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Abstract. The problem considered is the non-preemptive scheduling of independent jobs that
consume a resource (which is non-renewable and replenished regularly) on parallel uniformly
related machines. The input defines the speed of machines, size of jobs, the quantity of resource
required by the jobs, the replenished quantities, and replenishment dates of the resource. Every
job can start processing only after the required quantity of the resource is allocated to the job.
The objective function is the minimization of the convex combination of the makespan and an
objective that is equivalent to the lp-norm of the vector of loads of the machines. We present
an EPTAS for this problem. Prior to our work only a PTAS was known in this non-renewable
resource settings and this PTAS was only for the special case of our problem of makespan
minimization on identical machines.

1 Introduction

The problem ums considered is the non-preemptive scheduling of n independent jobs that
consume a single resource (which is non-renewable and replenished regularly) on m uniformly
related machines. In the setting of uniformly related machines we let si > 0 be the speed of
machine i. Each job j has a size pj > 0 associated with it and the processing time of job j
on machine i is pj/si. The speed of the fastest machine is without loss of generality 1, else
the speed of the machines can be converted to relative speeds with respect to the speed of
the fastest machine. In our problem, each job j consumes dj ≥ 0 quantity of resource to start
its processing. That is, in order to start processing job j, the resource should be allocated to
the job at the start of the processing of job j. Therefore, jobs may have to wait if sufficient
quantity of the resource is not available and thus idle time is essential for this problem. The
resource is supplied at e different time points. The resource replenishment time for time period
k is denoted by uk and the quantity of resource supplied at this time point is qk ≥ 0. Both
uk and qk (for all k) are given as part of the input. In the given instance of the problem we
have qk > 0 for all k, but we construct additional instances in which it is convenient to allow
zero resource supplied in some periods.

A solution of the problem is feasible if one job is assigned to only one of the machines
for the entirety of the continuous processing time of that job and no other job should be
assigned to that machine during this time, so there is no overlap of time slots of jobs assigned
to a common machine (this is the standard non-preemptive requirement). Also, the necessary
quantity of the resource required by the jobs should be supplied, thus for every point of time
t, the inequality ∑

j:j starts strictly before t
dj ≤

∑
k:uk<t

qk,
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should be also satisfied for feasibility, so the resource is common for all machines.
The parameters mentioned above define an input instance I for the problem. All these

parameters are rational numbers.
The objective function considered is the minimization of the convex combination of the

makespan and the sum of the φth powers of the load of the machines, where ψ ∈ [0, 1] is the
coefficient of the convex combination, and φ > 1. Given the possibility of idle time, the load
of a machine is the time of completion of the last job assigned to the machine. That is, the
objective value of a schedule σ is defined as

obj(σ) = ψmax
i
Λi + (1− ψ)

∑
i

Λφi .

where Λi is the load of machine i in σ, and obj denotes the objective function. The sum of
the φth power of the completion times of the machines is equivalent to the lφ-norm of the
completion times of the machines that is a standard objective in the load balancing literature.
Define norm-cost of a schedule σ as

Φ(σ) :=
m∑
i=1

Λφi .

The objective considered in this work is a unified generalization of the makespan minimization
and the lφ-norm of the loads so we consider the two extreme cases ψ = 0 and ψ = 1 as the
most interesting cases of this objective. For φ ≤ 1 and ψ = 0, the optimization problem of
finding a minimum cost solution where there is a unique replenishment date at time zero is
solved easily by allocating all jobs to one of the fastest machines and thus in this work we
consider the problem assuming that φ > 1. Problem ums is to find a job assignment function
σ which assigns a job j to a machine i and a starting time on the machine that is a feasible
solution so that obj is minimized. Our result is an EPTAS for ums.

Definitions of approximation algorithms. A ρ-approximation algorithm for a minimization
problem is a polynomial time algorithm that always finds a feasible solution of cost at most ρ
times the cost of an optimal solution. A polynomial time approximation scheme (PTAS) for
a given problem is a family of approximation algorithms such that the family has a (1 + ε)-
approximation algorithm for any ε > 0. An efficient polynomial time approximation scheme
(EPTAS) [5,6,9] is a PTAS whose time complexity is upper bounded by the form f(1

ε )·poly(n)
where f is some computable (not necessarily polynomial) function and poly(n) is a polynomial
of the length of the (binary) encoding of the input. A fully polynomial time approximation
scheme (FPTAS) is defined like an EPTAS, with the added restriction that f must be upper
bounded by a polynomial in 1

ε . Note that our problem generalizes the standard minimum
makespan on identical machines that is known to be strongly NP-hard, and thus our problem
does not admit an FPTAS (unless P=NP). Hence, an EPTAS is the fastest scheme that can
be established for ums.

Notation and preliminaries. In what follows machines are usually specified by the index
i, i = 1, 2, . . . ,m, jobs are specified by the index j, j = 1, 2, . . . , n, and time periods are
specified by the index k, k = 1, 2, . . . , e. Furthermore, let J be the set of all jobs, M be the
set of all machines, and m(s) denote the number of machines with speed s. Without loss of
generality, m ≤ n because otherwise the m − n slowest machines can be removed from the
instance. Let ε > 0 be such that 1/ε is an integer, and our goal is to find an approximation
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algorithm of approximation ratio 1 + ε with the required time complexity bound. Based on
standard scaling (of ε) it suffices to exhibit an algorithm that runs in the required time
complexity and returns a feasible solution of cost at most (1 + ε)c times the optimal cost for
an arbitrary constant c > 0. Note that if we modify a solution for ums so that the new load of
every machine is at most 1 + ε times its old load then the makespan of the new solution is at
most 1 + ε time the old makespan and the norm-cost of the new solution is at most (1 + ε)φ
times the old norm-cost.

Previous studies of scheduling problems with non-renewable resources. In [2, 17, 28] there
are studies motivating the setting of non-renewable resources in scheduling problems like
problems arising in steel production or in order picking in a platform with a distribution
company. Slowiński [29] and Carlier and Kan [4] were among the first to study such prob-
lems and considered minimizing the resource consumed as an objective but the former also
added the makespan minimization objective. Grigoriev et al. [10] considered single machine
scheduling with single and multiple resources and established a constant ratio approximation
algorithm for makespan minimization and maximum lateness minimization. The settings of
non-renewable resources was considered in other studies like [3, 11, 12, 14–16, 24]. Last and
most relevant to our work, Györgyi [13] derived a PTAS for parallel machine scheduling with
single non-renewable resource and makespan objective on identical machines. This PTAS is
not an EPTAS, and thus our work both improves the time complexity of the known scheme
for this problem to an EPTAS and furthermore it generalizes the machine settings to uni-
formly related machine and the objective to include also the sum of the φ-powers of machines’
completion times that was not considered before in the settings of non-renewable resource.
Furthermore, prior to our work there was no approximation algorithm in the literature for
minimizing the makespan on uniform machines with non-renewable resource.

Earlier approximation schemes for special cases of the problem without non-renewable re-
sources. A special case of ums is when there are no resource consuming jobs with parallel
machines (this is the situation when the entire quantity of the resource is available to all
jobs is released at time 0). For this machine setting Jansen [21] showed an EPTAS for the
makespan minimization objective improving the seminal PTAS developed by Hochbaum and
Shmoys [20]. Epstein and Levin [7] showed an EPTAS for `p-norm minimization problem (see
also [8] for an alternative approach leading to an EPTAS for this problem), and Kones and
Levin [25] established an EPTAS for the problem of load balancing with the objective that
generalizes the one considered here.

