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Abstract

This paper considers interference limited communication systems where the desired user and in-
terfering users are symbol-synchronized. A novel adaptive beamforming technique is proposed for
quadrature phase shift keying (QPSK) receiver based directly on minimizing the bit error rate. It is
demonstrated that the proposed minimum bit error rate (MBER) approach utilizes the system re-
source (antenna array elements) more intelligently, than the standard minimum mean square error
(MMSE) approach. Consequently, an MBER beamforming assisted receiver is capable of providing
significant performance gains in terms of a reduced bit error rate over an MMSE beamforming one.
A block-data based adaptive implementation of the theoretical MBER beamforming solution is de-
veloped based on the classical Parzen window estimate of probability density function. Furthermore,
a sample-by-sample adaptive implementation is also considered, and a stochastic gradient algorithm,
called the least bit error rate, is derived for the beamforming assisted QPSK receiver.
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1. Introduction

The ever-increasing demand for mobile communication capacity has motivated the de-
velopment of adaptive antenna array assisted spatial processing techniques [1-12] in order
to further improve the achievable spectral efficiency. A particular technique that has shown
real promise in achieving substantial capacity enhancements is the use of adaptive beam-
forming with antenna arrays. Through appropriately combining the signals received by
the different elements of an antenna array to form a single output, adaptive beamforming
is capable of separating signals transmitted on the same carrier frequency, provided that
they are separated sufficiently in the spatial domain. Classically, this has been achieved by
minimizing the mean square error (MSE) between the desired output and the actual array
output, and this principle is rooted in the traditional beamforming employed in sonar and
radar systems. Adaptive implementation of the theoretical minimum MSE (MMSE) beam-
forming solution can readily be realized using temporal reference techniques [2—4,13-17].
Specifically, block-data based beamformer weight adaptation can be achieved using the
so-called sample matrix inversion (SMI) algorithm [13,14], while sample-by-sample adap-
tation can be carried out using the least mean square (LMS) algorithm [15-17].

For a communication system, it is the achievable bit error rate (BER), not the MSE
performance, that really matters. Ideally, the system design should be based directly on
minimizing the BER, rather than the MSE. For applications in single-user channel equal-
ization and code division multiple access (CDMA) multiuser detection, it has been shown
that the MMSE solution can in certain situations be distinctly inferior in comparison to the
minimum BER (MBER) solution, and several adaptive implementations of the theoretical
MBER solution have been studied in Refs. [18—22]. The recent conference paper [23] of the
authors proposed an MBER beamforming assisted receiver for binary phase shift keying
(BPSK) communication systems, where the desired user and interfering users are symbol-
synchronized. This paper derives an adaptive beamforming technique based on directly
minimizing the system’s BER for such interference limited systems employing quadrature
phase shift keying (QPSK) modulation. It is demonstrated that the MBER solution utilizes
the array weights more intelligently than the MMSE approach. The MBER beamforming
appears to be “smarter” than the MMSE solution, since it directly optimizes the system’s
BER performance, rather than minimizing the MSE, where the latter strategy often turns
out to be deficient. In particular, when facing strong interfering sources, the MMSE beam-
forming receiver may exhibit a high BER floor as the underlying signal classes become
linearly inseparable, while the MBER beamforming receiver can often maintain the linear
separability and hence avoids such a BER floor.

An adaptive implementation of the theoretical MBER beamforming technique is studied
in this paper. The classic Parzen window or kernel density estimation technique [24—26]
is adopted for approximating the probability density function (pdf) of the beamformer’s
output, and this naturally leads to a block-data adaptive MBER algorithm, which itera-
tively minimizes the estimated BER of the beamforming assisted receiver by adjusting the
beamformer weights using a simplified conjugate gradient optimization method [22,27].
It is demonstrated in a simulation study that this block-data adaptive MBER algorithm
converges rapidly and the length of the data block required for achieving an accurate ap-
proximation of the MBER solution is reasonably small. Sample-by-sample adaptation has
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also been considered and an adaptive stochastic gradient MBER algorithm, referred to as
the least bit error rate (LBER), is derived. This LBER algorithm has a low computational
complexity which is comparable to that of the very simple LMS algorithm. Simulation
results suggest that the LBER algorithm converges reasonably fast.

