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1. Introduction

In certain communication systems, training is infeasible and blind equalisation provides a practical means for combating
the detrimental effects of channel dispersion in such systems. Since no training sequence is needed, blind equalisation in
general improves system bandwidth efficiency. For systems employing high-throughput quadrature amplitude modulation
(QAM) signalling [1], the constant modulus algorithm (CMA)-based equaliser [2-5] is a popular low-complexity equalisation
scheme. The CMA is known to be very robust to imperfect carrier recovery. Many studies have investigated the performance
and convergence behaviour of the CMA, see for example the review in [6]. A serious problem associated with the CMA is that
its steady-state mean square error (MSE) may not be sufficiently low for the system to achieve an adequate symbol error
rate (SER) performance. A possible solution is to switch to a decision-directed (DD) adaptation after the convergence of the
CMA, which should be able to minimise the residual CMA steady-state MSE [7] and therefore achieves a performance close
to the minimum MSE (MMSE) solution. However, as pointed out in [8], a successful switch to the DD adaptation requires
that the CMA'’s steady-state MSE must be sufficiently small. In practice, such a low level of MSE may not be achievable by
the CMA scheme. An alternative is to adopt a composite cost function, which consists of the CMA cost function and the
decision-based MSE [9]. However, the weighting of the two component cost functions must be carefully chosen, which can
be difficult to do.

The authors of [8] have suggested an interesting solution to overcome the above-mentioned problem of the CMA-based
blind equalisation. Instead of switching to a DD adaptation after the CMA has converged, they have proposed to operate a
DD equaliser in parallel with a CMA equaliser. The weight adaptation of the DD equaliser follows that of the CMA equaliser
and, to avoid error propagation due to incorrect decisions, the DD adjustment only takes place if the CMA adaptation
is deemed to have achieved a successful adjustment of the equaliser weight vector with a high probability. At a cost of
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slightly more than doubling the complexity of the simple CMA, this combined CMA and DD equaliser is capable of achieve
a dramatic improvement in equalisation performance over the CMA [8]. More recently, a novel combined CMA and soft
DD (SDD) blind equaliser has been proposed [10-12], which achieves a faster convergence and has simpler implementation
than the combined CMA and DD scheme of [8]. This combined CMA and SDD scheme operates a CMA-based equaliser and
the last-stage SDD equaliser of [13] in a truly parallel manner. It is capable of achieving an equalisation performance that
is close to the MMSE equalisation solution based on the perfect channel information and, thus offers a low-complexity
high-performance technique for blind equalisation of high-order QAM channels.

For a stochastic gradient adaptive algorithm, such as the training-based least mean square (LMS), the step size must be
sufficiently small to avoid divergence. Within the range of step size values that ensures convergence, a smaller step size
achieves better steady-state performance at the expense of slower convergence speed, while a larger step size improves
convergence speed with poorer steady-state performance [14]. A constant step-size LMS algorithm thus has to trade off
between the steady-state performance and convergence speed when choosing the step size value. In attempts to optimise
both the steady-state performance and convergence speed, techniques based on fuzzy logic (FL) tuning of LMS’s step size
have been developed [15-19]. An application of using FL-based step-size algorithm to blind source separation is given in
[20]. The CMA is a stochastic gradient blind adaptive algorithm, and its step size has to be chosen with extreme care, much
more so than the training-based LMS algorithm. While there exist some works on variable step-size CMA techniques [21,22],
we are not aware of any published work on FL tuning of CMA'’s step size for blind equalisation, certainly not for application
to high-order QAM blind equalisation, which is a much more difficult task than blind equalisation of binary phase shift
keying or quadrature phase shift keying channels.

Against this background, this contribution investigates the fuzzy step-size CMA in the context of high-order QAM blind
equalisation. Specifically, an FL tuning unit is designed to adjust the step size of the CMA. This fuzzy step-size CMA is also
combined with the SDD scheme to obtain the concurrent FL assisted CMA and SDD blind equaliser. The benefits of using this
FL-based step size approach are studied using simulation, and the results obtained show that the FL assisted CMA and SDD
scheme achieves faster convergence over the constant step-size CMA and SDD scheme. The paper is organised as follows.
Section 2 presents the channel signal model and the equalisation structure. In Section 3, the CMA as well as the concurrent
CMA and SDD scheme are briefly summarised. This is followed with a detailed description of the FL assisted CMA. The
concurrent FL assisted CMA and SDD blind equaliser is then introduced. Section 4 investigates the achievable performance
of the CMA, the CMA and SDD, the FL assisted CMA as well as the FL-assisted CMA and SDD-based blind equalisers, using
the performance of the MMSE equalisation solution given the perfect channel information as the benchmark. The paper
concludes at Section 5.

