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PRINCIPLED DEEP NEURAL NETWORK TRAINING THROUGH LINEAR

PROGRAMMING

DANIEL BIENSTOCK, GONZALO MUÑOZ, AND SEBASTIAN POKUTTA

Abstract. Deep learning has received much attention lately due to the impressive em-

pirical performance achieved by training algorithms. Consequently, a need for a better

theoretical understanding of these problems has become more evident in recent years. In

this work, using a unified framework, we show that there exists a polyhedron which en-

codes simultaneously all possible deep neural network training problems that can arise

from a given architecture, activation functions, loss function, and sample-size. Notably,

the size of the polyhedral representation depends only linearly on the sample-size, and a

better dependency on several other network parameters is unlikely (assuming % ≠ # %).

Additionally, we use our polyhedral representation to obtain new and better computational

complexity results for training problems of well-known neural network architectures. Our

results provide a new perspective on training problems through the lens of polyhedral theory

and reveal a strong structure arising from these problems.

1. Introduction

Deep Learning is a powerful tool for modeling complex learning tasks. Its versatility

allows for nuanced architectures that capture various setups of interest and has demonstrated

a nearly unrivaled performance on learning tasks across many domains. This has recently

triggered a significant interest in the theoretical analysis of training such networks. The

training problem is usually formulated as an empirical risk minimization problem (ERM)

that can be phrased as

(1) min
q∈Φ

1

�

�
∑

8=1

ℓ( 5 (Ĝ8, q), Ĥ8),

where ℓ is some loss function, (Ĝ8 , Ĥ8)�
8=1

is an i.i.d. sample from some data distribution

D, and 5 is a neural network architecture parameterized by q ∈ Φ with Φ being the

parameter space of the considered architecture (e.g., network weights). The empirical risk

minimization problem is solved in lieu of the general risk minimization problem (GRM)

min
q∈Φ

E(G,H) ∈D [ℓ( 5 (G, q), H)]

which is usually impossible to solve due to the inaccessibility of D.

While most efforts on handling (1) have been aimed at practical performance, much less

research has been conducted in understanding its theoretical difficulty from an optimization

standpoint. In particular, only few results account for the effect of �, the sample size, in
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the structure and hardness of (1). In this work, we contribute to the understanding of this

problem by showing there exists a polyhedral encoding of empirical risk minimization prob-

lems in (1) associated with the learning problems for various architectures with remarkable

features. For a given architecture and sample size, our polyhedron encodes approximately

all possible empirical risk minimization problems with that sample size simultaneously.

The size of the polyhedron is roughly (singly!) exponential in the input dimension and

in the parameter space dimension, but, notably, linear in the size of the sample. This

result provides a new perspective on training problems and also yields new bounds on the

computational complexity of various training problems from a unified approach.

Throughout this work we assume both data and parameters to be well-scaled, which is

a common assumption and mainly serves to simplify the representation of our results; the

main assumption is the reasonable boundedness, which can be assumed without significant

loss of generality as actual computations assume boundedness in any case (see also [25]

for arguments advocating the use of normalized coefficients in neural networks). More

specifically, we assume Φ ⊆ [−1, 1]# as well as (G, H) ∼ D satisfies (G, H) ∈ [−1, 1]= ×
[−1, 1]<.

1.1. Related Work. We are not aware of any encoding representing multiple training

problems simultaneously. However, given its implications on the training problems for

a fixed sample, our work is related to [35], [20], and [4]. In [35] the authors show that

ℓ1-regularized networks can be learned improperly1 in polynomial time (with an expo-

nential architecture-dependent constant) for networks with ReLU-like activations. These

results were generalized by [20] to ReLU activations, but the running time obtained is not

polynomial. In contrast, [4] considered exact learning however only for one hidden layer.

To the best of our knowledge, the only work where a polyhedral approach is used to

analyze the computational complexity of training of neural networks is [4], where the

authors solve (1) for 1 hidden layer using a collection of convex optimization problems over

a polyhedral feasible region. In practice, even though the most common methods used for

tackling (1) are based on Stochastic Gradient Descent (SGD), there are some notable and

surprising examples where linear programming has been used to train neural networks. For

example, in [6, 7, 30, 27] the authors construct a 1-hidden layer network by sequentially

increasing the number of nodes of the hidden layer and solving linear programs to update

the weights, until a certain target loss is met.

Linear programming tools have also been used within SGD-type methods in order to

compute optimal step-sizes in the optimization of (1) [8] or to strictly enforce structure in

Φ using a Frank-Wolfe approach instead of SGD [28, 34] . Finally, a back-propagation-like

algorithm for training neural network, which solves Mixed-Integer Linear problems in each

layer, was recently proposed as an alternative to SGD [19].

Other notable uses of Mixed-Integer and Linear Programming technology in other

aspects of Deep Learning are include feature visualization [18], generating adversarial

examples [15, 18, 24], counting linear regions of a Deep Neural Network [31], performing

inference [2] and providing strong convex relaxations for trained neural networks [3].

We refer the reader to the book by [21] and the surveys by [17, 13, 33] for in-depth

descriptions and analyses of the most commonly used training neural networks.

1.2. Contribution. In this work, we consider neural networks with an arbitrary number of

layers : and a wide range of activations, loss functions, and architectures. We first establish

a general framework that yields a polyhedral representation of generic (regularized) ERM

1In improper learning the predictor may not be a neural network, but will behave similarly to one.
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problems. Our approach is motivated by the work of [10] which describes schemes for

approximate reformulation of many non-convex optimization problems as linear programs.

Our results allow the encoding and analysis of various deep network setups simply by

plugging-in complexity measures for the constituting elements such as layer architecture,

activation functions, and loss functions.

1.2.1. Polyhedral encoding of ERM problems. Given n > 0 and a sample size � there

exists a data-independent polytope (it can be written down before seeing the data) with the

following properties:

Solving the ERM problem to n-optimality in data-dependent faces. For every realized

sample ( -̂, .̂) = (Ĝ8 , Ĥ8)�
8=1

there is a face F-̂ ,.̂ ⊆ % of said polytope such that optimizing

certain linear function over F-̂ ,.̂ solves (1) to n-optimality returning a parametrization

q̃ ∈ Φ which is part of our hypothesis class. As such, the polytope has a build-once-solve-

many feature.

Size of the polytope. The size, measured as bit complexity, of the polytope is roughly

$ ((2L/n)#+=+< �) where L is a constant depending on ℓ, 5 , and Φ that we will introduce

later, =, < are the dimensions of the data points, i.e., Ĝ8 ∈ ℝ
= and Ĥ8 ∈ ℝ

< for all 8 ∈ [�],
and # is the dimension of the parameter space Φ.

It is important to mention that L measures certain Lipschitzness in the ERM training

problem. While not exactly requiring Lipschitz continuity in the same way, Lipschitz

constants have been used before for measuring training complexity in [20] and more recently

have been shown to be linked to generalization by [22].

We point out three important features of this polyhedral encoding. First, it has provable

optimality guarantees regarding the ERM problem and a size with linear dependency on

the sample size without assuming convexity of the optimization problem. Second, the

polytope encodes reasonable approximations of all possible data sets that can be given as

an input to the ERM problem. This in particular shows that our construction is not simply

discretizing space: if one considers a discretization of data contained in [−1, 1]=×[−1, 1]<,

the total number of possible data sets of size � is exponential in �, which makes the linear

dependence on � of the size of our polytope a remarkable feature. Finally, our approach

can be directly extended to handle commonly used regularizers (B). For ease of presentation

though we omit regularizers throughout our main discussions.

Remark 1.1. We remark that our goal is to provide new structural results regarding

training problems. Converting our approach into a training algorithm, while subject of

future research, will certainly take considerable efforts. Nonetheless, we will rely on known

training algorithms with provable guarantees and their running times for providing a notion

of how good our results are. Note that this is a slightly unfair comparison to us, as training

algorithms are not data-independent as our encoding.