Before presenting our novel MBER QPSK beamforming technique, the assumption
that the desired user and interfering signals are symbol-synchronized is elaborated on.
For such a symbol-synchronized interference-limited QPSK system the non-Gaussian na-
ture of the interfering signals is effectively exploited by the MBER beamforming receiver,
resulting in an improved BER performance. For the downlink scenario synchronous trans-
mission of the users is guaranteed. By contrast, in an uplink scenario the differently delayed
asynchronous signals of the users are no longer automatically synchronized. However,
the quasi-synchronous operation of the system may be achieved with the aid of adap-
tive timing advance control, as in the global system of mobile communications, known
as GSM [28]. The GSM system has a timing-advance control accuracy of 0.25 bit dura-
tion. Since synchronous systems perform better than their asynchronous counterparts [29],
the third-generation partnership research consortium known as 3GPP is also considering
the employment of timing-advance control in next-generation systems. In general, when
the number of users is large, the users are asynchronous and the idealistic assumption of
perfect power control is stipulated, the performance gain of the (symbol-rate) MBER so-
lution over the MMSE beamformer may be expected to diminish, since the interference
becomes nearly Gaussian at the symbol-rate samples. One way of maintaining the benefits
of the MBER solution for asynchronous systems is to perform a joint MBER detection and
synchronization by sampling faster than the symbol rate. During each symbol period, sev-
eral signal samples are taken and the receiver maintains several tentative MBER detectors.
The detector having the smallest BER is chosen to perform symbol detection.

2. System model

It is assumed that the system suppadtssymbol-synchronized users, that is, there ex-
ist M synchronized signal sources, and each user transmits a QPSK modulated signal on
the same carrier frequency af= 2z f. The baseband complex-valued signal of user
sampled at the symbol rate, is formulated as

mi(k) = A;bi(k), 1<i<M, (1)

whereb; (k) € {£1 + j} are QPSK symbols, the complex-valuad is the channel coef-

ficient for useri multiplying by the transmitted signal amplitude of useend therefore

2|A;|? denotes the received signal power of usatithout any loss of generality, source 1

is assumed to be the desired user and the rest of the sources are the interfering users. The
linear antenna array considered consisté. afniformly spaced elements, and the signals
received by thd -element antenna array are given by

M

xi (k) = Zmi(k) exp(jon(6) +ni(k) =% (k) +mi(k), 1<I<L, 2
i=1
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wherer;(0;) is the relative time delay at array elemérfor sourcei, 6; is the direction

of arrival for sourcei, andn; (k) is the complex-valued white Gaussian noise having a
zero mean and a variance Bf|n; (k)|?] = 20,,2. The desired user’s signal to noise ratio is
defined as SNR: |A1]?/52, the interference to noise ratio of interfering usés given by
INR; = |A;|?/o?, the desired signal to interference ratio with respect to interferingiuser
is defined as SIR=|A1|%/|A;|2, fori =2, ..., M, and the desired signal to interference
plus noise ratio is given by SINR |A1[2/(3-",|A;1? 4 02). In a vector form, the array
inputx(k) = [x1(k)x2(k) ... xr (k)]T can be expressed as

x(k) = X(k) + n(k) = Pb(k) + n(k), (3)

wheren(k) = [n1(k) na(k) ...n7 (k)]” has a covariance matrix @[n(k)n (k)] = 2621,
with |, representing thé x L identity matrix, the system matrR is given by

P=[A151 A2S... AySu], (4)
the steering vector for sour¢as formulated as
s = [exp(jwr(6:)) exp(jwr2(6))) ... exp(jth(e,»))]T (5)

and the transmitted QPSK symbol vectobi&) = [b1(k) ba(k) ... by (k)17 .
A standard linear beamformer is employed at the receiver, and the beamformer’s output
is given by

y(k) =W x(k) = wlx(k) + wn(k) = k) + e(k), (6)

wherew = [wy wa...w;]” is the complex-valued beamformer weight vector, a¢id is
Gaussian distributed having a zero mean and a variangg|efk)|%] = Zanszw. Define
the combined impulse response of the beamformer and the system as

WHP:[C1 co...cpml. (7)

The beamformer’s output can alternatively be expressed as

M
y(k) = c1ba(k) + Y cibi(k) + e(k), ®)
i=2
where the first term is the desired signal and the second term the residual interference.
Define the decision variable dsk) = y(k)/c1. Then the decision regarding the transmitted
symbolb1 (k) is made according to

b1(k) = sgn(dg (k)) + j sgn(d; (k)), 9)

wheredg (k) = R[d(k)] andd; (k) = 3[d (k)] are the real and imaginary parts &fk),
respectively, and sgp the sign function. Noting; = w/p; andp; = A1s1, we can see
that the steering vectai and the channel of the desired user are required at the receiver
in order to make the unbiased decision (9). This fact is often overlooked. Provided that
is real and positive, the optimal unbiased decision (9) is equivalent to

b1(k) = sgn(yg (k) + j sgn(ys (k)). (10)
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The following rotating operation

Cold
whew — Lwold (11)
9
can be used to make sure tkais real and positive. This rotation is a linear transformation
and does not alter the BER of the underlying system.
Classically, the beamformer’s weight vector is determined by minimizing the MSE term
of E[|b1(k) — y(k)|?], which leads to the following MMSE solution:

WMMSE = (PPH + O'nz| L)ilp]_. (12)

Although the system matri® is generally unknown, the MMSE solution can be readily
realized using the block-data SMI algorithm or the least squares (LS) algorithm [13,14] if
training is available. The MMSE solution can also be implemented via training by using
the stochastic gradient algorithm known as the LMS algorithm [15-17].

