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Abstract

The aim of this paper is twofold. We first provide a new orientation theorem which gives a
natural and simple proof of a result of Gao, Yang [11] on matroid-reachability-based packing of
mixed arborescences in mixed graphs by reducing it to the corresponding theorem of Cs. Király [17]
on directed graphs. Moreover, we extend another result of Gao, Yang [12] by providing a new theorem
on mixed hypergraphs having a packing of mixed hyperarborescences such that their number is at
least ℓ and at most ℓ′, each vertex belongs to exactly k of them, and each vertex v is the root of least
f(v) and at most g(v) of them.
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1 Introduction

This paper is not a survey on packing arborescences. Such a survey is in preparation, see [21]. We only
present here those theorems of the topic that are closely related to the new results of this paper. A
preliminary version of the paper appeared in [20].

Edmonds [5] characterized digraphs having a packing of spanning arborescences with fixed roots.
Frank [7] extended it for a packing of spanning arborescences whose roots are not fixed. The result of
Frank [7], and independently Cai [3], answers the question when a digraph has an (f, g)-bounded packing
of spanning arborescences, that is when each vertex v can be the root of at least f(v) and at most g(v)
arborescences in the packing. Bérczi, Frank [2] extends it for an (f, g)-bounded k-regular (ℓ, ℓ′)-limited
packing of not necessarily spanning arborescences, where k-regular means that each vertex belongs to
exactly k arborescences in the packing and (ℓ, ℓ′)-limited means that the number of arborescences in
the packing is at least ℓ and at most ℓ′. Kamiyama, Katoh, Takizawa [16] provided a different type of
generalization of Edmonds’ theorem in which they wanted to pack reachability arborescences in a digraph,
that is each arborescence in the packing must contain all the vertices that can be reached from its root in
the digraph. Durand de Gevigney, Nguyen, Szigeti [4] gave a generalization of Edmonds’ theorem where
a matroid constraint was added for the packing. More precisely, given a matroid M on a multiset of
vertices of a digraph D, we wanted to have a matroid-based packing of arborescences, that is for every
vertex v of D, the set of roots of the arborescences in the packing containing v must form a basis of M.
In [17] Cs. Király proposed a common generalization of the previous two results. He characterized pairs
(D,M) of a digraph and a matroid that have a matroid-reachability-based packing of arborescences, that
is for every vertex v of D, the set of roots of the arborescences in the packing containing v must form a
basis of the subset of the elements of M from which v is reachable in D.

All of these results hold for dypergraphs, see [10], [14], [21], [1], [6], and for mixed graphs, see [7],
[11], [21], [19], [6], [12]. In fact, all of these results, except the one of Bérczi, Frank [2], are known to
hold for mixed hypergraphs, see [6], [14], [15]. The present paper will fill in this gap by showing that this
result also holds for mixed hypergraphs. More precisely, we will characterize mixed hypergraphs having
an (f, g)-bounded k-regular (ℓ, ℓ′)-limited packing of mixed hyperarborescences. Our theorem naturally
generalizes a result of Gao, Yang [12] on (f, g)-bounded packing of k spanning mixed arborescences and
will follow from the theory of generalized polymatroids. The other aim of this paper is to provide a new
proof of another result of Gao, Yang [11] on matroid-reachability-based packing of mixed arborescences.
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Our approach is to reduce the result to the result of Cs. Király [17] on matroid-reachability-based packing
of arborescences via a new orientation theorem.

The organization of the paper is as follows. In Section 3 we consider problems related to matroid-
reachability-based packings of mixed arborescences. In Section 4 we consider problems related to (f, g)-
bounded k-regular (ℓ, ℓ′)-limited packings of mixed hyperarborescences.

2 Definitions

A multiset of V may contain multiple occurrences of elements. For a multiset S of V and a subset X of
V , SX denotes the multiset consisting of the elements of X with the same multiplicities as in S and X

denotes V −X. A set of disjoint subsets of V is called a subpartition of V. For a subpartition P of V , ∪P

denotes the set of elements that belong to some member of P . A subpartition P of V is a partition of V
if ∪P = V. For a function h on V and a subset X of V, h(X) =

∑

v∈X h(v).
A set function p (b) on S is called supermodular (submodular) if (1) ((2), respectively) holds. The in-

degree function of a digraph and the rank function of a matroid are well-known examples of submodular
set functions. If p satisfies the supermodular inequality for all intersecting sets for then p is called
intersecting supermodular.

p(X) + p(Y ) ≤ p(X ∩ Y ) + p(X ∪ Y ) for all X,Y ⊆ S, (1)

b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y ) for all X,Y ⊆ S. (2)

Let D = (V,A) be a directed graph, shortly digraph. For a subset X of V, the set of arcs in A entering

X is denoted by ρA(X) and the in-degree of X is d−

A(X) = |ρA(X)|. For a subset X of V, we denote by
PX

D (QX
D) the set of vertices from (to) which there exists a path to (from, respectively) at least one vertex

of X . We say that D is an arborescence with root s, shortly s-arborescence, if s ∈ V and there exists a
unique path from s to v for every v ∈ V ; or equivalently, if D contains no circuit and every vertex in V −s
has in-degree 1. We say that D is a branching with root set S if S ⊆ V and there exists a unique path from
S to v for every v ∈ V. A subgraph of D is called spanning if its vertex set is V. A subgraph of D is called
a reachability s-arborescence if it is an s-arborescence and its vertex set is Qs

D. By a packing of subgraphs
in D, we mean a set of subgraphs that are arc-disjoint. A packing of subgraphs is called k-regular if
every vertex belongs to exactly k subgraphs in the packing. For two functions f, g : V → Z+, a packing
of arborescences is called (f, g)-bounded if the number of v-arborescences in the packing is at least f(v)
and at most g(v) for every v ∈ V . For ℓ, ℓ′ ∈ Z+, a packing of arborescences is called (ℓ, ℓ′)-limited if the
number of arborescences in the packing is at least ℓ and at most ℓ′. For a multiset S of V and a matroid
M on S, a packing of arborescences in D is called matroid-based (resp. matroid-reachability-based) if every
s ∈ S is the root of at most one arborescence in the packing and for every v ∈ V , the multiset of roots
of arborescences containing v in the packing forms a basis of S (SPv

D
, respectively) in M.

Let F = (V,E ∪ A) be a mixed graph, where E is a set of edges and A is a set of arcs. A mixed
subgraph F ′ of F is a mixed path if the edges in F ′ can be oriented in such a way that we obtain a
directed path. For a subset X of V, we denote by PX

F (QX
F ) the set of vertices from (to) which there

exists a mixed path to (from, respectively) at least one vertex of X . We say that F is strongly connected
if there exists a mixed path from s to t for all (s, t) ∈ V 2. The maximal strongly connected subgraphs of
F are called the strongly connected components of F . A mixed s-arborescence is a mixed graph that has
an orientation that is an s-arborescence. A mixed subgraph of F is called a spanning (reachability) mixed
s-arborescence if it is a mixed s-arborescence and its vertex set is V (Qs

F , respectively). By a packing of
subgraphs in F , we mean a set of subgraphs that are edge- and arc-disjoint. All the packing problems
considered in digraphs can also be considered in mixed graphs.

