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Abstract

The problem of minimizing a multilinear function of binary variables is a well-studied NP-hard prob-
lem. The set of solutions of the standard linearization of this problem is called the multilinear set. We
study a cardinality constrained version of it with upper and lower bounds on the number of nonzero
variables. We call the set of solutions of the standard linearization of this problem a multilinear set with
cardinality constraints. We characterize a set of conditions on these multilinear terms (called proper-
ness) and observe that under these conditions the convex hull description of the set is tractable via an
extended formulation. We then give an explicit polyhedral description of the convex hull when the mul-
tilinear terms have a nested structure. Our description has an exponential number of inequalities which
can be separated in polynomial time. Finally, we generalize these inequalities to obtain valid inequalities

for the general case.

1 Introduction

In this paper, we study the convex hull of the set
n
X = {(a:,5) e (0,13 x {0,136 = [[aj i=1ocom, L<Y a4y < U},

j€S; j=1
where m,n are positive integers, S; C J = {1,...,n} for ¢ = 1,...,m and L,U are integers such that
0 < L<U<n. Wecall X the multilinear set with cardinality constraints. We investigate the structural
properties of conv(X), give a polyhedral characterization in the special case that the sets S; are nested, i.e.,
S1 C Sy C -+ C Sy, and give a family of valid inequalities for the non-nested case.
The problem of minimizing a polynomial objective function of binary variables subject to polynomial con-

straints is called the binary polynomial optimization problem, and is often solved by formulating it as an
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integer linear programming problem. The first step in creating such a formulation is to replace each poly-
nomial function by an equivalent (for all z € {0,1}") multilinear expression of the form
m
fa) =8+ 7 []
i=1  jes;
where S; C {1,...,n} fori=1,...,m, 8 € R, and v € R™. Minimizing f(z) over the set of binary z-vectors
is equivalent to minimizing the linear expression S+ Y., 7;0; over the set Y, obtained from X by dropping
the cardinality constraints:
Y = {(a:,5) e (0,1} x {0, 1} 6= [[ ayo i = 1,...,m}.
JES:
Set Y is called the multilinear set and is well-studied in mixed-integer nonlinear optimization because of the

connection to binary polynomial optimization.

The convex hull of the multilinear set is called the multilinear polytope [9], and several classes of valid in-
equalities for the multilinear polytope have been proposed recently [6l [9, [IT], 10, [12]. The boolean quadric
polytope [22] is equal to conv(Y') when |S;| =2 for i = 1,...,m. A complete polyhedral characterization of
conv(Y') has been given in some cases, for example, when the multilinear set is defined by a single nonlinear
monomial (m = 1), see [5], or when the multilinear sets are associated with certain acyclic hypergraphs
[10, 12, [8]. When the nonlinear monomials have a nested structure, i.e., the sets S; have a nested structure,
then the convex hull equals the 2-link polytope, which is obtained by augmenting the standard linearization
constraints with the 2-link inequalities [6]. This result follows from the work of Fischer, Fischer and Mc-
Cormick [18]. The problem of minimizing a linear function over Y contains as a special case the mazimum
monomial agreement problem which has been analyzed in the context of machine learning [14] 13} [15, [16]
and solved via branch-and-bound methods and heuristics.

Mehrotra [2I] studied the boolean quadric polytope with an upper bound constraint on the number of
nonzero x; variables, i.e., the set X with |S;| = 2 and L = 0. When the nonlinear monomials have a
nested structure, Fischer, Fischer and McCormick [I8] gave a polyhedral description of the convex hull
of V.= {(z,8) € Y : x € M}, where M is the independent set polytope of a matroid over n elements,
generalizing earlier results by Buchheim and Klein [2] and Fischer and Fischer [I7]. When the matroid is
a uniform matroid, V is the same as X with L = 0. In this paper, we study the case when the nonlinear
monomials have a nested structure and L > 0. Our results do not follow from the work of Fischer, Fischer and
McCormick mentioned above. Minimizing a linear function over X generalizes the cardinality constrained

maximum monomial agreement problem, which was studied in the context of binary classification in machine

learning by Dash, Giinliik and Wei [7].

When m > 2 and the sets S; are not nested, X is quite a complicated object. We have given a complete

characterization of the convex hull of X when m = 2 in [3]. This generalizes the work of Crama and



Rodriguez-Heck [6] who showed that the 2-link polytope is equal to conv(Y') when m = 2. In this paper, we

give a general family of valid inequalities for the case m > 2.

The paper is organized as follows. In Section 2, we study general multilinear sets with cardinality constraints
and give some facetial conditions of the convex hull under a set of properness assumptions. In Section 3, we
propose new valid inequalities and give a complete polyhedral description of the convex hull for cases when
{S;}™, are nested. In Section 4, we give necessary conditions and sufficient conditions for a set of valid
inequalities to define facets of the convex hull for the nested case. In Section 5, we generalize these valid

inequalities to the non-nested case.

2 Preliminaries

Let I ={1,....,m}, J={1,...,n}, 0 <l <wand u>2 LetSi,..., S, be distinct subsets of J with
1<]S;|<n—1Ilfori=1,...,m. Note that the assumptions imply that n — [ > 1. Define & := {S; }ic;. We
will study the set
- {(2,5) e{0, )" x {0,136 = [[(1—z) il 1<y 2 < u}
JES; jeJ
which is equivalent to the set X in the previous section (let z; =1 —z;, l=n—U and u =n — L).

The standard linearization of the set X% is given by the following system of inequalities:

ZSZZJ‘_

A
S
—~~

—_
~—

jeJ
zj+0; <1, jesiel, (2)
Si+ Y 2z >1, iel, (3)
JES;
5 >0, iel, (4)
1 >z >0, jed (5)

We say that S is closed under nonempty intersection if for each pair S;,S; € S such that S; N.S; # (), their
intersection S; N S; is also contained in S. Let Ab* = projs(X*) denote the orthogonal projection of X'

onto the space of § variables. The next result gives a simple characterization of the convex hull of the set
Xbu(§) = {z€{0,1}": (2,0) € Xb¥}
for each 6 € AL under the assumption that S is closed under nonempty intersection.

Lemma 1. If S is closed under nonempty intersection, then for each 6 € Ab¥, there exists a subset I* of I

and disjoint subsets Jo and {J; :i € I*} of J such that conv(X"“"(5)) is defined by the inequalities

Z5 = 07 ] € JO) (6)



JjEJi

1 < sz <u (8)
jeJ
0 <z <1, jedJ (9)

Proof. Let 6 € Ab". Then a binary vector z € X"%(5) if and only if (§) is satisfied and
[[a-z)=6, ierl (10)
JES:

Let I :={i € I : §; =0} and let Jy := Uier.5,—1 Si- Note that (I0) is equivalent to (@) and the inequalities

S >, i € I, (11)

JES:
Let I* C Iy denote the index set of minimal elements (with respect to inclusion) of {S; : i € Ip}. Then
replacing Iy by I* in [II) yields an equivalent set of constraints.
For each ¢ € I, let
Ji = 5; \ Jo.

Then () # J; C S;. The nonemptyness of J; for i € I* C I follows from the fact that §; = 0 and for some
j € S; we must have z; = 1. But for all j € Jy, we must have z; = 0. Therefore, any nonzero binary vector
z that satisfies equations (6l will also satisfy (L)) if and only if (@) is satisfied.

We next argue that Jy and {J;};cr+ are disjoint sets. By definition, Jo N J; = 0, for all ¢ € I*. For any
i1 <ig € I*,if J; Ny, # 0, then we must have () # S;; NS;, € S, as S is closed under nonempty intersection.
Therefore S;, N S;, = S;, for some i3 € I, and S;; 2 J;, N J;,. Then S;, \ Jo # 0, and therefore §;, = 0.
Consequently, i3 € Iy, which contradicts the fact that S;, (or S;,) is a minimal element in {S; : i € Ip}.

We have shown that if z € {0,1}, then z € X“%(§) if and only if z satisfies the constraints in (B])-(). Note
that the constraint matrix associated with this system of inequalities is totally unimodular. This is because
each z; occurs once in (8) and possibly once more in (6) or (7) and therefore the rows of the associated
constraint matrix admits an equitable row bi-coloring [4]. Therefore the polyhedron defined by (@l)-(@) is an
integral polyhedron, and has only 0-1 vertices. The result follows. o

The previous result implies that if S is closed under nonempty intersection and Ab* has polynomially many
elements, optimizing a linear function over X% can be formulated as a linear program of polynomial size
using Balas’ disjunctive model [I]. In particular, optimizing a linear function over X% is equivalent to
optimizing linear functions over conv(X"%(§)) for all § € Al*. However, we are interested in characterizing

conv(X"") in the original space in order to deal with problems where X"* appears as a substructure.



2.1 Proper families

We next present a definition where we call S that defines X"% a proper family if it satisfies some simple
conditions. We will then show that inequalities that define conv(X"") satisfy certain properties if S is a

proper family.

Definition 1. A family S = {S;}ics of subsets of J is called a proper family if it satisfies the following

properties:
1. Ab¥ is a set of exactly m + 1 affinely independent vectors in R™;

2. S is closed under nonempty intersection.

Note that if S is a proper family, then it is closed under nonempty intersection and the size of Ab% is
polynomial in m and consequently a polynomial-sized extended formulation of conv(X"*) can be obtained
using Balas’ disjunctive model. In particular, we will show that if S is proper, then we can characterize
conv(X"") by enumerating a set of valid inequalities. We next present three examples of proper families S

together with the corresponding sets I* and J; for i € I* U {0}, for each § € Abv.