1.2.2. Complexity results for various network architectures. We apply our methodology

to various well-known neural network architectures by computing and plugging-in the

corresponding constituting elements into our unified results. We provide an overview of

our results in Table 1, where : is the number of layers, F is width of the network, =/<
are the input/output dimensions and # is the total number of parameters. In all results the

node computations are linear with bias term and normalized coefficients, and activation

functions with Lipschitz constant at most 1 and with 0 as a fixed point; these include ReLU,

Leaky ReLU, eLU, Tanh, among others.
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Table 1. Summary of results for various architectures. DNN refers to a

fully-connected Deep Neural Network, CNN to a Convolutional Neural

Network and ResNet to a Residual Network. � is the graph defining the

Network and Δ is the maximum in-degree in �.

Type Loss Size of polytope Notes

DNN Absolute/Quadratic/Hinge $
( (

<F$ (:2)/n
)=+<+#

�
)

# = |� (�) |
DNN Cross Entropy w/ Soft-Max $

( (

< log(<)F$ (:2)/n
)=+<+#

�
)

# = |� (�) |
CNN Absolute/Quadratic/Hinge $

( (

<F$ (:2)/n
)=+<+#

�
)

# ≪ |� (�) |
ResNet Absolute/Quadratic/Hinge $

( (

<Δ$ (:2)/n
)=+<+#

�
)

ResNet Cross Entropy w/ Soft-Max $
( (

< log(<)Δ$ (:2)/n
)=+<+#

�
)

Certain improvements in the results in Table 1 can be obtained by further specifying if

the ERM problem corresponds to regression or classification. Nonetheless, these improve-

ments are not especially significant and in the interest of clarity and brevity we prefer to

provide a unified discussion.

The reader might wonder if the exponential dependence on the other parameters of our

polytope sizes can be improved, namely the input dimension =+<, parameter space dimen-

sion # and depth :. The dependence on the input dimension is unlikely to be improved due

to NP-hardness of training problems ([11, 12]) and obtaining a polynomial dependence on

the parameter space dimension or on the depth remains open [4].

The rest of this paper is organized as follows: in Section 2 we introduce the main tools

we use throughout the paper. These include the definition of treewidth and a generalization

of a result by [10]. In Section 3 we show how multiple ERM problems can be encoded

using a single polytope whose size depend only linearly in the sample-size. We also

analyze this polytope’s structure and show that its face structure are related to each possible

ERM problem. In Section 4 we specialize our results to ERM problems arising from

Neural Networks by explicitly computing the resulting polytope size for various common

architectures. In Section 5 we show the sparsity of the network itself can be exploited to

obtain an improvement in the polyhedral encoding’s size. In Section 6 we show that our

LP generalizes well, in the sense that our benign dependency on the sample size allows

us to obtain a moderate-sized polyhedron that approximates the general risk minimization

problem. Finally, in Section 7 we conclude.

2. Preliminaries

In the following let [=] � {1, . . . , =} and [=]0 � {0, . . . , =}. Given a graph �, we will

use + (�) and � (�) to denote the vertex-set and edge-set of �, respectively, and X� (D)
will be the set of edges incident to vertex D. We will need:

Definition 2.1. For 6 : K ⊆ ℝ
= → ℝ, we denote its Lipschitz constant with respect to

the ?-norm over K as L? (6), satisfying |6(G) − 6(H) | ≤ L? (6)‖G − H‖? for all G, H ∈ K
(whenever it exists).

We next define the Lipschitz constant of an ERM problem with respect to the infinity

norm.
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Definition 2.2. Consider the ERM problem (1) with parameters �,Φ, ℓ, 5 . We define the

Architecture Lipschitz Constant L(�,Φ, ℓ, 5 ) as

(2) L(�,Φ, ℓ, 5 ) � L∞ (ℓ( 5 (·, ·), ·))
over the domain K = [−1, 1]= × Φ × [−1, 1]<.

We emphasize that in (2) we are considering the data-dependent entries as variables as

well, and not only the parameters Φ as it is usually done in the literature. This subtlety will

become clear later.

Finally, in the following let El∈Ω [·] and Vl∈Ω [·] denote the expectation and variance

with respect to the random variable l ∈ Ω, respectively.

2.1. Neural Networks. A neural network can be understood as a function 5 defined

over a directed graph that maps inputs G ∈ ℝ
= to 5 (G) ∈ ℝ

<. The directed graph

� = (+, �), which represents the network architecture, often naturally decomposes into

layers + =
Ï

8∈[: ]0
+8 with +8 ⊆ + , where +0 is referred to as the input layer and +: as the

output layer. To all other layers we refer to as hidden layers.

Each vertex E ∈ +8 with 8 ∈ [:]0 has an associated set of in-nodes denoted by X+(E) ⊆ + ,

so that (F, E) ∈ � for all F ∈ X+(E) and an associated set of out-nodes X−(E) ⊆ + defined

analogously. If 8 = 0, then X+(E) are the inputs (from data) and if 8 = :, then X−(E) are

the outputs of the network. These graphs do neither have to be acyclic (as in the case

of recurrent neural networks) nor does the layer decomposition imply that arcs are only

allowed between adjacent layers (as in the case of ResNets). In feed-forward networks,

however, the graph is assumed to be acyclic.

Each node E ∈ + performs a node computation 68 (X+(E)), where 68 : ℝ |X+ (E) | → ℝ with

8 ∈ [:] is typically a smooth function (often these are linear or affine linear functions) and

then the node activation is computed as 08 (68 (X+(E))), where 08 : ℝ → ℝ with 8 ∈ [:] is

a (not necessarily smooth) function (e.g., ReLU activations of the form 08 (G) = max{0, G})
and the value on all out-nodes F ∈ X−(E) is set to 08 (68 (X+(E))) for nodes in layer 8 ∈ [:].
In feed-forward networks, we can further assume that if E ∈ +8, then X+(E) ⊆ ∪8−1

9=0
+ 9 , i.e.,

all arcs move forward in the layers.

2.2. Treewidth. Treewidth is an important graph-theoretical concept in the context of

solving optimization problems with ‘sparse’ structure. This parameter is used to measure

how tree-like the graph is, and its use will be the main workhorse behind our results

Definition 2.3. A tree-decomposition ([29]) of an undirected graph � is a pair (), &)
where ) is a tree and & = {&C : C ∈ + ())} is a family of subsets of + (�) such that

(i) For all E ∈ + (�), the set {C ∈ + ()) : E ∈ &C } forms a sub-tree )E of ) , and

(ii) For each {D, E} ∈ � (�) there is a C ∈ + ()) such that {D, E} ⊆ &C , i.e., C ∈ )D ∩ )E .

The width of the decomposition is defined as max {|&C | : C ∈ + ())} − 1. The treewidth of

� is the minimum width over all tree-decompositions of �.

We refer to the &C as bags as customary. In addition to width, another important feature

of a tree-decomposition (),&) we use is the size of the tree-decomposition given by |+ ()) |.
An alternative definition to Definition 2.3 of treewidth that the reader might find useful

is the following; recall that a chordal graph is a graph where every induced cycle has length

exactly 3.

Definition 2.4. An undirected graph� = (+, �) has treewidth ≤ l if there exists a chordal

graph � = (+, � ′) with � ⊆ � ′ and clique number ≤ l + 1.
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1 2 3

4 5

6 7 8

(a) Graph �

1 2

4

4 6

7

2 4

7

2 5

7

2 3

5

5 7

8

(b) A tree-decomposition of� of width 2, with the

sets &C indicated inside each node of the tree.

Figure 1. Example of graph and valid tree-decomposition

� in the definition above is sometimes referred to as a chordal completion of �. In

Figure 1 we present an example of a graph and a valid tree-decomposition. The reader can

easily verify that the conditions of Definition 2.3 are met in this example. Moreover, using

Definition 2.4 one can verify that the treewidth of the graph in Figure 1 is exactly 2.

Two important folklore results we use are the following.

Lemma 2.5. Let� be a graph with a valid tree-decomposition (),&) of widthl. Then there

exists a valid tree-decomposition () ′, &′) of width at mostl such that |+ () ′) | ∈ $ (|+ (�) |).

