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Abstract

This paper presents an approach to accomplish syn-
thetic aperture radar (SAR) image segmentation, which
are corrupted by speckle noise. Some ordinary seg-
mentation techniques may require speckle filtering pre-
viously. Our approach performs radar image segmenta-
tion using the original noisy pixels as input data, elim-
inating preprocessing steps, an advantage over most
of the current methods. The algorithm comprises a
statistical region growing procedure combined with hi-
erarchical region merging to extract regions of inter-
est from SAR images. The region growing step over-
segments the input image to enable region aggrega-
tion by employing a combination of the Kolmogorov-
Smirnov (KS) test with a hierarchical stepwise opti-
mization (HSWO) algorithm for the process coordina-
tion. We have tested and assessed the proposed tech-
nique on artificially speckled image and real SAR data
containing different types of targets 1.

1. Introduction

The continuous demand for SAR images interpreta-
tion by automatic procedures is a key issue in the re-
mote sensing field due to the increasing amount of data
generated by SAR systems recently. The task of inter-
preting SAR images involves identification of the struc-
tures found in the scene using image segmentation al-
gorithms, usually based on image domain features com-
pared to known attributes or patterns (ground truth).

SAR imagery segmentation is severely penalized by

1This version contains errors. The correct version of this pa-
per can be retrieved from Digital Signal Processing, Elsevier 2010

the presence of coherent noise, known as speckle, that
degrades fine details and edges of the objects present
in the scene. Speckle appears due to interference of co-
herent waves, which bounce off the targets in the radar
illuminated area, consequently generating a grainy im-
age, containing pixels with high gray level fluctuations.

The image understanding automation of speckled
images as SAR and ultrasound requires some segmen-
tation step such as edge detectors, region growing,
thresholding and other algorithm, but they can fail
to segment such images due to the influence of the
speckle noise, usually ignored by such algorithms and
its statistics. These methods often require filtered im-
ages to provide acceptable image segmentation results
as in Kuan [1; 2; 3? ]. Also, combinations of filters
can provide speckle smoothing with edge preservation
as in [4]. Nonetheless, speckle filtering is extremely
sensitive in real applications, subjected to data mod-
ifications, resulting in edge smoothing, elimination of
small structures and artifacts [5].

Edge-based methods as Sobel, Canny detectors,
Roberts, Prewitt, LoG are usually not effective for SAR
images since they use gradient detectors based on the
difference between neighboring pixel values, which fails
in the presence of speckle noise. Improvements to edge-
based methods in Moigne and Tilton [6] integrated
edges produced by a Canny detector with region grow-
ing aiming to minimize the Hausdorff distance between
edge maps and region boundaries. This algorithm per-
formed well in Landsat Thematic Mapper (TM) im-
ages, but requires a more suitable edge detector to be
useful in SAR images. Also, edge strength estimation
in speckled images SAR can be accomplished by us-
ing ratio-based edge detectors which evaluate transi-
tion between uniform areas.
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Improved edge detectors customized for SAR image
segmentation utilizes a sliding window over the image
to calculate the ratio of means given a neighborhood
definition. These detectors compare the obtained ratio
with a threshold that is calculated based on a prob-
ability of false alarm (pfa) to determine whether an
edge is present or not [7; 8; 9; 10], an useful criterium
considered in the current paper.

Yu and Clausi [11] combined edge information and
region growing to design an improved segmentation al-
gorithm for ice floes segmentation and classification,
regarding a Markov random field context model to map
edge strength. Their cost function suppresses the merg-
ing between parts of different objects that have weak
boundaries, i.e. the method penalizes more the weak
edges than the strong ones. The number of iterations
to merge adjacent regions depend on the oversegmenta-
tion, which is calculated using watershed transforma-
tion [11]. Our concern about this process is the gradi-
ent operation before the watershed calculation, which
is mostly unstable for noisy image segmentation.

Alternatively, we propose an oversegmentation mod-
erated by a coefficient of variation, aiming at reduc-
ing the computing time. Our initialization calculates
a smaller number of segments for a SAR image given
the statistics following the homogeneity criteria, as dis-
cussed in 2.