Example 1. If S1,S55,...,5,, are nested subsets of J, | < n — |S,,| and u > 2, then § = {51, S2,...,5m}
is proper. In this case, S C Sy C ... C Sy, and A% = {6 € {0,1}":6; > 0o > ... > 6} is aset of m+ 1

affinely independent points in R™. For each § € AL, Jy and {J;};cs- are defined as follows.

o Jo {Jitier-
(0,0,...,0) 0 {51}
(1,...,1 ,0,...,0)forsome 1 <p<m-—1| S, |{Sp+1\Sp}
first p entries
(1,1,...,1) S 0

Example 2. If S, S5 are two disjoint subsets of J, I <n —|S; U Ss| and u > 2, then & = {51, 52,51 U Sa}
is proper. In this case, Ab* = {(0,0,0),(1,0,0),(0,1,0),(1,1,1)} is a set of 4 affinely independent points in
R3. For each § € Ab¥, Jy and {J;}ier are defined as follows.

d Jo {Jitier-
(0,0,0) 0 {51, S2}
(L,0,0)| S {S2}
(0,1,0) | 52 {S1}
(1,1,1) | S1U S, 0

Example 3. If S; and S5 are two subsets of J satisfying S1 NSz # 0,51 € S, 52 € S1,1 < n—|S1USs| and
u > 2, then S = {81 N Sy, 51,852,581 USy} is proper. In this case, Al = {(0,0,0,0),(1,0,0,0),(1,1,0,0),



(1,0,1,0),(1,1,1,1)} is a set of 5 affinely independent points in R*. For each § € AL Jy and {J;}ier- are
defined as follows.

d Jo {Jiticr-
( ) 0 {S1N S}
( )| S1N Sy | {S1\ 52,52\ 51}
(1,1,0,0) | S {92\ 51}
( )
( )

So {51\ S2}
S1U S,y 0

We next present an alternate way to certify that S is a proper family. We say that S is closed under union

if for each pair S;, S; € S, their union S; U S; is also contained in S.

Proposition 2. Let S be a family of nonempty subsets of J that is closed under union and nonempty

intersection. Then, S is a proper family provided that Ab* = A0m,

Proof. 1t suffices to show that A% satisfies property 1 in Definition[if S is closed under union and nonempty
intersection. We show this by induction on m. When m = 1, then we have A% = {0, 1} and the statement

holds.

For the inductive step, assume the statement holds for all S with m < k for a given k > 1. We will next
show that the statement then also holds for k + 1. Let &’ = {S;}icrr be a family of distinct nonempty
subsets of J that are closed under union and nonempty intersection with m’ := |I'| = k + 1. Without loss
of generality, assume S; is a minimal set (with respect to inclusion) in §’. Let I; :={i € I' : S; 2 51} =
{iel':S;NS;=0}and Iy :={iel:85; 25}, & :={Siticr, and Sz := {S; \ S1}icr,- Note that both

S1 and S; are closed under union and nonempty intersection.

Define

A ;:{5 € (0,1} 13z e {0, 1) st 6= [[(1—z).ie 1/},

JES:

A ::{5 (0.1} 32 € {0, 1) st 6 = [[(1—2)i€ Il},
JES:

Ao ;:{5 €{0,1}2 T e {0, 1) st 5= [] (L-z)ie 12}.
j€S:\S1

Family S> cannot be empty as S is minimal and 8§’ is closed under union with m’ = k+1 > 2. Now we

consider two cases.

First assume that S; = 0, then |Sa| = |S'\ {S1}| = k. Therefore, by inductive hypothesis, Az contains
exactly k + 1(= m’) affinely independent points. Then

A = {0} U{(1,8):0 € Ay}



is a set of m’ + 1 affinely independent points.

Next, consider the case when S; # (. In this case, S; and Sy are closed under union and nonempty
intersection with my := |I1| < k and mg := |I3] < k. Without loss of generality, assume I; = {2,3,...,m1 +
1} and Iy = {m1 +2,...,m’}. By inductive hypothesis, we have that A; and As contain exactly m; 4+ 1 and
ms + 1 affinely independent points, respectively. Observe that &' = {S1} U S U{S U Si}ses,. Since S is
closed under union, for each S € Sy, there exists ¢ € I such that SUS; = S;. It follows that for all 6 € A/
with §; = 1, for each iy € I, there exists i3 € Iy such that é;, = §;,. Therefore, there exists a mapping

F : Ay — Ay such that
A" ={(0,64,0): 6" € A YU {(1, F(6?),6%) : 6% € Az}
Then it is easy to verify that A’ is a set of m’ + 1(= |A1]| + |Az|) affinely independent points. O

It is easy to see that given a family S = {S;};er, the condition A% = A®™ holds provided that | <
n — | U;es Sil and
u > max{|I|: S;\ S; #0,5;\S; #0 for any i #j € I}.
icr

When the sets are nested, as in Example [Tl these conditions simply reduce to I < n —|Sy,| and u > 1.

2.2 Properties of valid inequalities for X"
Notice that an inequality o’z + 876 < v is valid for X5 if and only if

v > max {a’z+p%6} = max {ﬁTg—i— max al }
(z,6)eXbu SeAlu zeXLu(5)
In other words, it is valid if and only if

v—pBT6> max alz (12)
zeXhu(4)

holds for all 6 € Ab*. We next characterize some properties of facet-defining inequalities for conv(X5%).

Lemma 3. Assume S is a proper family. Let o’ z+876 <~y be a facet-defining inequality for conv(X"*), and
let F' be the associated facet. Then, either F is defined by a facet-defining inequality of the form (8)T6 <+
which also defines a facet of conv(A"), or () holds as equality for all § € Ab*,

Proof. Let a®z + 16 < 7 be a facet-defining inequality and assume that inequality (IZ) is strict for some
§ € Ab®, In this case, the facet F' does not contain any integral points of the form (z,§) and consequently,
for all integral points (z,8) € F we have § € A%\ {5}.

As S is a proper family, conv(Ab%) is a full-dimensional simplex in R™ with m+ 1 facets. Let (8)76 <+ be

the (unique) facet-defining inequality for conv(Ab*) such that ¢ is not contained in the corresponding facet



F'. Note that all points in Ab%\ {§} satisfy (8")7d = +'. As all integral points in F have their § components
in Ab¥\ {5}, we conclude that all integral points in F satisfy (8')7§ = +'. Therefore, F is defined by the
inequality (8")7d <+'. O

Given a proper family S with Ab* = {§*,..., 6™} and a vector a € R™, let Ag € R(MTDX(m+1) he the
matrix with rows

[As]i = [1,-(69T], i=1,...,m+1,

and v, € R(™*1 be the vector with entries

[Voli= max aTz, i=1,...,m+1. (13)
zexbu(8l)

When (I2)) holds as equality for all § € Ab", we can now write (IZ) in matrix form as As (g) = 14. Note
that as S is proper, the vectors in Ab* are affinely independent and therefore As is nonsingular. Then, for

any given a € R™, we can construct a valid inequality o’z + 1§ < 7, for X% where

Yo
Ba

= (As) 'va. (14)

Moreover, by Lemma 3] if oz 4+ 78 < ~ defines a facet F of conv(X"%), then either 8 = 3, and 7 = 74,
or, F is defined by an inequality of the form (') < +/.

We will need the following definition in the next lemma.

Definition 2. For any two vectors a, o’ € R™, we say o' follows the pattern of a if

1. For each j € J, (i) if a; > 0, then o/} > 0, and (44) if a; <0, then o} < 0;

/.

2. For each pair ji,j2 € J, if a;; > oy, then o

/
1 ZO‘/‘j2'

By definition, it can be shown that if o’ follows the pattern of «, then there exists an optimal solution of
(@3) such that it remains optimal if we replace a by o’ in ([I3]). The next lemma has a similar flavor of this
observation, and will be used to show that we can put a restriction on o when we consider any facet-defining

inequality with coefficients defined by (I4]).

Lemma 4. Assume S is a proper family and (o, 8,7) satisfies (I2) as equality for all 6 € A", If two
vectors at, o~ € R™ both follow the pattern of a and o = Ao + pa~ for some X > 0 and p > 0, then

Vo = Ao+ + UVq-

where vy is defined as in ([I3)).



Proof. As in the proof of Lemma [ for a given § € Ab¥ let Jy := Uie[:&:l S, In :={i € I:4; =0},
let I* C Iy denote the index set of minimal elements (with respect to inclusion) of {S; : i € Iy}, and let
Ji = Si'\ Jo for i € I*. Note that the optimal value of max, ¢ yi.(5)a’ z is equal to Y, ;. maxje s, o; (the
sum of one largest o in {a;},ey, for i € I*) plus the largest sum of at least (max{l — |I*|,0}) and up to
(u — |I*|) largest remaining «; values for j € J \ Jo.

For=1,...,m+1, let

i T
z Eargzeglli)zsi)a z. (15)

As o and o~ both follow the pattern of o, z* remains optimal for (5] after replacing o by a* or a7, i.e.,

Zic (arg max (a)Tz)N(arg max (a)T2),

zeXbu(8Y) zeXbu(8)
for i =1,...,m 4+ 1. We next construct a matrix Z with columns 2z’ and observe that
ZTa=v,, ZTat =v,+, and, ZTa™ =v,-.

Therefore, we have

Ve =2 a=XZTa" + puZ%a™ = Mg+ + g -.

Using this technical result, we next make an observation on the coeflicients of facet-defining inequalities.

Lemma 5. Assume S is a proper family. Then each facet F of conv(X'") is defined by an inequality

alz 4 BT <5 where a € {0,k}V! for some x € R.

Proof. Assume that the claim does not hold. Then there is a facet F' such that any inequality o’z + 878§ < v
defining F has the property that o has at least two distinct nonzero components. If conv(X’%) is full-
dimensional, then there is a unique inequality (up to positive scaling) a’z + 376 < 7 defining F. If
conv(X"%) is not full-dimensional, we chose @’z + 376 < 74 be an inequality defining F' such that & has the
smallest number (> 2) of distinct nonzero components.

Let amin denote the smallest nonzero component of & and let Jmin = {j € J : @&; = Qmin}. Let at and a~

be obtained from & as follows

a;r _ dj + €, lf] € Jminu o = dj — € 1fj € Jminu (16)
a;, otherwise, a;, otherwise,

where € > 0 is sufficiently small so that a* and a~ follow the pattern of @. Then by Lemma H we have

vy = %I/a+ + %I/Of and using (I4]), we can define two valid inequalities

(@) 2+ (Ba)T6 <o+, (@) 2+ (Ba-)"0 < 7a- (17)



In this way, (3,7) = %(ﬁa+,’7a+) + %(ﬁoﬁ ,Va— ). Consequently, @’z 4+ 376 < 7 can be expressed as a strict
convex combination of two valid inequalities. Moreover, these two inequalities are distinct (not a multiple
of the original inequality) as [{&; : @; # 0,j € J}| > 2. When conv(X"*) is full dimensional, this leads to a
contradiction.