Lemma 2.6. Let � be a graph with a valid tree-decomposition (), &) and  ⊆ + (�) a

clique of �. Then there exists C ∈ ) such that  ⊆ &C .

2.3. Binary optimization problems with small treewidth. Here we discuss how to for-

mulate and solve binary optimization problems that exhibit sparsity in the form of small

treewidth. Consider a problem of the form

(BO) min 2) G + 3) H
s.t. 58 (G) ≥ 0 8 ∈ [<]

6 9 (G) = H 9 9 ∈ [?]
G ∈ {0, 1}=,

where the 58 and 6 9 are arbitrary functions that we access via a function value oracle.

Definition 2.7. The intersection graph Γ[I] for an instance I of BO is the graph which

has a vertex for each G variable and an edge for each pair of G variables that appear in a

common constraint.

Note that in the above definition we have ignored the H variables which will be of great

importance later. The sparsity of a problem is now given by the treewidth of its intersection

graph and we obtain:

Theorem 2.8. Let I be an instance of BO. If Γ[I] has a tree-decomposition (), &) of

widthl, there is an exact linear programming reformulation ofI with$ (2l (|+ ()) | + ?))
variables and constraints.

Theorem 2.8 is a generalization of a theorem by [10] distinguishing the variables H,

which do not need to be binary in nature, but are fully determined by the binary variables

G. A full proof is omitted as it is similar to the proof in [10]. For the sake of completeness,

we include a proof sketch below.



PRINCIPLED DEEP NEURAL NETWORK TRAINING THROUGH LINEAR PROGRAMMING 7

Proof. (sketch). Since the support of each 58 induces a clique in the intersection graph,

there must exist a bag& such that supp( 58) ⊆ & (Lemma 2.6). The same holds for each 6 9 .

We modify the tree-decomposition (), &) to include the H 9 variables the following way:

• For each 9 ∈ [?], choose a bag & containing supp(6 9 ) and add a new bag &′( 9)
consisting of & ∪ {H 9 } and connected to &.

• We do this for every 9 ∈ [?], with a different &′( 9) for each different 9 . This

creates a new tree-decomposition () ′, &′) of width at most l + 1, which has each

variable H 9 contained in a single bag &′( 9) which is a leaf.

• The size of the tree-decomposition is |) ′ | = |) | + ?.

From here, we proceed as follows:

• For each C ∈ ) ′, if &′
C ∋ H 9 for some 9 ∈ [?], we construct

FC � {(G, H) ∈ {0, 1}&C × ℝ :

H = 6 9 (G), 58 (G) ≥ 0 for supp( 58) ⊆ &′
C }

otherwise we simply construct

FC � {G ∈ {0, 1}&C : 58 (G) ≥ 0 for supp( 58) ⊆ &′
C }.

Note that these sets have size at most 2 |&′
C |.

• We define variables - [., #] where ., # form a partition of &′
C1
∩ &′

C2
. These are

at most 2l |+ () ′) |.
• For each C ∈ ) ′ and E ∈ FC , we create a variable _E . These are at most 2l |+ () ′) |.

We formulate the following linear optimization problem

(LBO) min 2) G + 3) H

s.t.
∑

E∈FC
_E = 1 ∀C ∈ ) ′

- [., #] =
∑

E∈FC
_E

∏

8∈.
E8

∏

8∈#
(1 − E8) ∀(., #) ⊆ &′

C , C ∈ ) ′

_E ≥ 0 ∀C ∈ ) ′, E ∈ FC

G8 =
∑

E∈FC
_EE8 ∀C ∈ ) ′, 8 ∈ &′

C ∩ [=]

H 9 =
∑

E∈F&′ ( 9)

_E6 9 (E) ∀ 9 ∈ [?]

Note that the notation in the last constraint is justified since by construction supp(6 9 ) ⊆
&′( 9). The proof of the fact that LBO is equivalent to BO follows from the arguments by

[10]. The key difference justifying the addition of the H variables relies in the fact that they

only appear in leaves of the tree decomposition () ′, &′), and thus in no intersection of two

bags. The gluing argument using variables - [., #] then follows directly, as it is then only

needed for the G variables to be binary.

We can substitute out the G and H variables and obtain a polytope whose variables are

only _E and - [., #]. This produces a polytope with at most 2 · 2l |+ () ′) | variables and

(2 · 2l + 1) |+ () ′) | constraints. This proves the size of the polytope is $ (2l (|+ ()) | + ?))
as required. �
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3. Approximation to ERM via a data-independent polytope

We now proceed to the construction of the data-independent polytope encoding multiple

ERM problem. As mentioned before, we assume Φ ⊆ [−1, 1]# as well as (G, H) ∼ D
satisfies (G, H) ∈ [−1, 1]= × [−1, 1]< as normalization to simplify the exposition. Since

the BO problem only considers linear objective functions, we begin by reformulating the

ERM problem (1) in the following form:

min
q∈Φ

{

1

�

�
∑

3=1

!3

�

�

�

�

�

!3 = ℓ( 5 (Ĝ3, q), Ĥ3) ∀ 3 ∈ [�]
}

(5)

3.1. Approximation of the feasible region via an n-grid. Motivated by this reformulation,

we study an approximation to the following set:

((�,Φ, ℓ, 5 ) = {(G1, ... , G�, H1, ... , H� , q, !) :!3 = ℓ( 5 (G3, q), H3),(6)

(G8 , H8) ∈ [−1, 1]=+<,
q ∈ Φ}

The variables (G8 , H8)�
8=1

denote the data variables. Let A ∈ ℝ with −1 ≤ A ≤ 1. Given

W ∈ (0, 1) we can approximate A as a sum of inverse powers of 2, within additive error

proportional to W. For #W � ⌈log2 W
−1⌉ there exist values Iℎ ∈ {0, 1} with ℎ ∈ [#W], so

that

(7) −1 + 2 ·
#W
∑

ℎ=1

2−ℎIℎ ≤ A ≤ −1 + 2 ·
#W
∑

ℎ=1

2−ℎIℎ + 2W ≤ 1.

Our strategy is now to approximately represent the G, H, q variables as −1 + 2 ·∑!W

ℎ=1
2−ℎIℎ

where each Iℎ is a (new) binary variable. Define n = 2WL, where L = L(�,Φ, ℓ, 5 ) is the

architecture Lipschitz constant defined in (2), and consider the following approximation of

((�,Φ, ℓ, 5 ):

( n (�,Φ, ℓ, 5 ) �
{

(G1, . . . , G�, H1, . . . , H� , q, !) : I ∈ {0, 1}#W (#+�=+�<) , q ∈ Φ,

!3 = ℓ( 5 (G3, q), H3), 3 ∈ [�],

q8 = −1 + 2

#W
∑

ℎ=1

2−ℎIq
8,ℎ
, 8 ∈ [#],

H38 = −1 + 2

#W
∑

ℎ=1

2−ℎIH
3

8,ℎ
, 3 ∈ [�], 8 ∈ [<],

G38 = −1 + 2

#W
∑

ℎ=1

2−ℎIG
3

8,ℎ , 3 ∈ [�], 8 ∈ [=]
}

.

Note that substituting out the G, H, q using the equations of ( n (�,Φ, ℓ, 5 ), we obtain a fea-

sible region as BO. We can readily describe the error of the approximation of ((�,Φ, ℓ, 5 )
by ( n (�,Φ, ℓ, 5 ) in the ERM problem (1) induced by the discretization:

Lemma 3.1. Consider any (G1, . . . , G� , H1, . . . , H� , q, !) ∈ ((�,Φ, ℓ, 5 ). Then, there ex-

ists (Ĝ1, . . . , Ĝ�, Ĥ1, . . . , Ĥ� , q̂, !̂) ∈ ( n (�,Φ, ℓ, 5 ) such that
�

�

1
�

∑�
3=1 !3 − 1

�

∑�
3=1 !̂3

�

� ≤
n .
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q1

q2

q3q4

q#

G1, H1 G2, H2

G3, H3G� , H�

(a) Intersection Graph of (n (�,Φ, ℓ, 5 )

q

G1, H1
q

G2 , H2 · · · q

G� , H�

(b) Valid Tree-Decomposition

Figure 2. Intersection Graph and Tree-Decompositionof ( n (�,Φ, ℓ, 5 )

Proof. Choose binary values Ĩ so as to attain the approximation for variables G, H, q as in

(7) and define Ĝ, Ĥ, q̂, !̂ from Ĩ according to the definition of ( n (�,Φ, ℓ, 5 ). Since




(G3 , H3 , q) − (Ĝ3 , Ĥ3 , q̂)






∞ ≤ 2W =
n

L 3 ∈ [�]

by Lipschitzness we obtain |!3 − !̂3 | ≤ n . The result then follows. �

3.2. Linear reformulation of the binary approximation. So far, we have phrased the

ERM problem (1) as a BO problem using a discretization of the continuous variables. This

in and of itself is neither insightful nor useful. In this section we will perform the key step,

reformulating the convex hull of ( n (�,Φ, ℓ, 5 ) as a moderate-sized polytope.