3. Minimum bit error rate beamforming

Denote theV;, = 4¥ number of possible transmitted symbol sequencéxiof asb@,
1 < g < N,. Denote furthermore the first element o, corresponding to the desired
user, asbi"). The noise-free part of the array input signal, namely), only takes values

from the finite signal set defined as

XE (XD =Pb@, 1< q <Ny}, (13)

This set can be partitioned into four subsets, depending on the specific valy@ nfas
follows:

Xii 2 (X9 e X: bik) =1+ j). (14)

Similarly, the noise-free part of the beamformer’s output, nanpéty, takes values from
the scalar set

VEFD =wHx@, 1< g < Ny) (15)
and)’ can be divided into the four subsets conditioned on the valbe @}:
Vis 2 {59 e bitk) =1+ j}. (16)

For the linear beamformer (6) to perform adequately, an implicit assumption ig’that

are linearly separable, that is, there exists a weight veetsuch that the four scalar sets
Y+ + are completely separable by linear decision boundaries. Otherwise nonlinear beam-
forming is required, a situation that is similar to nonlinear single-user equalization and
nonlinear CDMA multiuser detection [30—-35]. In this study, we restrict to the linear beam-
former (6), because it has a low computational complexity and can readily be implemented
in downlink receivers. It is worth pointing out that, under severe interference situations
which cause the MMSE beamforming to lose linear separability, the MBER beamforming
to be derived here can often maintain linear separability. This is because the objective of
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the MMSE solution is to minimize the MSE which does not necessarily require the sepa-
ration of Y+ 4, while the MBER solution will try to separafg. + as far apart as possible.
In this sense, the MBER beamforming is more intelligent than the MMSE one. This will
also be demonstrated later in the simulation study.

Noting y(k) = y(k) + e(k), it is easily seen that the conditional pdf ofk) given
bitk)=+1+jis

. 1 ly =3P

1 = ——exXpl ————+-—1, 17
POT+HI+)) i Z 2o 2wHw p( 202wHw A7)
YDy 1

whereN;;, = Np /4 is the number of the points i 4. With the notationy = yg + jyr

sb

and3@ = 35\¢ 4+ j5\?, the two marginal conditional pdfs are given by
(q) 2
. (YR =Yg ") )
+14j)=— _ SRR 18
pORI+1+))= ()Zy r,zwﬂw ( 20,3wHw (18)
and
(9)y2
: i=y")
P()’l|+l+])— Z < W)’ (19)
Sy, \/ZJTO’ZWHW 20w W
respectively. Define
P, (W) = Prob(i[b1(k)] # R[b1(k)]) = Prob{bg 1(k) # bg 1(K)) (20)
and
Pr, (W) = Prob(3[ha(k)] # 3[ba(k)]) = Probby 1 (k) # by 1(k)). (21)

Obviously, the BER of the beamformer associated with the weight veciegiven by

1
Pp(w) = (PER (W) + P, (W)). (22)

Noting the deC|si0n rule (10) (assuming tlats positive) and the two marginal condi-
tional pdfs (18) and (19), it can easily be shown that

Pg, (W) = Z 0(g (q)(W)) 23)
P s@ey,
and
PE[ (W) Z Q g(l])(w) (24)
Nsv F@Dey, 4+
where
W= / eXp< )d”’ (25)
(q) (@) b(q) N Hg(q)
¢ w) = SgrLb; Dy _ S9Mbp ) RIW X ] 6)

onvWHW onvWHW
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and
@, SIRBIDFY  sgbHIWHX@]
g W)= = ’ . (27)
onvVWHw oV WHwW

Note that the BER is invariant to a positive scalingrofSimilarly, the BER can be calcu-
lated alternatively based on any of the other three suBsgts, V_ , and)_ _.
The MBER beamforming solution is then defined as

WMBER = arg minPg (w). (28)

Unlike the MMSE solution (12), there exists no closed-form MBER solution, and a nu-
merical optimization must be used in order to obtain an MBER solution. The gradient of
P (w) with respect taw is