Recently, Bernad et al. [12] designed an interactive
tool to simplify SAR image analysis. First, it segments
the image into homogeneous regions based on speckle
statistics, followed by region labeling into classes of sig-
nificance to a given application, a semi-automatic pro-
cess. The segmentation scheme was accomplished by
following the algorithm proposed in Galland et al.[13]
which consists in a new minimum description length
(MDL) approach based on a polygonal grid partition of
the image for segmentation of a speckled image. From
the homogeneous regions of the image, they derive a
set of measures such as the coefficient of variation de-
fined by the ratio of mean to standard deviation to be
computed over all the pixels of each region and between
regions. Their contributions are relevant and worthed
as a comparison method when the systems presents
both a unique available channel SAR image and relies
on user-interaction.

Circumventing the restriction of semi-automatic sys-
tems, we propose a statistical region growing algorithm
that takes into account an hierarchical decomposition
of the image. Different from threshold and edge-based
methods, region growing methods can incorporate re-
gional features but it still remains the problem of es-
tablishing the initial regions, finding reasonable region
descriptors or features to enable proper merging of sim-

ilar regions. The strategy used in this paper is to
aggregate statistically homogeneous regions to create
new segments. We use an initial set of regions to carry
out automatic segmentation by merging using moments
(MUM)[14].

Several papers address SAR image segmentation
based on region growing and hierarchical model [15; 11]
and previous work on Hierarchical Stepwise Optimiza-
tion by Beaulieu and Goldberg [16], known as HSWO,
remains an effective approach to SAR image segmen-
tation [17; 15]. HSWO exploits the idea of hierarchy
in segmentation to provide a step-wise merging of the
segments of the previous image partition. Yang et al.
proposed improvements to HSWO, introducing super-
vised SAR image segmentation based on a region-based
half-tree hierarchical model by applying multiresolu-
tion analysis and supervised MPM (maximization of
posterior marginal estimation) algorithm [15]. Simi-
larly, we consider hierarchical analysis to merge over-
segmented regions in the image. The proposed method
presents an original algorithm to perform segmentation
of SAR images without considering a priori information
regarding the structures to be found in the image.

This paper is organized as follows. Section 2
presents the theoretical background to support the
methodology development and understanding. Section
3 introduces the proposed method for speckled image
segmentation starting with the SAR image decomposed
into a great amount of adjacent labeled regions by us-
ing a modified region growing algorithm. Section 4
presents the results of the proposed method applied to
synthetic and real SAR including performance assess-
ment. Finally, in Section 5, we conclude the present
paper and consider further works that can be devel-
oped.

2. Theoretical Background

2.1. Speckle Statistics and Image Model

The influence of speckle noise compromises valuable
information on SAR images. This noise follows the
multiplicative model, which states that the corrupted
backscattered signal, z, can be expressed as a product
of the speckle noise n and the terrain backscatter x.

Several distributions could describe the backscatter,
aiming at modeling different types of terrain and their
characteristic degrees of homogeneity. Table 5 displays
the distributions concerning SAR data returns, com-
bining speckle and different backscatter models when
adopting that speckle noise follows a Square Root
of Gamma distribution. Regarding sensor parame-
ters as wavelength, angle of incidence, polarization,
among others, pasture is more homogeneous than for-
est, which, in turn, is more homogeneous than urban



areas [18].

Table 1. Return distributions for different radar surfaces
under the multiplicative model [18].

Region Type Noiseless Scene (x) Return (z)

Homogeneous C(
√

β) Γ1/2(L,L/β)
Heterogeneous Γ1/2(α, λ) KA(α, λ, L)
+Heterogeneous Γ−1/2(α, γ) G0

A(α, γ, L)
General case N−1/2(α, γ, λ) G0

A(α, γ, λ, L)

The reader may refer to [18] for more details about
the these distributions to model radar data. The pa-
rameters α, β, λ and γ are calculated using the mean
gray level (z̄) of the synthetic image segments and L
(number of looks) [19]. The parameter α and λ indicate
the degree of roughness and scale, respectively.