The problem of scheduling on identical machines is a special case of uniformly related
machines when speed of all machines are equal. Hochbaum and Shmoys [19] showed an EPTAS
(see also [18, Chapter 9]) for the makespan minimization objective for this setting. Alon et
al. [1] showed an EPTAS for `p-norm minimization. Jansen et al. [22] improved the time
complexity of the approximation schemes of the earlier results for makespan minimization
on identical machines and uniformly related machines and also for `p-norm of the vector of
machines loads on identical machines.

Lenstra et al. [26] showed that for the more general settings of unrelated machines unless
P=NP there is no approximation algorithm with an approximation ratio less than 1.5 for the
makespan minimization objective. They also presented a 2-approximation algorithm to this
classical scheduling problem.
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Outline of the scheme. We apply geometric rounding to the parameters of the input (Section
2) followed by a guessing step (Section 4) to guess partial information on the optimal solution.
This guessing step overcomes the impossibility to use the dual approximation method for our
objective that is not a bottleneck objective, and it also reflects the special properties of our
problem. It is based on a careful characterization of a subset of solutions containing a near
optimal solution (Section 3). The so-called configuration mixed-integer linear program, MILP,
(Section 5) is based on configurations in addition to the guessed information and we solve
the MILP to find an optimal solution of this mathematical program. The optimal solution of
the MILP is found in polynomial time using [23, 27] since the number of integer variables is
a constant. For every possible value for the guessed information, we solve the MILP, and the
least cost solution among all solutions to the MILP is converted to a feasible schedule for the
scheduling problem whose cost is approximately the cost of the optimal solution of the MILP
(see Section 6).

2 Rounding

Our scheme starts by applying standard geometric rounding of the input parameters stated
below. We apply rounding of the job sizes, of the machine speeds (and as a result also the
processing times), and of the replenishment dates. The rounding is carried out as follows. For
every job j, the size of j is rounded up to the nearest integer power of (1+ε), the speed of every
machine i is rounded down to the nearest integer power of (1 + ε), and for the replenishment
dates we first add ε · pmin to every replenishment date and then we round up to the nearest
integer power of (1 + ε) where pmin = minj pj > 0 is the minimum size of a job in the original
instance. The speed of the fastest machine remains 1 after the rounding since 1 is an integer
power of 1 + ε.

That is,

p′j = (1 + ε)dlog(1+ε) pje s′i = (1 + ε)blog1+ε sic and u′k = (1 + ε)dlog(1+ε)(uk+εpmin)e .

Note that as a result of the rounding the processing time of job j on machine i becomes
p′ij and satisfies that

p′ij =
p′j
s′i
∈
[
pj
si
, (1 + ε)2 pj

si

)
. (1)

We let I ′ be the rounded instance.
Let α be the smallest integer such that (1 + ε)α ≥ u′1 , and β be the smallest integer such

that (1 + ε)β ≥ u′e , and let µ = β − α be the number of time periods in I ′ where a period is
between two consecutive replenishment dates even if the amount of resource supplied in some
of these periods (i.e., at the starting time of a period) are perhaps zero. Then

µ = β − α =dlog(1+ε)(ue + εpmin)e − dlog(1+ε)(u1 + εpmin)e+ 1

≤ log(1+ε)(ue + εpmin)− log(1+ε) εpmin + 2 ≤ log(1+ε)
ue

εpmin
+ 3 ,

which is upper bounded by a polynomial in the input encoding length when ε is fixed.
Last, we note that if there are different replenishment dates that are identical (in I ′) we

combine identical replenishment dates into one date by summing up the replenished quantity
of the dates that are combined. There are at most µ replenishment dates.



EPTAS for Load Balancing Problem on Parallel Machines with a Non-renewable Resource 5

With a slight abuse of notation, let u′k be the kth replenishment date after the above
rounding. The resource supplied at time period k, in increasing order of k, is given by q′k =∑
v:uv≤u′k

qv −
∑
v:u′v<u′k

q′v.
Next, we prove that we can assume without loss of generality that the input to our problem

is rounded.
Proposition 1. Any schedule σ feasible to instance I, of makespan Cmax and norm-cost
Φ(σ), can be used to generate a schedule σ′ which is feasible to the rounded instance I ′ with
makespan at most (1 + ε)3Cmax and Φ(σ′) ≤ (1 + ε)3φΦ(σ). Any schedule σ′ feasible to the
rounded instance I ′, of makespan C ′max and norm-cost Φ(σ′), is feasible to the original instance
I with makespan at most C ′max and norm-cost at most Φ(σ′).

Proof. Consider first a schedule σ′ feasible to the rounded instance I ′. We use the same
assignment of jobs to machines and we start every job j at the starting time of j in σ′. Since
machines’ speeds are rounded down and job sizes are rounded up, the resulting schedule for
instance I is a feasible non-preemptive schedule, and it satisfies the resource requirement
constraints as the replenishment dates were rounded up (so in I the resource is available not
later than it is available in I ′). Since the completion time of every job j in I is not later than
its completion time in I ′, the claim regarding the makespan and norm-cost holds.

Consider the other direction and let σ be a feasible schedule to I. We define the schedule
σ′ by assigning each job j to the same machine that σ is using to process j. We still need to
define the starting time of every job. If σ used to complete the processing of job j at time x,
then in σ′ we complete processing job j at time (1 + ε)3 · x. Note that the claim regarding
the makespan and the norm-cost of the resulting schedule follows immediately. It suffices to
show that this is indeed a feasible schedule.

First, assume that j′ was processed (in σ) after job j on a common machine i. Let Cj
and Cj′ be the completion time in σ of j and j′, respectively. Then, Cj′ ≥ Cj + pij′ so the
completion time of j′ in σ′ satisfies (1 + ε)3 ·Cj′ ≥ (1 + ε)3Cj + (1 + ε)pij′ ≥ (1 + ε)3Cj + p′ij′
and therefore the schedule is a non-preemptive schedule.

Next we verify the availability of resource to process the jobs according to σ′. Assume that
in σ the processing of job j on machine i depends on the resource supplied at point uk so the
starting time of j was at least uk and its completion time was at least Cj ≥ uk + pij . In σ′

we have the new completion time (1 + ε)3 ·Cj ≥ εCj + (1 + ε)2Cj ≥ εpmin + (1 + ε)2uk + p′ij .
Therefore, the new starting time of j on machine i in σ′ is not smaller than εpmin + (1+ε)2uk
so indeed the k-th supply point after the rounding is not earlier than the starting time of job
j. Therefore, the resource that j uses to start its processing is available at this new starting
time. ut

Using the last proposition, we assume without loss of generality that the original instance
is already rounded accordingly so with a slight abuse of notation we let pj , si, pij , uk and qk
be the (rounded) size of a job j, the (rounded) speed of a machine i, the (rounded) processing
time of job j on machine i, the kth (rounded) replenishment date and resource supplied at uk
respectively and last we assume that I is the (rounded) input instance. In the next sections
we provide an EPTAS for rounded instances of ums.