2. Equalisation signal model

Consider the frequency selective channel, whose symbol-rate channel impulse response (CIR) is denoted by ccr =
[cocq-- ~cnch_1]T. Here, ng, is the length of the CIR and cj, 0 <i < ng, — 1, are complex-valued CIR taps. The symbol-rate
received signal sample x(k) is expressed by [23]

Nep—1

x(k) = Z cistk — i) +e(k), (1)

i=0

where e(k) is a complex-valued additive white Gaussian noise with E[|e(k)|®] = 2052, and s(k) is the k-th transmitted symbol
with the symbol energy E[|s(k)|*] = o:2. The modulation scheme is assumed to be the M-QAM and therefore s(k) takes the
value from the symbol set

Sé{si,lzui-i-julﬂéi,lém}, (2)

where j 2 /=1, the real-part symbol R[s; ;] = u; = 2i — /M — 1 and the imaginary-part symbol Ssifl=u=2— VM —1.
The channel signal-to-noise ratio (SNR) is defined as

nchfl
SNR 2 ( Z |ci|203>/2a§. 3)
i=0
The equaliser has a length neq, and its output is given by

Neq—1

vy =" wixk—i)=wHx(k), (4)

i=0

where the equaliser’s weight vector w=[wg wq --- wneq_1]T and the channel observation vector x(k) = [x(k) x(k—1) - - - x(k—
Neq + 1)]7. The equaliser output y(k) is passed to the decision device to produce an estimate S(k — 7) of the transmitted
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symbol s(k — 7), where 0 < 7 < Tax 2 Neq + Ncp — 2 is the equaliser’s decision delay. For the blind equalisation application,
the decision delay 7 is unknown.
It is straightforward to verify that the equaliser’s input vector x(k) can be expressed as

x(k) = Cs(k) + e(k), (5)

where the noise vector e(k) = [e(k)e(k —1)---e(k —neq + 1)]7, the transmitted symbol vector s(k) = [s(k)s(k — 1) ---s(k —
Tmax)]T and the Neq X (Tmax + 1) CIR matrix C has a Toeplitz form

co €1 e Cnch_l 0 e 0
Al O co cee Cpg—1
C= o =[€0 €1 -+ Crpy ], (6)
: . . . 0
o ... 0 Co c1 “r Cngy—1

with ¢;, 0 < i < Tmax, denoting the i-th column of C. With the perfect channel information, the optimal MMSE equalisation
solution that minimises the MSE Jysg (W) 2 Ellsk — v) — y(k)|?] is given by [14]

2 -1
WMMSE = (CCH + z%lneq> Cr, (7)
Os
where I, denotes the neq x neq-dimensional identity matrix.

Before blind adaptation, the middle tap of the equaliser weight vector w(0) is initialised to 1 + jO and the rest of the
weights are set to 0+ jO. For the equaliser with the weight vector w and a (unknown) decision delay 7, define the combined
equaliser and channel impulse response as

A
' =[fofi frpul =W"C, (8)
and let
. _ " 9
Imax argogrin;éax'f’l 9)

The equaliser’s decision delay is in fact T =inax. In simulation, the quality of equalisation can be judged using the maximum
distortion (MD) measure defined by

Tmax

MDw) = (Dm - |fimax|)/|fimax|. (10)
i=0

Alternatively, the equalisation performance can be assessed using the MSE criterion given by

202
JMsE(W) éo’f((] _WHCT —chi) +wh <CCH + J; lneq>w). (11)

N

Ultimately, the SER can be simulated to assess the equalisation performance.
3. Blind equalisation algorithms
3.1. Constant modulus algorithm

At the sample k, given the equaliser output y(k) = w" (k — 1)x(k), the CMA adapts the equaliser's weight vector w
according to [2,3]

2

ey =y (A —[y®]), (12)
w(k) =w(k — 1) + pemag™ (k)x(k),

where A = E[|s(k)|*]/E[|s(k)|?] and ptcma is the step size of the CMA. Typically, a very small pcva has to be used to ensure

convergence. The CMA is known to be very robust, and the standard convergence analysis of the CMA can be found for
example in [6]. The computational complexity of this CMA is summarised in Table 1.
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Table 1
Computational requirements per weight update, where neq is the length of the equaliser and the symbol rate is Ny, times faster than the operational rate
of the FIS.

Algorithm Multiplications Additions el*} evaluations
CMA 8 X Neq + 6 8 X Neq -
CMA + SDD 12 X neq +29 14 X neq + 21 4
FIS 2+22/Ngm 2+ 22/Ngm 6/Nsm
\ Im
equaliser
o oio o|lo oio o * output
: : symbol
o o o o o o o o © t
: i poini
""""""""" 3 Si/ decision
o oio oflo%0 o o ! region
Sii
o oio of|lo "olo o
» Re

Fig. 1. Local decision region partition for soft decision-directed adaptation with 64-QAM constellation.