In this paper we adopted only two degrees of ho-
mogeneity for the terrain backscatter in radar images,
homogeneous and heterogeneous areas, regarding the
coefficient of variation as in [20; 21; 22].

Assuming that SAR image has been conveniently
processed to eliminate interpixel correlation, the ob-
served coefficient of variation (CV ) defines the stan-
dard deviation to the mean ratio of a set of pixels in a
homogeneous area, namely:

CV =
σz

z̄
. (1)

The coefficient of variation can be used as an ho-
mogeneous test, so if the terrain backscatter has con-
stant average intensity, then CV ≃ σn but if it varies,
CV ≥ σn, for the speckle standard deviation σn [22].
For amplitude SAR images, an area is considered ho-
mogeneous if σn equals 0.5227/

√
L, where L is the

number of looks [23]. The unilateral limit used by
[20; 21; 22] admits a region as statistically homoge-
neous if

CV ≤ σn. (2)

We adopt an automatic procedure to estimate
speckle standard deviation from SAR images as in
Frulla et al [24], which observed that the CV should
be equal to the theoretical speckle standard deviation
according to the number of looks of the SAR image for
fully developed speckled images. However, the coeffi-
cient of variation measured over homogeneous regions
on the images may differ from theoretical values due to
several reasons such as the inherent image variations
and the size of the selected sample.

We circumvent this problem by combining the co-
efficient of variation to the proposed region growing
method, which restricts the calculation of CV to homo-
geneous zones. The statistical analysis of the speckle

noise in homogeneous regions by using CV produces
adaptive segment formation in the initial partition of
the image. Henceforth, a similarity criterion for pixel
clustering moderate the merging of the small disjoint
segments, using information collected from the original
data.

2.2. Region Growing and merging

After defining an initial set of small areas, region
growing algorithms iteratively merge pixels into sets,
according to a similarity criteria as a given range of
gray scale levels. It starts by choosing an arbitrary
seed pixel to be compared with a neighborhood, fol-
lowed by the addition of similar neighboring pixels, in-
creasing the size of this set, which defines a segment.
When a segment stops growing, we have a region and
another seed pixel which does not yet belong to any re-
gion is chosen to start the process again. Region grow-
ing algorithms are bottom-up methods, addressing a
similarity rule to join pixels to regions. A drawback of
this method relies on the definition of a similarity rule
to iteratively segment regions according to a domain,
as well as the number of seeds to use, specially when
applied to raw SAR data.

An approach to refine the region growing segmen-
tation results is to use a hierarchical region merging
algorithm as the hierarchical stepwise optimization al-
gorithm (HSWO) [25; 26], which compares spatially
adjacent regions to merge them in an iterative pro-
cess. The inputs are an image and its preliminary seg-
mentation into N labeled regions, given that all the
pixels have some label and each region is connected.
Spatially adjacent regions are compared and merged
with most similar regions until the algorithm either
reaches a specified number of regions or a dissimilar-
ity between the most similar pair of spatially adjacent
regions reaches a specified threshold. Although the al-
gorithm assumes that each iteration is statistically, the
HSWO method [16] still produces excellent results [27].

We summarize the algorithm in [25] bellow:

The HSWO Algorithm [25].

I. Begin

i. P 0 = {S1, S2, ..., SN} (initial partition);

ii. k = 0 e m = N ;

iii. Calculate Di and Bi for Si ∈ P 0;

iv. Calculate CS = {Ci,j |Sj ∈ Bi e i 6= j}.

II. Merge the two similar segments



i. k = k + 1 and m = m + 1;

ii. Find Cu,v = min{Ci,j}; Ci,j ∈ CS;

iii. P k =
(

P k−1 ∪ {Sm}
)

∩ {Su , Sv}
iv. Calculate Dm from Du and Dv;

v. Bm = (Bu ∪ Bv) ∩ {Su , Sv};
vi. ∀Sj ∈ Bm, Bj = (Bj ∪ {Sm}) ∩ {Su , Sv};
vii. CS = (CS ∪ {Cm,j |Sj ∈ Bm}) ∩

{Ci,j | i, j = u or v}.