On the other hand, if conv(X"*) is contained in an affine subspace, then it is possible that both inequalities
define the same facet as the original one. In this case, we can increase € in (I6) as much as possible while o+
and o~ follow the pattern of a. The largest such e would give an a™ or a~ with one fewer distinct nonzero
entries than . This again leads to a contradiction as a was assumed to have the smallest number of distinct

nonzero components. O

We conclude this section by showing that the convex hull of X’* can simply be obtained from convex hulls

of X% and X" provided that S satisfies some simple conditions.

Theorem 6. Assume S is a proper family and Ab* = A®". Then
conv(X"*) = conv(X%") N conu(X ™).

Proof. As X% = X%un X" we have conv(X! %) C conv(X%%)Nconv(X! ™). We next show that the reverse
inclusion also holds. We first consider the case when conv(X%*) is not full-dimensional and argue that the
affine hull of conv(X%%) is the same as that of conv(X%%) Nconv(X""). Let oz + 876 = v be an equation
satisfied by all points in conv(X"*). Consider now only one direction of the equation o’z + 876 < ~. Using
the notation defined in the proof of Lemma B we have (3,7) = (As) 'va as oz + 78" = 4 for any

z € Xl’“(éi). Let at and o~ denote the nonnegative part and the nonpositive part of a, respectively, i.e.,

aj-' = max{q;,0}, a; = min{«;,0}, j=1,...,n.

Letting 77 = Yo+, 87 = Bats ¥~ = Ya-, B~ = Ba- as defined in ([[d]), we see that the following inequalities

are valid for Xbu:
(@) 2+ (BN s <Y, (@) 2+ (B)6<y.

Moreover, as « = a™+a~ and both o™ and o~ follow the pattern of a, by Lemmaldlwe have v = v+ +v,—,
and therefore 37 + 8~ = 8 and v* +~~ = v. Note that when & > 0, v5 does not depend on [ as its i-th

entry is equal to >, ;. (max;e s, &;) plus the sum of the (u — |I*|) largest remaining a; values for j € J\ Jo,

iel*

where I, {J;}icr-u{o} are associated with " (as defined in Lemma ). It follows that

Voili= max (aM)Tz= max (aM)’z, i=1,....m+1.

zeXLu(s?) 2EX0.u(8%)
This implies that (a™)Tz + ()75 < 4t is valid for conv(X%%). Using a similar argument it is easy to
see that (a™)Tz + (7)T6 <~ is valid for conv(X"™"). Note that (a, 8,7) = (o™, BT, v") + (o=, 87,77).

Combining both inequalities, we have a”z + 76 < « is valid for conv(X%*) N conv(X"™).

10



When we consider the other direction —a® z— 87§ < —~, by repeating the argument above for (—a, —3, —7),
we see that —alz — 87§ < —~ is valid for conv(X%%) N conv(X"5™). This implies that aTz + 7§ = v is
valid for conv(X%%) N conv(XH™).

We now consider an arbitrary facet F of conv(X"*). Let Ab® = {§}7F1 As Abv C A0 ALn C A% the

assumption of the theorem implies that
Al,u — AO,n — AO,u — Al,n. (18)
By Lemmas Bl and (] we only need to discuss the following two cases:

1. F can be defined by an inequality (8')7§ <~ which also defines a facet of AL*. In this case, by (),
we have AL = Abm = A0 and (8')7§ < 4" is also valid for conv(X%*) N conv(Xh™).

2. F can be defined by an inequality a’z + 876 < 4 where a; € {0, } for some x € R and ([Z) holds as
equality for all 6 € Ab%. If k > 0, then a’z + 876 < 7 is valid for conv(X%*). On the other hand,
if K <0, then a”z + 76 < 7 is valid for conv(X"™). In both cases, @’z + 37§ < 7 is also valid for

conv(X%%) N conv(Xhm).

We therefore conclude that any inequality valid for conv(X"") is also valid for conv(X%*)Nconv(X""), and

consequently conv(X%%) N conv(Xh") C conv(Xh). 0

3 Convex hull description when S is a family of nested sets

In this section, we consider the special case when & = {S;};¢cs is a family of nested sets. In other words, we
assume that S; C Sy C ... C S,, C J ={1,...,n}, and without loss of generality, we use S; = {1,...,k;}
where 2 < k1 < ko < ... < k;,. Remember that I = {1,...,m}. To avoid trivial cases (see Remark [I3]
below), we further assume that v > 2 and | < n—|Sy,| (i.e., km < n—1). For convenience, we define Sy = 0,
Sm+1=4J, 9 =1 and §,,41 = 0.

Without loss of generality, we also assume that [ < u. Note that if [ = u, then z, = u— > jea\{n} %i and

any problem of the form min{c’z +d¥§: (z,6) € X"} is equivalent to

min cizi + cn(u— z))+dFe: 6 = 1—2),1 €1
{ X autau- Y =) [Ta-2)

jeI\{n} jeI\{n} Jes;

u—1< Z zjgu;zje{O,l},jeJ\{n}}

je\{n}

and we can then work in the projected space without variable z,,.

11



3.1 Basic properties of conv(X’*) and its continuous relaxation

Recall from Example [[ that S is a proper family. As S; C S;11, all (z,8) € X% satisfy 6,11 < 6; for all
i < m. Moreover, if z; = 0 for all j € S;11 \ S;, then 6,41 = 6;. Consequently, the following inequalities are

valid for conv(X"%) foralli =1,...,m — 1:

di11 — 0; <0, (19)
§i— 01— >, 2z <0, (20)
j65i+1\5i

These inequalities are called 2-link inequalities by Crama and Rodriguez-Heck [6]. When S is nested,
Fischer, Fischer and McCormick [I8] show that (I9))-(20) along with the standard linearization ({)- (&) define
the convex hull of X%" (i.e. when [ = 0, u = n). Crama and Rodrfguez-Heck [6] show the same result holds
when |S| = 2 without assuming S is nested.

After adding (I9)-(20) to the standard linearization of X%, some of the initial inequalities (I))-(5) become

redundant. We next give the subset of the inequalities ([II)-([G]) that give a correct formulation when combined

with (I9)-(20):
[ < sz <u, (21)

jeJ
zj +6; <1, jesS,iel, (22)
1—61— > 2 <0, (23)
jeEST
b, <0, (24)
—2z; <0, jed (25)
z <1, jeJ\ Sm. (26)

Note that unlike inequality (), inequality (23] is only written for S; as ([20) and ([23) together imply the
remaining inequalities in ([B]). Similarly, (I9) and (24)) imply that each ¢; is nonnegative.

Also note that given any z € {0,1}" satisfying | < >, ; z; < u, there exists a unique J such that (2,0) €
X% We next define this formally.

Definition 3. Given U C J with [ < |U| < u, we define the point vV € X" as follows:

1, ifjel,
oV = (2Y,6Y) where 2V = J and 67 = H (1- zJU)

J . [
0, otherwise, jes,

Lemma 7. The polytope conv(X'%) is full-dimensional.
Proof. (sketch) We consider the two following cases separately:
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If | = 0, we argue that the following m + n + 1 points in conv(X%%) are affinely independent:

e? ehitl el . el + e
it = , otk = _ forie I, vt = ottt = for j € J\ {1}.
O, d’ Om Om

If, on the other hand, | > 1, then we let @ = {n—1+1,...,n} C J\ S, where |Q| = [, and consider the

following m + n + 1 points in conv(X5*):

A T L S (' Rl ST S SN S EAN (O S S = J\{1}\ Q, pIVAUY for j e Q,
and argue that they are affinely independent. The detailed proof is presented in Appendix. O
Lemma [T also implies that conv(Ab") is full-dimensional. In addition, it is easy to see that

A =15 {0,1}™: 61 >8> ... >0} (27)
Moreover, as the constraint matrix defining Ab* above is totally unimodular, we also have
conv(AY) = {§€R™: 1> 6, > > ... >3, > 0}. (28)
From now on we will denote the m + 1 vectors in Ab% as
Al = L5050 st (29)

where 6% =0 and, for ¢ € I, the vector § () has the first 4 components equal to 1 and the rest equal to zero.

Note that these vectors are affinely independent.

We start with characterizing facet-defining inequalities for conv(X"") that have zero coefficients for all of

the z; variables.

Lemma 8. If 376 <« defines a facet of conv(X'%), then it is a multiple of an inequality from ([I3) or (Z4)).

Proof. As conv(X"*) and conv(Al%) are full-dimensional polytopes, if 37§ < v defines a facet of conv(X’%),
then it also defines a facet of conv(A""). The only facet-defining inequality for conv(Ab%), see (28], that is
not of the form ([J) or Z4)) is 1 > 6;. However, 1 > §; cannot define a facet of conv(X"") as it is implied
by @2) and [23) for i = 1 and any j € S;. Therefore, the only facet-defining inequalities of conv(A»") that
can also define facets of conv(X"") are of the form (I9) and 24). O

Under the assumptions (i) u > 2 and (ii) | < n — |Sy,|, we have A% = A%" and consequently
conv(X ") = conv(X%") N conv(Xh™),
by Theorem [l We next study conv(X%") and conv(X"") separately.
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3.2 Trivial facets of conv(X%)

As conv(X %) is full-dimensional, all facet-defining inequalities for conv(X%%*) are uniquely defined up to
multiplication by a positive scalar. We have already characterized all facets of the form 7§ < « in Lemma

Bl We now characterize facet-defining inequalities of the form oz + 37§ < v for conv(X%*) with o < 0 and

a # 0.

Lemma 9. Let o’z + 15 <~ be a facet-defining inequality for conv(X%%). If a <0 and o # 0, then the
inequality is a multiple of one of the inequalities (20),(23) or (23).

Proof. Let a®z 4+ T3 < ~ be a facet-defining inequality for conv(X%") satisfying the conditions of the
Lemma, and assume it defines the facet F' = {(2,§) € conv(X%%) : Tz + 87§ = v}. By Lemma 5 we can
assume without loss of generality that all nonzero components of a are equal to —1. If a’z + 376 < v is
the same as z; > 0 for some j € J, then it is one of the inequalities in ([25]) and the result follows. We will

henceforth assume this is not the case.