1
VPg(W) = (VPER(W)+VPE,(W)) (29)
and it can be shown that
1
VPg. (W) =
Er 2Np/ 2 o WHW
(y(q))z @ y(q)w B
x D eXP( se2wieg ) SIRD| iy — X (30)
FOEeVy + on
and
VPg, (W)= !
= 2Ngp/ 2 o/ WHW
512 @) (@)
x Y exp( o= 2WHW)sgr(b )( +Jx‘f). (31)
FDeYVr 4

Given the gradient (29)—(31), the optimization problem (28) can be solved for iteratively
using a gradient-based optimization algorithm. Since the BER is invariant to a positive
scaling ofw, itis computationally advantageous to normalizéo a unit-length after every
iteration, so that the gradient (30) and (31) can be simplified to

=(q)
1 Or )) @\ (=@ (
VP, (W)= —— ex sgn(b w—x9) (32
£ = a2 on _,(q)z p( 202 ) S91k.1) O ) @2
ACRISN A
and

¢

VP W)= e Y exp( (5)2 )sgr(b(q))( Dy 4 jx@). (33)
2NspA/ 210y, 54

VeVt

The rotating operation (11) should also be applied after each iteration to ensure a real
and positiver1. The following simplified conjugate gradient algorithm [22,27] provides an
efficient means of finding a MBER solution.
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Initialization. Choose a step size af > 0 and a termination scalar @gf > 0; givenw(1)
andd(l) = —V Pr(w(1)); set the iteration index to= 1.
Loop. If [VPE(W(Q))| = \/(VPE(W(l)))HVPE(W(L)) < B, gotoStop. Else,

w(t+ 1) =w() + pd(),
c1=wH (1 + Dpy,

C
W(i+1) = |c_1|w(‘ +1),

w(+1)
Iw(e+ D)1’

_ IVPEw(+ D)2
IV Pe(wW@)|12

dit+1) =¢,d@) — VPE(W(L + 1))

w(i+1) =

b

)

t=1+1, gotoLoop.
Sop. w() is the solution.

At a minimum we have|V Pg(w)|| = 0. Hence the termination scalgrdetermines
the accuracy of the solution obtained. The step gizeontrols the rate of convergence.
Typically, a much larger value gf can be used compared to the steepest-descent gra-
dient algorithm. As the BER surfackg (w) is highly nonlinear, occasionally the search
directiond may no longer be a good approximation to the conjugate gradient direction or
may even point to the “uphill” direction, when the iteration index becomes large. It is thus
advisable to periodically resetto the negative gradient in the above conjugate gradient
algorithm. With this resetting mechanism, this simplified conjugate gradient algorithm has
been shown to converge fast to the theoretical MBER solution, typically in tens of itera-
tions, in many simulation studies. Although in theory there is no guarantee that the above
conjugate gradient algorithm can always find a global minimum point of the BER surface
Pg(w), in practice we have found that the algorithm works well and we have never ob-
served any occurrence of the algorithm being trapped at some local minimum solution.
This is likely to be a consequence of the specific shape of the BER surface. Note that the
BER is invariant to a positive scaling of, i.e. the size ofv does not matter (except zero
size). Thus, the BER surface has an infinitely long valley, and any point at the bottom
of this valley is a true global MBER solution. For an illustration, see the simple example
given in Ref. [22]. Once a weight vectar is near the edge of this infinitely long valley,
convergence to the bottom is extremely fast, since the slope or gradient is large. Note that
once we restrict to the unit-lengtty, the MBER solution becomes unique. As alternatives
to the simplified conjugate gradient algorithm, global optimization algorithms, such as the
genetic algorithm [36,37] and adaptive simulated annealing [38,39], can be used to obtain a
global minimum solution oPg (W), at an expense of considerably increased computational
requirements.
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4, Adaptive minimum bit error rate beamfor ming

Noting y(k) = y(k) + e(k) with y(k) taking values fromy, the pdf of y(k) can be
shown to be explicitly given by

Np

1 ly =392
=—— _ Yexp -2 ——— 34
r) NbZn'GnZWHWqX:; Xp( 202wHw (34)

and the BER can alternatively be calculated with the two “marginal” BERs given by

1
1@M=E2m£w» (35)
g=1
and
1
%W=@ZM#WM (36)
g=1

where the computation is ovgf?) € ). In reality, the pdf ofy(k) is unknown. Hence, we
will adopt the temporal reference technique for supporting the adaptive implementation of
the MBER beamforming.

4.1. Ablock-data based gradient adaptive MBER algorithm

The key to adaptive implementation of the MBER solution is an effective estimate of
the pdf (34). Parzen window or kernel density estimate [24—26] is a well known method
for estimating a probability distribution. Parzen window method estimates a pdf using a
window or block ofy(k) by placing a symmetric unimodal kernel function on each).