After replacing the (G, H, q) variables in ( n (�,Φ, ℓ, 5 ) using the I variables, we can see

that the intersection graph of ( n (�,Φ, ℓ, 5 ) is given by Figure 2a, where we use (G, H, q)
as stand-ins for corresponding the binary variables IG , IH , Iq . Recall that the intersection

graph does not include the ! variables. It is not hard to see that a valid tree-decomposition

for this graph is given by Figure 2b. This tree-decomposition has size � and width

#W (= +< + #) − 1 (much less than the #W (# +�= +�<) variables). This yields our main

theorem:

Main Theorem 3.1. Let � ∈ ℕ be a given sample size. Then conv(( n (�,Φ, ℓ, 5 )) is the

projection of a polytope with the following properties:

(a) The polytope has no more than 4� (2L/n)=+<+# variables and 2� (2 (2L/n)=+<+# +
1) constraints. We refer to the resulting polytope as %(n

.

(b) The polytope%(n
can be constructed in time$ ((2L/n)=+<+# �) plus the time required

for $ ((2L/n)=+<+# ) evaluations of ℓ and 5 .

(c) For any sample ( -̂, .̂ ) = (Ĝ8 , Ĥ8)�
8=1

, (Ĝ8 , Ĥ8) ∈ [−1, 1]=+<, there is a face F-̂ ,.̂ of %(n

such that

q̃ ∈ argmin
{ 1

�

�
∑

8=1

!8

�

�

� (q, !) ∈ proj
q,!

(F-̂ ,.̂ )
}

satisfies
�

�

1
�

∑�
8=1

(

ℓ( 5 (Ĝ8, q∗), Ĥ8) − ℓ( 5 (Ĝ8, q̃), Ĥ8)
)
�

� ≤ 2n, where q∗ ∈ [−1, 1]# is an

optimal solution to the ERM problem (1) with input data ( -̂, .̂ ). This means that

solving an LP using an appropriate face of %(n
solves the ERM problem (1) within an

additive error 2n .

(d) The face F-̂ ,.̂ arises by simply substituting-in actual data for the data-variables G, H,

which determine the approximations IG , IH and is used to fixed variables in the descrip-

tion of %(n
.

Proof. Part (a) follows directly from Theorem 2.8 using #W = ⌈log(2L/n)⌉ along with the

tree-decomposition of Figure 2b, which implies |+ () ′) | + ? = 2� in this case. A proof of
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parts (c) and (d) is given in the next subsection. For part (b) we analyze the construction

steps of the linear program defined in proof of Theorem 2.8.

From the tree-decomposition detailed in Section 3.2, we see that data-dependent vari-

ables G, H, ! are partitioned in different bags for each data 3 ∈ [�]. Let us index the bags

using 3. Since all data variables have the same domain, the sets F3 we construct in the

proof of Theorem 2.8 will be the same for all 3 ∈ [�]. Using this observation, we can

construct the polytope as follows:

(1) Fix, say, 3 = 1 and enumerate all binary vectors corresponding to the discretization

of G1, H1, q.

(2) Compute ℓ( 5 (G1, q), H1). This will take$ ((2L/n)=+<+# ) function evaluations of

5 and ℓ. This defines the set F1.

(3) Duplicate this set � times, and associate each copy with a bag indexed by 3 ∈ [�].
(4) For each 3 ∈ [�], and each E ∈ F3 create a variable _E .

(5) For each 3 ∈ [�−1], create variables - [., #] corresponding to the intersection of

bags 3 and 3 + 1. This will create $ ((2L/n)# ) variables, since the only variables

in the intersections are the discretized q variables.

(6) Formulate LBO.

The only evaluations of ℓ and 5 are performed in the construction of F1. As for the

additional computations, the bottleneck lies in creating all _ variables, which takes time

$ ((2L/n)=+<+#�).
�

Remark 3.2. Note that in step 1 of the polytope construction we are enumerating all possible

discretized values of G1, H1, i.e., we are implicitly assuming all points in [−1, 1]=+< are

possible inputs. This is reflected in the (2L/n)=+< term in the polytope size estimation. If

one were to use another discretization method (or a different “point generation” technique)

using more information about the input data, this term could be improved and the explicit

exponential dependency on the input dimension of the polytope size could be alleviated

significantly. However, note that in a fully-connected neural network we have # ≥ = + <
and thus an implicit exponential dependency on the input dimension could remain unless

more structure is assumed. This is in line with the NP-hardness results. We leave the full

development of this potential improvement for future work.

Note that the number of evaluations of ℓ and 5 is independent of �. We would like to

further point out that we can provide an interesting refinement of this theorem: if Φ has an

inherent network structure (as in the Neural Networks case) one can exploit treewidth-based

sparsity of the network itself. This would reduce the exponent in the polytope size to an

expression that depends on the sparsity of the network, instead of its size. We discuss this

in Section 5.

Remark 3.3. An additional important point arising from this new perspective on training

problems via linear programming comes from duality theory. If one projects-out the

variables associated to the parameters q in %(n
, the resulting projected polytope would

represent all possible samples of size � and their achievable loss vector. This means that

there exists a dual certificate proving whether a loss vector, or average, is (approximately)

achievable by a sample, without using the q variables.

3.3. Data-dependent faces of the data-independent polytope. We now proceed to show

how the ERM problem for a specific data set is encoded in a face of %(n
. This provides a

proof of points (c) and (d) in Theorem 3.1.
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Consider a fixed data set ( -̂, .̂) = (Ĝ8 , Ĥ8)�
8=1

and let q∗ be an optimal solution to

the ERM problem with input data ( -̂, .̂ ). Since %(n
encodes “approximated” versions

of the possible samples, we begin by approximating ( -̂, .̂ ). Consider binary variables

I Ĝ , I Ĥ to attain the approximation (7) of the input data and define G̃, H̃ from I Ĝ , I Ĥ , i.e.,

G̃38 = −1 + 2
∑#W

ℎ=1
2−ℎI Ĝ

3

8,ℎ
and similarly for H̃. Define

(( -̃, .̃ ,Φ, ℓ, 5 ) = {(q, !) ∈ Φ ×ℝ
� : !3 = ℓ( 5 (G̃3, q), H̃3)}

and similarly as before define ( n ( -̃, .̃ ,Φ, ℓ, 5 ) to be its discretized version (on variables q).

The following Lemma shows the quality of approximation to the ERM problem obtained

using (( -̃, .̃ ,Φ, ℓ, 5 ) and subsequently ( n ( -̃, .̃ ,Φ, ℓ, 5 ).
Lemma 3.4. For any (q, !) ∈ (( -̃, .̃ ,Φ, ℓ, 5 ) there exists (q′, !′) ∈ ( n ( -̃, .̃ ,Φ, ℓ, 5 )
such that

�

�

�

�

�

1

�

�
∑

3=1

!3 − 1

�

�
∑

3=1

!′
3

�

�

�

�

�

≤ n.

Additionally, for every q ∈ Φ, there exists (q′, !′) ∈ ( n ( -̃, .̃ ,Φ, ℓ, 5 ) such that
�

�

�

�

�

1

�

�
∑

3=1

ℓ( 5 (Ĝ3, q), Ĥ3) − 1

�

�
∑

3=1

!′
3

�

�

�

�

�

≤ n.

