 5436 5253 0.11 1.91 2.02 1.97 2.92 >1000
p hat1500-1 1500 0.25 7135 6875 0.18 19.28 19.46 19.65 32.73 >1000
p hat300-1 300 0.24 3321 3321 0.03 0.01 0.04 0.01 0.01 146.10 3.281 1273.05 8489.750
p hat300-2 300 0.49 31564 31564 0.15 6.44 6.59 6.96 42.90 >1000 171.281 >10800 >10800
p hat500-1 500 0.25 4764 4764 0.05 0.08 0.14 0.08 0.13 >1000
p hat700-1 700 0.25 5185 5185 0.08 0.37 0.45 0.38 0.52 >1000

san1000 1000 0.50 10661 6588 2.94 17.18 20.11 19.46 >1000 >1000
san200 0.7 1 200 0.70 45295 45295 0.05 0.09 0.14 1.95 54.88 28.72
san200 0.7 2 200 0.70 15073 15073 0.12 2.34 2.46 4.02 17.86 >1000
san200 0.9 1 200 0.90 242710 242710 0.04 38.58 38.62 >1000 12.56 206.01
san200 0.9 2 200 0.90 178468 178468 0.03 88.84 88.88 378.96 833.49 >1000
san400 0.5 1 400 0.50 7442 7442 0.37 0.14 0.51 0.63 60.36 >1000
san400 0.7 1 400 0.70 77719 77719 0.31 15.55 15.86 645.24 >1000 >1000
san400 0.7 2 400 0.70 44155 44155 0.24 52.55 52.78 497.74 >1000 >1000
san400 0.7 3 400 0.70 24727 24727 0.11 211.11 211.22 325.71 >1000 >1000
sanr200 0.7 200 0.70 16398 16398 0.01 4.14 4.16 4.34 18.67 >1000

11

Table 4: Iterations for DIMACS

MECQ EWCLIQUE
EWCLIQUE

MECQ
with PLS without PLS iteration

graph |V | d iterations iterations time [µs] iterations time [µs] ratio
brock200 1 200 0.75 6074449 6103600 3.95 1328614116 0.25 0.46%
brock200 2 200 0.50 14073 19906 3.01 345371 0.29 5.76%
brock200 3 200 0.61 114928 130560 3.22 4282305 0.30 3.05%
brock200 4 200 0.66 287037 310735 3.77 13814425 0.35 2.25%

C125.9 125 0.90 4329351 4551897 5.45
c-fat200-1 200 0.08 28 38 ǫ 632 ǫ 6.01%
c-fat200-2 200 0.16 97 107 ǫ 6780 ǫ 1.58%
c-fat200-5 200 0.43 113 141 ǫ 138193445 0.54 0.00%
c-fat500-10 500 0.37 3853 3947 60.81
c-fat500-1 500 0.04 61 66 ǫ 1605 ǫ 4.11%
c-fat500-2 500 0.07 92 126 ǫ 4679 ǫ 2.69%
c-fat500-5 500 0.19 324 404 24.75 1227023 0.35 0.03%

DSJC500 5 500 1.00 2419493 2494606 4.01 200152687 0.22 1.25%
gen200 p0.9 55 200 0.90 13443080

hamming6-2 64 0.90 32 48 ǫ 896 ǫ 5.36%
hamming6-4 64 0.35 265 265 ǫ 340 ǫ 77.94%
hamming8-2 256 0.97 479056 479125 42.45 65731 3.50 728.92%
hamming8-4 256 0.64 86597 88679 6.20 2475100 0.59 3.58%

johnson16-2-4 120 0.76 309697 309697 0.58 1905154 0.13 16.26%
johnson8-2-4 28 0.56 79 79 ǫ 150 ǫ 52.67%
johnson8-4-4 70 0.77 354 361 ǫ 3953 ǫ 9.13%

keller4 171 0.65 61141 63170 3.32 2158496 0.32 2.93%
MANN a9 45 0.93 35116 35128 0.57 116041 0.17 30.27%

p hat1000-1 1000 0.24 582124 591826 3.33 9890185 0.30 5.98%
p hat1500-1 1500 0.25 4552934 4565892 4.30 106284583 0.31 4.30%
p hat300-1 300 0.24 3975 4221 2.37 50151 0.20 8.42%
p hat300-2 300 0.49 876123 1053858 6.60 134486327 0.32 0.78%
p hat500-1 500 0.25 27485 27601 2.90 468371 0.28 5.89%
p hat700-1 700 0.25 110426 113403 3.35 1678557 0.31 6.76%

san1000 1000 0.50 345909 383550 50.74
san200 0.7 1 200 0.70 6694 425248 4.59 387149894 0.14 0.11%
san200 0.7 2 200 0.70 335623 680897 5.90 48732878 0.37 1.40%
san200 0.9 1 200 0.90 1637404 12731307 0.99 0.00%
san200 0.9 2 200 0.90 4463309 25206475 72.79 303169816 2.75 1.72%
san400 0.5 1 400 0.50 11065 68967 9.13 43132933 1.40 0.16%
san400 0.7 1 400 0.70 547682 53869639 166.74
san400 0.7 2 400 0.70 2841349 57665379 64.93
san400 0.7 3 400 0.70 20591310 39873392 32.99
sanr200 0.7 200 0.70 1045157 1196523 3.63 55871909 0.33 2.14%