If |S; \ Si—1] > 2 for any ¢ € I, then we will next argue that
a; = oy, for all distinct j, k € S; \ Si—1. (30)

If this is not true, then we can assume, without loss of generality, that a; = —1 and «a; = 0 for some
jyk € S;\ Si—1. As F is not defined by z; > 0, we can assume that there is a point (2,6) € F with the
property that z; = 1. Consider the point (2/,5) where the components of 2’ are the same as the components
of Z, except that z; = 0 and 2}, = 1. Tt is easy to see that (2/, 5) € X% and a’2 = Tz + 1 which implies
that o™z’ + 875 > ~. This contradicts the fact that a”z 4 376 < ~ is a valid inequality for X%*. Similarly,
for any j € J\ Sy, there exists a point (2,0) € F such that z; = 1. If a; = —1, then constructing a new

point by changing Z; to 0 shows that the inequality cannot be valid. Consequently, o; = 0 for all j € J\ Sp..

As conv(X%%) is full-dimensional, Lemma [3 and o # 0 together imply that

v - BTsM =  max  aTz (31)
z€X0.u(8lil)
for i = 0,...,m. First note that as a« < 0 and z > 0, we have maxzeXo,u(é[m])aTz = 0. Moreover, for

1=0,....m—1,ifz € XO*“(JM), then z; =0 for j € S; and ZjeSHl\Si Z;j > 1. Therefore,
max olz= max {a;}.
z€X0u (gl JjE€Si+1\Si
Consider § € R™T! where 6; equals to the right-hand side of (3I). Then 6, = 0, and for i = 0,...,m — 1
we have 0; € {0, —1}, with 6, = o for all j € S;41 \ S;. Then BI]) implies that

k m

v = b, ’Y—ZﬂizokfOrkE{l,...,m—l}, V—Zﬂi:()_

i=1 =1
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These equations have the unique solution:
’7:6‘0, Bizﬁi_l—@- fOl“iE{l,...,m—l}, Bmzﬁm_l. (32)

We next observe that a; =0 for all j € J\ Sy, and 6; <0 for all i € {0} U I, and therefore

m m—1
oz BT =300 ( D )+ D (Bia— 005 + b1
i=1 FESNSi_1 i=1
m—1
26‘0(514—22]‘)4—291(51‘4_1—51‘4— Z zj)§90+0:7.
JES1 i=1 JESi+1\S:
>1 >0

Therefore, inequality o’ z + 876 < v is implied by inequalities 23] and 20). As it is facet-defining, it must
indeed be one of them. O

3.3 Convex hull description of X%

We next derive a family of valid inequalities for conv(X%%) using the mixing procedure [20]. The inequalities
we derive here apply when S = {S;}ics is a family of nested sets and as we show later, together with
inequalities (2I)-(26), they give a complete description of conv(X%%). Later in Section [E] we will generalize

these inequalities for the case when S is not necessarily nested.

For some positive integer k, let 1 > by, > bp_1 > ... > by > 0, be given and let
QZ{SGR,ZGZk:S+2iZbi fori=1,...,k, 520}. (33)

Then, the following type I mizing inequality is known to be valid for @ (see [20]):

k

54 biz1+ Z(bz —bi—1)z > by (34)
i—2

The inequalities s + z; > b; are called base inequalities and note that inequality ([B84) combines the mixed-
integer rounding inequalities s+ b;z; > b; associated with the base inequalities using a “telescopic” sum. We
next derive some valid inequalities for X %% to use as base inequalities for applying the mixing procedure.
Let S C J and i € I be given and let M > n be a fixed constant. Using the fact that zj <1,1-6;—2; >0,
and §; < 1, for all j € S;, we can derive the following valid (base) inequality for conv(X%%):

%(U_sz)ﬂpai): %(u— 3 zj)+% 3 (1—5i—zj)—|—$(M—|S'ﬁSi|>(1—5i)

jesr JES\S; jesns;

v
Sis
—

g
|
&
~
\%
Sis
—~
S
|

«

—

"
—
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Moreover, if [S"\ S,| < u — 1 for some p € I, then the right-hand side of this valid inequality

1 1
(- > 5) +(1=0) > —(u=IS'\Si)
jeSs’
is strictly between 0 and 1 for all ¢ = p,p+1, ..., m. Therefore, we can write a set of the form (33)) using these

inequalities as the base inequalities where we treat the term 7 (u — ;¢ 2;) as a nonnegative continuous

variable and the term (1 — ;) as an integer variable for all i = p,p + 1,..., m. Consequently, the resulting

type I mixing inequality,

) (158 =04 3 (15 S| =18\ S) (1=6) = o (w1575,
Jjes’ i=p+1
which can be simplified to
L= 5) = L um 15 8)5+ o 30 (198l 15 811)a
jes’ i=p+1

is valid for conv(X%%). After multiplying the inequality by M and rearranging the terms, we obtain the

following valid inequality for conv(X %)

>z (u— 1\ Spl)6, + i (15" \ Sical = 57\ i) 8 < w. (35)

Jjes’ i=p+1

We next give an inequality description of conv(X%%) using the mixing inequalities.

Theorem 10. A complete inequality description of conv(X%%) is given by inequalities (21))-(28) together
with inequalities [33) for allp € I and S’ C J such that |\ Sp| <u—1.

Proof. Let aTz + T35 < 7 be a facet-defining inequality for conv(X%%) and note that by Lemma [T it has
a unique representation up to multiplication. By Lemma [B we can assume that either a € {0, 1}“] | or
a € {0, —1}VI. Furthermore, by Lemmas 8 and [l we have established that if o < 0 (including the case when
a = 0) the inequality o’z + 876 < « has to be one of [ZI)-([26). Therefore, the only remaining case to

consider is when a € {0,1}/VI and a # 0.

Let S:={j € J: aj = 1} and therefore o’z = > je5 %j- Also remember that AOu = (50§} where
the first p € I components of 8 € {0,1}™ are 1, and the rest components are 0. Then by Lemma [ the

following equations must hold for all 6 with p € {0,...,m—1},
- Zﬁi = max{de : (2,5[”]) € XO’“}

max{sz:szgu; zj =0, Vj € Sp; Z zjzl,ze{O,l}lJl}

jes jeJ JESp+1\Sp

— min {u— ]]-{Sﬂsp+1\5p:@}’ |S\Sp|}v (36)
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where we define 14 to be 1 if condition A is true, and 0, otherwise. Similarly, for 5[m], we have
v =Y Bi =min{u, [S\ Spnl}. (37)
i=1
Let S; = SN S, fori € I and let D; = S; and D; = S; \ S,y for i € {2,...,m}. Note that S =
(S\ Sm) U (Ui~ D;). The unique solution to equations (36) and (37) is therefore

= min{ u—L¢p,—p}, |§| }

5 = min { u—Lip,—gy, [S\ Sic1] } — min{ u—1Lp,, =gy, [S\ S| } forl<i<m-—1,
' min{ uw—1¢p, —py, [S\ Sm-1| } — min{ u, [S\ S, } for i =m.

We now consider 3 cases:

Case 1: |S\ S,,| > u. In this case, |S\ S;| > u also holds for all i € I and

v=u—L{p =g},

[3- _ ]]'{D'H»l:@} — ]l{Di:@}, 1 E {1, e, — 1},

—]l{Dm:@}, 1 =m.

Therefore,

m—1
aTz+BT5:sz—]l{D1:®}( \5/1/ )—|—Z{ Z Zj"']l{DHl:(D}( 5i—5i+1 )}‘F Z Zj

=1  j€Dit1 FES\Sm

jeD
Jj€D1 >1-%cq, % SXjesipi\s; %
m—1
<D - l{Dlzw}(l - Zj) + [ > ut R{DM:@}( 2 ZJ” 2
jeD, jes i=1  j€Dip JESit1\S; JES\Sm
<Xjes, % 1{p1=0} S2jesiia\s; ¥
<Y zj—Lp,—py < u—1lp,—gy = 7
jeJ

In the first inequality above, we use inequalities ([23) and (20) and in the second inequality we use the fact

that if 1;p,—gy = 1, then > zj=0forall i € I.

JjED;
Therefore, inequalities (21))-(26) imply oz + 87§ < ~.

Case 2a: |S\ S,,| <u—1and |S| <u— 1. In this case, equations (B8] and 37 imply
7:|§|, and BZZ|S’\51_1|—|§\SZ|=|D1|, iel.

In this case, using inequalities (22)) and (28], we can write

m

T2+ fT5= Y [ m+a)]+ X H< S IDI+IS\Sul = IS| = .

i=1 jeD; FES\Sm i=

Therefore, all points that satisfy equations (2I)-(26) also satisfy a’z + 87§ < 4.
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Case 2b: |S\ S,,| <u—1and |S|>u. Let h:=min{i € [ : ]S\ S;| <u—1}. In this case,

7= u—1L{p,—p},

Ypi=0y — Lip,=0}, ie{l,....,h—1},
B = U—]I{Dh:(z)}—|5'\5h|, i=h,
|5’\Sl_1|—|5'\51| = |Dl|7 iE{h+1,...,m}.

Therefore,

h—1
alz+ 676 = Z 2 — Lip,—py( \5; )+Z { Z zi+ Lip, =0y (0 — dit1 )}

JED; B 9=l j€Din
>1 Zjesl 2j §2j55i+1\si Zj

+[ 3 zj+(u—|§\sh|)5h]+ i [ 3y zj+|Di|5z}+ T

€DK 1 j=h+1 jED;11 FES\Sm
h—1
< Z%‘—ﬂwl:@}(l—Z%‘HZ{ POEER TSNS Zj}
je€D1 JjESL i=1 j€D;y1 JESi+1\S:
SZJ'ESI 2j—Ll{p,=0} SZjES¢+1\S¢ i
[ Y mrw-B\shal+ S [ memia]+ Y 4
j€§h+1\sh j=h+1 j€D;t1 jES\Sm
< Y G+ =S\ Su)on+ > |Dildi — Lip,—g
jESUS,, i=h+1

< u—Iip,—py= 7

where the last inequality folows from the mixing inequality (35) with S’ = S U S, and p = h. O

3.4 Convex hull description of X"

In [I8], the authors study the convex hull description of the following set:

{(m,é)e{o,l}l‘”"’m:éi: H:Cj fori eI, :EEPM} (38)
JES:

where {S; }ier is a family of nested subsets of a given set J and Py, is the convex hull of incidence vectors
associated with independent sets U of the matroid M = (J,U) defined on the ground set J. Note that if
we let U be the set of all subsets of J with cardinality at most k for some k € Z,, the constraint x € Py

simply becomes Y. ;xz; < k. Consequently, using this matroid in (B8] leads to a set very similar to the

=
one we have been studying. More precisely, taking k = n — [ to define the independent sets and replacing x;
with (1 — 2;) for j € J, gives the set X'™. Note that due to the complementation of the z variables in (%)),

the upper bound on the sum of the x variables becomes a lower bound on the sum of the z variables.
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Using the particular matroid described above, we next translate the results from [I8] to our context. Re-

member that we use Sg = () and S,,+1 = J for convenience.