Kernel density estimation is capable of producing reliable pdf estimates with short data
records and in particular is extremely natural when dealing with Gaussian mixtures, such
as the one given in (34). In our particular application, it is obvious and natural to choose
a Gaussian kernel function with a kernel widthw/wHw that is similarly in form to the
noise standard deviatian,~vw#w. Given a block ofK training samplegx(k), b1(k)}, a
kernel density estimate of the pdf (34) is readily given by

K

. 1 ly —y0)P
PO =% 2np2wHw kz_lexp< 2p2wHw > (37)
where the radius or scaling paramejgris related to the standard deviatiop of the

system noise. Accuracy analysis of Parzen window density estimate is well documented
in the literature. The pdf estimate (37) is known to possess a mean integrated square error
convergence rate at order &1 [24]. Some examples of accurate pdf estimates using
(37) with short data records can be seen in Refs. [21,22]. In Ref. [25], a lower bound of
pn = (4/3K)Y%0, is suggested. In practice, can often be chosen from a large range of
values.
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From this estimated pdf (37), the estimated BER is given by

K

1 1
Pp(wW) = 5 (Pry (W) + Pr, W) = 2 3 (0 (8" W) + 2(3]7 w)) (38)
k=1
with
br.1(k)yr(k
2B w) = sgnbg.1( L)YR( ) (39)
o' WHW
and
bra(k))y; (k
8% w) = ML)M) (40)
oV WHW

The gradient ofPz (w) can readily be calculated with

1
2K /27 pyuvVWHwW

xZexp( zyf(H) >sgr(b (k))(yR( Wy (k)) (41)

V Pg, (W) =

and
1
K27 ppvWHwW

xZexp( zpyz’(; )sgr(b (k))(yl(\)N jx(k)). (42)

Upon substitutingv Pz (w) by V Pz (w) in the conjugate gradient updating mechanism, a
block-data based adaptive algorithm is obtained. The stepséred the radius parameter

pn are two algorithmic parameters. Againand p,, control the rate of convergence, and
the radius parameter, also helps to determine the accuracy of the pdf and hence BER
estimate.

VP, (W) =

4.2. A stochastic gradient based adaptive MBER algorithm

In the Parzen window estimate (37), the kernel width or scaling paramgtén?w
depends on the beamformer weight veatorin a general density estimate, there is no
reason why the scaling parameter should be chosen in such a way except that we notice
the dependency of the scaling parametewtim the true density (34). However, the BER
is invariant tow’w. To fully take advantage of this fact, we propose to used a constant
width p, in density estimate. One advantage of using a constant widthather than a
variable one, vWHw, in the density estimate is that the gradient of the resulting estimated
BER has a much simpler form, which leads to considerable reduction in computational
complexity. This is particular relevant in the derivation of stochastic gradient updating
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mechanisms. Adopting this approach, an alternative Parzen window estimate of the true
pdf (34) is given by

N ly = (k)12
p(y)= K2np? ’;eXp(—T) (43)
and an approximation of the BER is
N 1. _ 1 &
Pe(w) = 5 (Pey W)+ Pe, (W) = 53 > (08" (W) + 0 (2" w)) (44)
k=1
with
br1(k k
ggc)(w) _ sgn( R,1p( ) yr (k) (45)
and
bri(k k
é‘;;k)(w): sgn(by,1(k))yi( ). (46)

Pn

This approximation is valid, provided that the wigth is chosen appropriately.
In order to derive a sample-by-sample adaptive algorithm, consider a single-sample
estimate ofp(y), namely:

— v(k)?
exp(—ib) Z/y)g ) ) (47)

Conceptually, from this one-sample pdf “estimate”, we have a one-sample or instantaneous
BER “estimate”Pg (w, k). Using the instantaneous stochastic gradient of

50y k) =
p(y. k) 202

n

2
20k

2
) (= sgribr 1 (0) exp(—£50) + j gy, (k) exp(—5)))
V Pg(W, k) = ;mp " x(k) (48)

gives rise to a stochastic gradient adaptive algorithm, which we referred to as the LBER
algorithm:

(9tbr 1)) exp(—£2) —  sqriby 1)) exp(— 1)

k+1) =w(k k),

Wik + 1) =w(k) + o x(k)

(49)

c1 =w"(k + Dp. (50)

wik +1) = |C—1|W(k 4 1), (51)
c1

where the adaptive gain and the kernel widthp,, are the two algorithmic parameters

that have to be set appropriately. Specifically, they are chosen to ensure adequate perfor-
mance in terms of convergence rate and steady-state BER misadjustment. Note that there
is no need to normalize the weight vector to a unit-length after each update. This LBER
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algorithm has a similar computational complexity to the low-complexity LMS algorithm,
which has a weight updating equation given by

W(k + 1) = wW(k) + p(b1(k) — y(k)) X (k). (52)

Note that the rotation operation (50) and (51) are also required for the LMS beamforming
in order to apply the decision rule (10).