III. Stopping condition

i. Stop if no more mergers are required.;

ii. Otherwise, go to step II.

A shortcoming of the HSWO algorithm is its depen-
dency on a predefined number of segments or iterations
that must be specified by the user. To circumvent the
lack of a proper stop criterion for the HSWO algorithm,
our approach consists in using the HWSO to coordinate
the election of the two most similar regions in the RAG,
whilst effective merging is done via a hypothesis test. It
is desirable that the election of the two most similar re-
gions in the RAG is performed with proper descriptors
to formulate a convenient cost function. Once elected
the two regions in the RAG according to the minimum
cost, we apply the two-samples Kolmogorov-Smirnov
hypothesis test to effective provide region fusion.

3. Proposed Method

We propose a framework to segment SAR images
using a statistical region growing algorithm, which can
be summarized in 3 main steps: (1) choice of the seed
pixels (or regions), then (2) neighborhood analysis ac-
cording to a similarity rule, in our case, the coefficient
of variation. Finally, the step (3) guarantees a forward
inclusion of adjacent pixels to grow the seed regions
for those pixels that satisfy the similarity rule. The
steps (1) and (2) are repeated until there are no more
adjacent pixels to be included in a seed region. The
process restarts with another seed region and iterates
until there are no more regions to merge, as illustrate
in the flowchart of Fig.??.

Before starting the statistical region growing pro-
cess, the image pixels are initially labeled, defining a
label matrix. A 3 × 3 window centered at a random
position (i, j) defines a seed homogeneous segment if
this window lies over a statistically homogeneous zone
of the radar image, according to Equation (1). If the
homogeneity criterion is satisfied, all the 8-connected
pixels to (i, j) delimited by the window have their la-
bels updated to the same as the central pixel.

Figure 1. The proposed block diagram of the segmentation
method.

Next step is to determine the pixels adjacent to this
initial region, which are randomly selected to be in-
serted into the region temporarily. Each time a candi-
date pixel is included in this region, a new coefficient
is calculated using all the pixels of the region and only
after a comparison with CV ≤ σn + δ, the algorithm
decides whether a pixel is accepted or not. If the candi-
date pixel satisfies the CV condition, its label assumes
the region label.

The compensating factor δ is taken into account
for small deviations of the ratio CV = σz/z̄ from the
speckle standard deviation σn. δ is derived from [22]
and it is established as:

δ = σn

√

1 + 2σ2
n

2N
, (3)

where N is the size of the region.
In our approach we use δ multiplied by a small con-

stant η that penalizes the non-linear component of the
CV to create a general threshold T , to be compared
with CV and finally decide whether a candidate pixel
still keeps the segment statistically homogeneous. This
threshold is given by:

T = σn

(

1 + η

√

1 + 2σ2
n

2N

)

, (4)

with η experimentally set in this work to 0.075.
If there are no more adjacent pixels to test the simi-

larity condition σz/z̄ ≤ T , then a new position (i, j) is
randomly selected in the image to be the central pixel
of the window and the inclusion of candidate pixels
follows the scheme as described earlier.



Regions aggregation is obtained by applying a non-
parametric hypothesis test using pixel information of
two similar regions elected in a hierarchical tree. The
test considers a cost function based on the ratio of av-
erages of a pixel cluster along the common frontier of
two segments. The merging of the two most statisti-
cally similar regions are based on a region adjacency
graph (RAG)[16; 26; 28], previously generated from
the initial segmentation.

This graph or hierarchical tree contains the neigh-
boring relations among the segments occurring in the
initial partition, whose structure is locally updated
each time merging is accomplished. The fusion degree
for the segments during the merging stage is ranked by
the significance level (p0) of the Kolmogorov-Smirnov
hypothesis test. Whenever two minimum cost seg-
ments merge, the RAG topology is locally updated.
Costs are calculated according to those new adjacency
relations. The merging process is iterative and stops
when there are no more regions to merge.