Let D = (V,A) be a directed hypergraph, shortly dypergraph, where A is the set of dyperedges of
D. A dyperedge e is an ordered pair (Z, z), where z ∈ V is the head and ∅ 6= Z ⊆ V − z is the set of
tails of e. For X ⊆ V, a dyperedge (Z, z) enters X if z ∈ X and Z ∩ X 6= ∅. The set of dyperedges

in A entering X is denoted by ρA(X) and the in-degree of X is d
−

A(X) = |ρA(X)|. By trimming a
dyperedge (Z, z), we mean the operation that replaces (Z, z) by an arc yz where y ∈ Z. We say that D is
a hyperarborescence with root s, shortly s-hyperarborescence, if D can be trimmed to an s-arborescence.
We mention that we delete vertices that became isolated vertices during the trimming, that is the vertex
set of the arborescence is not necessarily the vertex set of D. We say that D is a hyperbranching with root
set S if D can be trimmed to a branching with root set S (the resulting isolated vertices in V − S are
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deleted). If S = {s} then a hyperbranching with root set S is an s-hyperarborescence. A hyperbranching
(V,A′) with root set S is called spanning in D if A′ ⊆ A and |A′| = |V |−|S|. A packing of subdypergraphs
in D is a set of subdypergraphs that are dyperedge-disjoint. We say that D has a matroid-based/(f, g)-
bounded/k-regular/(ℓ, ℓ′)-limited packing of hyperarborescences if D can be trimmed to a digraph (V,A)
that has a matroid-based/(f, g)-bounded/k-regular/(ℓ, ℓ′)-limited packing of arborescences.

Let F = (V, E ∪ A) be a mixed hypergraph, where E is the set of hyperedges and A is the set of
dyperedges of F . A hyperedge is a subset of V of size at least two. A hyperedge X enters a subset Y of V
if X ∩ Y 6= ∅ 6= X ∩ Y. By orienting a hyperedge X, we mean the operation that replaces the hyperedge
X by a dyperedge (X − x, x) for some x ∈ X . For ~Z ⊆ A, Z denotes the set of underlying hyperedges of
~Z. For Z ⊆ E and X ⊆ V , we denote by V (Z) the set of vertices that belong to at least one hyperedge
in Z and by Z(X) the set of hyperedges in Z that are contained in X. A mixed s-hyperarborescence is a
mixed hypergraph that has an orientation that is an s-hyperarborescence. A mixed s-hyperarborescence
B = (V, E ′ ∪ A′) is called spanning in F if E ′ ⊆ E , A′ ⊆ A, and |E ′| + |A′| = |V | − 1. For a family P of
subsets of V , we denote by eE∪A(P) the number of hyperedges in E and dyperedges in A that enter some
member of P . For X ⊆ V , we use eE∪A(X) for eE∪A({X}). A packing of mixed subhypergraphs in F is
a set of mixed subhypergraphs that are hyperedge- and dyperedge-disjoint. We say that F has an (f, g)-

bounded/k-regular/(ℓ, ℓ′)-limited packing of mixed hyperarborescences if E has an orientation ~E such that

the dypergraph (V, ~E ∪A) has an (f, g)-bounded/k-regular/(ℓ, ℓ′)-limited packing of hyperarborescences.

3 Packing mixed arborescences

In this section we list known results on packing mixed arborescences that are related to our first contri-
bution. We propose a new approach to prove a result of Gao, Yang [11] on matroid-reachability-based
packing of mixed arborescences via a new orientation theorem, and we provide its proof.

We start with the fundamental result of Edmonds [5] on packing spanning arborescences with fixed
roots.

Theorem 1 (Edmonds [5]). Let D = (V,A) be a digraph and S a multiset of V. There exists a packing
of spanning s-arborescences (s ∈ S) in D if and only if

d−A(X) ≥ |S| − |SX | for every ∅ 6= X ⊆ V.

Frank [7] extended Theorem 1 for mixed graphs. Here we present a seemingly more general version
of it but it is equivalent to the original result.

Theorem 2 (Frank [7]). Let F = (V,E ∪A) be a mixed graph, S a multiset of V. There exists a packing
of spanning mixed s-arborescences (s ∈ S) in F if and only if

eE∪A(P) ≥ |S||P| − |S∪P | for every subpartition P of V. (3)

An elegant extension of Theorem 1 for packing reachability arborescences was provided in [16].

Theorem 3 (Kamiyama, Katoh, Takizawa [16]). Let D = (V,A) be a digraph and S a multiset of V.
There exists a packing of reachability s-arborescences (s ∈ S) in D if and only if

d−A(X) ≥ |SPX
D
| − |SX | for every X ⊆ V.

When each vertex is reachable from every vertex of S, Theorem 3 reduces to Theorem 1. Theorem
3 can be proved by induction and using Edmonds’ result on packing spanning branchings, see Hörsch,
Szigeti [15].

Theorem 3 can also be generalized for mixed graphs follows. For convenience, we present not the
original version of the result but one due to Gao, Yang [11] that fits better to our framework.

Theorem 4 (Matsuoka, Tanigawa [19]). Let F = (V,E ∪ A) be a mixed graph and S a multiset of V.
There exists a packing of reachability mixed s-arborescences (s ∈ S) in F if and only if for every strongly
connected component C of F and every set P of subsets of PC

F such that Z ∩C 6= ∅ and eE∪A(Z−C) = 0
for every Z ∈ P and Z ∩ Z ′ ∩ C = ∅ for every Z,Z ′ ∈ P,

eE∪A(P) ≥
∑

Z∈P

(|SPC
F
| − |SZ |).
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If F is a digraph then Theorem 4 reduces to Theorem 3.

Another type of generalizations of Theorem 1 was obtained by adding a matroid constraint.

Theorem 5 (Durand de Gevigney, Nguyen, Szigeti [4]). Let D = (V,A) be a digraph, S a multiset of V
and M = (S, rM) a matroid. There exists a M-based packing of arborescences in D if and only if

d−A(X) ≥ rM(S)− rM(SX) for every ∅ 6= X ⊆ V.

For the free matroid M, Theorem 5 reduces to Theorem 1.

A common generalization of Theorems 3 and 5 was found by Cs. Király [17].