3.2. Combined CMA and SDD scheme

Let the equaliser’s weight vector be split into two parts, yielding w = w, + wy. The initial w, and wy are simply set to
w.(0) = wy(0) = 0.5w(0). In particular, the weight vector w, is updated using the CMA of (12) by substituting w, in the
place of w. The weight vector wy by contrast is updated using the SDD scheme [10-12], which has its root in the blind
equalisation scheme of [13]. Specifically, the complex phasor plane is divided into the M/4 square or rectangular regions,
as illustrated in Fig. 1, and each region &;; contains four symbol points as defined by

Sigi={srm, r=2i—1,2i, m=2l—1,2l}, (13)

where 1<i,1 < +/M/2. If the equaliser’s output y(k) € S;;, a local approximation of the marginal probability density func-
tion (PDF) of y(k) is given by [10-12]

2i ly () —sr.m |2
p(w,y()~ > Z I (14)

r211m211

where p defines the cluster width associated with the four clusters of each region S;;. The SDD algorithm is designed to
maximise the log of the local marginal PDF criterion E[Jimap(W, y(k))], where Jimap(W, y(k)) = plog(p(w, y(k))), using a
stochastic gradient optimisation. That is, wy is updated according to [10-12]

d k—1), yk
wa(k) =wq(k — 1) + fspp JLM""(Wa(wd )-y0) (15)

where uspp is the step size of the SDD, and

2i —sr.m|?
3 Juap(w, y(k)) 1 Z Z e ‘y(k)zip‘(sr,m—y(k))*x(k), (16)

oW,
d N i i m=21-1

with the normalisation factor

ly®)=sr.m|?

Z Ze T (17)

r=2i—1m=2I-1
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Fig. 2. Schematic of the fuzzy inference system for tuning the step size of the CMA. The operational rate n of the FIS is Nsy, times slower than the symbol
rate k.
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Fig. 3. Membership functions over the universe of discourse for |&,|%, where the fuzzy variable X =S, M or L.

The computational complexity of this combined CMA and SDD scheme (CMA + SDD) is also given in Table 1. The choice
of the cluster width p, defined in the context of the local PDF (14), should ensure a proper separation of the four clusters
of S;; [13]. As the minimum distance between the two neighbouring constellation points is 2, o is typically chosen to
be less than 1. The performance of the algorithm is not overly sensitive to the value of p employed and an appropriate
p can easily be chosen from a large range of values. More specifically, when the objective of equalisation is accomplished,
y(k) ~ s(k— 1) +é(k), where é(k) is Gaussian distributed with zero mean. Therefore, the value of p is related to the variance
of é(k), which is Zaezw”w. Thus, for high SNR situations, small p can be used, while for low SNR cases, large p is preferred.
Soft decision nature becomes explicit in (16), because rather than committing to a single hard decision Q[y(k)], where
Qle] denotes the quantisation operator, as the hard DD scheme would, alternative decisions are also considered in the local
region S; that includes Q[y(k)], and each tentative decision is weighted by an exponential term ef*}, which is a function of
the distance between the equaliser’s soft output y(k) and the tentative decision s; ;. This soft decision nature substantially
reduces the risk of error propagation and achieves faster convergence, compared with the hard DD scheme [10-12].

3.3. Fuzzy step-size CMA

For the fuzzy step-size CMA, we choose the fuzzy inference system (FIS) of Fig. 2, which maps the two input variables,
len|? and 8|en|?, into an appropriate step size ji,. The operation of the FIS is based on the principle of fuzzy logic [24,25].
The two input variables are defined respectively as

1 MNemt1
2
lenl? = —— > |etk=D|", (18)
Nsm =0

2 = lenl® — len—1l?, (19)

where n = |k/Ngm | with |e] denoting the integer floor operator, and Ny, is the short-term average length. Note that the FIS
operates once every Ng, samples, and the output u, is used as the step size of the CMA for the subsequent Ny samples,
namely,

Slén

McMmA = Un, n-Negm <k<@+1): Ngm. (20)

The required initial conditions can be set to |gg|2 =0 and fg = tmin, Where fimin represents the smallest value for the step
size.

The two crisp input variables are transformed separately to the respective degrees, to which they belong to the corre-
sponding fuzzy sets via appropriate membership functions (MBFs). The fuzzy sets used to partition the universe of discourse
for |g,|? are labelled as small (S, ), medium (M) and large (L), and their associate MBFs are shown in Fig. 3, where Sgc,
Mg and Lg. are the centroids of S¢, Mg and L, respectively. The Gaussian MBFs

_ (X*Xac)2
my, (x) =e  2re (21)
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Fig. 4. Membership functions over the universe of discourse for §|¢,|*, where the fuzzy variable X=N, Z or P.