Proof. The first inequality follows from the same proof as in Lemma 3.1. For the second

inequality, let q′ be the binary approximation to q, and !′ defined by !′
3
= ℓ( 5 (G̃3, q′), H̃3).

Since G̃, H̃, q′ are approximations to Ĝ, Ĥ, q, the result follows from Lipschitzness. �

Lemma 3.5.

(q̂, !̂) ∈ argmin

{

1

�

�
∑

3=1

!3 : (q, !) ∈ ( n ( -̃, .̃ ,Φ, ℓ, 5 )
}

satisfies
�

�

�

�

�

1

�

�
∑

3=1

ℓ( 5 (Ĝ3, q∗), Ĥ3) − 1

�

�
∑

3=1

ℓ( 5 (Ĝ3, q̂), Ĥ3)
�

�

�

�

�

≤ 2n.

Proof. Since q̂ ∈ Φ, and q∗ is an optimal solution to the ERM problem, we immedi-

ately have 1
�

∑�
3=1 ℓ( 5 (Ĝ3, q∗), Ĥ3) ≤ 1

�

∑�
3=1 ℓ( 5 (Ĝ3 , q̂), Ĥ3). On the other hand, by the

previous Lemma we know there exists (q′, !′) ∈ ( n ( -̃, .̃ ,Φ, ℓ, 5 ) such that

−n ≤ 1

�

�
∑

3=1

ℓ( 5 (Ĝ3 , q∗), Ĥ3) − 1

�

�
∑

3=1

!′
3 ≤ 1

�

�
∑

3=1

ℓ( 5 (Ĝ3, q∗), Ĥ3) − 1

�

�
∑

3=1

!̂3(8)

=
1

�

�
∑

3=1

ℓ( 5 (Ĝ3 , q∗), Ĥ3) − 1

�

�
∑

3=1

ℓ( 5 (G̃3, q̂), H̃3)

≤ 1

�

�
∑

3=1

ℓ( 5 (Ĝ3 , q∗), Ĥ3) − 1

�

�
∑

3=1

ℓ( 5 (Ĝ3, q̂), Ĥ3) + n.(9)

The rightmost inequality in (8) follows from the optimality of !̂ and (9) follows from

Lipschitzness. �

Note that since the objective is linear, the optimization problem in the previous Lemma

is equivalent if we replace ( n ( -̃, .̃ ,Φ, ℓ, 5 ) by its convex hull. Therefore the only missing

link is the following result.
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Lemma 3.6. conv(( n ( -̃, .̃ ,Φ, ℓ, 5 )) is the projection of a face of %(n

Proof. The proof follows from simply fixing variables in the corresponding LBO that de-

scribes conv(( n (�,Φ, ℓ, 5 )). For every 3 ∈ [�] and E ∈ F3, we simply need to make

_E = 0 whenever the (G, H) componentsof E do not correspond to -̃, .̃ . We know this is well

defined, since -̃, .̃ are already discretized, thus there must be some E ∈ F3 corresponding

to them.

The structure of the resulting polytope is the same as LBO, so the fact that it is exactly

conv(( n ( -̃, .̃ ,Φ, ℓ, 5 )) follows. The fact that it is a face of conv(( n (�,Φ, ℓ, 5 )) follows

from the fact that the procedure simply fixed some inequalities to be tight. �

3.4. Data-dependent polytope? Before moving to the next section, we would like to dis-

cuss the importance of the data-independent feature of our construction. Constructing

a polytope for a specific data set is trivial: similarly to what we described in the previ-

ous sections, with the input data fixed we can simply enumerate over a discretization of

Φ ⊆ [−1, 1]# , and thus compute the (approximately) optimal solution in advance. A

data-dependent polytope would simply be a single vector, corresponding to the approxi-

mately optimal solution computed in the enumeration. The time needed to generate such

polytope is $ ((2L/n)# ) (the number of possible discretized configurations) via at most

$ ((2L/n)#�) evaluations of ℓ and 5 (one per each enumerated configuration and data-

point).

This result is not particularly insightful, as it is based on a straight-forward enumeration

which takes a significant amount of time, considering that it only serves one data set. On the

other hand, our result shows that by including the input data as a variable, we do not induce

an exponential term in the size of the data set � and we can keep the number function

evaluations to be roughly the same.

4. Encoding results for feed-forward neural networks

We now proceed to deriving explicit results for specific architectures. This amounts to

using Theorem 3.1 with explicit computations of the architecture Lipchitz constant L.

4.1. Fully-connected layers with ReLU activations and normalized coefficients. We

consider a Deep Neural Network 5 : ℝ
= → ℝ

< with : layers given by 5 = ): ◦ f ◦
· · · ◦ )2 ◦ f ◦ )1, where f is the ReLU activation function f(G) � max{0, G} applied

component-wise and each )8 : ℝ
F8−1 → ℝ

F8 is an affine linear function. Here F0 = =

(F: = <) is the input (output) dimension of the network. We write )8 (I) = �8I + 18 and

assume ‖�8 ‖∞ ≤ 1, ‖18 ‖∞ ≤ 1 via normalization. Thus, if E is a node in layer 8, the

node computation performed in E is of the form 0̂) I + 1̂, where 0̂ is a row of �8 and 1̂

is a component of 18. Note that in this case the parameter space dimension is exactly the

number of edges of the network. Hence, we use # to represent the number of edges. We

begin with a short technical Lemma, with which we can immediately establish the following

corollary.

Lemma 4.1. For every 8 ∈ [: − 1]0 define*8 =
∑8

9=0 F
9 . If ‖I‖∞ ≤ *8 then ‖)8+1 (I)‖∞ ≤

*8+1.

Proof. The result can be verified directly, since for 0 ∈ [−1, 1]F and 1 ∈ [−1, 1] it holds

|I) 0 + 1 | ≤ F‖I‖∞ + 1. �
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Corollary 4.2. IfΦ is the class of Neural Networks with : layers, # edges, ReLU activations,

and normalized coefficients, then conv(( n (�,Φ, ℓ, 5 )) can be formulated via a polytope of

size$ ((2L∞(ℓ)F$ (:2)/n)=+<+# �),whereF = max8∈[:−1]0
F8 and L∞(ℓ) is the Lipschitz

constant of ℓ(·, ·) over [−*: ,*: ]< × [−1, 1]<. The polytope can be constructed in time

$ ((2L∞(ℓ)F$ (:2)/n)=+<+# �) plus the time required for $ ((2L∞(ℓ)F$ (:2)/n)=+<+# )
evaluations of ℓ and 5 .

Proof. Proving that the architecture Lipschitz constant is !∞ (ℓ)F$ (:2) suffices. All node

computations take the form ℎ(I, 0, 1) = I) 0 + 1 for 0 ∈ [−1, 1]F and 1 ∈ [−1, 1]; the only

difference is made in the domain of I, which varies from layer to layer. The 1-norm of the

gradient of ℎ is at most ‖I‖1+‖0‖1+1 ≤ ‖I‖1+F+1 which, in virtue of Lemma 4.1, implies

that a node computation on layer 8 (with the weights considered variables) has Lipschitz

constant at most
∑8

9=0 2F 9
= 2 F8+1−1

F−1
=: F̃8 . On the other hand, for ‖(0, 1) − (0′, 1′)‖∞ ≤ W

and I ∈ [−*8 ,*8], it holds that

|ℎ(I, 0, 1) − ℎ(I′, 0′, 1′) | ≤ F̃8 ‖(I − I′, 0 − 0′, 1 − 1′)‖∞
≤ F̃8 max{‖I − I′‖∞, W}

which shows that the Lipschitz constants can be multiplied layer-by-layer to obtain the

overall architecture Lipschitz constant. Since ReLUs have Lipschitz constant equal to 1,

and
∏:

8=1 F̃
8 =

∏:
8=1

(

2 F8+1−1
F−1

)

= F$ (:2) , whenever F ≥ 2, we conclude the architecture

Lipschitz constant is !∞ (ℓ)F$ (:2) . �

To evaluate the quality of the polytope size in the previous lemma, we compare with the

following related algorithmic result.