Theorem 6 (Cs. Király [17]). Let D = (V,A) be a digraph, S a multiset of V and M = (S, rM) a
matroid. There exists a matroid-reachability-based packing of arborescences in D if and only if

d−A(X) ≥ rM(SPX
D
)− rM(SX) for every X ⊆ V. (4)

For the free matroid M, Theorem 6 reduces to Theorem 3. When each vertex is reachable from a basis
of M, Theorem 6 reduces to Theorem 5.

Gao, Yang [11] provided another characterization of the existence of a matroid-reachability-based
packing of arborescences.

Theorem 7 (Gao, Yang [11]). Let D = (V,A) be a digraph, S a multiset of V and M = (S, rM) a
matroid. There exists a matroid-reachability-based packing of arborescences in D if and only if for every
strongly connected component C of D and every X ⊆ PC

D such that X ∩ C 6= ∅ and d−A(X − C) = 0,

d−A(X) ≥ rM(SPC
D
)− rM(SX). (5)

Let us show that Theorems 6 and 7 are equivalent.

Proof. We have to prove that (4) and (5) are equivalent.

(4) =⇒ (5): If (4) holds then let C be a strongly connected component of D and X ⊆ PC
D such that

X ∩ C 6= ∅ and d−A(X − C) = 0. Then, we have PX
D = PC

D and hence (4) implies (5).

(5) =⇒ (4): Now if (5) holds then let X be a subset of V. Let C1, . . . , Ck be the strongly connected
components of D in a topological ordering that is if there exists an arc from Ci to Cj then i < j. Let

J = {1 ≤ j ≤ k : X ∩ Cj 6= ∅},

Xj = (X ∩ Cj) ∪
⋃

i∈J−{j}

Ci⊆P
Cj
D

PCi

D for every j ∈ J.

Note that Xj ⊆ P
Cj

D , Xj ∩Cj 6= ∅ and d−A(Xj − Cj) = 0 for every j ∈ J.

Claim 1. d−A(X) ≥
∑

j∈J d−A(Xj).

Proof. If uv enters Xj then v ∈ X ∩ Cj ⊆ X and u /∈ Xj . If u ∈ X then u ∈ X ∩ Cj′ for some j′ ∈ J .

Since Cj′ is strongly connected, u ∈ Cj′ and v ∈ X ∩ Cj , we have Cj′ ⊆ P
Cj

D , so u ∈ Xj which is a
contradiction. It follows that u /∈ X, so uv enters X. Since (X ∩Cj)∩ (X ∩Cj′) = ∅ for distinct j, j′ ∈ J,
the claim follows.

Claim 2.
∑

j∈J (rM(SP
Cj
D

)− rM(SXj
)) ≥ rM(SPX

D
)− rM(SX).

Proof. We prove it by induction on |J |. For |J | = 1, say J = {j}, the claim follows from P
Cj

D = P
Xj

D .
Suppose that the inequality holds for |J | − 1. Let ℓ be the largest value in J. Note that we have

PXℓ

D ∩ (Xℓ ∪ PX−Xℓ

D ) ⊇ Xℓ, PX−Cℓ

D ∩X ⊇ X − Cℓ,

PXℓ

D ∪ (Xℓ ∪ PX−Xℓ

D ) ⊇ PX
D , PX−Cℓ

D ∪X ⊇ Xℓ ∪ PX−Cℓ

D .
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Then, by induction, submodularity of rM, first for SP
Xℓ
D

and S
Xℓ∪P

X−Xℓ
D

, then for S
P

X−Cℓ
D

and SX , and

monotonicity of rM, we have
∑

j∈J

(rM(S
P

Cj
D

)− rM(SXj
)) ≥ (rM(SP

Xℓ
D

)− rM(SXℓ
)) + (rM(SP

X−Cℓ
D

)− rM(SX−Cℓ
))

≥ (rM(SPX
D
)− rM(SXℓ∪P

X−Xℓ
D

)) + (rM(SXℓ∪P
X−Cℓ
D

)− rM(SX))

≥ rM(SPX
D
)− rM(SX),

and the claim follows.

By Claim 1, (5) applied for all Xj , and Claim 2, we get that

d−A(X) ≥
∑

j∈J

d−A(Xj) ≥
∑

j∈J

(rM(S
P

Cj
D

)− rM(SXj
)) ≥ rM(SPX

D
)− rM(SX),

so (4) holds.

A common generalization of Theorems 4 and 7 was provided by Gao, Yang [11].

Theorem 8 (Gao, Yang [11]). Let F = (V,E ∪A) be a mixed graph, S a multiset of V and M = (S, rM)
a matroid. There exists a matroid-reachability-based packing of mixed arborescences in F if and only if
for every strongly connected component C of F and every set P of subsets of PC

F such that Z ∩ C 6= ∅
and eE∪A(Z − C) = 0 for every Z ∈ P and Z ∩ Z ′ ∩C = ∅ for every Z,Z ′ ∈ P,

eE∪A(P) ≥
∑

Z∈P

(rM(SPC
F
)− rM(SZ)). (6)

For the free matroid M, that is every set of S is independent in M, Theorem 8 reduces to Theorem
4. For E = ∅, Theorem 8 reduces to Theorem 7. Hörsch, Szigeti [15] pointed out that Theorem 8
holds for mixed hypergraphs. That more general result was proved in [15] by induction using a result
on matroid-based packing of mixed hyperbranchings in mixed hypergraphs from [6]. Here we propose
another approach to prove Theorem 8. It will be derived from its directed version (Theorem 6) using
a new orientation result (Theorem 10). To prove Theorem 10 we need a result of Frank, see Theorem
15.4.13 in [9].

Theorem 9 (Frank [9]). Let G = (V,E) be a graph and h an integer-valued intersecting supermodular

set function such that h(V ) = 0. There exists an orientation ~G = (V, ~E) of G such that

d−~E(X) ≥ h(X) for every X ⊆ V (7)

if and only if

eE(P) ≥
∑

X∈P

h(X) for every subpartition P of V. (8)

We can now present and prove our first contribution, a new orientation theorem. It will allow us to
reduce Theorem 8 to Theorem 6. The motivation of the use of h(X)− h(PX

F ) in (9) is the following. In

order to be able to apply Theorem 6 we want to find an orientation ~F = (V, ~E ∪ A) of a mixed graph

F = (V,E∪A) such that (4) holds in ~F , that is d−~E∪A
(X) ≥ rM(SPX

~F

)− rM(SX) and rM(SPX
~F

) = rM(SPX
F
)

for every X ⊆ V or equivalently d−~E∪A
(X) ≥ rM(SPX

F
) − rM(SX) for every X ⊆ V which is (9) for

h(X) = −rM(SX).