3 Characterization of near-optimal solutions

In the known approximation schemes for the makespan minimization objective (for various
machine models) one can apply the standard step of guessing the optimal makespan using
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binary search and then discard loads that are sufficiently smaller than this guessed value.
Since our objective is different, we are not able to discard small loads and we are not able
to use binary search for finding the approximate makespan. Thus we need another tool to
characterize near optimal solution. In this section we provide the necessary characterization
for our scheme.

Lemma 1. There is a feasible solution whose objective function value is (1 + ε)φ times the
optimal cost satisfying that the makespan is attained on a machine of speed at least ε2.

Proof. Let σ be an optimal solution and among all optimal solutions, σ satisfies that the
number of machines of speed less than ε2 having load larger than that of machine 1 is mini-
mized. If no such machine exists, the claim holds for σ. Assume that there are such machines
of speed less than ε2 having load larger than that of machine 1 and if the claim does not hold
for σ then at least one of those machines attains the makespan.

Fix a machine i that attains the makespan so it has a load larger than the load of machine
1, where i is a machine of speed smaller than ε2. Perform the following transformation to σ.
Transfer the jobs from machine i to machine 1 to run after time Λ1 in the same order of jobs
(as they used to be processed on i) such that the starting time of each job on machine 1 is at
least the starting time of the job on machine i in σ. In order to satisfy this condition add idle
time where necessary. This transformation is feasible because when the jobs from machine i

are transferred to machine 1 the time period in which a job is processed on machine 1 is not
before the time period in which it was processed on i.

Let the resulting schedule be σ′. Let the load of machine 1 and i in σ be Λ1 and Λi

respectively, and the new load of machine 1 and i in σ′ be Λ′1 and Λ′i = 0 respectively. This
transformation can result in two cases.

First, assume that Λ′1 ≤ Λi. Observe that if during the transformation we added idle
time to satisfy the condition on the time periods of the transferred jobs, then this case
applies. Then, the new makespan is not larger than the makespan of σ, and furthermore, the
difference in norm-cost between the new schedule and old schedule is Λ′1

φ −
(
Λφ1 + Λφi

)
≤

Λφi −
(
Λφ1 + Λφi

)
≤ 0. Thus, the norm-cost is not increased as a result of the transformation.

Therefore, the cost of σ′ is not larger than the cost of σ but the number of machines with
speed smaller than ε2 with load larger than the load of machine 1 is decreased. This means
that σ was not an optimal solution or that we get a contradiction to the choice of σ among
all optimal solutions. Hence this case is not possible.

The second case occurs when the finishing time of the last job moved to machine 1 is later
than Λi. That is Λ1 ≤ Λi < Λ′1. After the transformation, machine 1 attains the makespan in
σ′ because the new load of machine 1, Λ′1, is larger than the old load of machine i, Λi, which
was the machine that attained the makespan in σ and the loads of all other machines remain
unchanged. The total increase in load of machine 1, is siΛi which is at most ε2Λi. Thus, the
new makespan Λ′1 ≤ Λ1 + ε2Λi ≤ Λi + ε2Λi ≤ (1 + ε)Λi. Moreover,

Φ(σ′) =
m∑
i=1

Λ′i
φ = Λ′1

φ + Λ′i
φ +

m∑
i=2,i 6=i

Λ′i
φ ≤ ((1 + ε)Λi)φ +

m∑
i=2,i 6=i

Λi
φ ≤ (1 + ε)φΦ(σ) .

Thus, the cost of σ′ is at most (1 + ε)φ times the cost of σ. Thus, the schedule σ′ is a near
optimal solution such that the makespan is attained on a machine of speed at least ε2. ut
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A machine is said to be active for a time interval consisting of some time periods if the
machine is processing a job (or a part of a job) during that time interval and it is idle outside
of this time interval. Let

µ̃ =
⌈
log(1+ε)

1
ε

+ 2
⌉

be a function of ε, and note that µ̃ is a constant once ε is fixed. Our next goal is to show that
we can restrict ourselves to schedules in which every machine is active only for a time interval
consisting of a constant number of consecutive time periods. We prove the next lemma by
applying time stretching and moving the new idle time of a machine to be at the beginning
of the time horizon.

Lemma 2. The feasible schedule σ to the instance I resulting from Lemma 1 can be converted
into another schedule σ̃ in which first, every machine is active in a time interval consisting of
at most µ̃ consecutive time periods, second, obj(σ̃) ≤ (1 + ε)φobj(σ), and last, the makespan
is attained on a machine of speed at least ε2.

Proof. We apply the following process on every machine i. We first change the load of i and
then schedule the jobs accordingly. Assume that the load of i in σ is Λi, then the new load of
i in σ′ will be exactly (1 + ε)Λi and we construct the schedule by adding idle time of length
εΛi at the beginning of the time horizon, so the active time interval of i will start not earlier
than εΛi

1+ε and ends not later than (1 + ε)2Λi. σ′ is still feasible because the starting time of
the jobs does not decrease and this ensures that there is enough resource available to start
processing the job. After this additional idle time, the schedule of i will be exactly as in σ
(while delaying all jobs assigned to i by this idle time). Thus for any machine i, that has jobs
assigned to it, i has a new load of exactly (1 + ε)Λi. So the claim regarding the cost of the
solution as well as the existence of a machine of speed at least ε2 whose load is the (new)
makespan is satisfied (the set of machines attaining the makespan is not modified). It remains
to bound the number of consecutive time periods contained in the active time interval of i.
Noting that the number of consecutive time periods in this time interval is smaller by 1 from
the number of integer powers of 1 + ε between εΛi

1+ε and (1 + ε)2Λi, we conclude that it is at
most dlog1+ε

(1+ε)2Λi
εΛi
1+ε

− 1e =
⌈
log(1+ε)

1
ε + 2

⌉
= µ̃. ut

Thus, for the succeeding discussions, it suffices to consider schedules that assign jobs to at
most µ̃ consecutive time periods on every machine and the makespan is attained on a machine
of speed at least ε2.

4 Guessing

Let opt be a least cost solution among all the near optimal solutions that satisfy Lemma 2,
and such a feasible solution exists when the input instance has a feasible solution. Let the
makespan value of opt rounded down to an integer power of 1+ε be Copt and the speed of the
machine on which the makespan is achieved be sopt. Then the makespan of all near optimal
solutions that we would like to consider lies in [Copt, (1 + ε)Copt]. In the guessing step that
we exhibit now we guess the pair (Copt, sopt).

We guess both pieces of information regarding opt. The term guess is used to mean that we
perform the following steps of the algorithm for every possible value of this information and
we output the feasible solution of minimal cost among all iterations that results in a feasible
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solution to ums. We note that our solution (for a given value of the guess) need not satisfy this
guessed information but we will use the existence of a near optimal solution corresponding to
this guess. In the analysis of the approximation ratio of our scheme it suffices to consider the
iteration of this exhaustive search in which we used the correct information regarding opt.
We next verify that the number of possibilities of this guessed information (i.e., the number
of iterations of the exhaustive enumeration) is upper bounded by a polynomial in the input
encoding length.

Lemma 3. The number of possibilities of the guessed information (Copt, sopt) is at most
n
(
log(1+ε) n+ 2

)
·
(
1− log(1+ε) ε

2
)

.