Theorem 4.3. [4, Theorem 4.1] Let Φ be the class of Neural Networks with 1 hid-

den layer (: = 2), convex loss function ℓ, ReLU activations and output dimension

< = 1. There exists an algorithm to find a global optimum of the ERM problem in

time $ (2F�=F poly(�, =, F)).

In the same setting, our result provides a polytope of size

(10) $ ((2L∞(ℓ)F$ (1)/n) (=+1) (F+1)�)

Remark 4.4. We point out a few key differences of these two results: (a) One advantage

of our result is the benign dependency on �. Solving the training problem using an LP

with our polyhedral encoding has polynomial dependency on the data-size regardless of the

architecture. Moreover, our approach is able to construct a polytope that would work for

any sample. (b) The exponent in (10) is ∼ =F, which is also present in Theorem 4.3. The

key difference is that we are able to swap the base of that exponential term for an expression

that does not depend on �. (c) We are able to handle any output dimension < and any

number of layers :. (d) We do not assume convexity of the loss function ℓ, which causes

the resulting polytope size to depend on how well behaved ℓ is in terms of its Lipschitzness.

(e) The result of [4] has two advantages over our result: there is no boundednessassumption

on the coefficients, and they are able to provide a globally optimal solution.

4.2. ResNets, CNNs, and alternative activations. Corollary 4.2 can be generalized to

handle other architectures as well, as the key features we used before are the acyclic

structure of the network and the Lipschitz constant of the ReLU function.

Lemma 4.5. Let Φ be the class of feed-forward neural networks with : layers, # edges,

affine node computations, 1-Lipschitz activation functions 08 : ℝ → ℝ such that 08 (0) = 0,
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and normalized coefficients. Then conv(( n (�,Φ, ℓ, 5 )) can be formulated via a poly-

tope of size $ ((2L∞(ℓ)Δ$ (:2)/n)=+<+# �), where Δ is the maximum vertex in-degree

and L∞(ℓ) is the Lipschitz constant of ℓ(·, ·) over [−*: , *:]< × [−1, 1]<. The poly-

tope can be constructed in time $ ((2L∞(ℓ)Δ$ (:2)/n)=+<+# �) plus the time required for

$ ((2L∞(ℓ)Δ$ (:2)/n)=+<+# ) evaluations of ℓ and 5 .

Proof. The proof follows almost directly from the proof of Corollary 4.2. The two main

differences are (1) the input dimension of a node computation, which can be at most Δ

instead of F and (2) the fact that an activation function 0 with Lipchitz constant 1 and

that 0(0) = 0 satisfies |0(I) | ≤ |I|, thus the domain of each node computation computed

in Lemma 4.1 applies. The layer-by-layer argument can be applied as the network is

feed-forward. �

Corollary 4.6. The ERM problem (1) over Deep Residual Networks (ResNets) with 1-

Lipschitz activations can be solved to n-optimality in time poly(Δ, 1/n, �) whenever the

network size and number of layers are fixed.

Another interesting point can be made with respect to Convolutional Neural Networks

(CNN). In these, convolutional layers are included to significantly reduce the number of

parameters involved. From a theoretical perspective, a CNN can be obtained by enforcing

certain parameters of a fully-connected DNN to be equal. This implies that Lemma 4.5

can also be applied to CNNs, with the key difference residing in parameter # , which is

the dimension of the parameter space and does not correspond to the number of edges in a

CNN.

4.3. Explicit Lipschitz constants of common loss functions. In the previous section

we specified our results —the size of the data-independent polytope— for feed-forward

networks with 1-Lipschitz activation functions. However, we kept as a parameter L∞(ℓ);
the Lipschitz constant of ℓ(·, ·) over [−*: , *:]< × [−1, 1]<, with *: =

∑:
9=0 F

9 a valid

bound on the output of the node computations, as proved in Lemma 4.1. Note that

*: ≤ F:+1.

In this section we compute this Lipschitz constant for various common loss functions. It

is important to mention that we are interested in the Lipschitznes of ℓ with respect to both

the output layer and the data-dependent variables as well —not a usual consideration in the

literature. These computations lead to the results reported in Table 1.

Recall that a bound on the Lipschitz constant L∞(ℓ) is given by supI,H ‖∇ℓ(I, H)‖1.

• Quadratic Loss ℓ(I, H) = ‖I − H‖2
2
. In this case it is easy to see that

‖∇ℓ(I, H)‖1 = 4‖I − H‖1 ≤ 4<(*: + 1) ≤ 4<(F:+1 + 1)
• Absolute Loss ℓ(I, H) = ‖I − H‖1. In this case we can directly verify that the

Lipschitz constant with respect to the infinity norm is at most 2<.

• Cross Entropy Loss with Soft-max Layer. In this case we include the Soft-max

computation in the definition of ℓ, therefore

ℓ(I, H) = −
<
∑

8=1

H8 log(((I)8)

where ((I) is the Soft-max function defined as

((I)8 =
4I8

∑<
9=1 4

I 9
.
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A folklore result is

mℓ(I, H)
mI8

= ((I)8 − H8 ⇒
�

�

�

�

mℓ(I, H)
mI8

�

�

�

�

≤ 2.

Additionally,
mℓ(I, H)
mH8

= − log(((I)8)

which in principle cannot be bounded. Nonetheless, since we are interested in the

domain [−*: , *:] of I, we obtain

((I)8 =
4I8

∑<
9=1 4

I 9
≥ 1

<
4−2*:

⇒
�

�

�

�

mℓ(I, H)
mH8

�

�

�

�

= − log(((I)8) ≤ log(<) + 2*:

which implies that L∞(ℓ) ≤ 2<(log(<) + 2*:) ≤ 2<(log(<) + 2F:+1).
• Hinge Loss ℓ(I, H) = max{1 − I) G, 0}. Using a similar argument as for the

Quadratic Loss, one can easily see that the Lipschitz constant with respect to the

infinity norm is at most <(*: + 1) ≤ <(F:+1 + 1).

5. ERM under Network Structure

So far we have considered general ERM problems exploiting only the structure of the

ERM induced by the finite sum formulations. We will now study ERM under Network

Structure, i.e., specifically ERM problems as they arise in the context of Neural Network

training. We will see that in the case of Neural Networks, we can exploit the sparsity of the

network itself to obtain better polyhedral formulations of conv(( n (�,Φ, ℓ, 5 )).
Suppose the network is defined by a graphG, and recall that in this case,Φ ⊆ [−1, 1]� (G) .

By using additional auxiliary variables B representing the node computations and activations,

we can describe ((�,Φ, ℓ, 5 ) in the following way:

((�,Φ, ℓ, 5 ) =
{

(G1, . . . , G� , H1, . . . , H� , q, !) :

!3 = ℓ(B:,3 , H3)
B8,3E = 0E (6E (B8−1,3 , q(X+(E))) ∀E ∈ +8, 8 ∈ [:]
B0,3 = G3

G8 ∈ [−1, 1]=, H8 ∈ [−1, 1]<, q ∈ Φ
}

.

The only difference with our original description of ((�,Φ, ℓ, 5 ) in (6) is that we explicitly

“store” node computations in variables B. These new variables will allow us to better use

the structure of G.

Assumption 5.1. To apply our approach in this context we need to further assume Φ to be

the class of Neural Networks with normalized coefficients and bounded node computations.

This means that we restrict to the case when B ∈ [−1, 1] |+ (G) |� .

Under Assumption 5.1 we can easily derive an analog description of ( n (�,Φ, ℓ, 5 )
using this node-based representation of ( n (�,Φ, ℓ, 5 ). In such description we also include

a binary representation of the auxiliary variables B. Let Γ be the intersection graph of

such a formulation of ( n (�,Φ, ℓ, 5 ) and Γq be the sub-graph of Γ induced by variables q.