Theorem 10. Let F = (V,E ∪ A) be a mixed graph and h an integer-valued intersecting supermodular

set function on V. There exists an orientation ~E of E such that

d−~E∪A
(X) ≥ h(X)− h(PX

F ) for every X ⊆ V (9)

if and only if for every strongly connected component C of F and every set P of subsets of PC
F such that

Z ∩ C 6= ∅, eE∪A(Z − C) = 0 for every Z ∈ P ; and Z ∩ Z ′ ∩C = ∅ for every Z,Z ′ ∈ P,

eE∪A(P) ≥
∑

Z∈P

(h(Z)− h(PC
F )). (10)
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Proof. To prove the necessity, let ~E be an orientation of E such that (9) holds, C a strongly connected
component of F and P a set of subsets of PC

F such that Z ∩ C 6= ∅, eE∪A(Z − C) = 0 for every Z ∈ P ;
and Z ∩ Z ′ ∩ C = ∅ for all Z,Z ′ ∈ P . It follows that ρ~E∪A

(Z) ∩ ρ~E∪A
(Z ′) = ∅ and PZ

F = PC
F for all

Z,Z ′ ∈ P . Then, by (9) applied for every Z ∈ P , we obtain (10) because

eE∪A(P) ≥ e ~E∪A
(P) =

∑

Z∈P

d~E∪A
(Z) ≥

∑

Z∈P

(h(Z)− h(PC
F )). (11)

To prove the sufficiency, let (F = (V , E ∪ A), h) be a counterexample for Theorem 10 that
minimizes |V |. Let C be a strongly connected component of F such that eE∪A(C) = 0. Let (F1 =
(V1, E1 ∪ A1), h1) be obtained from (F, h) by deleting the elements in C. As eE∪A(C) = 0, we have
eE1∪A1

(X) = eE∪A(X), PX
F1

= PX
F and h1(X) = h(X) for every X ⊆ V1. Then, since (F, h) satisfies

(10), so does (F1, h1). Hence, by the minimality of (F, h), there exists an orientation ~E1 of E1 such that

d−~E1∪A1

(X) ≥ h(X)− h(PX
F ) for every X ⊆ V1. (12)

Let us now consider the subgraph F2 = (C, E2 ∪ A2) of F induced by C. Moreover, let us define
h2(X) = max{h(Y ) − d−A(Y ) : Y ⊆ PC

F , Y ∩ C = X, eE∪A(Y − C) = 0} for every ∅ 6= X ⊆ C. For any
non-empty set Xi in C, let Yi be a set that provides h2(Xi). Gao, Yang [11] proved that h2 is intersecting
supermodular.

Claim 3. h2 is an intersecting supermodular set function on C.

Proof. For intersecting sets X1 and X2 in C, let X3 = X1 ∩X2, X4 = X1 ∪X2, Y
′
3
= Y1 ∩ Y2 and Y ′

4

= Y1 ∪ Y2. Note that, for i = 3, 4, we have Y ′
i ⊆ PC

F , Y ′
i ∩ C = Xi and eE∪A(Y

′
i − C) = 0, and hence

h(Y ′
i )− d−A(Y

′
i ) ≤ h2(Xi). Then, by the intersecting supermodularity of h and −d−A, we get that

h2(X1) + h2(X2) = h(Y1)− d−A(Y1) + h(Y2)− d−A(Y2)

≤ h(Y ′
3)− d−A(Y

′
3) + h(Y ′

4)− d−A(Y
′
4 )

≤ h2(X3) + h2(X4)

= h2(X1 ∩X2) + h2(X1 ∪X2),

so h2 is intersecting supermodular.

Let h′ be defined by h′(X) = h2(X)−h(PC
F ) for every ∅ 6= X ⊆ C and h′(∅) = 0. By the Claim 3, h′ is

intersecting supermodular on C. Let P = {X1, . . . , Xt} be a subpartition of C and P ′ = {Yi : Xi ∈ P}.
Then P ′ is a set of subsets of PC

F such that Yi ∩ C 6= ∅ and eE∪A(Yi − C) = 0 for 1 ≤ i ≤ t and
Yi ∩ Yj ∩ C = ∅ for 1 ≤ i < j ≤ t. It follows, by (10), that

eE2
(P) = eE∪A(P

′)− eA(P
′)

≥
∑

Yi∈P′

(h(Yi)− h(PC
F )− d−A(Yi))

=
∑

Yi∈P′

(h2(Xi)− h(PC
F ))

=
∑

Xi∈P

h′(Xi).

Thus the graph (C,E2) satisfies (8). In particular, we get that 0 = eE2
(C) ≥ h′(C). Moreover, h′(C) =

h2(C)−h(PC
F ) ≥ h(PC

F )−h(PC
F ) = 0. Hence h′(C) = 0. Then, by Theorem 9, there exists an orientation

~E2 of E2 such that d−~E2

(X) ≥ h′(X) = h2(X)−h(PC
F ) for every X ⊆ C. It follows that for every Y ⊆ PC

F

with Y ∩ C 6= ∅ and eE∪A(Y − C) = 0, we have

d−
~E2

(Y ) = d−
~E2

(Y ∩C) ≥ h(Y )− h(PC
F )− d−A(Y ). (13)

Let ~F = (V, ~E ∪ A), where ~E = ~E1 ∪ ~E2. To finish the proof we show that ~F satisfies (9). If
X ⊆ V1 then, by (12), (9) holds. If X ⊆ C then, by (13) applied for X , (9) holds. We suppose from
now on that X ∩ C 6= ∅ 6= X − C. Let Z = PX−C

F , Y = Z ∩ PC
F and W = Y ∪ (X ∩ C). Then
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X ∩ Z = X − C,PC
F ∩ (X ∪ Z) = W and PC

F ∪ (X ∪ Z) = PX
F , eE∪A(Y ) = 0. Thus, by (12) for X − C,

(13) for W and the intersecting supermodularity of h, first for X and Z, and then for PC
F and X ∪Z, we

have

d−~E∪A
(X) ≥ d−~E1∪A

(X − C) + d−~E2∪A
(W )

≥ (h(X − C)− h(Z)) + (h(W )− h(PC
F ))

≥ (h(X)− h(X ∪ Z)) + (h(X ∪ Z)− h(PX
F ))

= h(X)− h(PX
F ),

so (9) holds.

We mention that Theorem 9 and hence Theorem 10 also work for mixed hypergraphs. This shows
that the result of Hörsch, Szigeti [15] can also be obtained from a theorem of Fortier et al. [6] on
matroid-reachability-based packing of hyperarborescences.

For the sake of completeness we show that Theorems 9 and 10 are in fact equivalent. We have just
seen that Theorem 9 implies Theorem 10. Now let us see the other direction.