Table 2
Fuzzy sets for crisp .
Fuzzy set Su M, Ly
Centroid Mmin 2 min Mmax = 4/Amin
Universe of discourse [Mmins Hmax]
m dlenl?
n
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Fig. 5. Fuzzy rule table for the step size pp.

are used in this study, where X, represents Sg, Mg or L, with the exception that mi, (x) =1 for x > a. Similarly, the fuzzy
sets used to partition the universe of discourse for §|e,|? are labelled as negative (Ns), zero (Zs) and positive (Ps), with the
related MBFs shown in Fig. 4, where Ng., Zsc and Ps. are the centroids of Ngs, Zs and Py, respectively. Again the Gaussian
MBFs

(X500
My, (x) =€~ 2 (22)

are used, where X; represents Ngs, Zs or Ps. But we have my,(x) =1 for x < —b and mp;(x) =1 for x > b.

The universe of discourse for the step size u, is defined by [4min, #max], and the fuzzy sets used to partition it are
labelled as small (S, ), medium (M) and large (L, ), as is summarised in Table 2. The fuzzy inference engine constructs a
set of fuzzy IF-THEN rules. Since there are 3 fuzzy sets for each of |g,|? and §|e,|2, the number of fuzzy IF-THEN rules
is 9. These fuzzy IF-THEN rules are shown in Fig. 5. Rule 1, for example, reads like: IF |g,|? is S; AND 8|en|? is N5 THEN
Mn is Ly. Let mx, (unlil) be the MBF value at location uy[i], where 1 <i < 9. The 9 locations uy[i], 1 <i<9, are specified
by Fig. 5 and Table 2. For example, from Fig. 5 and Table 2, we have w,[1] = umax. The min operator is applied to truncate
the output fuzzy set for each rule. For instance, according to the fuzzy rule table of Fig. 5, the MBF value at u,[1] is

mx,, (un[11) = min{ms, (1&x|?), mn; (81€nl?)}, (23)

and so on. The defuzzification method used to obtain a crisp value for the step size is the following centroid calculation

Y0 iali] - mx, (ualil)
>0y mx, (tealil)

which returns the centre of area under the aggregated MBF curve.

The extra computational complexity imposed by this FIS is given in Table 1. Suitable values for the short-term average
length, Ngm, can typically be chosen in the range of 10 to 20. The range of |&,|? is simply a ~ max |e(k)|, and our experience
suggests that the variance of the Gaussian MBFs for |e;|> can be set to p. = (0.01a)2. For better efficiency, Psc should
be relatively small, and we find by experiment that b = 0.01a to 0.001a are appropriate depending on the size of QAM

(24)

n
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Fig. 6. Output constellation: (a) the MMSE equaliser, (b) the CMA equaliser, (c) the CMA + SDD equaliser, and (d) the CMA equaliser with —27° phase
compensation, for the 64-QAM example with the channel length ne, =5, equaliser length neq =23 and SNR =38 dB.

constellation M. The variance of the Gaussian MBFs for §|&,|?> can be set to ps = (0.2b)2. The minimum value of the
step size [min is simply chosen to be the value for the constant step-size CMA which produces satisfactory performance
in terms of both steady-state error and convergence speed. These choices of the FIS’s parameters have been verified by
extensive simulation study.

3.4. Combined fuzzy step-size CMA and SDD scheme

The above fuzzy step-size CMA (FL-CMA) can be combined with the SDD adaptation to provide the concurrent fuzzy
step-size CMA and SDD scheme (FL-CMA + SDD). Note that it is not necessary to adopt a variable step size strategy for
the SDD adaptation, since the “error” or the stochastic gradient used for correcting the weights is well “normalised” by the
normalisation factor Zy of (17).

3.5. Alternative partition of blind equaliser

In the above derivation of the concurrent CMA and SDD blind equaliser, we adopt the weight vector partion of w. =
wy = 0.5w. A more generic partition is
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Fig. 7. Convergence performance comparison of the CMA and CMA + SDD, in terms of: (a) the MSE and (b) MD measure, averaged over 10 runs, for the
64-QAM example with ne, =5, neq =23 and SNR = 38 dB. The step size of the CMA is tcma =2 x 10~7, while the step size and the cluster width of the
CMA + SDD are jspp =2 x 107 and p =0.6.
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Fig. 8. Symbol error rate comparison of the three equalisers for the 64-QAM example with n¢, =5 and neq = 23.

w=aw. + (1 — a)wy, (25)

where 0 <« < 1. It is clear that @ =1 is corresponding to a pure CMA blind equaliser while o = 0 is related to a pure SDD
blind equaliser. Depending on the channel condition, appropriate value of @ may be chosen to yield a potentially better
equalisation performance. However, this appropriate weight value can be difficult to find.