Using a tree-decomposition (), &) of Γq we can construct a tree-decomposition of Γ the

following way:
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(1) We duplicate the decomposition� times () 8 , &8)�
8=1

, where each () 8 , &8) is a copy

of (), &).
(2) We connect the trees ) 8 in a way that the resulting graph is a tree (e.g., they can be

simply concatenated one after the other).

(3) To each bag &8
C with C ∈ ) 8 and 8 ∈ [�], we add all the data-dependent variables

!3 and the binary variables associated with the discretization of G3, B ·,3 , and H3 .

This adds #W (|+ (G)| +=+<) additional variables to each bag, as there is only one

variable B per data point per vertex of G.

It is not hard to see that this is a valid tree-decomposition of Γ, of size |) | · � —since

the bags were duplicated � times— and width #W (CF(Γq) + |+ (G)| + = + <).
We now turn to providing a bound to CF(Γq). To this end we observe the following:

(1) The architecture variables q are associated to edges of G. Moreover, two variables

q4, q 5 , with 4, 5 ∈ � appear in a common constraint if and only if there is a vertex

E such that 4, 5 ∈ X+(E).
(2) This implies that Γq is a sub-graph of the line graph of G. Recall that the line graph

of a graph G is obtained by creating a node for each edge of G and connecting two

nodes whenever the respective edges share a common endpoint.

The treewidth of a line graph is related to the treewidth of the base graph (see [9, 14, 5,

23]). More specifically, CF(Γq) ∈ $ (CF(G)Δ(G)) where Δ denotes the maximum vertex

degree. Additionally, using Lemma 2.5 we may assume |) | ≤ |� (G)|, since Γq has at most

|� (G)| nodes. Putting everything together we obtain:

Lemma 5.2. If there is an underlying network structure G in the ERM problem and the

node computations are bounded, then conv(( n (�,Φ, ℓ, 5 )) is the projection of a polytope

with no more than

2� (|� (G)| + 1)
(

2L
n

)$ (CF (G)Δ(G)+|+ (G) |+=+<)

variables and no more than

� (|� (G)| + 1)
(

2

(

2L
n

)$ (CF (G)Δ(G)+|+ (G) |+=+<)
+ 1

)

constraints. Moreover, given a tree-decomposition of the network G, the polytope can be

constructed in time

$
(

� |� (G)| (2L/n)$ (CF (G)Δ(G)+|+ (G) |+=+<)
)

plus the time required for

$
(

|� (G)| (2L/n)$ (CF (G)Δ(G)+|+ (G) |+=+<)
)

evaluations of ℓ and 5 .

6. Linear Programming-based Training Generalizes

In this section we show that the ERM solutions obtained via LP generalize to the General

Risk Minimization problem. Here we show generalization as customary in stochastic

optimization, exploiting the Lipschitzness of the model to be trained; we refer the interested

reader to [32] and [1] for an in-depth discussion.

Recall that the General Risk Minimization (GRM) is defined as minq∈Φ GRM(q) �
minq∈Φ E(G,H) ∈D [ℓ( 5 (G, q), H)], where ℓ is some loss function, 5 is a neural network
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architecture with parameter space Φ, and (G, H) ∈ ℝ
=+< drawn from the distribution

D. We solve the ERM problem minq∈Φ ERM-,. (q) � minq∈Φ
1
�

∑�
8=1 ℓ( 5 (G8, q), H8),

instead, where (-,. ) = (G8 , H8)�
8=1

is an i.i.d. sample from data distribution D of size �.

We show in this section, for any 1 > U > 0, n > 0, we can choose a (reasonably small!)

sample size �, so that with probability 1 − U it holds:

GRM(q̄) ≤ min
q∈Φ

GRM(q) + 6n,

where q̄ ≤ maxq∈Φ ERM-,. (q) + n is an n-approximate solution to ERM-,. for i.i.d.-

sampled data (-,. ) ∼ D. As the size of the polytope that we use for training only linearly

depends on �, this also implies that we will have a linear program of reasonable size as a

function of U and n .

The following proposition summaries the generalization argument used in stochastic pro-

gramming as presented in [1] (see also [32]). Let f2 = maxq∈Φ V (G,H) ∈D [ℓ( 5 (G, q), H)].

Proposition 6.1. Consider the optimization problem

min
G∈-

El∈Ω [� (G, W(l))] ,

where W(l) is a random parameter with l ∈ Ω a set of parameters, - ⊆ ℝ
= a finite set,

and � : - × Ω → ℝ is a function. Given i.i.d. samples W1, . . . , W� of W(l), consider the

finite sum problem

(11) min
G∈-

1

�

∑

8∈[� ]
� (G, W8).

If Ḡ ∈ - is an n-approximate solution to (11), i.e., 1
�

∑

8∈[� ] � (Ḡ, W8) ≤ minG∈-
1
�

∑

8∈[� ] � (G, W8)+
n and

� ≥ 4f2

n2
log

|- |
U
,

where U > 0 and f2 = maxG∈- Vl∈Ω [� (G, W(l))], then with probability 1 − U it holds:

El∈Ω [� (Ḡ, W(l))] ≤ min
G∈-

El∈Ω [� (G, W(l))] + 2n.

We now establish generalization by means of Proposition 6.1 and a straightforward

discretization argument. By assumption from above Φ ⊆ [−1, 1]# for some # ∈ ℕ.

Let Φa ⊆ Φ ⊆ [−1, 1]# be a a-net of Φ, i.e., for all q ∈ Φ there exists q̄ ∈ Φa with

‖q − q̄‖∞ ≤ a. Furthermore let L the be architecture Lipschitz constant, as defined in (2)

(or (15)).

Theorem 6.2. [Generalization] Let q̄ ∈ Φbe an n-approximate solution to minq∈Φ ERM-,. (q)
with n > 0, i.e., ERM-,. (q̄) ≤ minq∈Φ ERM-,. (q) + n. If � ≥ 4f2

n 2 log
( (2L)/n )#

U
, with

L and f2 as above, then with probability 1−U it holds GRM(q̄) ≤ minq∈Φ GRM(q) +6n,

i.e., q̄ is a 6n-approximate solution to minq∈Φ GRM(q).

Proof. Let q̄ be as above. With the choice a � n/L, there exists q̃ ∈ Φa , so that

‖q̃ − q̄‖∞ ≤ a and hence by Lipschitzness,

| ERM-,. (q̄) − ERM-,. (q̃) | ≤ n,

so that ERM-,. (q̃) ≤ minq∈Φa
ERM-,. (q) + 2n . As � ≥ 4f2

n 2 log
( (2L)/n )#

U
, with

probability 1 − U we have GRM(q̃) ≤ minq∈Φa
GRM(q) + 4n by Proposition 6.1. If now
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q̄� = argminq∈Φ GRM(q) and q̃� ∈ Φa with ‖q̄� − q̃�‖∞ ≤ a, by Lipschitzness we have

| GRM(q̄�) − GRM(q̃�) | ≤ n . Now

GRM(q̃) ≤ min
q∈Φa

GRM(q) + 4n

≤ GRM(q̃�) + 4n (by optimality)

≤ GRM(q̄�) + 5n (by Lipschitzness).

Together with | GRM(q̄) − GRM(q̃) | ≤ n as ‖q̃ − q̄‖∞ ≤ a it follows

GRM(q̄) ≤ GRM(q̄�) + 6n = min
q∈Φ

GRM(q) + 6n,

which completes the proof. �

We are ready to formulate the following corollary combining Theorem 6.2 and Main

Theorem 3.1.

Corollary 6.3 (LP-based Training for General Risk Minimization). Let D be a data

distribution as above. Further, let 1 > U > 0 and n > 0, then there exists a linear

program with the following properties:

(a) The LP has size

$
(

(2L/n)=+<+#
(

4f2

n2
log

(2L/n)#
U

)

)

and can be constructed in time

$
(

(2L/n)=+<+#
(

4f2

n2
log

((2L)/n)#
U

)

)

plus the time required for $
(

(2L/n)=+<+# )

evaluations of ℓ and 5 , where L and f2

as above.