Theorem 11 (Fischer, Fischer and McCormick [18]). Inequalities (21))-(28) together with
Sz = (S'US 0D+ > (1S US| IS US, 1)) (39)
jES’ i=p+1

forallp € I and S’ C J that satisfy |S'US,_1| <n—1<|S"US,| give a complete description of conv(X"™).

Notice that similar to inequalities [BH), inequalities ([B9) above are also defined for subsets of J and both
(B5) and (39) have the term >, 2; as well as a telescopic sum involving the ¢ variables. We next show
that (39) can also be derived using the mixing procedure. Let S’ C J be fixed and let M > n be a given

constant. For any i € I, the following (base) inequality is valid for X%

Gtz ( Y 4 Y Zj)+|SiA\4S/'<1—6i>

jE€S’ jES'US; JESI\S’
= — Zj— Z ZJ)—F— Z (1_75]_51)
M jeJ FEI\(S'US;) M JE€Si\S’ >0
N—— =
> <|JI\(S'US;)|
1 1S'US;| —n+1
> _—(l—-(n-|5 i =
_M( (n—18"US)) +0 %

When |S’US,| > n—1+ 1, the right-hand side of the inequality is strictly between 0 and 1, and treating the

term 77 (> jes’ #j) as a nonnegative continuous variable and (1 — §;) as an integer variable, we can apply

the type I mixing procedure to the base inequalities for i = p,p+ 1,...,m to obtain
1 |S"USy —n+1 " 1STU S| — ]S U S| |S"U S| —n+1
Ly 80SI it ( Ja-s) > |
W e 2 ()i Ty

which can be rewritten as

1 |S"U Syl —n+1 (1S US| —[S"USi

— oo =Ppl P s S

M ZZJ M 6p Z ( M )61 > 0.
JjeSs’ i=p+1

Multiplying both sides by M and rearranging the terms gives inequality ([39). In Section ] we will discuss
the conditions under which these inequalities are facet-defining for X*™ and in Section 5 we will generalize

these inequalities to the case when the sets in S are not necessarily nested.

We next present our main result:

Theorem 12. Let S = {S;}icr be a family of nested sets and assume that u > 2 and | < n — |S|||. Then,
conv(Xb") is defined by

(i) inequalities (21))-(20),
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(i1) inequalities BH) for allp € I and S" C J such that |S"\ Sp| < u—1, and,
(i) inequalities (39) for all p € I and S" C J that satisfy |S" U Sp—1| <n—1<|S"US,|.

Moreover, given a point (z,8) ¢ conv(X"™), a (most) violated inequality can be found in polynomial time.

Proof. Combining Theorems[6], [0 and [t follows that conv(X%*) is given by inequalities (ZI)- (28] together
with inequalities ([B3]) and ([39).
For the second part of the proof, note that there are a polynomial number of inequalities of the form (21I)- (28]
and there are an exponential number of mixing inequalities as one can write one for each S’ C J and p € I.
However, for each S’ C J and fixed p € I we can rewrite inequality (35) as
m
S ozitus,+ Y S (56— + Y. (z-0)<u (40)
JES'NS, i=p+1;5€5'N(S;\Si—1) JES'\Sm

Given a fractional solution (2, ), let

Z;, for j € Sp,
T = 2?j-|—(§1'—(§p, forjESi\Sifl,i:p—|—1,...,m,
2j — by, for j € J\ Spm.

Then the left-hand side of (B3]) is maximized by
S, = argmax [%wj QNS <u-—1
j

which can be computed greedily by selecting j € J with the largest positive 7; values while satisfying the
cardinality constraint. Therefore, to separate from inequalities (33]), one only needs to check S” = Sy for all
p € I. Similarly, inequalities ([BY) can be rewritten as
= > 2+ (Sl =nADd+ D (1S\Si—1)di+ > S Gpdi—z)+ > (Gp—z) <0. (41)
S'NSy i=p+1 i=p+15€S'N(Si\Si—1) FJES'\Sm

Given a fraction solution (2, 5), we now define,

—Zj, for j € Sp,
05 = Ap—&—?}j, forjESi\Sifl,i:p—|—1,...,m, (42)
5y — 25, for j € J\ S

Then the left-hand side of [{Il) is maximized by
S = argglg{ %aj QUS, 1| <n—1<|QU S,,|},
J

which can again be computed greedily by ordering the indices j € J according to the o; values. Alternatively,

one can solve the LP

max{ZUj:Ej: Z zj <n—1—1Sp-1]s Z zj>n—1+1—|S,, 129020},
jed JEI\Sp_1 JEI\S,
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which has a totally unimodular constraint matrix. Consequently, one only needs to check S’ = Sy for all

p € I to separate from inequalities ([39). O

Remark 13. For the sake of completeness, we now consider the case when S is nested but uw > 2 or
I <n—|8y| does not hold. If u = 0, then Xbv and its convex hull contains a single point. If u = 1, then
0; =1— Zjesi z;j for all i € I. These equations, together with ZjeJ zi <1l,and1 > 2z; >0 forjeJ
give the convex hull description of X“*. For the case when | > n — |Si1)|, consider S" = {Si}icr:s;|<n—1- In
this case we have §; = 0 for all i with |S;| > n — 1, and the multilinear set associated with S" falls into the

discussion of Theorem 12

In [18], the authors show the separation of inequalities ([39) can be solved in polynomial time by solving a

submodular minimization problem.

4 Properties of facet-defining inequalities for the nested case

So far we have presented an inequality description of X% for the nested case using the description of
conv(X%%) developed in Section and the description of conv(X"") presented earlier in [I8]. Not all
inequalities in these exponential-size descriptions are facet-defining and in this section we present necessary

and sufficient conditions for inequality of the form ([BE) or (39) to be facet-defining.

Theorem 14. Let S be nested and let p € I and S" C J be such that |S"\ Sp| < w— 1. Then, without
loss of generality, the following conditions are necessary for the associated inequality (38) to define a facet

of conv(X1%):

Ul. S’ 2 S,
U2. 18"\ Sp—1| > uifp>2,
U3. 8" > u+1.

Proof. If condition Ullis not satisfied, then replacing S’ with S" U .S, in inequality ([B5) leads to a stronger
inequality as z; > 0 for all j € J. Similarly, if condition UZlis not satisfied, then replacing p with p — 1 in
inequality (30 leads to a stronger inequality as §, < dp_1.

If condition UBlis not satisfied, then |S’| < u and

>zt (u— 15\ S,l) 8+ 3 (15" \ Sial = 157\ 51l

jes’ i=p+1
= > G+ + >, PN CET R zj+(u—|S’|)5p
jeS'NS, i=p+1 jES'N(S:\Si_1) FES\Sm v

>0
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<198+ D 1SN (Si\ Sict)[ + 18"\ Sl + (w = [5') = u,
i=p+1

where the last inequality is implied by the fact that z; < 1 for all j € J and z; +6; < 1 for all j € S,
i € I. Therefore, if condition UBlis not satisfied, then inequality (B3] is implied by other valid inequalities.
As conv(X"*) is full-dimensional, we conclude that conditions UI}NUB| are necessary for inequality (B3] to

define a facet. O

Theorem 15. Let S be nested and let p € I and S’ C J be such that |S'\ Sp| < u—1. If p <m or
|Si| < n—1, then conditions Ul-U3 together with

U S"N(Sps1\Sp) #0 if p<m—1
are sufficient for inequality [33) to define a facet of conv(X'%).

Proof. (sketch) Assume that S” C J and p € I satisfy the conditions above. As S’ D S, D Si, we can assume

S" = {s1,52,53,54,...,55} where 51 =1, 55 = 2 and 2 < s3 < 54 < ... < 5|g|. We first show that the
inequality
Yz + (=18 \ )5, < u (43)
jes’

defines an (n + p — 1)-dimensional face of conv(X"*) N {(2,6) : 6; = 0,i € {p+ 1,...,m}}. Let Q =
{815/|=ut15 -+ -+ 5571} Then @Q satisfies |Q] = v > 2 and S"\ S, C @ € S"\ S, 1. Note that p < m
or |Sy,| < n — 1 implies that [J\ S,| > [+ 1. Let R be a set satisfying S’\ S, € R C J\ S, and
|R| = max{l 4+ 1,5\ Sp|} € [l + 1,u]. Define

R, fl+1<|S\S,|(Su—1),ie, R=5"\5p,
R\ {jo} for some fixed jo € R\ S', ifl+1>]5"\ S|, i.e., R\S" #0.

R =

Then R’ satisfies R’ D 5"\ S, and | < |R'| < u— 1. Let T be a set satisfying |[T| =u—1and T C 5"\ S,_;.
Consider points (using Definition B]) associated with the sets
Q (QU{IH\{j} forjeQ, (Q\{sjs-1,55}) U{L,j} forje S \Q\{1},
R, R\{j} forje R\ S, R U{j} forjeJ\R\S,,
@\ {s1s})U{2} ifp>2, TU{k} forie{2,...,p—1}.

Note that some of the index sets used for defining the sets above can be empty, in which case the associated
points are not considered. These (n + p) points are feasible and satisfy §; = 0 for i € {p+ 1,...,m} (as
(S"\'Sp) NSp11 # 0 by assumption U4), and lie on the hyperplane

>zt (w— |9\ Sy, = u.

JjES’
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In the rest of the proof (presented in Appendix), we first show that these points are affinely independent
and therefore inequality [@3)) defines an (n + p — 1)-dimensional face of conv(X“%) N {(2,8) : §; = 0,i €
{p+1,...,m}}. We then lift the coefficients of 6,11, ..., to conclude that inequality (3] is facet-defining.

O

Remark 16. For the case when p = m and |Sp| = n — 1, inequality (33) is facet-defining for conv(X'%) if
and only if 8" = J.