Proof. From Lemma 2 the makespan is achieved on a machine of speed at least ε2, thus the
speed of the machine on which makespan is achieved lies in [ε2, 1]. The number of possible
distinct values for sopt is at most log(1+ε) 1−

⌈
log(1+ε) ε

2
⌉

+ 1 ≤ 1− log(1+ε) ε
2. Let i be the

machine on which makespan is achieved. Then Copt lies in [pmax/si, n · (pmax/si)], where pmax
is the largest rounded size among all the jobs assigned to machine i, and si is rounded speed of
machine i. Thus the number of possible distinct values for Copt on machine i for a given value
of pmax and sopt = si is at most

⌈
log(1+ε)

(
n · pmaxsi

)⌉
− log(1+ε)

(
pmax
si

)
+ 1 ≤ log(1+ε) n + 2,

and thus the total number of possible values we need to check for the pair of values (Copt, sopt)
is at most n

(
log(1+ε) n+ 2

)
·
(
1− log(1+ε) ε

2
)

as we claimed. ut

5 The mixed-integer linear program

Our scheme is based on solving a mixed-integer linear program (MILP) for every given value of
the guessed information. The MILP is based on configurations and assignment of jobs to con-
figurations. We first define some preliminaries definitions, then our notion of configurations,
and we conclude this section presenting the MILP.

Huge, Big, and Small jobs. We classify jobs into huge, big, and small jobs with respect to
the pair (s, w), where s is the speed of a machine and w is its load. The formal definition
applies for an arbitrary pair of positive reals. Let ρ ≥ 1 be a constant that will be specified
later. A job j is a huge job for a pair (s, w) if pj/s > (1 + ε)w, is a big job for a pair
(s, w) if (1 + ε)w ≥ pj/s ≥ ερw , and is a small job for a pair (s, w) if pj/s < ερw. Let
∆ =

⌈
log(1+ε)(1 + ε)w

⌉
and δ =

⌈
log(1+ε) ε

ρw
⌉
. Then, the number of distinct sizes for big

jobs for a fixed pair (s, w) is at most λ = ∆− δ + 1, and λ depends only on ε (for a constant
ρ).

Large and Small loads. Recall that Copt is the guessed approximated value of makespan of
a near optimal solution that satisfies Lemma 2. A load w of a machine is a large load if
w ≥ κCopt , else it is a small load, where κ is a function of ε which will be specified later.
Thus a large load lies in [κCopt, (1 + ε)Copt]. Therefore, given a value of Copt, the number
of distinct values of large loads is at most log(1+ε)

(1+ε)Copt
κCopt

+ 1 = log(1+ε)
1
κ + 2 which is a

constant for a fixed value of ε and κ.

Fast and slow speeds. Let S be the set of all values for the rounded speed of machines. A
speed s or a machine of speed s is fast if s ≥ κ, else it is slow, where κ is the same function
of ε we used to define large loads. The number of distinct values of fast speeds is at most
log(1+ε) 1− log(1+ε) κ+ 1 ≤ log(1+ε)

1
κ + 2 which is constant when ε is fixed.
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Configuration. We use the term configuration as a compact and approximated representation
of a schedule of one machine. Each configuration c is a vector with µ̃ + 2 components (see
Figure 1 for an illustration).

Fig. 1. Structure of a configuration

The first component stores the speed sc of the machine assigned configuration c. The
second component, wc, is the upper bound on the load (load bound) of a machine to which
configuration c is assigned, rounded up to an integer power of (1 + ε). Based on our charac-
terization of near optimal solutions, a machine assigned c will be active for at most µ̃ time
periods intersecting [εwc, (1 + ε)wc]. Let ∆c =

⌈
log(1+ε)(1 + ε)wc

⌉
and δc =

⌈
log(1+ε) ε

ρwc
⌉
.

The number of distinct sizes for big jobs for the configuration c is at most λc = ∆c − δc + 1.
Let νlc =

⌊
log(1+ε) εwc

⌋
and let νuc =

⌈
log(1+ε)(1 + ε)wc

⌉
. Each of the remaining µ̃ compo-

nents of the configuration corresponds to time periods k = νlc, ν
l
c + 1, νlc + 2, . . . , νuc . For each

period k in this interval, there is an associated subvector of λc + 1 components (a column in
Figure 1). Each of the first λc components of the subvector associated to a period k stores the
number of big jobs, for the pair (sc, wc), of processing time (1 + ε)δc+r−1 on machines with
speed sc for r = 1, 2, . . . , λc that are started in that period on a machine assigned configu-
ration c, and we denote this value of the component by Bc(k, r). The last component of the
subvector associated to a period k stores the floor of the ratio of the sum of the processing
time of all the small jobs, for the pair (sc, wc), that are started in that period on a machine
assigned configuration c and ερwc, denoted by Sc(k). That is,

Sc(k) =
⌊∑(pj/sc)

ερwc

⌋
,

where the summation is over the set of the small jobs assigned to period k and configuration
c on such machine.

Number of configurations. Our next goal is to upper bound the number of configurations with
a common given pair (sc, wc) by a constant depending on ε and to upper bound the number
of configurations for all such pairs by a polynomial in the input encoding length. We will
prove the following upper bounds.
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Lemma 4. For a fixed value for speed and load bound, the number of possible configurations
is at most (1 + ε

ερ
+ 1

)µ̃(λ+1)
.

In total there are polynomial number of configurations.

Proof. The number of big jobs that start in a time period is at most the number of big jobs
that can be assigned to a machine, which is at most (1+ε)wc

ερwc
= 1+ε

ερ . Thus, the number of
distinct values that Bc(k, r) can take is at most 1+ε

ερ + 1. The number of distinct values that
Sc(k) can take is at most (1+ε)wc

ερwc
+ 1 = 1+ε

ερ + 1. For a fixed value for speed and load bound,

the number of possible configurations is at most
(

1+ε
ερ + 1

)µ̃(λ+1)
as we claimed.

The number of distinct values that the load of a configuration given a fixed speed of the
configuration can take can be upper bounded by the following argument. There are n options
for the maximum processing time of a job assigned to this configuration, and the load bound
is between this processing time and n times this processing times. The number of distinct
values of speed of a configuration is at most the number of machines. Thus the total number
of configurations is at most

(
n
(
log(1+ε) n+ 2

))
·m ·

(
1+ε
ερ + 1

)µ̃(λ+1)
, which is upper bounded

by a polynomial in the input encoding length when ε is fixed. ut

Generating a schedule of one machine from a configuration c. We would like to restrict
ourselves to configurations that represent a non-preemptive schedule. To do that, we define
a partial schedule of one machine corresponding to a configuration c, and the possibility to
create this partial schedule will mean that the configuration will be called feasible. Based
on the configuration c with its speed sc and the load bound wc, we create a schedule on µ̃
periods intersecting [εwc, (1 + ε)wc] on that machine. For every period k in this interval, in
an increasing order of k, perform the steps below.

– Initialize the starting time of the first job in period k denoted as Startk to be

max{uk, the finishing time of the last processed job in period at most k − 1}.

When k is the first period in this interval, finishing time of last processed job in period
k − 1 is the starting time of period k.

– If Sc(k) is not zero, then assign a virtual job of size Sc(k) · ερwcsc to start at time Startk
and increase the value of Startk by the processing time of this virtual job.

– The remaining jobs assigned to period k are big jobs and these big jobs are scheduled
sequentially without idle time in non-decreasing order of their size, the number of big jobs
of each size are as described in c, and the first such job is scheduled to start at Startk.