Proof. Let (G = (V,E), h) be an instance of Theorem 9 such that h(V ) = 0 and (8) holds. If G is
connected then Theorem 10 for (G, h) reduces to Theorem 9 because h(PX

G ) = h(V ) = 0 for every ∅ 6=
X ⊆ V . If the number k of connected components of G is larger than one then we need some more effort.
Let ℓ = max{h(X)+h(Y )−h(X ∪Y ) : X,Y ⊂ V,X ∩Y = ∅} and m = max{k, ℓ}. Let G′ = (V ′, E′) be
obtained from G by adding a new vertex s and by connecting s to V by m edges such that G′ is connected.
Since m ≥ k, this is possible. Let h′ be defined as follows: h′(s) = m otherwise h′(X) = h(X − s) for
every s 6= X ⊆ V ′. Then h′ is an integer-valued intersecting supermodular set function on V ′. Indeed,
the only case that must be checked is for pairs X ′ = X ∪ s and Y ′ = Y ∪ s with ∅ 6= X,Y ⊆ V and
X∩Y = ∅. Then h′(X ′)+h′(Y ′)−h′(X ′∪Y ′) = h(X)+h(Y )−h(X∪Y ) ≤ ℓ ≤ m = h′(s) = h′(X ′∩Y ′).
Note that since G′ is connected and h(V ) = 0, we have

h′(PX
G′) = h′(V ′) = h(V ) = 0 for every ∅ 6= X ⊆ V ′. (14)

We now show that (8) implies (10) for (G′, h′). We only need to check (10) for subpartitions P of
V ′ because G′ is connected. If {s} ∈ P then, by (8) and (14), we have eE′(P) = m + eE(P − {s}) ≥
h′(s)+

∑

X∈P−{s} h(X) =
∑

X∈P h′(X) =
∑

X∈P(h
′(X)−h′(PV ′

G′ )). Otherwise, by (8) and (14), we have

eE′(P) ≥ eE(P) ≥
∑

X∈P h(X − s) =
∑

X∈P h′(X) =
∑

X∈P(h
′(X)−h′(PV ′

G′ )) so (10) holds for (G′, h′).

We can hence apply Theorem 10 for (G′, h′) to get an orientation ~G′ = (V ′, ~E′) such that

d−~E′
(X) ≥ h′(X)− h′(PX

G′) for every ∅ 6= X ⊆ V ′. (15)

Deleting s from ~G′ we obtain an orientation ~G = (V, ~E) of G. We conclude by showing that ~G satisfies
(7). By applying (15) for s and (14), we get that m = dE(s) ≥ d−~E′

(s) ≥ h′(s)− h′(P s
G′) = m so equality

holds everywhere. In particular, dE(s) = d−
~E′
(s). Hence all the edges from s to V are oriented from

V to s, thus d−
~E
(X) = d−

~E′
(X) for every X ⊆ V. Then, by (15) and (14), we have d−

~E
(X) = d−

~E′
(X) ≥

h′(X)− h′(PX
G′) = h(X) for every ∅ 6= X ⊆ V, so (7) holds. This completes the proof.

We conclude this section by showing that Theorem 8 easily follows from Theorems 6 and 10.

Proof. Let (F, S,M) be an instance of Theorem 8 that satisfies (6). Then, for h(X) = −rM(SX) for

all X ⊆ V , (10) holds, so by Theorem 10 applied for (F, h), there exists an orientation ~E of E such

that in ~F = (V, ~E ∪ A) (9) holds. Let X ⊆ V. Since PX
~F

⊆ PX
F and rM is non-decreasing, we have

rM(SPX
~F

) ≤ rM(SPX
F
). By (9) applied for PX

~F
, we have rM(SPX

~F

) ≥ rM(SPX
F
). Hence rM(SPX

~F

) = rM(SPX
F
).

Thus (9) implies that (4) holds in (~F , S,M). Then, by Theorem 6, there exists a matroid-reachability-

based packing of arborescences in (~F , S,M). Since rM(SPX
~F

) = rM(SPX
F
), by replacing the arcs in ~E by

the edges in E, we obtain a matroid-reachability-based packing of mixed arborescences in (F, S,M).
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4 Packing mixed hyperarborescences

In this section we first list known results on mixed hyperarborescences that are related to our second
contribution on (f, g)-bounded k-regular (ℓ, ℓ′)-limited packings of mixed hyperarborescences and we
provide the proof of the new result.

Theorem 1 was extended for the case when the roots of the arborescences are not fixed but the number
of arborescences in the packing rooted at any vertex is bounded.

Theorem 11 (Frank [7], Cai [3]). Let D = (V,A) be a digraph, f, g : V → Z+ functions and k ∈ Z+.
There exists an (f, g)-bounded packing of k spanning arborescences in D if and only if

g(v) ≥ f(v) for every v ∈ V, (16)

eA(P) ≥ k|P| −min{k − f(∪P), g(∪P)} for every subpartition P of V. (17)

If S is a multiset of V and f(v) = g(v) = |Sv| for all v ∈ V then Theorem 11 reduces to Theorem 1.

Theorem 11 can be generalized for the case when the arborescences are not necessarily spanning but
every vertex must belong to the same number of arborescences in the packing. For g : V → Z+ and
k ∈ Z+, let gk(v) = min{k, g(v)} for every v ∈ V. For convenience, we present not the original version of
the result of [2] which is about packing spanning branchings but one that fits better to our framework.

Theorem 12 (Bérczi, Frank [2]). Let D = (V,A) be a digraph, f, g : V → Z+ functions and k, ℓ, ℓ′ ∈ Z+.
There exists an (f, g)-bounded k-regular (ℓ, ℓ′)-limited packing of arborescences in D if and only if

gk(v) ≥ f(v) for every v ∈ V, (18)

min{gk(V ), ℓ′} ≥ ℓ (19)

eA(P) ≥ k|P| −min{ℓ′ − f(∪P), g(∪P)} for every subpartition P of V. (20)

For k = ℓ = ℓ′, Theorem 12 reduces to Theorem 11.

Theorem 1 was generalized for dypergraphs as follows. We only need the special case when the
multiset S is equal to k times a vertex s.

Theorem 13 (Frank, T. Király, Z. Király [10]). Let D = (V,A) be a dypergraph, s ∈ V and k ∈ Z+.
There exists a packing of k spanning s-hyperarborescences in D if and only if

d−A(X) ≥ k for every ∅ 6= X ⊆ V − s.

Theorem 13 easily implies the following corollary that we will apply in the proof of our new result.

Corollary 1. Let D = (V,A) be a dypergraph and S a multiset of V . There exists a k-regular packing
of s-hyperarborescences (s ∈ S) in D if and only if

|Sv| ≤ k for every v ∈ V, (21)

d−A(X) ≥ k − |SX | for every ∅ 6= X ⊆ V. (22)

A common extension of Theorems 2 and 11 was provided by Gao, Yang [12].