4. Simulation study
4.1. 64-QAM example

For this example, the modulation scheme was 64-QAM, the channel length was n,y, =5 and the CIR ccg was given by

[—0.2 + jO.3 —0.5+ j0.4 0.7 — j0.6 0.4+ j0.3 0.2+ j0.1]". (26)

The equaliser length was chosen to be neq = 23. With w(0) initialised to all zero elements except the middle tap to 1+ jO,
the actual decision delay of the blind equaliser was 7 = 13. Given SNR = 38 dB, Fig. 6(a) shows the equaliser output
constellation for the MMSE equaliser with t = 13, while Figs. 6(b) and 6(c) depict the equaliser output constellations for
the CMA and CMA + SDD blind equalisers, respectively, after convergence. The appropriate step size of the CMA was found
empirically to be ftcva =2 x 1077, while zspp =2 x 1074 and p = 0.6 were found appropriate for the CMA + SDD. From
Fig. 6(b), it can be seen that the CMA introduced —27° phase rotation. With a —27° phase compensation, the output
constellation of the converged CMA blind equaliser is re-plotted in Fig. 6(d). The learning curves of the blind CMA and
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Fig. 9. Convergence performance comparison of the CMA and FL-CMA, in terms of: (a) the MSE and (b) MD measure, averaged over 10 runs, for the 64-QAM
example with ne, =5, neq =23 and SNR =38 dB.
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Fig. 10. Convergence performance comparison of the CMA and FL(10,000)-CMA, in terms of: (a) the MSE and (b) MD measure, averaged over 10 runs, for
the 64-QAM example with ne, =5, neq =23 and SNR = 38 dB. The FL(10,000)-CMA uses the fuzzy step size for the first 10,000 samples and then switches
to a constant step size.
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Fig. 11. Convergence performance comparison of the CMA + SDD and FL(10,000)-CMA + SDD, in terms of: (a) the MSE and (b) MD measure, averaged over
10 runs, for the 64-QAM example with ne, =5, neq =23 and SNR = 38 dB. The FL(10,000)-CMA uses the fuzzy step size for the first 10,000 samples and
then switches to a constant step size.

CMA + SDD equalisers, averaged over 10 runs and quantified in terms of the MSE as well as MD measures, are depicted
in Fig. 7 with the MMSE solution as the benchmark, where the MSE of the CMA was calculated with the —27° phase
compensation. The SER performance of the three equalisers, namely, the MMSE, the CMA and the CMA + SDD, are compared
in Fig. 8, where again the CMA had the —27° phase compensation.
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Fig. 12. Output constellation: (a) the MMSE equaliser, (b) the CMA equaliser with —29° phase compensation, and (c) the CMA + SDD equaliser, for the
256-QAM example with the channel length n¢, = 3, equaliser length neq = 15 and SNR = 40 dB.

The FL tuning unit for the step size of the CMA was next investigated. For 64-QAM
metx|8(k)|2 ~ max{!s(k)]z(A - |s(k)‘2)2} ~10°, (27)

and, therefore, we set the centroid of L, to a = 10°> and chose b = 0.01a = 103 as the centroid of Ps. The variances of
the Gaussian MBFs were set to p, = (0.01a)? and ps = (0.2b)? for |&,|?> and &|e,|?, respectively. The short-term average
length for calculating |s,|?> was chosen to be Nsym = 20, while ftmin =2 x 1077 was adopted as the smallest value for f;.
Given SNR = 38 dB, the convergence performance of this fuzzy step-size CMA, labelled as the FL-CMA, is compared with
that of the CMA with a constant step size jcva =2 x 1077 in Fig. 9, where it can be seen that this FL-CMA did achieve a
significantly faster convergence. However, its steady-state performance was poorer than the CMA, since the step size of the
FL-CMA was always larger than or equal to 2 x 1077,

It was not difficult to re-design the parameters of the FL tuning unit so that the resulting FL-CMA could achieve the same
steady-state performance as the CMA but the gain in convergence speed would somewhat diminish. A better strategy is to
use this FL-CMA in the initial stage of blind adaptation for the maximum benefit in convergence rate and then to switch
to the constant step-size CMA for the same good steady-state performance. Fig. 10 shows learning curve of this switched
FL-CMA, labelled as the FL(10,000)-CMA, where the FL-CMA was used for the initial adaptation of 10,000 samples and the
CMA of a constant step size pcma = 2 X 10~7 was used afterward. The choice of 10,000 was based on the observation
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Fig. 13. Convergence performance comparison of the CMA and CMA + SDD, in terms of: (a) the MSE and (b) MD measure, averaged over 10 runs, for the
256-QAM example with nc, =3, neq = 15 and SNR = 40 dB. The step size of the CMA is jcma =2 x 10~8, while the step size and the cluster width of the
CMA + SDD are jspp =6 x 10> and p = 0.4.
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Fig. 14. Symbol error rate comparison of the three equalisers for the 256-QAM example with n¢, =3 and neq = 15.

that the MSE of the CMA converged approximately after 10,000 samples. The results of Fig. 10 confirm that the FL(10,000)-
CMA had the same steady-state performance as the CMA, but the former achieved considerably faster convergence. The
SER performance of the FL(10,000)-CMA, not shown, is similar to that of the CMA depicted in Fig. 8. The learning curve
of the combined FL(10,000)-CMA and SDD scheme, labelled as the FL(10,000)-CMA + SDD, is compared with that of the
CMA + SDD in Fig. 11, where it can be seen that both the blind equalisers achieved the same steady-state performance but
the FL(10,000)-CMA + SDD converged faster than the latter, requiring approximately 4000 fewer samples to converge. The
SER of the FL(10,000)-CMA + SDD, not shown, is the same as the CMA 4 SDD shown in Fig. 8.