12

4 Conclusion

We proposed a branch-and-bound algorithmMECQ for MEWCP. Our algorithm
calculates upper bounds using vertex coloring. In the vertex coloring procedure,
our algorithm assigns edge weights to vertices to calculate upper bounds. By
some computational experiments, we confirmed our algorithm is faster than
previous ones.

Although modern techniques are proposed for MCP [17, 21], they cannot be
directly applied to MEWCP because of edge weights. To apply such techniques
to MEWCP, modifying them is a future work.

Recently, quantum annealer is studied to solve NP-hard problems including
MCP [8, 3]. Quantum annealer can solve the quadratic unconstrained binary
optimization (QUBO) problem. Since quantum annealer solvers are heuristic,
efficient exact solvers are required to evaluate them. QUBO can be formulated
as MEWCP by the vertex-and-edge-weighted complete graphs where negative
weight is allowed. Hence handling negative weight is one future work.

References

[1] Dukka Bahadur K.C, Tatsuya Akutsu, Etsuji Tomita, and Tomokazu Seki.
Protein side-chain packing problem: a maximum edge-weight clique algo-
rithmic approach. In The second conference on Asia-Pacific bioinformatics-
Volume 29, pages 191–200. Australian Computer Society, Inc., 2004.

[2] Dukka Bahadur K.C, Tatsuya Akutsu, Etsuji Tomita, Tomokazu Seki, and
Asao Fujiyama. Point matching under non-uniform distortions and protein
side chain packing based on efficient maximum clique algorithms. Genome
Informatics, 13:143–152, 2002.

[3] Zhengbing Bian, Fabian Chudak, William Macready, Aidan Roy, Roberto
Sebastiani, and Stefano Varotti. Solving sat and maxsat with a quantum
annealer: Foundations and a preliminary report. In International Sympo-
sium on Frontiers of Combining Systems, pages 153–171. Springer, 2017.

[4] Galina T Bogdanova, Andries E Brouwer, Stoian N Kapralov, and
Patric RJ Österg̊ard. Error-correcting codes over an alphabet of four ele-
ments. Designs, Codes and Cryptography, 23(3):333–342, 2001.

[5] Vladimir Boginski, Sergiy Butenko, and Panos M. Pardalos. Mining market
data: A network approach. Computers & Operations Research, 33(11):3171
– 3184, 2006. Part Special Issue: Operations Research and Data Mining.

[6] J.B Brown, Dukka Bahadur K.C, Etsuji Tomita, and Tatsuya Akutsu. Mul-
tiple methods for protein side chain packing using maximum weight cliques.
Genome Informatics, 17(1):3–12, 2006.

[7] Lúıs Cavique. A scalable algorithm for the market basket analysis. Journal
of Retailing and Consumer Services, 14(6):400–407, 2007.

13

[8] Guillaume Chapuis, Hristo Djidjev, Georg Hahn, and Guillaume Rizk.
Finding maximum cliques on the d-wave quantum annealer. Journal of
Signal Processing Systems, 2018.

[9] Steven R Corman, Timothy Kuhn, Robert D McPhee, and Kevin J Doo-
ley. Studying complex discursive systems. Human communication research,
28(2):157–206, 2002.

[10] Tuvi Etzion and Patric RJ Ostergard. Greedy and heuristic algorithms for
codes and colorings. IEEE Transactions on Information Theory, 44(1):382–
388, 1998.

[11] Zhiwen Fang, Chu-Min Li, and Ke Xu. An exact algorithm based on maxsat
reasoning for the maximum weight clique problem. Journal of Artificial
Intelligence Research, 55:799–833, 2016.

[12] Michael R Gary and David S Johnson. Computers and Intractability - A
Guide to the Theory of NP-completeness. WH Freeman and Company,
1979.

[13] Luis Gouveia and Pedro Martins. Solving the maximum edge-weight clique
problem in sparse graphs with compact formulations. EURO Journal on
Computational Optimization, 3(1):1–30, 2015.

[14] Seyedmohammadhossein Hosseinian, Dalila B.M.M. Fontes, and Sergiy
Butenko. A nonconvex quadratic optimization approach to the maximum
edge weight clique problem. Journal of Global Optimization, 72(2):219–240,
Mar 2018.