Theorem 14 (Gao, Yang [12]). Let F = (V,E ∪ A) be a mixed graph, f, g : V → Z+ functions, and
k ∈ Z+. There exists an (f, g)-bounded packing of k spanning mixed arborescences in F if and only if
(16) holds and

eE∪A(P) ≥ k|P| −min{k − f(∪P), g(∪P)} for every subpartition P of V.

If S is a multiset of V and f(v) = g(v) = |Sv| for every v ∈ V then Theorem 14 reduces to Theorem
2. If F is a digraph then Theorem 14 reduces to Theorem 11.

Theorem 14 can be generalized for mixed hypergraphs.

Theorem 15 (Hörsch, Szigeti [14]). Let F = (V, E ∪A) be a mixed hypergraph, f, g : V → Z+ functions,
and k ∈ Z+. There exists an (f, g)-bounded packing of k spanning mixed hyperarborescences in F if and
only if (16) holds and

eE∪A(P) ≥ k|P| −min{k − f(∪P), g(∪P)} for every subpartition P of V.
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If F is a mixed graph then Theorem 15 reduces to Theorem 14.

The main contribution of the present paper is a common generalization of Theorems 12 and 15.

Theorem 16. Let F = (V, E∪A) be a mixed hypergraph, f, g : V → Z+ functions, and k, ℓ, ℓ′ ∈ Z+−{0}.
There exists an (f, g)-bounded k-regular (ℓ, ℓ′)-limited packing of mixed hyperarborescences in F if and
only if (18) and (19) hold and

eE∪A(P) ≥ k|P| −min{ℓ′ − f(∪P), gk(∪P)} for every subpartition P of V. (23)

If F is a digraph then Theorem 16 reduces to Theorem 12. If k = ℓ = ℓ′ then Theorem 16 reduces to
Theorem 15. Theorem 16 will be obtained from the theory of generalized polymatroids and some matroid
construction for mixed hypergraphs. We now explain these concepts.

Generalized polymatroids were introduced by Hassin [13] and independently by Frank [8]. For a pair
(p, b) of set functions on S and α, β ∈ R, let us introduce the polyhedra

Q(p, b) = {x ∈ R
S : p(Z) ≤ x(Z) ≤ b(Z) for all Z ⊆ S},

K(α, β) = {x ∈ R
S : α ≤ x(S) ≤ β}.

If p(∅) = b(∅) = 0, p is supermodular, b is submodular and b(X) − p(Y ) ≥ b(X − Y ) − p(Y − X) for
all X,Y ⊆ S, the polyhedron Q(p, b) is called a generalized-polymatroid, shortly g-polymatroid. The
polyhedron K(α, β) is called a plank. The Minkowski sum of the n g-polymatroids Q(pi, bi) is denoted
by

∑n

1
Q(pi, bi). We will need the following results on g-polymatroids, for more details see [9].

Theorem 17 (Frank [9]). The following hold:

1. Let Q(p, b) be a g-polymatroid, K(α, β) a plank and M = Q(p, b) ∩K(α, β).

(i) M 6= ∅ if and only if p ≤ b, α ≤ β, p(S) ≤ β and α ≤ b(S).

(ii) M is a g-polymatroid.

(iii) If M 6= ∅ then M = Q(pαβ , b
α
β) with

pα
β(Z) = max{p(Z), α− b(S − Z)}, bαβ (Z) = min{b(Z), β − p(S − Z)}. (24)

2. Let Q(p1, b1) and Q(p2, b2) be two non-empty g-polymatroids and M = Q(p1, b1) ∩Q(p2, b2).

(i) M 6= ∅ if and only if p1 ≤ b2 and p2 ≤ b1.

(ii) If p1, b1, p2, b2 are integral and M 6= ∅ then M contains an integral element.

3. Let Q(pi, bi) be n non-empty g-polymatroids. Then
∑n

1 Q(pi, bi) = Q(
∑n

1 pi,
∑n

1 bi).

Given a hypergraph H = (V, E), let IH = {Z ⊆ E : |V (Z ′)| > |Z ′| for all ∅ 6= Z ′ ⊆ Z}. Lorea [18]
showed that IH is the set of independent sets of a matroid MH on E , called the hypergraphic matroid of
the hypergraphH. We also need the k-hypergraphic matroid M

k
H

of H which is the k-sum matroid of MH,
that is the matroid on ground set E in which a subset of E is independent if it can be partitioned into k
independent sets of MH. Hörsch, Szigeti [14] extended the previous construction for mixed hypergraphs
as follows. Let F = (V,A ∪ E) be a mixed hypergraph. For a subpartition P of V, A(P) and E(P)
denote the set of dyperedges and the set of hyperedges that enter some member of P . Let HF = (V,
EA∪E) the underlying hypergraph of F and DF = (V,A ∪ AE) the directed extension of F where AE

=
⋃

e∈E Ae and for e ∈ E , Ae= {(e − x, x) : x ∈ e}. The extended k-hypergraphic matroid M
k
F

of F on

A ∪ AE is obtained from M
k
HF

by replacing every e ∈ E by |e| parallel copies of itself, associating these
elements to the dyperedges in Ae and associating every hyperedge of EA to the corresponding dyperedge
in A. It is shown in [14] that the rank function of the extended k-hypergraphic matroid M

k
F satisfies for

all Z ⊆ A ∪AE ,

rMk
F

(Z) = min{|Z ∩ A(P)|+ |{e ∈ E(P) : Z ∩Ae 6= ∅}|+ k(|V | − |P|) : P partition of V }. (25)

Theorem 16 will follow from the following lemma.
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Lemma 1. Let F = (V, E ∪ A) be a mixed hypergraph, f, g : V → Z+ functions, and k, ℓ, ℓ′ ∈ Z+ − {0}.
Let Mv = (ρA∪AE

(v), rv) be the free matroid for all v ∈ V and M
k
F

the extended k-hypergraphic matroid
of F on A ∪AE . Let us define the following polyhedron

T = (
∑

v∈V

(Q(0, rv) ∩K(k − gk(v), k − f(v)))) ∩K(k|V | − ℓ′, k|V | − ℓ) ∩Q(0, rMk
F

).

(a) The characteristic vectors of the dyperedge sets of the (f, g)-bounded k-regular (ℓ, ℓ′)-limited packings
of hyperarborescences in orientations of F are exactly the integer points of T.

(b) T 6= ∅ if and only if (18) and (19) hold and for every Z ⊆ A ∪AE ,

∑

v∈V

max{0, k − gk(v)− d−Z(v)} ≤ rMk
F

(Z), (26)

k|V | − ℓ′ −
∑

v∈V

min{d−Z(v), k − f(v)} ≤ rMk
F
(Z). (27)

(c) (26) and (27) are equivalent to (23).