4.2. 256-QAM example

The channel length was nq, = 3 with the CIR ccr given by

[—0.5+ j0.4 0.7 — jO.6 0.2+ j0.1]". (28)

The modulation scheme was 256-QAM, and the equaliser length was set to neq = 15. With the middle tap of w(0) initialised
to 1+ jO and rest of the taps in w(0) to 0+ jO, the blind equaliser was found to have a decision delay of 7 = 8. Given SNR =
40 dB, the output constellation of the MMSE equaliser with T =8 is depicted in Fig. 12(a), while the output constellations
of the CMA and CMA + SDD blind equalisers after convergence are illustrated in Figs. 12(b) and 12(c), respectively, where
the phase rotation of the CMA (—29°) had been compensated. The step size of the CMA was set to jcya =2 x 1078 by
experiment, while the appropriate step size and cluster width of the SDD were found empirically to be pspp =6 x 10~> and
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Fig. 15. Convergence performance comparison of the CMA and FL(10,000)-CMA, in terms of: (a) the MSE and (b) MD measure, averaged over 10 runs, for
the 256-QAM example with n¢, =3, neq = 15 and SNR =40 dB. The FL(10,000)-CMA uses the fuzzy step size for the first 10,000 samples and then switches
to a constant step size.
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Fig. 16. Convergence performance comparison of the CMA + SDD and FL(10,000)-CMA + SDD, in terms of: (a) the MSE and (b) MD measure, averaged over
10 runs, for the 256-QAM example with ne, = 3, neq = 15 and SNR =40 dB. The FL(10,000)-CMA uses the fuzzy step size for the first 10,000 samples and
then switches to a constant step size.

p = 0.4. The learning curves of the CMA and CMA + SDD equalisers, averaged over 10 runs, are depicted in Fig. 13, where
the MSE of the CMA was calculated with the —29° phase compensation while no phase compensation was required for
the CMA + SDD. The SER performance of the three equalisers, the MMSE, the CMA with the —29° phase compensation and
the CMA + SDD, are compared in Fig. 14. The results of Figs. 12-14 again confirm that the CMA + SDD equaliser achieved
significantly better performance than the CMA one, and its performance was close to that of the MMSE solution.

The design of the FL-CMA was summarised as follows. Since for 256-QAM max |e(k)|? ~ 2 x 107, the centroid of L,
was set to a =2 x 107 while the centroid of Ps was chosen to be b = 0.001a = 2 x 10*. Again, the two variances of
the Gaussian MBFs were chosen to be p, = (0.01a)? and ps = (0.2b)?, respectively. The short-term average length for
calculating |&,|2 was again set to Ngn = 20, while the centroid of S, was chosen to be pmin =2 X 108, This FL-CMA
was used in the initial 10,000 samples of adaptation, and afterward blind adaptation was switched to the CMA with the
constant step size pcva =2 x 1078, Fig. 15 compares the learning curve of the resulting FL(10,000)-CMA with that of the
CMA, while Fig. 16 depicts the learning curve of the FL(10,000)-CMA + SDD equaliser, in comparison with the CMA + SDD
equaliser. The simulation results obtained again demonstrate that the FL(10,000)-CMA + SDD converged considerably faster
than the CMA + SDD, requiring approximately 5000 fewer samples to converge, while both the blind equalisers had the
same steady-state equalisation performance. Again, the SER of the FL(10,000)-CMA + SDD, not shown, is identical to that of
the CMA + SDD plotted in Fig. 14.

5. Conclusions

Blind equalisation of high-order QAM systems has been revisited using the concurrent CMA and SDD scheme. The con-
current CMA and SDD scheme has been confirmed to significantly outperform the CMA, and its equalisation performance
has been shown to be close to that of the MMSE equaliser with the perfect channel information. A detailed design of a fuzzy
step-size CMA has been given and the advantages of using this fuzzy step size approach have been investigated. It has been
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demonstrated that, in order to achieve the maximum benefit in convergence speed and yet not to sacrifice any steady-state
equalisation performance, a good strategy is to use the fuzzy step-size CMA in the initial stage of blind adaptation and to
switch to the CMA with a small constant step size afterward. This switched fuzzy step-size CMA has been combined with
the SDD adaptation, and the resulting concurrent blind equaliser has been shown to achieve significantly faster convergence
with the same excellent steady-state equalisation performance, in comparison with the previous concurrent CMA and SDD
scheme that employs a constant step size for the CMA. More specifically, the FL assisted CMA and SDD scheme requires
several thousands fewer samples than the constant step-size CMA and SDD scheme to converge.