A configuration is feasible if for each period in the schedule generated, there is at most
one job (that is not a virtual job) whose processing crosses into the successive period(s). Let
C be the set of all feasible configurations and we compute C in advance with the required
time complexity of the form f(1

ε ) · poly(n). We can indeed compute C in advance in this
required time complexity as the algorithm for generating a schedule of one machine based on
a configuration is a linear time algorithm and verifying feasibility is carried out during this
generation process.
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Notation for the MILP. A MILP is developed that uses the guessed information of opt to
schedule the jobs to configurations for the rounded instance, I ′. For each configuration c ∈ C,
the MILP assigns the jobs to only a particular set of consecutive periods such that when that
configuration is assigned to a machine, the machine will be active for only that particular set
of consecutive periods. The set of periods is defined by the configuration. Let

νlc = blog(1+ε) εwcc , νuc = dlog(1+ε)(1 + ε)wce .

Then the set of consecutive time periods for which a machine assigned configuration c will
be active (or more precisely it will not be active in other time periods) is denoted by Kc =
{(1 + ε)k : k = νlc, ν

l
c + 1, νlc + 2, . . . , νuc } ,∀c ∈ C. Furthermore, let K = {(1 + ε)i : i =

log1+ε u1, log1+ε u1 + 1, . . . , log1+εCopt + 1}, denotes the set of universal time periods for any
configuration and recall that |K| = µ is bounded by a polynomial in the input encoding
length.

Since the classification of the jobs depend on both the speed of the configuration and
the load of the configuration the distinct size of the big jobs change with respect to the
configuration. Hence let Rc ,∀c ∈ C denote the set of indexes for integer power of 1 + ε
corresponding to sizes of big jobs for the pair (sc, wc) of configuration c.

For each speed s and load bound w that is an integer power of 1 + ε, create the sets
HJ(s, w), BJ(s, w) and SJ(s, w) for huge jobs, big jobs and small jobs for the pair (s, w)
respectively. Order the jobs in each list in non-decreasing order of the resource requirements.

The decision variables of the MILP. We have two families of decision variables.
Configuration counters. Denoted by zc. The variable zc counts the number of ma-

chines assigned configuration c ∈ C. Each configuration counter for a configuration of fast
speed and large load is required to be integer and configuration counters for remaining con-
figurations are allowed to be fractional. Thus the number of integer configuration counters is
at most

(
log(1+ε)

1
κ + 2

)2
·
(

1+ε
ερ + 1

)µ̃(λ+1)
, which is a constant when ε is fixed. The number

of fractional configuration counters is polynomial in the input encoding length.
Assignment variables. Denoted by xjkc. In an integer solution, if xjkc is 1, job j is

assigned to configuration c and to start in period k. All these variables are allowed to be
fractional. The number of assignment variables is at most n · |K| · |C|, which is upper bounded
by a polynomial in the input encoding length.

The MILP. The objective function of the MILP is the minimization of

ψCopt + (1− ψ)
∑
c∈C

zc · wφc .

We next list the constraints of the MILP (together with their meaning).
A job can be assigned to a configuration and period combination only as a non-huge job.∑

c∈C:j 6∈HJ(sc,wc)

∑
k∈Kc

xjkc = 1 , ∀j ∈ J . (2)

For each size, the number of big jobs of that size assigned to a period k of a configuration c
is equal to the number of big jobs of that size in period k of configuration c times the number
of machines of this configuration.∑

j:j∈BJ(sc,wc),pj=(1+ε)δc+r−1

xjkc = zc ·Bc(k, r) , ∀c ∈ C, k ∈ Kc, r ∈ Rc . (3)
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An upper bound on the sum of processing time of small jobs (for every configuration and
every period), while allowing some additional space that is needed since Sc(k) was obtained
by rounding down.∑

j∈SJ(sc,wc)
(xjkc · pj) ≤ zc · sc · (Sc(k) + 1) · ερwc ,∀c ∈ C, k ∈ Kc . (4)

The number of chosen configurations for a particular speed should be equal to the number of
machines of that speed. ∑

c∈C:sc=s
zc = m(s) , ∀s ∈ S . (5)

In each period, the resource requirement of a job is met before the job starts processing.
Resource can be carried over to future periods, if available.

∑
c∈C

∑
k′:k′≤k

∑
j

(xjk′c · dj)

 ≤ ∑
k′:k′≤k

qk′ ,∀k ∈ K . (6)

Constraint that enforces the guessing of the makespan and the machine on which makespan
is achieved, once again we slightly relax the condition and allow a machine of that speed with
slightly smaller load bound: ∑

c∈C:sc=sopt,(1+ε)wc≥Copt

zc ≥ 1 . (7)

The bounds for the assignment variable.

0 ≤ xjkc ≤ 1 , ∀c ∈ C, k ∈ K, j ∈ J . (8)

For configurations with fast speed and large load, the configuration counter variable is an
integer and all configuration counters are non-negative.

zc ≥ 0 , ∀c ∈ C , and (9)
zc ∈ Z , ∀c ∈ C : sc ≥ κ,wc ≥ κCopt . (10)

6 Using the MILP

The remaining parts of our scheme and its analysis are as follows. We first show in Theorem 1
that (for the correct guessed value) there is a solution to the MILP whose objective function
value is at most (1 + ε)φ times the objective value of the near optimal solution satisfying
Lemma 2. That is, we prove that the MILP has a feasible solution of cost not significantly
larger than the cost of the near optimal schedule of our problem. Then, our scheme continues
by finding an optimal solution for the MILP, and then transform it into a feasible schedule
(a feasible solution to our scheduling problem) of cost not much larger than the cost of the
given optimal solution for the MILP. The use of the solution of the MILP for constructing
our output is considered in subsection 6.1.

Theorem 1. The optimal objective function value of the MILP is at most (1 + ε)φ times the
objective value of the near optimal solution satisfying Lemma 2 (as a solution to the scheduling
problem).
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Proof. Assume that there exists a near optimal schedule σ to instance I ′ that satisfies Lemma
2. Create a configuration for each machine i and with a slight abuse of notation we let i
denote also the configuration for this machine. We create this configuration as follows. For
the first component of the configuration i store the speed of the machine, si, for the second
component store the load of the machine rounded up to an integer power of (1 + ε), wi, and
create µ̃ components. For each period k in the interval containing all active periods, identify
the number of big jobs for each distinct size of big jobs for (si, wi) assigned to that machine
in period k, and save that as Bi(k, r) (in configuration i). For each period k find

Si(k) =
⌊ ∑

pj/si

ερwi

⌋
,

where the summation is over the small jobs for (si, wi) assigned to machine i in period k.
Thus, this defines a configuration for each machine i. Two configurations are identical if

each component of the two configurations are equal. Let C ′ be the set of distinct configura-
tions. In order to check the feasibility of the configurations in C ′, create a schedule from a
configuration c ∈ C ′. Assign the configuration to a machine i of speed sc. The configuration
has µ̃ active time periods and let the active periods start at time period k`. First, we assign
idle time before period k` to machine i. Then, for each time period k ∈ [k`, k`+ µ̃−1] perform
the following in an increasing order of k. Assign sand representing small jobs assigned to the
configuration c to machine i. The total size of the sand in period k is at most Sc(k)ερ ·wc · sc.
Then, assign the big jobs in a non-decreasing order of size, (1 + ε)δc+r−1. Hence, in a non-
decreasing order of r we assign Bc(k, r) big jobs of size (1 + ε)δc+r−1 sequentially after the
processing of the sand. The above assignment of jobs to periods is feasible due to the follow-
ing reasons. First, the schedule σ is feasible; second, the size of the small jobs was rounded
down while the creation of the schedule so the total size of small jobs cannot increase, with
respect to the total size of small jobs assigned by σ; and last the jobs are assigned sequentially
in non-decreasing order of their size. Therefore, the only job that might cross over into the
succeeding period is a job of the largest size and it must be a large job. Thus, C ′ ⊆ C. Define
zc ∈ Z, for every configuration c ∈ C, by letting zc be the number of machines assigned
configuration c (this is zero if c ∈ C \ C ′). Define xjkc ∈ Z for j ∈ J, k ∈ K, c ∈ C, where K
is the set of all possible time periods as follows. For each job j, xjkc = 1 if j is assigned to
a machine with configuration c in period k, else xjkc = 0. Next, we establish that this is a
feasible solution for the MILP.