Proof. (a) To prove the necessity, let B be an (f, g)-bounded k-regular (ℓ, ℓ′)-limited packing of hyper-

arborescences in an orientation ~F of F . Let S be the root set of the hyperarborescences in B and ~Z the
dyperedge set of B. Since the packing is (f, g)-bounded k-regular (ℓ, ℓ′)-limited, we have

f(v) ≤ |Sv| ≤ gk(v) for all v ∈ V, (28)

k − d−
~Z
(v) = |Sv| for all v ∈ V, (29)

ℓ ≤ |S| ≤ ℓ′. (30)

By (29), we get

k|V | − | ~Z| =
∑

v∈V

(k − d−~Z(v)) =
∑

v∈V

|Sv| = |S|. (31)

Let m be the characteristic vector of ~Z and mv the restriction of m on ρA∪AE
(v) for all v ∈ V . Then

mv is a characteristic vector, so

mv ∈ Q(0, rv) for all v ∈ V. (32)

By (28), (29) and d−~Z(v) = mv(ρA∪AE
(v)) for all v ∈ V , we obtain that

mv ∈ K(k − gk(v), k − f(v)) for all v ∈ V. (33)

It follows, by (32) and (33), that

m ∈
∑

v∈V

(Q(0, rv) ∩K(k − gk(v), k − f(v))). (34)

By (30), (31), and | ~Z| = m(A ∪AE), we obtain that

m ∈ K(k|V | − ℓ′, k|V | − ℓ). (35)

Claim 4. ~Z is independent in M
k
F .

Proof. We first show that ~Z is the dyperedge set of a packing of k spanning hyperbranchings in ~F .
Indeed, let ~G be the dypergraph with vertex set V ∪{s} where s is a new vertex, and dyperedge set ~Z∪A

where A = {ss′ : s′ ∈ S}. Since ~Z is the dyperedge set of a k-regular packing of hyperarborescences in
~F , by Corollary 1, we have d−~Z∪A

(X) = d−~Z(X) + d−A(X) = d−~Z(X) + |SX | ≥ k. Then, by Theorem 13,

there exists a packing of k spanning s-hyperarborescences in ~G. By deleting the vertex s from each s-
hyperarborescence in the packing we obtain a packing of k spanning hyperbranchings in ~F with dyperedge
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set ~Z ′. Since ~Z ⊇ ~Z ′ and | ~Z ′| ≥ k|V | − |S| = | ~Z|, we get that ~Z = ~Z ′. Hence ~Z is the dyperedge set of

a packing of k spanning hyperbranchings in ~F .
For any hyperbranching, the number of its vertices is at least the number of heads of its dyperedges

plus the number of its roots and hence strictly larger than the number of its dyperedges. Thus the
hyperedge set of the underlying hypergraph of each hyperbranching is independent in MHF

. As the
hyperbranchings in the packing are dyperedge disjoint, it follows that Z is independent in M

k
HF

. Then,

since ~Z is in the orientation ~F of F , ~Z is independent in M
k
F .

By Claim 4 and since m is the characteristic vector of ~Z, we get that

m ∈ Q(0, rMk
F

). (36)

It follows, by (34), (35), and (36), that m is an integer point of T.

To prove the sufficiency, let m = (mv)v∈V be an integer point of T, that is mv ∈ Q(0, rv) ∩K(k −
gk(v), k − f(v)) for all v ∈ V and m ∈ K(k|V | − ℓ′, k|V | − ℓ)∩Q(0, r

Mk
F

). Since mv is an integer point in

Q(0, rv), mv is the characteristic vector of a subset ~Zv of ρA∪AE
(v). Since mv ∈ K(k − gk(v), k − f(v)),

we have

k − gk(v) ≤ mv(ρA∪AE
(v)) = | ~Zv| = mv(ρA∪AE

(v)) ≤ k − f(v). (37)

Let ~Z =
⋃

v∈V
~Zv. Note that d−~Z(v) = | ~Zv| for all v ∈ V. Then, by f ≥ 0, we have k − d−~Z(v) ≥ f(v) ≥ 0

for all v ∈ V. Since m ∈ K(k|V | − ℓ′, k|V | − ℓ), we have

k|V | − ℓ′ ≤ m(A∪AE) = | ~Z| = m(A ∪AE) ≤ k|V | − ℓ. (38)

Since m ∈ Q(0, rMk
F

), we get that ~Z is independent in M
k
F . It follows that

~Z is a subset of the dyperedge

set of an orientation ~F of F and in the hypergraph HF = (V, EA ∪ E) we have for all X ⊆ V,

|Z(X)| ≤ rMk
HF

(Z(X)) ≤ k(|X | − 1). (39)

Let S be the multiset of V such that |Sv| = k − d−~Z(v) for all v ∈ V. Since k − d−~Z(v) ≥ 0 for all v ∈ V, S

exists. As d−~Z ≥ 0, (21) holds. Since for all X ⊆ V, by (39), we have

d−~Z(X) =
∑

v∈X

d−~Z(v)− | ~Z(X)| =
∑

v∈X

(k − |Sv|)− |Z(X)| ≥ k|X | − |SX | − k(|X | − 1) = k − |SX |,

so (22) holds for ~F ′ = (V, ~Z). Then, by Corollary 1, there exists a k-regular packing of s-hyperarborescen-

ces (s ∈ S) in ~F ′ and hence in ~F . Since the number of dyperedges in the packing is k|V | − |S| =
∑

v∈V (k − |Sv|) =
∑

v∈V d−~Z(v) = | ~Z|, the dyperedge set of the packing is ~Z. As for all v ∈ V, by (37),
we have

f(v) ≤ k − | ~Zv| = k − d−~Z(v) = |Sv| = k − d−~Z(v) = k − | ~Zv| ≤ gk(v) ≤ g(v),

so the packing is (f, g)-bounded. Since, by (38), we have

ℓ ≤ k|V | − | ~Z| = |S| = k|V | − | ~Z| ≤ ℓ′,

so the packing is (ℓ, ℓ′)-limited. Finally, as ~F is an orientation of F , the proof is complete.