References

[1] L. Hanzo, S.X. Ng, T. Keller, W. Webb, Quadrature Amplitude Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded
OFDM, CDMA and MC-CDMA Systems, Wiley/IEEE Press, Chichester, UK, 2004.
[2] D. Godard, Self-recovering equalization and carrier tracking in two-dimensional data communication systems, IEEE Trans. Commun. COM-28 (1980)
1867-1875.
[3] J.R. Treichler, B.G. Agee, A new approach to multipath correction of constant modulus signals, IEEE Trans. Acoustics Speech Signal Process. ASSP-31 (2)
(1983) 459-472.
[4] J.R. Treichler, Application of blind equalization techniques to voiceband and RF modems, in: Preprints 4th IFAC Int. Symposium Adaptive Systems in
Control and Signal Processing, France, 1992, pp. 705-713.
[5] N.K. Jablon, Joint blind equalization, carrier recovery, and timing recovery for high-order QAM signal constellations, IEEE Trans. Signal Process. 40 (6)
(1992) 1383-1398.
[6] R. Johnson Jr., P. Schniter, TJ. Endres, J.D. Behm, D.R. Brown, R.A. Casas, Blind equalization using the constant modulus criterion: A review, Proc.
IEEE 86 (10) (1998) 1927-1950.
[7] O. Macchi, E. Eweda, Convergence analysis of self-adaptive equalizers, IEEE Trans. Inf. Theor. IT-3 (2) (1984) 161-176.
[8] EC.C. De Castro, M.C.F. De Castro, D.S. Arantes, Concurrent blind deconvolution for channel equalization, in: Proc. ICC’2001, vol. 2, Helsinki, Finland,
June 11-15, 2001, pp. 366-371.
[9] A. Benveniste, M. Goursat, Blind equalizers, IEEE Trans. Commun. COM-32 (8) (1984) 871-883.
[10] S. Chen, Low complexity concurrent constant modulus algorithm and soft decision directed scheme for blind equalisation, IEE Proc. Vision Image Signal
Process. 150 (5) (2003) 312-320.
[11] S. Chen, E.S. Chng, Concurrent constant modulus algorithm and soft decision directed scheme for fractionally-spaced blind equalization, in: Proc. ICC
2004, vol. 4, Paris, France, June 20-24, 2004, pp. 2342-2346.
[12] S. Chen, A. Wolfgang, L. Hanzo, Constant modulus algorithm aided soft decision directed scheme for blind space-time equalisation of SIMO channels,
Signal Process. 87 (11) (2007) 2587-2599.
[13] S. Chen, S. McLaughlin, P.M. Grant, B. Mulgrew, Multi-stage blind clustering equaliser, IEEE Trans. Commun. 43 (3) (1995) 701-705.
[14] S. Haykin, Adaptive Filter Theory, third ed., Prentice-Hall, Upper Saddle River, NJ, 1996.
[15] W.-S. Gan, Designing a fuzzy step size LMS algorithm, IEE Proc. Vision Image Signal Process. 144 (5) (1997) 261-266.
[16] J. Sanubari, Fast convergence LMS adaptive filters employing fuzzy partial updates, in: Proc. TENCON 2003, vol. 4, Oct. 15-17, 2003, pp. 1334-1337.
[17] H.-Y. Lin, C.-C. Hu, Y.-F. Chen, J.-H. Wen, An adaptive robust LMS employing fuzzy step size and partial update, IEEE Signal Process. Lett. 12 (8) (2005)
545-548.
[18] A. Ozen, 1. Kaya, B. Soysal, Design of a fuzzy based outer loop controller for improving the training performance of LMS algorithm, in: Proc. ICIC 2007,
Qingdao, China, Aug. 21-24, 2007, pp. 1051-1063.
[19] C.-H. Cheng, ].-H. Wen, Y.-F. Chen, ].-Y. Lin, A robust interference cancellation technique for DS-UWB systems using fuzzy step size LMS algorithm,
Eur. Trans. Telecommun. 19 (2) (2008) 207-217.
[20] V. Nigam, R. Priemer, Fuzzy logic based variable step size algorithm for blind delayed source separation, Fuzzy Sets Syst. 157 (13) (2006) 1851-1863.
[21] Z. Du, S. Zhou, P. Wan, W. Wu, Novel variable step size constant modulus algorithms for blind multiuser detection, in: Proc. VTC2001 Fall, vol. 2, Oct.
7-11, 2001, pp. 673-677.
[22] J.-S. Lim, K.-Y. Han, ]J. Jeon, Adaptive step-size widely linear linearly constrained constant modulus algorithm for DS-CDMA receivers in nonstationary
interference environments, Signal Process. 87 (6) (2007) 1523-1527.
[23] J.G. Proakis, Digital Communications, third ed., McGraw-Hill, New York, 1995.
[24] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (3) (1965) 338-353.
[25] E. Cox, The Fuzzy Systems Handbook, Academic Press, London, 1994.