(b) With probability (1 − U) it holds GRM(q̄) ≤ minq∈Φ GRM(q) + 6n , where q̄ is an

optimal solution to the linear program obtained for the respective sample of D of size
4f2

n 2 log
( (2L)/n )#

U
.

Similar corollaries hold, combining Theorem 6.2 with the respective alternative state-

ments from Section 4. Of particular interest for what follows is the polytope size in the

case of a neural network with : layers with width F, which becomes

(12) $
( (

2L∞(ℓ)F$ (:2)/n
)=+<+# (

4f2/n2
)

log((2L∞(ℓ)F$ (:2)/n)# /U)
)

.

A closely related result regarding an approximation to the GRM problem for neural

networks is provided by [20] in the improper learning setting. The following corollary to

[20] (Corollary 4.5) can be directly obtained, rephrased to match our notation:

Theorem 6.4 ([20]). There exists an algorithm that outputs q̃ such that with probability

1 − U, for any distribution D and loss function ℓ which is convex, !-Lipschitz in the first

argument and 1 bounded on [−2
√
F,

√
F], GRM(q̃) ≤ minq∈Φ GRM(q) + n , where Φ is

the class of neural networks with : hidden layers, width F, output dimension < = 1, ReLU

activations and normalized weights. The algorithm runs in time at most

(13) =$ (1)2( (!+1)F:/2: n −1): log(1/U)
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Remark 6.5. In contrast to the result of [20], we consider the proper learning setting,

where we actually obtain a neural network. In addition we point out key differences

between Theorem 6.4 and the algorithmic version of our result when solving the LP in

Corollary 6.3 of size as (12): (a) In (13), the dependency on = is better than in (12). (b) The

dependency on the Lipschitz constant is significantly better in (12), although we are relying

on the Lipschitz constant with respect to all inputs of the loss function and in a potentially

larger domain. (c) The dependency on n is also better in (12). (d) We are not assuming

convexity of ℓ and we consider general <. (e) The dependency on : in (12) is much more

benign than the one in (13), which is doubly exponential.

Remark 6.6. A recent manuscript by [26] provides a similar algorithm to the one by [20] but

in the proper learning setting, for depth-2 ReLU networks with convex loss functions. The

running time of the algorithm (rephrased to match our notation) is (=/U)$ (1)2(F/n )$ (1)
.

Analogous to the comparison in Remark 6.5, we obtain a much better dependence with

respect to n and we do not rely on convexity of the loss function or on constant depth of the

neural network.

7. Conclusion and final remarks

We have showed that ERM problems admit a representation which encodes all possible

training problems in a single polytope whose size depends only linearly on the sample size

and possesses optimality guarantees. Moreover, we show that training is closely related

to the face structure of this data-independent polytope. As a byproduct, our contributions

also improve some of the best known algorithmic results for neural network training with

optimality/approximation guarantees.

These results shed new light on (theoretical) neural network training by bringing together

concepts of graph theory, polyhedral geometry, and non-convex optimization as a tool

for Deep Learning. Our data-independent polyhedral encoding, its data-dependent face

structure, and the fact that its size is only linear on the sample size reveal an interesting

interaction between different training problems.

While a straightforward algorithmic use of our formulation is likely to be difficult to

solve in practice, we believe the theoretical foundations we lay here can also have practical

implications in the Machine Learning community. All our architecture dependent terms

are worst-case bounds, which can be improved by assuming more structure. Additionally,

the history of Linear Programming has provided many important cases of extremely large

LPs that can be solved to near-optimality without necessarily generating the complete

description. In these, the theoretical understanding of the polyhedral structure is crucial to

drive the development of solution strategies.
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Appendix A. Further definitions

A.1. Proper vs. improper learning. An important distinction is the type of solution to

the ERM that we allow. In this work we are considering proper learning, where we require

the solution to satisfy q ∈ Φ, i.e., the model has to be from the considered model class

induced by Φ and takes the form 5 (·, q∗) for some q∗ ∈ Ω, with

1

�

�
∑

8=1

ℓ( 5 (Ĝ8, q∗), Ĥ8) ≤ min
q∈Φ

1

�

�
∑

8=1

ℓ( 5 (Ĝ8, q), Ĥ8),

and this can be relaxed to n-approximate (proper) learning by allowing for an additive error

n > 0 in the above. In contrast, in improper learning we allow for a model 6(·), that cannot

be obtained as 5 (·, q) with q ∈ Φ, satisfying

1

�

�
∑

8=1

ℓ(6(Ĝ8), Ĥ8) ≤ min
q∈Φ

1

�

�
∑

8=1

ℓ( 5 (Ĝ8 , q), Ĥ8),

with a similar approximate version.

Appendix B. Regularized ERM

A common practice to avoid over-fitting is the inclusion of regularizer terms in (1). This

leads to problems of the form

(14) min
q∈Φ

1

�

�
∑

8=1

ℓ( 5 (Ĝ8 , q), Ĥ8) + _ '(q),

where '(·) is a function, typically a norm, and _ > 0 is a parameter to control the

strength of the regularization. Regularization is generally used to promote generalization

and discourage over-fitting of the obtained ERM solution. The reader might notice that our

arguments in Section 3 regarding the epigraph reformulation of the ERM problem and the

tree-decomposition of its intersection graph can be applied as well, since the regularizer

term does not add any extra interaction between the data-dependent variables.

The previous analysis extends immediately to the case with regularizers after appropriate

modification of the architecture Lipschitz constant L to include '(·).
Definition B.1. Consider a regularized ERM problem (14) with parameters �,Φ, ℓ, 5 , ',

and _. We define its Architecture Lipschitz Constant L(�,Φ, ℓ, 5 , ', _) as

(15) L(�,Φ, ℓ, 5 , ', _) � L∞ (ℓ( 5 (·, ·), ·) + _'(·))
over the domain K = [−1, 1]= × Φ × [−1, 1]<.
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Appendix C. Binarized Neural Networks

A Binarized activation unit (BiU) is parametrized by ? + 1 values 1, 01, . . . , 0?. Upon

a binary input vector I1, I2, . . . , I? the output is binary value H defined by:

H = 1 if 0) I > 1, and H = 0 otherwise.

Now suppose we form a network using BiUs, possibly using different values for the

parameter ?. In terms of the training problem we have a family of (binary) vectors

G1, . . . , G� in ℝ
= and binary labels and corresponding binary label vectors H1, . . . , H� in

ℝ
<, and as before we want to solve the ERM problem (1). Here, the parametrization q

refers to a choice for the pair (0, 1) at each unit. In the specific case of a network with 2

nodes in the first layer and 1 node in the second layer, and < = 1, [11] showed that it is

NP-hard to train the network so as to obtain zero loss, when = = �. Moreover, the authors

argued that even if the parameters (0, 1) are restricted to be in {−1, 1}, the problem remains

NP-Hard. See [16] for an empirically efficient training algorithm for BiUs.

In this section we apply our techniques to the ERM problem (1) to obtain an exact

polynomial-size data-independent formulation for each fixed network (but arbitrary �)

when the parameters (0, 1) are restricted to be in {−1, 1}.
We begin by noticing that we can reformulate (1) using an epigraph formulation as in (5).

Moreover, since the data points in a BiU are binary, if we keep the data points as variables,

the resulting linear-objective optimization problem is a binary optimization problem as BO.

This allows us to claim the following:

Theorem C.1. Consider a graph G, ? ∈ ℕ and � ∈ ℕ. There exists a polytope of size

$ (2? |+ (G) |�),
such that any BiU ERM problem of the form (1) is equivalent to optimizing a linear function

over a face of %. Constructing the polytope takes time$ (2? |+ (G) |�) plus the time required

for $ (2? |+ (G) |) evaluations of 5 and ℓ.

Proof. The result follows from applying Theorem 2.8 directly to the epigraph formulation

of BiU keeping G and H as variables. In this case an approximation is not necessary. The

construction time and the data-independence follow along the same arguments used in the

approximate setting before. �

The following corollary is immediate.

Corollary C.2. The ERM problem (1) over BiUs can be solved in polynomial time for any

�, whenever ? and the network structure G are fixed.
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