(b) By Theorem 17.1, for all v ∈ V , Q(0, rv) ∩ K(k − gk(v), k − f(v)) 6= ∅ if and only if 0 ≤ rv
(that always holds), k − gk(v) ≤ k − f(v) (that is (18) holds), 0 ≤ k − f(v) (that holds by the previous
inequality) and k−gk(v) ≤ rv(ρA∪AE

(v)) = d−A∪AE
(v). Then Q(0, rv)∩K(k−gk(v), k−f(v)) = Q(pv, bv)

where, by (24), we have for all Zv ⊆ ρA∪AE
(v),

pv(Zv) = max{0, k − gk(v)− d−
Zv

(v)}, bv(Zv) = min{d−Zv
(v), k − f(v)}. (40)

By Theorem 17.3,
∑

v∈V Q(pv, bv) = Q(pΣ, bΣ) where

pΣ =
∑

v∈V

pv and bΣ =
∑

v∈V

bv. (41)
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By Theorem 17.1, Q(pΣ, bΣ) ∩ K(k|V | − ℓ′, k|V | − ℓ) 6= ∅ if and only if Q(pv, bv) 6= ∅ for all v ∈ V ,
k|V | − ℓ′ ≤ k|V | − ℓ (which is equivalent to one of the conditions in (19)), pΣ(A∪AE) ≤ k|V | − ℓ (which,
by pΣ(A ∪ AE ) =

∑

v∈V pv(ρA∪AE
(v)) =

∑

v∈V max{0, k − gk(v) − d−
A∪AE

(v)} =
∑

v∈V (k − gk(v)) =

k|V |−gk(V ), is equivalent to the other condition in (19)) and bΣ(A∪AE) ≥ k|V |−ℓ′. Then the intersection
is equal to a generalized polyhedron Q(p, b) where, by (24), (40), and (41), for all Z ⊆ A ∪AE , we have

p(Z) = max

{

∑

v∈V

max{0, k − gk(v)− d−
Z
(v)}, k|V | − ℓ′ −

∑

v∈V

min{d−
Z
(v), k − f(v)}

}

, (42)

b(Z) = min

{

∑

v∈V

min{d−Z(v), k − f(v)}, k|V | − ℓ−
∑

v∈V

max{0, k − gk(v)− d−Z(v)}

}

. (43)

By Theorem 17.2, T = Q(p, b) ∩ Q(0, rMk
F

) 6= ∅ if and only if Q(p, b) 6= ∅, p ≤ rMk
F

(which, by (42), is

equivalent to (26) and (27)), and b ≥ 0 (which holds by b ≥ p ≥ 0). Note that k − gk(v) ≤ d−A∪AE
(v) for

all v ∈ V and bΣ(A∪AE) ≥ k|V | − ℓ′ follow from p ≤ r
Mk

F

applied for Z = ∅ and the proof is complete.

(c) We note that (26) is equivalent to

k|V | − gk(V )−
∑

v∈V

min{d−Z(v), k − gk(v)} ≤ rMk
F

(Z). (44)

First we show that (26) and (27) imply (23). Let P be a subpartition of V. Let Z =
⋃

v∈∪P ρA(v) ∪
⋃

e∈E(F(∪P)) Ae and P ′ = P ∪ {v}v∈∪P . Note that d−Z(v) = 0 for all v ∈ ∪P ,

∑

v∈V

min{d−Z(v), k − h(v)} ≤ k|∪P| − h(∪P) for h ∈ {gk, f}, (45)

P ′ is a partition of V , and, by (25), we have

r
Mk

F

(Z) ≤ |Z∩A(P ′)|+ |{e ∈ E(P ′) : Z∩Ae 6= ∅}|+k(|V |−|P ′|) = eA∪AE
(P)+k(|V |−|P|−|∪P|). (46)

Then (44), (45) applied for h = gk and (46) imply eE∪A(P) ≥ k|P|−gk(∪P). Similarly, (27), (45) applied
for h = f and (46) imply eE∪A(P) ≥ k|P| − ℓ′ + f(∪P). Hence (23) follows.

We now show that (23) implies (27) and (44) (and hence (26)). Let Z ⊆ A∪AE . By (25), there exists
a partition P of V such that for K = {e ∈ E(P) : Z ∩Ae 6= ∅}, we have

rMk
F

(Z) = |Z ∩ A(P)|+ |K|+ k(|V | − |P|). (47)

For h ∈ {gk, f}, let Ph = {X ∈ P : d−Z(v) ≤ k− h(v) for all v ∈ X}. Note that Ph is a subpartition of V
and for every X ∈ P −Ph, there exists a vertex vX ∈ X such that d−Z(vX) > k−h(vX). By the definition
of K, we have

AE(Ph)−K ⊆ Z ∩AE(Ph). (48)

Claim 5. rMk
F

(Z) +
∑

v∈V min{d−Z(v), k − h(v)} ≥ eE∪A(Ph)− k|Ph| − h(∪Ph) + k|V |.

Proof. By (47), the definitions of Ph and vX , d−Z ≥ 0, k − h ≥ 0, (48), and h ≥ 0, we have

rMk
F

(Z) +
∑

v∈V

min{d−Z(v), k − h(v)}

= |Z ∩ A(P)|+ |K|+ k(|V | − |P|) +
∑

v∈∪Ph

min{d−Z(v), k − h(v)}+
∑

v∈∪Ph

min{d−Z(v), k − h(v)}

≥ |Z ∩ A(Ph)|+
∑

v∈∪Ph

d−Z(v) +
∑

X∈P−Ph

∑

v∈X

min{d−Z(v), k − h(v)}+ |K|+ k(|V | − |P|)

≥ |Z ∩ A(Ph)|+ |Z ∩ A(Ph)|+ |Z ∩ AE(Ph)|+
∑

X∈P−Ph

(k − h(vX)) + |K| + k(|V | − |P|)

≥ |A(Ph)|+ |AE(Ph)−K|+
∑

X∈P−Ph

(k − h(X)) + |K|+ k(|V | − |P|)

≥ eE∪A(Ph)− |K|+ k(|P| − |Ph|)− h(∪Ph) + |K|+ k(|V | − |P|)

≥ eE∪A(Ph)− k|Ph| − h(∪Ph) + k|V |,
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and the claim follows.

Claim 5, applied for h = f, and (23) provide that rMk
F
(Z)+

∑

v∈V min{d−Z(v), k−f(v)} ≥ k|V |−ℓ′, so

(27) holds. Similarly, Claim 5, applied for h = gk, and (23) provide that rMk
F

(Z)+
∑

v∈V min{d−Z(v), k−

gk(v)} ≥ k|V | − gk(V ), so (44) holds. The proof of the theorem is complete.

We finish the paper by showing that Theorem 17 and Lemma 1 imply Theorem 16.

Proof. Let (F = (V, E ∪ A), f, g, k, ℓ, ℓ′) be an instance of Theorem 16 that satisfies (18), (19) and (23).
Since (23) holds, by Lemma 1(c), (26) and (27) hold. Since (18) and (19) also hold, by Lemma 1(b),
the polyhedron T, defined in Lemma 1, is not empty. We have seen in the proof of Lemma 1(b) that
T is the intersection of two generalized polymatroids Q(p, b) and Q(0, rMk

F

). Then, by Theorem 17.2(ii),

T contains an integer point x. By Lemma 1(b), x is the characteristic vector of the dyperedge set of an

(f, g)-bounded k-regular (ℓ, ℓ′)-limited packing of hyperarborescences in an orientation ~F = (V, ~E ∪ A)

of F . By replacing the dyperedges in ~E by the underlying hyperedges in E , we obtain the required
packing.
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