Sheng Chen received his BEng degree from Huadong Petroleum Institute, Dongying, China, in January 1982, and PhD degree from the
City University, London, UK, in September 1986, both in control engineering. He was awarded the Doctor of Sciences (DSc) degree by the
University of Southampton, Southampton, UK, in 2005.

From October 1986 to August 1999, he held research and academic appointments at the University of Sheffield, the University of
Edinburgh and the University of Portsmouth, all in UK. Since September 1999, he has been with the School of Electronics and Computer
Science, University of Southampton, Southampton, UK. Professor Chen’s research interests include wireless communications, adaptive
signal processing for communications, machine learning and neural networks, finite-precision digital controller design, networked control
systems, and evolutionary computation methods. He has published over 400 research papers.

Dr Chen is a Fellow of IET and a Fellow of IEEE. In the database of the world’s most highly cited researchers, compiled by Institute for
Scientific Information (ISI) of the USA, Dr Chen is on the list of the highly cited researchers in the engineering category.

Bing L. Luk received his BSc degree in Electrical and Electronic Engineering from the Portsmouth Polytechnic, UK, in 1985, MSc degree
in Digital Computer Systems from the Brunel University, UK, in 1986 and PhD degree in Robotics from the University of Portsmouth, UK,
in 1991.

From 1991 to 1999, Dr Luk was a senior lecturer with the Department of Electrical and Electronic Engineering, the University of
Portsmouth. Since 2000, he has been with the Department of Manufacturing Engineering and Engineering Management at City University
of Hong Kong, Hong Kong, China. Dr Luk’s research interests include mobile robotics, telemedicine research, non-destructive test methods,
machine learning and evolutionary computation.



S. Chen et al. / Digital Signal Processing 20 (2010) 846-859 859

Chris J. Harris received his PhD degree from the University of Southampton, Southampton, UK, in 1972. He was awarded the Doctor
of Sciences (DSc) degree by the University of Southampton in 2001.

He previously held appointments at the University of Hull, the UMIST, the University of Oxford, and the University of Cranfield, all
in UK, as well as being employed by the UK Ministry of Defence. He returned to the University of Southampton as the Lucas Professor
of Aerospace Systems Engineering in 1987 to establish the Advanced Systems Research Group and, more recently, Image, Speech and
Intelligent Systems Group. His research interests lie in the general area of intelligent and adaptive systems theory and its application to
intelligent autonomous systems such as autonomous vehicles, management infrastructures such as command & control, intelligent control,
and estimation of dynamic processes, multi-sensor data fusion, and systems integration. He has authored and co-authored 12 research
books and over 400 research papers, and he is the associate editor of numerous international journals.

Dr Harris was elected to the Royal Academy of Engineering in 1996, was awarded the IEE Senior Achievement medal in 1998 for
his work in autonomous systems, and the highest international award in IEE, the IEE Faraday medal, in 2001 for his work in intelligent
control and neurofuzzy systems.

Lajos Hanzo received his Master degree in electronics in 1976 and his doctorate in 1983. In 2004 he was awarded the Doctor of
Sciences (DSc) degree by the University Southampton, Southampton, UK.

During his 30-year career in telecommunications he has held various research and academic posts in Hungary, Germany and the UK.
Since 1986 he has been with the School of Electronics and Computer Science, the University of Southampton, UK, where he holds the
chair in telecommunications.

He has co-authored 20 John Wiley/IEEE Press books totalling about 20000 pages on mobile radio communications, published in excess
of 800 research papers, organised and chaired conference sessions, presented overview lectures and has been awarded a number of
distinctions. He is an enthusiastic supporter of industrial-academic liaison. He also offers a range of industrial research overview courses.

Professor Hanzo is a Fellow of the Royal Academy of Engineering (FREng), UK. He is an IEEE Distinguished Lecturer of both the
Communications Society and the Vehicular Technology Society as well as a Fellow of both the IEEE and IEE.



	Fuzzy-logic tuned constant modulus algorithm and soft decision-directed scheme for blind equalisation
	Introduction
	Equalisation signal model
	Blind equalisation algorithms
	Constant modulus algorithm
	Combined CMA and SDD scheme
	Fuzzy step-size CMA
	Combined fuzzy step-size CMA and SDD scheme
	Alternative partition of blind equaliser

	Simulation study
	64-QAM example
	256-QAM example

	Conclusions
	References