Constraint (2) and (8) are satisfied because each job is assigned to only one machine and
only once by definition of xjkc. Constraint (3) is satisfied by the definition of xjkc, zc, and
Bc(k, r). In the definition of Sc(k) the summation is over the set of small jobs with respect

to (sc, wc) assigned to start in a period. Thus for each configuration c

∑ pj
sc

ερwc
− 1 ≤ Sc(k) so∑

pj ≤ sc(Sc(k) + 1)ερwc, and taking into account identical configurations, we get
∑
pj ≤

zc · sc · (Sc(k) + 1) · ερwc, where the summation in the last inequality is over small jobs
for (sc, wc). Thus, Constraint (4) is satisfied. Constraint (5) is satisfied by definition of zc.
Constraint (6) is satisfied because σ is a feasible schedule. The configuration of the machine
on which the makespan is achieved ensures that constraint (7) is satisfied since σ satisfied
Lemma 2. Constraints (9) and (10) are satisfied by definition of zc as all these variables are
non-negative integers.

Thus the configurations C are all feasible configurations, and the solution we have defined
(x, z) is a feasible solution to the MILP. The objective value (of the MILP) for the constructed
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solution is at most
ψ(1 + ε) max

c∈C′
wc + (1− ψ)

∑
c∈C

zcw
φ
c ,

since there is a configuration in C ′ with load bound of at least Copt
1+ε . Note that for every

machine i whose configuration is i, we have that the load bound in the configuration wi is
at most 1 + ε times the load of i in σ, so the claim regarding the cost of the solution to the
MILP in terms of the cost of σ holds. ut

6.1 Transforming the MILP solution into the output
The transformation of an optimal solution to the MILP to a near optimal solution for ums
that we describe in the rest of this section proves the following theorem.
Theorem 2. If there exists a solution to the MILP for I for the given value of the guessed
information, then there exists a feasible schedule to instance I of cost at most (1 + 6ε)φ times
the cost of the solution of the MILP.

Let the MILP solution be sol, the values of the decision variables in this MILP solution
be (x, z), and the guessed information be Copt and sopt. x ∈ R but the z value is integer
for configurations with fast speed and large load. Let ẑc = dzce , ∀c ∈ C. This converts all
fractional configuration counters to integers while the configuration counters for fast speed and
large loads remain unchanged and integer. Thus for every speed s we add

∑
c∈C:sc=s ẑc−m(s)

virtual machines. Virtual and real machines in this discussion do not refer to the machines in
the instance I, and only act as terms to explain the last rounding phase of our scheme. Thus,
now we have more machines than specified in the input instance.

Next, we assign configurations to machines, i.e., every machine i is now associated with
a configuration c whose first component is the speed of i such that the number of machines
that are assigned a configuration c is equal ẑc. We allocate the configurations to real and
virtual machines in a way that for every configuration c, at least bzcc machines that were
assigned configuration c are real machines (and at most one machine assigned configuration c
is a virtual machine). This last requirement is possible as the z values satisfy constraint (5).
For further discussions let C be the set of configurations c with ẑc > 0.

Fix a real machine of speed sopt as the machine which attains the makespan by assigning
the configuration of largest load of speed sopt to this machine. From constraint (7), the load
bound of this machine is at least Copt/(1 + ε). Let that machine be denoted as i.

We first show how to allocate the jobs to the machines (virtual or real) such that the
load of every such machine is at most 1 +O(ε) times its load bound and so that the resource
required by the jobs is supplied on time. Later on we will analyze the impact of not using
virtual machines.

Allocating most jobs and leaving only some jobs that are small for at least one machine. Recall
that K denotes the set of universal time periods for any configuration. Let R′ denote the set
of integer powers of (1+ε) corresponding to distinct sizes of all jobs in the (rounded) instance
I. Let αr′k be the number of jobs of size (1 + ε)r′ , r′ ∈ R′, assigned to start in period k based
on the MILP solution, that is

αr′k =

 ∑
j∈J :pj=(1+ε)r′

∑
c∈C

xjkc

 .
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Thus according to the MILP solution there is enough resource to start processing αr′k jobs of
size (1 + ε)r′ in period k and furthermore there is enough available time to process so many
jobs of each size on the machines of I. Intuitively, since αr′k is rounded down, for every size
for which there is a machine with speed and load bound for which the size is a size of a small
job, there is at most one job of this (small) size left unassigned (with respect to the MILP
solution) in each such period.

For every machine and every active period, in the first rounding step, we increase the total
size available for small jobs in period k by 2ερscwc, where c is the configuration assigned to
the machine. This is done to ensure that the process we present will be feasible. Now the total
size available for small jobs on a machine in period k is (Sc(k) + 2)ερscwc, where k is one of
the active periods of that machine. We will allow adding the additional small jobs at the end
of the schedule of this machine.

Next in the second rounding step that we describe below, we assign almost all jobs to
the real or virtual machines where the load of every machine with configuration c will be
approximately wc. More precisely, for each period k ∈ K, in an increasing order of k, perform
the following.

Create a list of jobs Jk for which there exists c ∈ C such that xjkc > 0 and j was
not scheduled to start in an earlier period. Sort Jk in non-decreasing order of the resource
requirement. The assignment of big jobs is detailed next. Go over each machine one by one
and perform the following operations. Identify the set of sizes of jobs that are big for the
machine assigned configuration c and let Rc denote the set of indexes for integer powers of
1 + ε corresponding to sizes of big jobs for the pair (sc, wc) for configuration c where c is the
configuration of the current machine. For each r ∈ Rc, in an increasing order of r, perform
the following operations. Identify the jobs of size (1 + ε)δc+r−1 in Jk, in the order the jobs
appear in Jk. Assign the jobs one by one in order starting with the first job as follows. A big
job of size (1 + ε)δc+r−1 can be assigned to the current machine, assigned configuration c, if
after assigning the job to this machine and period the following two conditions hold. First,
the total number of jobs of size (1 + ε)δc+r−1 assigned to all the machines in period k is at
most α(δc+r−1)k and second the total number of big jobs of size (1 + ε)δc+r−1 assigned to the
current machine in period k is at most Bc(k, r). If a job is assigned to a machine, remove it
from Jk.