Results similar to Theorem [[4] and [I5] hold for valid inequalities (B9) of the polytope conv(X'™). In [1§],
the conditions that |S" U Sp—1] <n—1land n—1+1 < |S"US,| are implicitly imposed on the choice of p
based on the rank function associated with the matroid. We next present a stronger characterization of the

necessary conditions for these inequalities to be facet-defining.

Theorem 17. Let S be nested and let p € I and S" C J be such that |S"US,_1| <n—1<|S"US,|. Then

the following conditions are necessary for inequality (39) to define a facet of conv(X'"):

L1. 5'NS, =0;
L2 18| <n—1-1.

Proof. If condition 1] is not satisfied, then replacing S’ with S’ \ S, in inequality ([39) leads to a stronger
inequality as z; > 0 for all j € J. If condition 12l is not satisfied, then |S’| > n —[. By valid inequalities

m)v mv 610 <1and EjeJ Zj > 1,

(IS'USpl=n+Ddy+ Y (IS US| =1 USi-1)d = D 2

i=p+1 JeS’
= (|$1=(=0))5+ S\ S NG+ D (1S \ St \SNd = > 2
T i=p+1 jes’
< S[—(m=D+ Y, (A-z)+ Y Yooo-z) =Dz
jeSp\S’ i=p+1jeS;\S;i—1\S’ jes’
= [SUSu|—(n—-1)— Z Z;
JES'US

= Y HHISUS (-1 =) 3

FEIN(S'USm) jeJ
< |J\(S/U8m)|+|S/USm| _(n_l)_l

207

where the first inequality is implied by the fact that 6, < 1 and z; +9; < 1, for all j € S;, ¢ € I and the
second inequality is implied by the fact that jes#i =1,z < 1forall j € J. Therefore, if condition 12
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is not satisfied, then inequality (33) is implied by other valid inequalities. As conv(X"") is full-dimensional,

we conclude that conditions Il and I[2] are necessary for inequality ([B9) to define a facet. O

In [I8, Proposition 23], the authors describe three conditions for inequality ([B9) to be facet-defining for
conv(X"™). These conditions involve the rank function of the underlying matroid which, when translated to
our context, has rank function

r(S) = min{|S|,n — I}
for each subset S of the ground set J. More precisely, these conditions are
C1. Inequality > g z; < 7(5’) is facet-defining for the set conv{z € {0, IIE djesti Sn—1h
C2. Set S’ is closed [18, Definition 4] and non-separable [I8, Definition 22|, meaning
h. r(S") <r(S"U{j}) forall j e J\ Y,
C(Bb. 7(5") < r(5%) + r(S?) for all nonempty S C S’ and S® = S\ %
C3. For all ¢ € I, §; has a strictly positive coefficient in (B9, i.e.,

Bh.p=1, @b. |SUS | >n—1 and B. |[S'US;_1| <|S'US;| foralliec{2,...,m}.

Notice that conditions C2aland (020 cannot hold simultaneously unless S’ is equal to the set .J, or it contains
a single element, i.e., S = {j} for some j € J. Also note that condition (1] is satisfied in both cases, i.e.
when S” = J or |S’| = 1. However, remember that Theorem [I7] requires S’ C J and therefore S’ # J.
Therefore, the only remaining possible choices for S’ are S’ = {j} for some j € J. Finally, condition C(Bb
together with our starting assumption that |S,,| < n —1{ implies that m =p =1, |S1|=n—1land j € J\ 5.
In conclusion, we observe that conditions (JI}CJ] are satisfied only in the narrow case when the family S
defining conv(X"™) contains a single set S of cardinality n —[. In addition, the set S’ must have cardinality

one, containing a single element j € J \ S.

In the next theorem, we give significantly less restrictive conditions for inequality [B9) to be facet-defining

for conv(X4).

Theorem 18. Let S be nested and let p € I and S’ C J be such that |S" U Sp—1| < n—1<|S"US,|. If
p<m or |Spm| <n—1, then conditions V12 together with

L3. Spri\Sp S ifp<m-—1

are sufficient for inequality (39) to define a facet of conv(X'™).
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Proof. (sketch) Assume that S’ C J and p € I satisfy the conditions above. Then the assumption p < m or
|Sm| < n — 1 implies that [Sp| <n —1, and S’ # () as [S"U S,| > n — 1. Assume S' = {s1,...,5/5/|} with
51 < ...<8|g. We first show that the inequality

=Y 2+ (ISUSy —n+1)5, <0 (44)

jes’

defines an (n + p — 1)-dimensional face of conv(X"*) N {(z,8): 6; = 0,i € {p+1,...,m}}.
Let @ = Sp U {s1,82,...,5,1—|5,}- Then @ satisfies |Q| =n —1land S, CQ C S, US". Let R= (J\S"\
Sp)U{1,2,...,1+1—|J\ S\ Sp|}. Then R satisfies |R| =1+ 1 <wand (J\S'\S,)U{1,2} CRC J\S

s,
asn—1 < |S'US,|. Note that |[S"US,_1| <n—1I. Fori e {l,...,p—1}, welet T; denote the first [ elements

of J\ S\ S;.

Consider the points (using Definition B]) associated with the sets
R\ {j}forje R, R, (R\{1})U{j}forje S\ R, {Titicr..p-1},

(J\NQ\ {sis}) Ui}t for j € Q\ Sp, (J\NQ\{j}) U{s1} for j € S'\NQ\ {551}, J\Q.

These (n + p) points are feasible with §; = 0,7 € {p+1,...,m} (as (J\ 8"\ Sp) N Sp+1 # O by assumption
L3), and lie on the hyperplane
=Y 2+ (IS"US,| —n+1)d, = 0.

jes’
In the rest of the proof (presented in Appendix), we first show that these points are affinely independent
and therefore inequality (@) defines an (n + p — 1)-dimensional face of conv(X“%) N {(2,8) : §; = 0,i €
{p+1,...,m}}. We then lift the coefficients of dpy1,...,dn to conclude that inequality (B9) is facet-
defining. O

Remark 19. For the case when p =m and |S,,| = n — 1, inequality (39) is facet-defining for conv(X5%) if
and only if S = {j} for some j € J\ Sp,.

5 Valid inequalities when S is not nested

In Section 3] we described inequalities ([B3]) and ([BY) and showed that together with the standard linearization
and 2-link inequalities they define conv(X%*) and conv(X!™), respectively. In this section, we extend these

inequalities to the general case when the sets in & are not necessarily nested.

Notice that since we derived inequalities (B35 using the mixing procedure, they are still valid for conv(X%%)

in the general case, provided that

u—12 [\ Sy 2 [S"\ Spya] = ... 2[5\ S (45)
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hold. We next generalize inequalities (B8] to the case when ([@H) is not satisfied.

Proposition 20. Assume that sets Sjij,Sp),...,5y € S are distinct and let o;) denote the § wvariable
associated with Sy). For 8" C J, the following inequality is valid for conv(X Ly

>z (u— 15"\ Sl o + i (EGE L_Jl Sp)o < (46)
=2 k=1

JeS’

provided that max;—o . ¢ |S"\ (Sj) N Spy)| < w.

Proof. As the indices of the sets in S are arbitrary, we assume that Sj;; = S; for i =1,...,¢, without loss of
generality. First note that the following inequality
ZZj+(u—|SI\S1|)51 S’UJ (47)
jes’
is valid for conv(X'*) as it is implied by Yjesr 7% Suwhen dp =0and Y, g 2 <[S"\ Si| when 61 =1
(and therefore z; = 0 for all j € S1). We will derive inequality [@G) by sequential lifting, starting with
inequality ([@T) and showing that if [@6]) with ¢ replaced by #' is valid for X% for ¢’ € {1,2,...,¢t — 1}, then

sz+(u—|8’\51|)51+i<

JjES’

S’ﬁSi\USkD5iSu—’S’ﬁSturl\OSk’ (48)
k=1 k=1

holds for all (z,8) € X"* with §;41 = 1. This would imply that ([@6) with ¢ replaced by #' + 1 is also valid.
Fix ¢ € {1,...,t — 1} and note that for all (z,d) € X"* with 6,41 = 1, we have z; = 0 for j € Sy41.

Therefore, given any arbitrary (z,6) € X" with 61 = 1, we have

Som + @I\ S+ 3 (

JeS’

S'N8\ U Si| )0
k=1

= > oz o+ > z + S (z+d) + (u—1[8"\ (81N Skg1)])dn

. ’ . ’ ] 4
JES'NS, 14 JESNULZ! Sk) JES'NSINS 41 >0 by assumption

t

+ [ > (2 +8) + (
=2 es'nS\(ULZ) Sk)\Si i1

’

'8N Sy \ Lj Si|) o]
k=1

t'+1
SAU S|+ u-ls\ s+ 3
k=1

=2

IN

i—1
s'n8:\ U Skl
k=1

’

= u— [ NS\ U Si.
k=1

t'+1 t’
S s+ u=lsUs:
k=1 i=1

O

We note that inequality ([46) reduces to ([B5) when S is nested by taking ¢ = m — p+1 and Sp; = Spq-1 for
i=1,...,t.
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Similarly, as we have shown that inequalities ([89) can also be derived via mixing, they are valid in the general
case as long asn — 1+ 1 <|S"U S| <[5'U Spi1] < ... <[5"U S| We next extend ([B9) to a more general

case.

Proposition 21. Assume that sets Sy, Sg),-.., 5 € S are distinct and let d; denote the & variable
associated with Sy). For S' C J, the following inequality is valid for conv(X L)

=3+ (IS USw - n+ o + Zt:(}sm\(iul S\ S'|)ow < 0, (49)
=2 k=1

JjES’

provided that min;_o

¢ |S"U (S[l] ﬁS[i]” >n—I.

Proof. Without loss of generality, we assume that Sj; = S; fori = 1,...,1. Note that the following inequality
=Y G+ (S US—n+1)5 <0 (50)
jes’
is valid for conv(X"*) as it is implied by z; > 0 for all j € S; when 6; = 0 and |S" U S;| — djesi 7 =
> jesus, (1 —2;) < n—1 when §; = 1 (and therefore z; = 0 for all j € S1). We will derive (&9) by
sequential lifting, starting with inequality (50) and showing that if ([@9) with ¢ replaced by #' is valid for X"
fort' € {1,2,...,t — 1}, then

’

=Y+ (1SS —n+)a + Z(Si\(i_UlSk)\S’Déi < —‘st,+1\(05k)\s’
] k=1 k=1

t
jes i=2 -

(51)

holds for all (z,6) € X'* with 641 = 1. This would imply that @) with ¢ replaced by ¢’ + 1 is also valid.
Fix ¢ € {1,...,t — 1} and note that for all (z,d) € X"* with d;41 = 1, we have z; = 0 for j € Sp41.