3.1. Constraints on Statistical Region Growing

The coefficient of variation (CV ) is an efficient cri-
teria to test homogeneity, so we use it to guide the
region growing, but it requires constraints to be useful
in our framework as (i) minimum and maximum size of
regions, (ii) label attribution control for the segments,
(iii) control of visited pixels and (iv) identification of
grown regions.

We establish the minimum size of a segment to be
the minimum window size, i.e. nine pixels, which can
grow to the maximum size depending on the CV value
for the neighboring pixels. If (CV ) value is low, the
region surrounding the central pixel must be homoge-
neous. Otherwise, it is likely there exists an edge in
the segment.

The proposed algorithm starts with an overseg-
mentation by establishing the maximum size to be
maxpixels = 15pixels for the initial region growing
process. The maxpixels is an empirical parameter of
the region growing algorithm to preserve as much struc-
tural features (e.g. edges or lines) or strong scatterers
as possible. In homogeneous areas (e.g. crops) where
only texture speckle exists, the coefficient of variation
(CV ) has a precise value used as an indicator of region
homogeneity. Moreover, it is sensitive to the presence
of a contour independently of its direction. In our ex-
periments this empirical number favored the extraction
of the most likely real boundaries in the image sepa-
rating textured fields.

Larger windows cause loss resolution for segment
borders. Limiting the maximum size of regions dur-
ing pixel insertion aims at minimizing the inclusion

of pixels that belong to areas with different textures
(e.g.edge)

For instance, SAR images comprising large crop
fields may have the initial segments formation with a
greater number of pixels (20, 25,...). From this scheme,
we aim at minimizing the chance of including pixels be-
longing to other adjacent regions. On the other hand,
the segments of single pixel must be tested in order
to include new pixels. These segments may increase
until they reach the maximum size maxpixels if their
adjacent pixels satisfy the similarity rule.

If the limit is not reached during the region grow-
ing process, it means that the surrounding candidate
pixels have not satisfied the condition CV ≤ T . To
illustrate this idea, we show on the region labeled 42
on the middle-left of Fig. 2.

Fig. 2 depicts situations where segments and their
adjacency present (a) predefined regions, (b) non vis-
ited pixels and predefined segments and (c) some un-
visited pixels in the interior or located in the borders
of an image under analysis.

Figure 2. Label matrix with predefined segments (14,
42,. . . , 99 and 113) and unvisited pixels (white squares).

The region labeled 45 is an example of predefined
pixels because its neighboring regions are already de-
fined as 14, 42, 48 and 75, therefore region 45 can not
grow anymore and it will not reach the maximum value
(maxpixels) in this iteration. In this stage, it is allowed
the inclusion of single pixels at once. Region 42 and
45 are cases of grown regions which did not reach the
maximum number of pixels allowed maxpixels = 15.

The situation (b) arises due to the size of the win-
dow to start at 3× 3, well exemplified in region 99, on



the bottom-right of Fig.[? ]. This small region must
include the pixels labeled as 79, 80, 97, 107,..., 120
(surrounding pixels), as long as they satisfy the homo-
geneity criterion σz/z̄ ≤ T .

Situation (c) occurs for all unvisited pixels in the
image that present other pixels or predefined regions
as neighbors, when there are no more positions for
the window to be installed. These pixels create holes
among small regions and they must be included into
the existing regions, since they satisfy other requisites.

The final step of the proposed region growing algo-
rithm consists in eliminating single pixel regions. The
strategy to allocate the remainder unvisited (isolated)
pixels is accomplished by the flowchart displayed in Fig.
3.

Besides the label matrix, represented in Fig.[? ],
there is a ‘mask’ (or control matrix) that keeps track of
pixel positions as they are visited, preventing the inclu-
sion of regions formed previously. The mask and label
matrix analysis enables the algorithm to track isolated
and unvisited pixels, aiming at inserting them into the
existing regions. Pixel moving is achieved by verifying
the changes on the coefficient of variation after a tem-
porary insertion of a candidate pixel into each of this
neighboring regions. At this stage, the amount of pix-
els per segment may extrapolate the value maxpixels.