[15] Richard M Karp. Reducibility among combinatorial problems. In Com-
plexity of computer computations, pages 85–103. Springer, 1972.

[16] Deniss Kumlander. A new exact algorithm for the maximum-weight clique
problem based on a heuristic vertex-coloring and a backtrack search. In
Proceedings of the 5th International Conference on Modelling, Computation
and Optimization in Information Systems and Management Sciences, pages
202–208. Citeseer, 2004.

[17] Chu-Min Li, Hua Jiang, and Felip Manyà. On minimization of the num-
ber of branches in branch-and-bound algorithms for the maximum clique
problem. Computers & Operations Research, 84:1–15, 2017.

[18] David R Morrison, Sheldon H Jacobson, Jason J Sauppe, and Edward C
Sewell. Branch-and-bound algorithms: A survey of recent advances in
searching, branching, and pruning. Discrete Optimization, 19:79–102, 2016.

[19] Massimiliano Pavan and Marcello Pelillo. Generalizing the motzkin-straus
theorem to edge-weighted graphs, with applications to image segmentation.
In International Workshop on Energy Minimization Methods in Computer
Vision and Pattern Recognition, pages 485–500. Springer, 2003.

14

[20] Wayne Pullan. Approximating the maximum vertex/edge weighted clique
using local search. Journal of Heuristics, 14(2):117–134, 2008.

[21] Pablo San Segundo, Alexey Nikolaev, Mikhail Batsyn, and Panos M Parda-
los. Improved infra-chromatic bound for exact maximum clique search.
Informatica, 27(2):463–487, 2016.

[22] Pablo San Segundo, Diego Rodŕıguez-Losada, and Agust́ın Jiménez. An
exact bit-parallel algorithm for the maximum clique problem. Computers
& Operations Research, 38(2):571–581, 2011.

[23] Satoshi Shimizu, Kazuaki Yamaguchi, and Sumio Masuda. Mathematical
programming formulation for the maximum edge-weight clique problem.
IEICE Transactions on Fundamentals of Electronics, Communications and
Computer Sciences (in Japanese), J100-A(8):313–315, 2017.

[24] Satoshi Shimizu, Kazuaki Yamaguchi, and Sumio Masuda. A branch-and-
bound based exact algorithm for the maximum edge-weight clique problem.
In 5th International Conference on Computational Science/Intelligence and
Applied Informatics (CSII 2018). IEEE, 2018.

[25] Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh, and Sumio Masuda.
Some improvements on Kumlander’s maximum weight clique extraction al-
gorithm. In International Conference on Electrical, Computer, Electronics
and Communication Engineering (ICECECE 2012), pages 307–311, 2012.

[26] Satoshi Shimizu, Kazuaki Yamaguchi, Toshiki Saitoh, and Sumio Masuda.
Fast maximum weight clique extraction algorithm: Optimal tables for
branch-and-bound. Descrete Applied Mathematics, 223:120–134, 2017.

[27] Etosuji Tomita, Yoichi Sutani, Takanori Higashi, Shinya Takahashi, and
Mitsuo Wakatsuki. A simple and faster branch-and-bound algorithm for
finding a maximum clique. In WALCOM: Algorithms and computation,
pages 191–203. Springer, 2010.

[28] Etsuji Tomita and Toshikatsu Kameda. An efficient branch-and-bound
algorithm for finding a maximum clique with computational experiments.
Journal of Global optimization, 37(1):95–111, 2007.

[29] Etsuji Tomita, Kohei Yoshida, Takuro Hatta, Atsuki Nagao, Hiro Ito, and
Mitsuo Wakatsuki. A much faster branch-and-bound algorithm for finding a
maximum clique. In International Workshop on Frontiers in Algorithmics,
pages 215–226. Springer, 2016.

[30] Michael Trick, Vavsek Chvatal, Bill Cook, David Johnson, Cathy
McGeoch, Bob Tarjan, et al. DIMACS implementation challenges.
http://dimacs.rutgers.edu/Challenges/.

[31] Qinghua Wu and Jin-Kao Hao. A review on algorithms for maximum clique
problems. European Journal of Operational Research, 242(3):693–709, 2015.

15

http://dimacs.rutgers.edu/Challenges/

	1 Introduction
	2 Our algorithm MECQ
	2.1 Pruning Rules
	2.1.1 Upper bound of vertex-and-edge-weighted graph
	2.1.2 Upper bound calculation for MEWCP

	2.2 Branch-and-bound
	2.2.1 Subroutine CALC_SEQ_AND_UB

	3 Computational experiments
	3.1 Random graphs
	3.2 DIMACS benchmarks

	4 Conclusion