Therefore, given any arbitrary (z,0) € X“% with 6,1 = 1, we have

t’ i—1
=Y st (susi-n+ )+ 3 (s (U s s))s
jeSs’ 1=2 k=1
I [(|S’ U (810 Spi1)| — n—|—l)51 F(1S1\ 8\ St,+1|)51}
‘jESt1+1\S’ jES/USH+1 >0 by assumption
=0

’

Sl )i

<- > Zj+|:(|S/U(Sl ﬁSt/+1)|_”+l)+ > (1_Zj)}

JES'US, 4y JESINS'\ S 41

’ ESD S|

2|
’ FESAUIZY Sk\S\Syr 44

-

i—1 i—1
SinSe \ (L Se)\ S S\ (U S\ S\ Sea )6
k=1 k=1

||
¥

o

i—1
SN S\ (1 Se) \
k=1

I|
)

3

-z

JESTUUL S)

—n+l

t/
+|5'u(lJ s
i=1
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’

t
== z+ > zj+’S’U(USi)—n+l
7€ JEINS VUL 8] =
t'+1 t’
<—t+[n= U saf] +[sruUs)|-n+t
=1 i=1

Se+\ (|J Sk)\ 8"
k=1
O

Inequality (49) reduces to ([39) when S is nested by taking t =m —p+1 and S = Spyi—1 fori=1,... ¢t

6 Conclusions

In this paper, we study the convex hull of the multilinear set with (two-sided) cardinality constraints and
give a polyhedral characterization of it when the sets involved have a nested structure. We first show that
the convex hull can be obtained by intersecting the convex hulls of two simpler sets, each with one sided
cardinality constraints. Convex hull of one of these sets (conv(X"™)) has already been characterized earlier in
[18]. The description of the second set (conv(X%*)) is new. The two descriptions bear some resemblance due
to the fact that the inequalities involved can be derived using the mixing procedure starting with different
base inequalities. To the best of our knowledge, the similarity between the inequality descriptions of the
two sets does not imply that one of the sets can be used (via a complementation) to obtain the other. The

authors of [18] also agree with this assessment.

For the general (non-nested) case, we are able to derive a family of valid inequalities that generalize the
inequalities for the nested case. Derivation of these inequalities do not involve the mixing procedure. These
inequalities do not necessarily yield the convex hull as the polyhedral structure of the general case seems to
be significantly more complicated even when only two non-nested sets are involved [3].

See also [19], where Fischer, Fischer and McCormick extend their earlier work on matroids by considering
multilinear terms defined by all subsets of a fixed subset of the ground set instead of nested sets. Note that
all subsets of a set form a proper family by Proposition @ provided that Ab* = A%"_ which is one of the

assumptions in [19].
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Appendix

In this section we present the full proofs of Lemma [1l and Theorems [I5] and I8

Proof of Lemma [7]

Proof. Given z € {0,1}" satisfying I < .., 2; < u, there exists a unique & such that (z,d) € Xhv.

jeJ

Therefore, given any U C J with [ < |U| < u, we can define the corresponding point v¥ as follows:

1, ifjeU,
oV = (2Y,6Y) € X' where zJU = J and &Y = H (1- zJU)
0, otherwise, jES;s
For j =1,...,n, let ¢/ € R” denote the j-th unit vector in R™. In addition, let 0,, € R™ denote the vector
of all zeros, and for i = 1,...,m, let d° € R™ denote the vector whose first ¢ components are one and the

rest are zero. We now consider 2 cases:

Case 1: Assume [ = 0. In this case, we will argue that the following m + n + 1 points in conv(X%%) are
affinely independent:

plhit1y = | € ‘ foriel, vt = ‘ i) = | € e for j € J\ {1}.
Om dl Om Om

e
o2 —

Clearly these points are in X% and together they form the following matrix V € R(7m+n)x(m4nt1).

]]_T
e? K n
V= Om—1) | L) (52)

where 1, € R* is a vector/matrix of all ones, 0, € R* is a vector of all zeros, and, O, and L, respectively,
denote the matrix of all zeros and the identity matrix of the specified dimension. The i-th column of the
matrix K € R"*™ is equal to e®*!, and i-th column of D € R™*™ is d’. Note that ID is an upper triangular

matrix with all ones on and above the diagonal.

To show that the columns of V' are affinely independent, we need to argue that the unique solution to the

system of equations:
m—+n—+1

V=0, > =0 (53)
t=1

is A = 0. Note that the first row of KK is all zeros and therefore the first row of V has m + 1 consecutive

m+n—+1

zeros followed by n ones. Therefore, the first row of VA = 0 implies that » ;"""

m+1 o
m = 0.

At = 0 and consequently

As D is an upper triangular matrix of ones, the last m rows of VA = 0 imply that

m+1 m—+1 m+1
0=> A=> M=..= > X=0
t=2 t=3 t=m+1
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and therefore \; =0 for t = 2,...,m + 1. Moreover, Z?:l At = 0, implies that Ay = 0 as well.

As the first m + 1 components of A have to be zero, the first n rows of VA = 0 now imply that

m—+n—+1
Z AM=0, and X\ =0 fort=m+3,...,m+n+1.

t=m-+2

Using the first equation, we have A,,42 = 0 as well and the columns of V' are indeed affinely independent.

Case 2: Assume [ > 1. In this case, welet Q@ = {n—1+1,...,n} C J\ Sy, where |Q] = . We now consider

the following m + n + 1 points in conv(X"%):
BUQ kAR for j e 1 IR ILAVMRY for e g\ {13\ Q, oIPVRMIY for j e Q.

These points form the matrix

_ 15 )
. O(p—i— Loy O¢pi—
i e + ZieQ el K’ (n—1-1) (n—1-1) (n—1—1)x1
- Ta—1)x(n-i-1 ,
L ( T)X( ) L -1
0(n7171)
L Om D @mxn ]

where K’ is a matrix with all entries of its first row being zero and D is the upper triangular matrix described
in (B2).

As in Case 1, we first observe that the first row of V! has m 4 1 consecutive zeros followed by n ones and
argue that Z;:;?:Ql A+ =0 and Z?:l A¢ = 0. In addition, as the last m rows of V! are the same as V, we
also conclude that the first m + 1 components of of A have to be zero.

Finally, note that the n by n matrix on the upper right corner of V! is nonsingular as adding rows 2 to n — [

of this matrix to the last (n-th) row and then subtracting its first row from each one of the last [ rows leads

to the upper triangular matrix:

]]_T

On—i-1) Ineimy | Opi—1yx
0; O (n-1) —I

Therefore, we conclude that conv(X"") is full-dimensional. (]

Proof of Theorem

Proof. Assume that S” C J and p € I satisfy the conditions above. As S’ D S, D Si, we can assume

S" = {s1,52,53,54,...,55} where 51 =1, 55 = 2 and 2 < s3 < 54 < ... < 5)g|. We first show that the
inequality
Yz + (=18 \ )5, < u (54)
jes’
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defines an (n + p — 1)-dimensional face of conv(X"") N {(2,6) : & = 0,i € {p+ 1,...,m}}. Let Q =
{8|5/|—ut15 -+ -+ 5571} Then @Q satisfies |Q] = v > 2 and S"\ S, C @ € S"\ S, 1. Note that p < m
or |[Sm| < n — [ implies that |J \ Sp| > [+ 1. Let R be a set satisfying S"\ S, € R C J\ S, and
|R| = max{l 4+ 1,5\ Sp|} € [l + 1,u]. Define

R, 141 <[\ S,[(Su—1),ie, R= S5\ Sy
R\ {jo} for some fixed jo € R\ S’, ifl+1>|S"\ Sy, ie, R\ S #0.

R =

Then R’ satisfies R’ D S\ S, and | < |R'| < u— 1. Let T be a set satisfying |[T| =u—1and T C 5"\ S,_;.

Consider points (using Definition B]) associated with the sets

Q, (QU{IH\{j} forjeQ, (Q\{sis-1,55}) U{L,j} forje S \Q\{1}, (55)
R, R\{j} forje R\ S, R U{j} forjeJ\R\S,, (56)
(Q@\{sjsp)U{2} ifp>2, TU{k} forie{2,...,p—1} (57)

Note that some of the index sets used for defining the sets in (57)) can be empty, in which case the associated
points are not considered but sets in (&1 would always contribute p — 1 points in total. These (n+ p) points
are feasible and satisfy 6; = 0 for i € {p+1,...,m} (as (S’ \ Sp) N Spy1 # 0 by assumption U4), and lie on
the hyperplane . ¢ 2; + (u — [S"\ Sp|)d, = u associated with inequality (B4).

We next reorder the ({z;}jes,01,...,dp) coordinates of the points (see Figure[I)) in the ordering

({25 }tjes,\@: 125 }ieq: {7t ier@: {75 ie\(5,uQUR)s 015 - - -+ Op),
and consider the matrix V formed by these reordered coordinates of the (column) points.

S/

{
1

Figure 1: Reordered z; coordinates in the proof of Theorem [I7]

We would now argue that the unique solution to the system of equations

n+p
VA=0, Y A=0 (58)

t=1

is A = 0. We separately consider two cases, namely p > 2 and p = 1.
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First consider the case when p > 2. If this case, |S’| > u + |Sp—1| > u + 2. Therefore, {1,2} N Q = 0. We

look at the matrix V], formed by the last p rows of V' corresponding to the {d;}?_; coordinates:

Vo= | @ | Opgsiiony | Lpwtnriciony | O [t | o[ @22 ]

where d’ is defined in the proof of Lemma[fl Equations V,A =0 imply A\; = 0 and A\p43 = ... = A\pyp = 0.