Figure 3. The proposed approach to allocate unvisited pix-
els during the oversegmentation step.

Speckle statistics analysis of homogeneous regions
discards regions comprising only one pixel. If the pro-
cedure fails to allocate the isolated pixels of the built-
up array (or list to process), the remainder one pixel
regions (now with visited status in the mask) are force-
fully inserted into the existing regions, according to the
following constraints:

a. All of the unaccepted pixels labels are stored in an
array. For each entry of this array, only those
neighboring segment labels that do not exist in
this array are retained. This guarantees that an
unaccepted pixel is not merged with another single
pixel, but inserted in an already existing region;

b. An unaccepted pixel is chosen arbitrarily and it is
inserted in each adjacent region, whose coefficients
are updated;

c. The unaccepted pixel is definitely sent to the region
whose the calculated coefficient of variation is less
than σn. On the other hand, it is accepted into
that regions, whose pixel insertion produced the
smallest coefficient alteration.

The initial regions formed by applying the similar-
ity measure based on the CV are now used to receive
the remainder single pixels, which were not included
during the homogeneity step (unvisited pixels). This is
performed by a new CV -based testing, where a single
pixel (or hole) is put into a neighboring region only if
it does not affect its homogeneity.

These verifications are executed until there are no
more single pixels, where the described constraints are
based on the coefficient of variation analysis and on
the mask (label controlling matrix) verification. Fig. 4
exhibits a detail of an oversegmented SAR image pro-
duced by the region growing algorithm based on the
coefficient of variation analysis.

It is worth noting that if we perform a regular tessel-
lation of the image depicted in Fig. 4(a) by applying
a 2×2 grid, there would exist 10,000 blocks, what is
a considerable amount of four pixel regions. Although
the grid division process (image division by windowing,
2×2, 3×3, . . . ) is quite simple and direct, region merg-
ing is accomplished at a great time expense. Besides
that, descriptors like the gray mean value and variance
of the pixels that compose the window of analysis may
be biased due to the noise influence, since the radio-
metric values vary strongly from one pixel to another
in certain image areas.

3.2. The Proposed Cost Function

This section addresses the problem of finding out
suitable descriptors to establish a similarity metric be-
tween segments and proposes a cost function based on
the border detection theory. To segment SAR images
under this approach, the mean gray level of the seg-
ments may not satisfactorily be applied on the region
merging, due to the speckle influence mainly in small
samples. In edge detection applications, it is commonly
used the ratio of averages to infer about the presence



(a)

(b)

Figure 4. (a) A 200×200 detail of a SAR image and (b)
edge map comprising 3982 regions created by the proposed
statistical region growing.

of edges, instead of the difference of means, to provide
a constant false alarm (cfar) detector [29].

Our RAG scheme was inspired by [14] that consid-
ered the size and the length of the common frontier
along the regions created by the region growing pro-
cess. Differently from the aforementioned work we use
the ratio of the averages of border pixels combined with
size and length features.

Fig. 5 depicts two regions interface, where pix-
els labelled as ‘◦’ and ‘×’ represent the border pixels,
whereas ‘+’ and ‘⊘’ are their respective neighborhoods.

Figure 5. Local pixels along the frontier of two regions.

The proposed cost criterion to generate the region
adjacency graph is defined as:

CA,B =
min(NA′ , NB′) · r

Q2
A,B

, (5)

where NA′ , NB′ stand for the population (number)
of pixels along or in the surroundings of each border.
QA,B is the common border length, in pixels, and r is
given by:

r = 1 − min

{

z̄A′

z̄B′

,
z̄B′

z̄A′

}

, (6)

that uses the noisy border pixels ‘×’ and ‘◦’ to cal-
culate the mean values z̄A′ and z̄B′ .

Equation (5) points that the retention of the small-
est region size implies the inclusion of small segments
to minimize their existence at the end of the fusion pro-
cess. The local ratio of averages considers the influence
of border pixels, instead of those located far away from
the common border of two segments.