Once the above procedure is completed for the current value of k we move on to schedule
jobs as small jobs (in this period) as follows. Go over the machines in non-decreasing order of
the product of speed and load bound (of its assigned configuration) and perform the following
operations for assigning jobs to the current machine. Identify the set of sizes of jobs that are
small for the machine assigned configuration c and let R′c denote the set of indexes for integer
powers of 1+ε corresponding to sizes of small jobs for the pair (sc, wc) for configuration c. For
each r ∈ R′c, in an increasing order of r, perform the following operations. Identify the jobs of
size (1+ε)δc+r−1 in Jk, in the order the jobs appear in Jk. Assign the jobs one by one in order
starting with the first job as follows. Assign the job to the machine if the total size of small
jobs on that machine in period k, after assignment of the job, is at most (Sc(k) + 2)ερscwc,
and the total number of jobs of size (1 + ε)δc+r−1 assigned in period k on all machines, after
assignment of the job, is at most α(δc+r−1)k. Once we have considered all machines (for this
period k), we increase k by one and go back to creating the lists Jk.

After completing the assignment of jobs using the above two rules for all k, the second
rounding step is completed. The remaining unassigned jobs are small jobs that were left
unassigned due to the rounding down of αr′k. In the last rounding step all non-assigned jobs



16 G. Jaykrishnan, A. Levin

are assigned to the end of the schedule on machine i and if necessary we add idle time before
processing these jobs to ensure that they do not start before time Copt. This assignment of
jobs in the third rounding step to the end of the schedule on i is feasible because there exists
enough resource to assign all these jobs by the time machine i finishes processing its scheduled
jobs using the fact that Copt is not smaller than the last time in which a resource is supplied
(considering only the resource needed by the set of jobs in the instance).

In the last rounding step of our scheme all jobs that were assigned to virtual machines
in the second rounding step are moved to be processed on machine i in an arbitrary order
without idle time after the last job assigned to that machine (in the second or third step) is
completed (once again starting not earlier than Copt). Similarly to the argument regarding
the feasibility of the assignment of jobs in the third rounding step, the resulting schedule is
feasible if we are able to show that the assignment of jobs in the second rounding step is feasible
with respect to the resource constraint. This completes the description of the procedure of
transforming the MILP solution into a feasible schedule for ums. We next turn our attention
to the analysis of this transformation procedure.

Proving that the partial assignment of jobs to virtual and real machines is feasible. The
feasibility of the partial schedule at the end of the second rounding step with respect to the
resource constraint follows from the feasibility of the MILP solution and noting that in every
prefix of periods (i.e., all periods k′ with k′ ≤ k for a fixed value of k) and every size of jobs
(1 + ε)r (for a fixed r ∈ R) we have the following. The partial schedule schedules no more
than

∑
k′:k′≤k αrk′ jobs of size (1 + ε)r to start in this prefix of periods and these jobs have

the least resource requirement (among the jobs of that size). However, by the definition of
the α values, the MILP solution schedules at least so many jobs of this size to start during
this prefix, and the Constraint (6) guarantees that the total consumption of resource in this
partial schedule in this prefix of period does not exceed the total amount of resource that is
supplied in this prefix of periods.

Next, we would like to argue that at the end of the second rounding step for every period
k we have the following. For every size of jobs x for which there is no machine active in
this period where x is a size of a small job for that machine, the number of jobs of this size
assigned to start in this period is exactly as in the MILP solution, and for every other size
we are left with at most one unassigned job. Thus we will prove the following lemma.

We will let ρ = 10 and require the property that κ ≤ ε2ρ+3 so if a job cannot be assigned
as a small job to machine i then it must be assigned as a large job to a fast machine with
large load and all these jobs are assigned (integrally) by the MILP solution.

Lemma 5. For every period k, let S(k) be the set of sizes of jobs satisfying that for every
x ∈ S(k), there is at least one configuration c where a job of size x is not huge for (sc, wc)
and x is small for machine i. At the end of the second rounding step we have that the set of
unassigned jobs have at most one job of each size for every period where this size belongs to
S(k) (and no such job of this size if the size does not belong to S(k)).

Proof. Fix a size of jobs (1 + ε)r (for r ∈ R), we want to show that the number of unassigned
jobs of this size is one or zero. Consider a configuration c ∈ C and a period k ∈ K. Notice
that Bc(k, r)ẑc is integer and it upper bounds the number of jobs of this size assigned to a
machine of this configuration and period as large jobs in the MILP solution. We argue that
the second rounding step assigns exactly αkr jobs of this size to start in period k and this
number is exactly

∑
j∈J :pj=(1+ε)r

∑
c∈C xjkc if (1+ε)r /∈ S(k). First, consider the second part,
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namely if r is large enough so that there is no machine in which a job of size (1 + ε)r is a
non-huge job, then such jobs cannot be assigned to start at this period in the MILP solution.
It suffices to show that we indeed assign αkr jobs of this size for every period k and we would
like to prove that for every r ∈ R.

Assume that this is not the case. Since the assignment of jobs have over-used the positions
as large jobs, the assignment of jobs as small jobs does not guarantee the feasibility of this
assignment for some of the sizes. Notice that the machines are ordered in the non-decreasing
order of the product of speed and load bound for the assignment of the small jobs. Thus
when a job is small for a machine then the job will be small for all succeeding machines in
the ordering.

Identify the first machine i′, in the ordering, such that each machine in the suffix of
machines starting from i′ and up to the end of the (ordered list of) machines, satisfies that
the total size of small jobs is at least (Sc(k)+1)ερscwc and is about to exceed (Sc(k)+2)ερscwc,
for c that is the configuration of the corresponding machine. Let M be the machine set of this
suffix of machines. If the claim does not holds, then M 6= ∅. Denote by R the sizes of jobs
that are small only for machines in M. For the last machine in M\M (if it exists), the total
size of small jobs assigned to the machine, by the algorithm, is at most (Sc(k) + 1)ερscwc.
This means that the total size of unassigned jobs that were small for this machine was less
that (Sc(k) + 1)ερscwc. Let the last small job assigned to such a machine be j′. Then the last
job that was small for this machine was j′ and all jobs of size greater than the size of j′ are
small only for the machines succeeding this machine in the ordering. Moreover, j′ was the last
job of size not larger than pj′ (along Jk) or we have already scheduled the maximum number
of jobs of these sizes to this period, else the algorithm would assign more jobs of these sizes
to this machine by the choice of the suffix of machines.

The MILP solution was able to assign xjkc fraction of all jobs of sizes in R from Jk to
all configurations assigned to machines in M such that for each configuration the total size
of small jobs on each configuration is at most (Sc(k) + 1)ερscwc times zc, from constraint
(4). Furthermore, the jobs with sizes in R could not be assigned to any machine in M\M
as small jobs, since these jobs were big jobs for all those machines. The total (fractions) of
configuration counters selected by the MILP solution for this assignment is no more than the
number of machines in M, and we get a contradiction to our assumption that M 6= ∅ and the
claim follows. ut

Observe that at the end of the second rounding step a machine with configuration c has
load of at most (1 + 2ε)wc. To see this fact observe that the first rounding step increases the
load of a machine with configuration c by no more than µ̃ · 2ερwc ≤ εwc by our choice of
ρ = 10, using the definition of µ̃ ≤ 2

ε2 . The second rounding step does not increase the load
of machines so this upper bounds on the load holds at the end of the second rounding step.
Since the third rounding step and the final rounding step only move jobs to machine i the
last bound on the load of other machines continue to hold, and we consider the impact of
these rounding steps on the load of i.