Sets in (B5) Sets in (B0) Sets in (B1)

v, §irie{l,2,...,p}

Figure 2: Matrix V in the proof of Theorem

Therefore, (B8] reduces to equations
n+2

VA=0, Y M=0 (59)
t=2
where V is a matrix formed by columns 2 to n 4+ 2 of V and A = (\a,..., \ny2)”. Note that matrix V is of
the form
i 05, 1x(n+1-157)) ]
1%, 0
O¢s,\@l-1)xQ Lisnqi-1) Lisns,|x|R\s'| 1
1 I L(1g|-2)x(1s"\Q|-1) Ligy * 0js7\q|—2
QIxlQl — L Lir\s'|x|R\s5"|— -
O2x(151\ql-1) Lig|-1
Lir\s| —
O@n—1s7)x(1s1-1) P ; Ont1-157|
|J\R\S, | x (|[R\S'|+1) |\R\S, |
i Opx(1571-1) Ly (n+1-|8")) 0,

By looking at the first and the last row of VA = 0 and Z?:Jr; A = 0, we have A\, 12 = 0. It is then easy to

verify that VX = 0 and A\,42 = 0 imply AQlez = - =Ngy =0and A\ 7\R\S, |42 = --- = Ant1 = 0 by
looking at the {z;};csnq\{1} and {Zj}jeJ\R\Sp coordinates, respectively. The remaining columns of V are

of the form:

Oys,1x(IR\S"|+1)

T
Lig|

Lisns,|x|R\s'|

Ogs,\@i-1xQ

Lig | Lig\six|r\s/|—

Ligixjo — Lig| I
|R\S'|
O@m—1s7pxia P
|\R\S, | x (|R\S'|+1)
Opxia L (1R\S"|+1)
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By looking at the z1,{z;};equr, 0p coordinates:

T T
Lol Olr\s7[+1
O1gns,|x(IR\S'|+1)
Ligixjo — Lig|
LirnQIx(|R\S'|+1) ,
Oir\s'/x|q Lips| | Lirsxirs| — Lr\s|
va T
L OIQI ]1|R\S/|+l n

we can finally conclude that the unique solution of (59) is A = 0 as these columns are linearly independent.

When p = 1, sets defined in (57)) would disappear and the matrix V is of the form:

1) 05, |x (n+1-]5"))
o I Lisns,|x|rR\s|
(1S,\QI-1)x(IQ|+1) (15\Q|-1) L
IRl | Lir\s/|x|R\S'|— *
L(qQ|-2)x(1s\Q|-1)
Ligl | Ligixje — Lig| P Iip\s|
2% (1S\Q|—1)
O R\, x (| R\S"|+1) Ij\r\s,|
O@n—|s)x|s']
T T
L OIS’\ ]ln+1—|S’| |

We get a matrix of the structure similar to the submatrix of V' formed from its first n+ 1 rows and first n+1
columns. We can verify that in this case the columns of V' are affinely independent based on the discussion

for the p > 2 case.

Therefore, the given points are affinely independent and inequality (54]) defines an (n + p — 1)-dimensional
face of conv(X5*)N{(2,0):6; =0,i € {p+1,...,m}}.

We finish the proof by lifting the coefficients of §p41, ..., 0. By validity of (BH), the following inequalities

are valid:

’

IS\ S| = 8"\ S| < u— maX{ > 2+ =9\ SDop+ D> (19 \ Sia| =[S\ Si])d :

jes i=p+1

(2,6) € XB% 5,041 :1,5i:O,i>m/+1}, m =p,...,m—1.

And the above inequalities hold at equality for the points of (S’ \ Sp/41) U Qs for m’ = p,...,m — 1,
respectively. Here Qv = J\ '\ Sprg1 if |J \ Spvt1| < u. Otherwise, we construct Q,,y C J\ S"\ Spr41
(see FigureB]) such that

1. 1Qm/| = min{u — [S"\ Spgal,[J \ S\ Smr41]}, (this implies |(S” \ Simy1) U Q| > 1 as either
(5" \ S 1) U Qur | = w, 01 [(S"\ Syrg1) U Qe | = [T\ S| 2 |\ S| 2 1),

2. ((SI \ Sm/+1) @] Qm’) n Sm/+2 #* Bif m' <m-—1.
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g T\NS\ Sw

(Sl \ Sm”rl) U Qm’
Figure 3: Construction of @,/ in the proof of Theorem [T5]

In total, we find (n + m) affinely independent points lying on the hyperplane
Szt (= 18NS0+ D (19 Sical = 1S\ Sil) s = w.
jes’ i=p+1

Therefore, inequality (B8] is facet-defining. O

Proof of Theorem [1§

Proof. Assume that S’ C J and p € I satisfy the conditions above. Then the assumption p < m or
|Sm| < n — [ implies that |S,| < n —1, and " # 0 as |[S" US| > n —[. Assume S" = {s1,...,5/5} with
51 < ...<8|g. We first show that the inequality

=Yz +(ISUSy —n+1)5, <0 (60)

jes’

defines an (n + p — 1)-dimensional face of conv(X"*) N {(z,8): 6; = 0,i € {p+1,...,m}}.
Let @ = S, U{s1,52,...,8,_1_|5,|}- Then @ satisfies |[Q = n—1land S, C Q C S, US". Let R =
(J\S'\Sp)U{1,2,...,1+1—|J\S'\Sp|}. Then R satisfies |R| = [+1 < wand (J\S'\S,)U{1,2} CRC J\S’
asn —1 < |S"US,|. Note that |S"US,_1| <n—1. Forie€ {1,...,p— 1}, we can let T; denote the first

elements of J\ S’ \ S;. Consider the points (using Definition B]) associated with the sets

R\{j}forje R, R, (R\{1})U{j}forje S,\R, (61)
(J\Q\{s;s ) Ui} for j € Q\ Sp, (JNQ\{j}) U{si}forj e S'\NQ\{ss}, J\Q,  (62)
T; forie{l,...,p—1}. (63)

These (n + p) points are feasible with §; = 0,7 € {p+1,...,m} (as (J\ S\ Sp) N Sp4+1 # 0 by assumption
L3), and lie on the hyperplane — 3>, o z; + (| U Sp| — n +1)d, = 0.
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Figure 4: Reordered z; coordinates in the proof of Theorem [I§

We reorder the ({z;}jes,01,...,dp) coordinates of the points (see Figure d) in the ordering

({z5}ies,  {zitjens,usy, {zi}ies, 01, .o, 0p),
and consider the matrix V formed by these reordered coordinates of the (column) points.

Sets in (61)) Sets in (62)  Sets in (63)

‘:/ i i ZjIjGJ\S/

s

v, §irie{l,2,...,p}

Figure 5: Matrix V in the proof of Theorem [I8]

We will argue that the unique solution to the system of equations

n+p
VA=0, » =0 (64)

t=1

is A = 0. First consider matrix V,, formed by the last p rows of V corresponding to the {d;}}_; coordinates:

Vo= Oy | Tpsgs | @] | @t ]

where d’ is defined in the proof of Lemma [l Equations VA = 0 imply Apj2 = ... = Aygp = 0 and
NS/ |+2 F - -+ Anp1 = 0. Therefore, (64) reduces to equations

B n+1
VA=0, Y M=0
t=1
where V is the matrix formed by the first n + 1 columns of V and A = (Aq,..., A\pt1)”. Then we write down
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the matrix V5 formed by rows |J\ S| + 1 to |J| of V:

Lisnql-1

Lisng o URTere]
g (19'NQI—1) x (|S\QI-1)
V= = Opsrix(as+1)

Lisnoi-nxisngl | Lgsnel-vx(snel-1) — Lisnel-1) 1

pe e 1S"\Q

0 1

15'nQ) 1S1\Ql—1

By looking at {z;}jcsn@ and {z;}jes/ng coordinates, equations V5'X =0 and ANAs 42+ - FAg1 =0
imply that )‘n+2—\5’\Q\ =...=M+1 =0and )\|J\S/H_2 =...= /\n+l—|S’\Q\ = 0. Therefore, ([64]) further

reduces to equations
[J\S"|+1

VA=0, > M=0
t=1

where V is the submatrix of V formed from its first |J \ | rows and first |J \ §’| + 1 columns and A =

(Ats-- - Ans+1) . The matrix V is of the form:

_ . -
Lirns,|x|rns,| — Lirns,| L1 RS, x| 7\S"\S, | LiRns,| Sl
L(RnS,|-1)x|S,\R|
O15,\RIx |RNS,| Oy5,\RIx |1\ 5, | O5,\R] Lis,\r]
Lj\s1\8, x| RS, | Linsns,x|ns\s,| = Lnsns,) | Lnsns,) | Lsi\s,ix|s,\R]
Rows of V with index j € J\S"\ S, together with S0\ 1+ X, = 0 imply A grg, 11 = - - = Ajg) = 0. Rows of
V with index j € S, \ Rimply Agj42 = ... = A\jn\s/|+1 = 0. The rest of rows together with ZLJZ\ls,lﬂ At =0
imply A1 = ... = A|gns,] = 0 and A|gj;1 = 0. Therefore, the given points are affinely independent and

inequality (60) defines an (n + p — 1)-dimensional face of conv(X"*) N {(z,0): 6; = 0,i € {p+1,...,m}}.
We finish the proof by lifting the coefficients of dp41,...,0n,. Define S,,11 = J and 0,11 = 0. By the
validity of (39), for each m’ € {p,p+1,...,m — 1}

’

15U Sa] = 15U S| < —max { = 37 2+ (15" US| = ntD)dp + 3 (18" USi| =[S U i)
jES’ i=p+1

(2,0) € X" 01 = 1,8, =0,i > m' + 1}-

Actually the above inequality holds at equality by taking (z, ) as the points of (J\ S\ Spr41) U Ly for
m’ =p,...,m — 1, respectively. Here L,,, C S’ \ Syr41 can be constructed by starting with an element in
Stz if (J\ S\ Sp41) NS y2 = 0 and then augmenting it to have cardinality |S’ U Sy 41| — (n—=1) (> 1).
Set Ly C 5"\ Spry1 (see Figure [6]) satisfies

Lo Ly | = |S" U Spvga| = (n = 1) = L= [T\ S\ Spvgal;
2. ((J \ S’ \ Sm/+1) @] Lm/) n Sm/+2 #* Bifm' <m-—1.
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S’ J\S/\Sm’-l-l

| ( e Wl
— |
Sm’Jrl : Lm’ :

(‘] \ S’ \ Sm’+1) U Lm’
Figure 6: Construction of L,,  in the proof of Theorem [I8]

In total, we find (n + m) affinely independent points lying on the hyperplane

=N G+ (S US —n+Da+ > (1S US| =[S USi])s =0.

jeSs’ i=p+1

Therefore, inequality [B9) is facet-defining.
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