The influence of the factor QA,B considers the length
of the common border. The greater the border, the
greater the chance two regions A and B to be elected
in the RAG, when there is statistical similarity between
them. For SAR images, the mean gray level considering
all the pixels of a segment is not suited as a descriptor
for region similarity, a problem known as the mean gray
value degradation [30].

3.3. The Region Merging via Statistical Hypothesis
Testing

The hierarchical stepwise optimization (HSWO) al-
gorithm achieves a substantial reduction in the number
of regions. When the merging of two regions occurs, no
recalculations for the cost function of all the nodes in
the hierarchical tree are needed. This event is locally
performed, based on the new partition methodology
which is used here. Moreover, different cost functions
can be adopted in order to elect the most similar re-
gions of a region adjacency graph (RAG), depending
on the features of the image under analysis.

To effective accomplish region fusion of a pair of sim-
ilar regions elected by the HSWO algorithm, we have
applied the two-samples Kolmogorov-Smirnov (KS)
[31; 32] hypothesis test. The proposed algorithm com-
bines the KS test and the HSWO algorithm in the
region merging step to overcome the shortcomings of
the hierarchical stepwise approach. User interaction
is done by a parameter called significance level of the
test, p0. This variable is a small probability (0.1, 0.001,
0.0001,. . . ) threshold to be compared with the hypoth-
esis test probability to infer whether two regions can be
merged or not. By means of the parameter p0, differ-
ent number of segments are obtained after concluding
region merging.



4. Experimental Results for Synthetic

and Real SAR Images

In this section, the performance assessment of the
proposed segmentation technique is accomplished, ac-
cording to qualitative and quantitative aspects. The
tests were carried out with artificially and real SAR
images. Fig. 6 shows artificially contaminated versions
of the kk and imgcartoon images for different number
of looks (L = 1, 3 and 5). Fig. 7 and Fig. 8 display
the edge maps for the segmented speckled versions of
kk and imgcartoon images, respectively.

(a) (b)

(c)

(d) (e)

(f)

Figure 6. Synthetic speckled versions of (a) kk image for (b)
1 look, (c) 3 looks and (d) imgcartoon image for (e) 3 looks
and (f) 5 looks.

The segmentation results were compared with the

ground truth or the reference segmentation of kk and
imgcartoon, according to the measures Totgof and
Ajbrd [19; 33; 34]. These measures are in the inter-
val [0, 1], being equal to unity whenever two regions
(the reference and the segmented counterpart) fit per-
fectly. Totgof permits to infer the global performance
of a segmentation algorithm, whereas Ajbrd measures
the fitness of the ideal limits of the objects of the seg-
mented ground truth image compared to the real bor-
ders produced by the noisy image segmentation.

In addition, to achieve a comparative analysis, it was
still used the region growing implementation provide
by software ENVI 3.4. The light gray contours refer to
the ideal edges and the black ones correspond to the
effective edges provided by our method.

One can observe that the algorithm failed in detect-
ing correctly the transition areas for some regions, e.g.
the first quadrant in kk image as shows the Fig. 7(a)
and the regions labelled 4, 5 and 7 of imgcartoon shown
in 8(a). However, in many points the contours are well
overlaid, what indicates that the algorithm succeeded
in preserving edges.

(a) (b)

(c)

Figure 7. Edge maps for the segmented kk image (a) with 1
look and p0 = 10−6 and (b-c) with 3 look, for p0 = 10−5 and
by using region growing implementation at ENVI software,
respectively. Gray lines: ideal edges; black lines: calculated
edges.

The segmentation performance evaluation is carried
out for L looks and p0 equal to 10−5 and 10−6, re-
spectively. We also investigate the influence of the p0

parameter (significance level) of the KS test, in the fi-
nal number of regions.