5. Simulation study
5.1. Time-invariant system

The example consisted of four signal sources and a three-element linear antenna ar-
ray. The array element spacing wg& with A being the wavelength. Figure 1 shows the
locations of the desired source and three interfering sources graphically. The simulated
channel conditions werg; = «; + jO for 1< i < 4, with«; > 0 so chosen to provide the
required received signal powers. Figure 2 compares the BER performance of the MBER
beamforming assisted receiver with that of the MMSE beamforming assisted receiver un-
der four different conditions: (a) the desired user and all the three interfering sources had
equal power, (b) the desired user and the interfering users 2 and 3 had equal power but the
interfering source 4 had 6 dB more power than the desired user, (c) all the three interfering
sources had 2 dB more power than the desired user, and (d) the interfering sources 2 and 4
had 2 dB more power, while the interferer 3 had 6 dB more power, than the desired user.
The MMSE solution was calculated using (12) while the MBER solution was determined
numerically using the simplified conjugate gradient algorithm presented in Section 3. For
this example, the superior performance of the MBER beamforming technique over the
MMSE scheme is evident. It can be seen from Figs. 2a—2c that, as the interference signals
get stronger, the MMSE beamformer’s performance deteriorates quickly and exhibits an
irreducible BER floor. In contrast, the MBER solution shows some degree of robustness to
the near-far effect. The first attempt to explain this phenomenon was made by examining
the beam pattern used in traditional beamforming.

' desired

interferer | source ]

source 2 interferer

source 3

interferer
source 4

Fig. 1. Locations of the desired source and the three interfering sources with respect to the three-element linear
array havingh/2 element spacing, whefeis the wavelength, for the time-invariant system.



S Chen et al. / Digital Sgnal Processing 15 (2005) 545-567 557

log10(Bit Error Rate)
& A
§o
&
L
log10(Bit Error Rate)

'

8 | MMSE —e %

MBER — ‘. \ \
&
-10 : : i : -10 T —
0 5 10 15 20 25 0 5 10 15 20 25 30 35
SNR (dB) SNR (dB)
(a) (b)
0 0
0....' q
Py coses o L oreses ossesensasssessssesest
— Q —_
2 % 2
4 ® B
s 4 Y - -4
S ® S
5 O 5
@ | @
s © &) s
> | >
ke, 9 ke
-8 IMMSE —e— -8 IMMSE —e—
MBER & o MBER —o--
-10 . - : -10 i i
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
SNR (dB) SNR (dB)

© (d)
Fig. 2. Comparison of the bit error rates of the MMSE and MBER beamformers for the time-invariant system:

(@) SIR =0dB fori =2,3,4; (b) SIR =SIR3=0dB and SIR = —6 dB; (c) SIR = -2 dB fori =2, 3, 4;
and (d) SIR = SIRy = —2 dB and SIR = —6 dB.

The discrete Fourier transform of the beamformer weights, also referred to as the beam
pattern, is given by

L
F©) =) wexp—jwi(®)), (53)
=1
which describes the response of the beamformer to the source arriving ab ahgteadi-
tional beamforming, the magnitude 6f(0) is used for characterizing the performance of
a beamformer. Using the amplitude response alone, however, can be misleading, since
both the magnitude and phase Bff) should be used together for characterizing the
beamformer. Figure 3 shows the beam patterns for the MMSE and MBER beamform-
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Fig. 3. Comparison of the MMSE and MBER beam patterns given SNIR dB and SIR=0dB fori =2, 3,4
for the time-invariant system. The weight vector of the MBER solution is scaled to have the same length as the
MMSE solution.

ers, respectively, given SNR 15 dB, SIR =0 dB fori = 2, 3, 4, which illustrates a
condition represented in Fig. 2a. Figure 4 depicts the corresponding beam patterns given
SNR=20dB, and SIR= —2 dB fori = 2, 3, 4, which represents a case of the conditions
shown in Fig. 2c. The two beam patterns shown in Fig. 3 do not have big differences and
thus it is difficult to explain from the beam pattern why the MBER solution has a much
better BER performance than the MMSE scheme, as can be seen from Fig. 2a. Moreover,
the beam patterns of Figs. 3 and 4 are similar, which could not explain why the MMSE
scheme should have a high BER floor, as shown in Fig. 2c.