Lemma 6. The total size of jobs scheduled to i in the third rounding step is at most εCopt.

Proof. The total size of small jobs left unassigned in a given period is at most
∑∞
`=0(1 +

ε)−`ερws = (1 + ε)ερ−1ws, where w is the largest load bound among all the configurations
where this particular period is active and s is the largest speed among all configurations with
load bound w. The total size of small jobs left unassigned for a given load bound w is at
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most (1 + ε)ερ−1ws · µ̃ ≤ (1 + ε)ερ−1w · µ̃. Then, the total size of small jobs left unassigned
and thus moved to be processed on machine i is at most µ̃

∑∞
`=0(1 + ε)(2−`)ερ−1Copt =

(1 + ε)3ερ−2µ̃Copt ≤ ερ−4µ̃Copt. Notice that log(1+ε)
(1+ε)
ε ≤ 2

ε2 . Since ρ = 10, we get that
the total size of small jobs left unassigned in all the possible periods is at most ερ−4 2

ε2Copt ≤
ερ−7Copt = ε3Copt.

In addition to that some sizes are large (for at least one machine active at the given
period) and are perhaps unassigned at the end of the given phase. For a given pair of (w, s)
where w is the largest load bound among all configurations active at a given period, we can
assume that w ≤ ερCopt. Using the same sequence of inequalities as the above case we have
the following. The total size of jobs left unassigned in a given period is at most

∑∞
`=0(1 +

ε)−`(1 + ε)ws = (1+ε)2

ε ws, where w is the largest load bound among all the configurations
where this particular period is active and s is the largest speed among all configurations with
load bound w. The total size of jobs left unassigned for a given load bound w is at most
(1+ε)2

ε ws · µ̃ ≤ (1+ε)2

ε w · µ̃. Then, the total size of jobs left unassigned that are large for at
least one machine in their period and thus moved to be processed on machine i is once again
at most ερCopt · µ̃ · 1

ε ·
∑∞
`=0(1+ε)(2−`) = (1+ε)3ερ−2µ̃Copt ≤ ερ−4µ̃Copt. By 2ε3 ≤ ε the claim

follows. ut

Bounding the total size of jobs assigned to virtual machines. It remains to upper bound the
increase of the load of machine i in the final rounding step. Let

κ = εsopt

(1 + 2ε) ·
(

1+ε
ερ + 1

)µ̃(λ+1)
·
(

(1+ε)3

ε2

) ,
and note that indeed the required property of κ ≤ ε2ρ+3 = ε23 indeed holds.

Lemma 7. The total size of jobs on all virtual machines is at most 2εCoptsopt.

Proof. Since there is at most one virtual machine assigned each configuration and i is not
virtual, the total size of jobs on all virtual machines with load w and speed s is at most
(1 + 2ε)w · s ·

(
1+ε
ερ + 1

)µ̃(λ+1)
. Next we sum these bounds over all w, and conclude that

the total size of jobs on all virtual machines of speed s where machines of speed s are slow
machines is at most
(1 + 2ε) s ·

(
1+ε
ερ + 1

)µ̃(λ+1)
·
(∑∞

l=0(1 + ε)1−lCopt
)

= (1 + 2ε) s ·
(

1+ε
ερ + 1

)µ̃(λ+1)
·
(

(1+ε)2Copt
ε

)
.

The total size of jobs on all virtual machines of slow speed is at most

(1 + 2ε) ·
(1 + ε

ερ
+ 1

)µ̃(λ+1)
·
(

(1 + ε)2Copt
ε

)
·
( ∞∑
l=0

(1 + ε)−lκ
)

= (1 + 2ε) ·
(1 + ε

ερ
+ 1

)µ̃(λ+1)
·
(

(1 + ε)3κCopt
ε2

)
.

Next we consider the total size of jobs assigned to virtual machines of fast machines.
Then, by the requirement that the MILP solution has integral configuration counters for fast
machines and large loads, these configurations of virtual machines that are fast are of small
loads. The total size of jobs on all virtual machines of speed s and small load is at most

(1 + 2ε) s·
(1 + ε

ερ
+ 1

)µ̃(λ+1)
·
( ∞∑
l=0

(1 + ε)−lκCopt

)
= (1 + 2ε) s·

(1 + ε

ερ
+ 1

)µ̃(λ+1)
·
((1 + ε)κCopt

ε

)
.
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Therefore, the total load on all virtual machines of fast speed (speed at least κ and at most
1) and small load is at most (1 + 2ε) ·

(
1+ε
ερ + 1

)µ̃(λ+1)
·
(

(1+ε)κCopt
ε

)
·
(∑0

l=blog(1+ε) κc(1 + ε)l
)
≤

(1 + 2ε)·
(

1+ε
ερ + 1

)µ̃(λ+1)
·
(

(1+ε)κCopt
ε

)
·
(∑∞

l=0(1 + ε)−l
)
≤ (1 + 2ε)·

(
1+ε
ερ + 1

)µ̃(λ+1)
·
(

(1+ε)3κCopt
ε2

)
.

The total load on all virtual machines is at most

2 (1 + 2ε) ·
(1 + ε

ερ
+ 1

)µ̃(λ+1)
·
(

(1 + ε)3κCopt
ε2

)
.

Thus using the definition of κ, this is at most 2εsoptCopt as we claimed. ut

The configuration assigned to machine i has a load bound of at least Copt
1+ε and at most

Copt · (1 + ε). Therefore, after the final rounding step, the load of machine i is at most
(1 + 3ε)Copt + εCopt + 2εCopt = (1 + 6ε) ·Copt. Let Λi be the load of machine i in the output
schedule and note that if i has assigned configuration c then Λi ≤ (1 + 2ε)wc + 3εCopt ≤
(1 + 6ε)wc. Thus the objective value of the output schedule is

max
i∈M

Λi +
∑
i∈M

Λφi ≤ (1 + 6ε)Copt +
∑
c∈C

zc · (1 + 6ε)φwc ≤ (1 + 6ε)φobj(sol)

and we conclude that Theorem 2 holds.

Summary of the scheme. The algorithm initially uses the rounding to simplify the instance
and uses a guessing step to guess information from the rounded instance to create the con-
figurations and the MILP. Using the generated configurations and the MILP the algorithm
finds the least cost solution from among all the MILP solutions for each value of the guessed
information. This solution is then transformed into a schedule. The algorithm for solving the
MILP has a complexity of 2O(d log d) ·poly(n) using Lenstra’s algorithm where d is the number
of variables that are required to be integer in the MILP, and

d =
(

log(1+ε)
1
κ

+ 2
)2
·
(1 + ε

ερ
+ 1

)µ̃(λ+1)
= f ′

(1
ε

)
,

since κ, µ̃, and λ are functions of ε. Alll other steps of the algorithm runs in polynomial
time and the number of possibilities of the guessed information is also upper bounded by a
polynomial of the input encoding length. Thus the complexity of the scheme is f

(
1
ε

)
·poly(n),

where f
(

1
ε

)
is a doubly exponential function in 1

ε .
Theorem 1 guarantees feasibility of the solution of the algorithm and using Theorem 2

the schedule can be generated for the least cost solution with the proved approximation ratio.
Thus, we have established our result stated as follows.

Theorem 3. Problem ums admits an EPTAS.
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