The pdf of the beamformer’s output fully characterizes the true performance of the
beamformer. Figures 5 and 6 depict the full conditional p@df| + 1+ ), the two marginal
conditional pdfsp(yr| + 1+ j) andp(y;| + 1+ j) together with the subsét, . for the
MMSE and MBER beamformers under the same conditions as given in Figs. 3 and 4,
respectively. In these two figures, the beamformer’s weight vector has been normalized
to a unit length. It can be seen from Fig. 5 that the minimum distance ¥em to the
decision boundaries for the MMSE case (approximately 0.3) is smaller than that for the
MBER case (approximately 0.6), reflecting the fact that the MBER beamformer has a
better BER performance than the MMSE one as shown in Fig. 2a. When the interference
power increases to give rise to SIR —2 dB fori = 2, 3, 4, the MMSE beamformer has
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Fig. 4. Comparison of the MMSE and MBER beam patterns given SNIR dB and SIR= -2 dB fori =2, 3,4
for the time-invariant system. The weight vector of the MBER solution is scaled to have the same length as the
MMSE solution.

lost linear separability, as can be clearly seen in Fig. 6a, where the two circles mark the
points of Y, 4 that have just crossed over to the wrong sides of the decision boundaries.
This explains the irreducible high BER exhibited in Fig. 2c for the MMSE beamformer.
In contrast, a desired linear separability is maintained for the MBER beamformer even
under such an adverse condition. At the extremely adverse condition given in Fig. 2d, the
underlying system becomes linearly inseparable, and any linear beamformer will exhibit a
high BER floor. In such a situation, nonlinear beamforming may be employed to achieve
an adequate performance at a cost of increased complexity [40].

Let us now study the performance of the block-data based gradient adaptive MBER al-
gorithm employing the conjugate gradient updating mechanism presented in Section 4.1.
The effect of the block siz& on the performance of this block-data based adaptive MBER
algorithm is investigated in Fig. 7, given the condition that the desired user and the inter-
fering sources 2 and 3 had an equal power, while the interfering source 4 had a 6 dB higher
power than the desired user. Note that for this example, the signal’ seintains 256
states, calculated using the formwa = 4 with M = 4. It is seen that with a short block
length of K = 100, the BER performance of the block-data based adaptive MBER solu-
tion can closely approximate the performance of the theoretical MBER solution. Given
SNR= 17 dB, SIR = SIR; =0 dB and SIR = —6 dB and with two different initial



560 S Chen et al. / Digital Sgnal Processing 15 (2005) 545-567

06—

05
0.4
“\
- AN
034 .‘\\?\\\
’ SN \‘
o
0.2 N
“— QKK
2 %' ":“‘ 23R
D027 25 SN NN
RIS

Im[y] Rely]
(a) MMSE beamforming

08 ﬂ'\\
06+ A‘\\
04+ i Il’“
il N
g i

Imly] Rely]
(b) MBER beamforming

Fig. 5. Conditional probability density functiopgy| + 1+ j) (surfaces), marginal conditional probability density
functionsp(ygl + 1+ j) and p(ys| + 1+ j) (curves), and signal subse}s. 1 (dots) for the time-invariant
system. SNR=15 dB and SIR=0 dB fori = 2, 3, 4. The beamformer’s weight vector is normalized to unit
length.



S Chen et al. / Digital Sgnal Processing 15 (2005) 545-567 561

) w \,
i M /I i
i $
i }'ﬂu“wuﬂs\

pdf

Im[y] Rely]
(a) MMSE beamforming

Im[y] Rely]
(b) MBER beamforming

Fig. 6. Conditional probability density functionpgy|+ 1+ j) (surfaces), marginal conditional probability density
functionsp(yg| + 1+ j) and p(y7| + 1+ j) (curves), and signal subse}s. ; (dots) for the time-invariant
system. SNR=20 dB and SIR= —2 dB fori = 2, 3, 4. The beamformer’s weight vector is normalized to unit
length. Circles in (a) indicate the points .  that lie in the wrong sides of the decision boundaries.



562 S Chen et al. / Digital Sgnal Processing 15 (2005) 545-567

2 bR
\%

3 R
T 4 h
©
x
5 ° ‘.
wo g
a
S -7 b block:100 Ry
2 block:200 ----e--- %
! MBER —— Y

. M

-10

6 8 10 12 14 16 18 20 22
SNR (dB)

Fig. 7. Effect of block size on the performance of the block-data based gradient adaptive MBER algorithm of
Section 4.1 for the time-invariant system. $IR SIR3 =0 dB and SIR = —6 dB.

1e-1 \/\

1e-2 N

% 1e-3 MMSE E
o (@) ——
5 1es \ \ (b) —— |
£ \ \ MBER -—=--
w
& 1e5
w@}\
1e-6
1e-7

0 5 10 15 20 25 30
iteration

Fig. 8. Convergence rate of the block-data based gradient adaptive MBER algorithm of Section 4.1 for the time-
invariant system with a block size & = 400, SNR= 17 dB, SIR = SIR3 =0 dB, and SIR = —6 dB, and

given (a): initialw = wymse, 1« = 0.3 andp?2 = 302 ~ 0.06; and (b): initialw = [0.0 + j0.1 0.1+ j0.0 0.1+

j0.017, u=0.7, andp? = 30,2 ~ 0.06.

weight conditions, Fig. 8 illustrates the convergence rates of the block-data based gradient
adaptive MBER algorithm. From Fig. 8, it can be seen that this block-data based adaptive
algorithm converges rapidly. The step sjzeand radius parameter, used were chosen
empirically to ensure a fast convergence speed. The influence of the scaling paygmeter
on the performance of the block-data based adaptive MBER algorithm was investigated in
Fig. 9 under the same condition given in Fig. 8b. It can be seen that the performance of the
algorithm is not overly sensitive to a large rangepﬁfvalues.

The performance of the stochastic gradient based adaptive MBER algorithm portrayed
in Section 4.2 is investigated next. Figures 10a and 10b depict the learning curves of the
LBER algorithm given two different initial weight conditions, respectively. Two kinds of
learning curves are shown, obtained respectively by the LBER algorithm with training and
with decision-directed (DD) adaptation in whibh(k) is substituted by its estimata (k).
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It can be seen that this stochastic gradient adaptive MBER algorithm converges reasonably
fast. In Fig. 9a, the initial BER was lower than 1) which was sufficient low for the

DD adaptation. For the condition specified in Fig. 9b, however, 140 samples of training
were used first to lower the BER before it switched to the DD adaptation. The adaptive
gainu and kernel widthp,, were determined empirically to ensure a good performance in
terms of convergence rate and steady-state BER misadjustment. As expected, initial weight
condition affects convergence speed since the BER is a complicated nonlinear function of
the weight vector. As a comparison, the learning curves of the LMS algorithm were also
shown in Fig. 10. As expected, the BER of the LMS beamforming assisted receiver cannot
be lower than that of the MMSE solution.

5.2. Sow-fading system

The locations of the four users were identical to those shown in Fig. 1 but the an-
tenna array consisted of fouy2-spacing elements. The magnitudes of the 4 chantels
1 <i <4, were independent Rayleigh processes and the associated root mean powers of
A; were/0.5+ j+/0.5, for 1< i < 4. Continuously fluctuating fading was used at a nor-
malized Doppler frequency of 16, providing a different fading magnitude and phase for
each transmitted symbol. The transmission frame structure consisted of 40 training sym-
bols followed by 400 data symbols. The performance of the LBER and LMS beamforming
assisted receivers are compared in Fig. 11, where the superior performance of the LBER
algorithm over the LMS one is evident. Note that this was not an over loaded system, since
the number of the users was four and the number of the receiver antennas was also four.

6. Conclusions

An adaptive MBER beamforming technique has been developed for QPSK wireless sys-
tems, where the users transmissions are synchronized. It has been shown that the MBER
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beamforming assisted receiver exploits the system'’s resources more intelligently than the
standard MMSE beamforming assisted one and, consequently, can achieve a better perfor-
mance in terms of a lower BER. Therefore, by employing the MBER beamforming assisted
receiver, the achievable system capacity is enhanced. Simulation results also suggest that
the MBER solution is more robust to the near-far effect, compared with the MMSE scheme.
Adaptive implementation of the MBER beamformer has also been addressed. A block-data
based conjugate gradient adaptive MBER algorithm has been shown to converge rapidly,
while requiring a reasonably small block size for accurately approximating the theoretical
MBER solution. A stochastic gradient adaptive MBER algorithm, called the LBER, have
also been derived, which has been shown to have a reasonably fast convergence speed in
simulation. Furthermore, this LBER algorithm has a low computational complexity that is
comparable to the simple LMS algorithm. In this study, we assume narrow-band channels
and deal with narrow-band beamforming (space processing only) assisted receiver. Further
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Fig. 11. Comparison of the bit error rates of the LMS and LBER beamforming assisted receivers for the slow-
fading system.

work is required to investigate the general case of wideband channels and to study broad-
band beamforming (space-time processing) assisted receiver. Finally, we would also like
to point out that the MBER beamforming solution derived for synchronous systems can be
extended to asynchronous systems by considering a detection window of three symbols,
where the two symbols of the asynchronous interferer overlap with the desired symbol of
the reference user. Naturally, this increases the detection complexity. Note that this tech-
nique of using a window of three symbols, namely the previous, current and next symbol
is a method widely adopted in asynchronous CDMA multiuser detection [41].
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