For each value of this parameter, the simulated im-
ages (L=1, 3 and 5 looks) were segmented. By means of



(a) (b)

(c)

Figure 8. Edge maps for the segmented imgcartoon image
(a) with 1 look and p0 = 10−6 and (b-c) with 5 look, for
p0 = 10−6 and by using region growing implementation at
ENVI software, respectively. Gray lines: ideal edges; black
lines: calculated edges.

discrepancy measures one can infer which results bet-
ter approximate the ideal segmentation for the test im-
ages. We also investigate whether the method performs
well for non homogeneous radar images or scenes that
present a mixture of different reflectivity surfaces.

4.1. Segmentation Results Assessment

The measures Totgof for kk and imgcartoon seg-
mentation results, with p0 = 10−5 and 10−6, respec-
tively, were calculated for different number of looks.
Both images presented values that indicate good edge
preservation for most part of the segments for both
artificially contaminated images. The speckle noise is
more intense in 1-look synthetic and real SAR images.
For that reason the kk and imgcartoon 1-look simulated
images presented the lowest values for the Totgof mea-
sures when compared with the multiple looks simulated
versions. Thus, the algorithm achieved the best seg-
mentation results for the 3-looks kk (Totgof=0.9814)
and 5-looks imgcartoon (Totgof=0.9841) images. It
is worth noting that the nearer the value of Totgof
to unity, the better the overall reconstruction of the
segments related to the ground truth image.

The results of edge fitness Ajbrd per segment are
indicated in the graphs illustrated in Fig. 9, where
numbers 1, 2,. . . , 23 indicate the region labels of the
ground truth image, whereas the vertical axis stands
for the measure values.

For the speckled 3-looks kk image, the algorithm

(a)

(b)

Figure 9. Measures per segment of Ajbrd for (a) kk (3 looks,
p0 = 10−5) and (b) imgcartoon (5 looks, p0 = 10−6).

failed in detecting the true edges of the ‘F’ pattern in
the first quadrant of Fig. 7(b), resulting in low val-
ues for the measure Ajbrd in regions 3 and 4 (Fig.
9(a)). Nevertheless, edges in this segmented kk image
are closer to the true one (ground truth) than the re-
sults presented in Fig. 7(a). The segmented 5-looks
imgcartoon image with p0 = 10−6 has created a re-
gion surrounded by regions labelled 3, 4 and 7, which
diminished the values of Ajbrd for regions 4 and 7. One
can perceive it in Fig. 9(b), related to the edge map of
Fig. 8(b).

4.2. Real SAR Images

The proposed segmentation algorithm was applied
to the real SAR images shown in Figs. 10(a), 11(a)
and 12(a). The subimage comprising 512×512 pixels
shown in Fig. 10 was taken from the image Caçapava,
acquired by Radarsat-1 from the region of the Paráıba
Valley, state of São Paulo, Brazil. In this image, the
Paráıba river stands out with lakes along both margins
and the diagonal large strip in the middle left is a rice
culture. Fig. 10(b) illustrates the segmented version of
this image with p0 = 10−6.

Fig. 11 presents the segmentation result for the SAR
imagePedazo. It is an amplitude real image with mea-
sured 2,21 looks. It was taken from a region of Munich,
in Germany. The bright structures in the left superior
part of this image were preserved and it is possible to
observe edge delineation in the dark regions. These re-
gions are homogeneous zones surrounded by wood ar-
eas and urban spots. Other remaining fragments con-
sist of detected small regions that present considerable



(a) (b)
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Figure 10. (a) Detail of the image Caçapava, 1 look, ampli-
tude (b)edge map with 103 segments and (c) edge map of
segmentation result using ENVI software.

contrast with neighboring regions.

(a) (b)

(c)

Figure 11. (a) Pedazo and (b) edge maps with 515 segments
(p0 = 10−7) and (c) edge map of segmentation result using
ENVI software.

Fig. 12 shows the edge map obtained from a 256×)
256 subimage image Tapajós (3 looks and amplitude
format) comprising 119 regions. This SAR image was
taken on June 26, 1993 over Tapajós, Pará, Brazil, by
JERS-1. The significance level (p0 = 10−5)we adopted
favored small fragments formation and the diagonal
strip consists of two parts, which may be eliminated
by diminishing the value of p0.

5. Concluding Remarks

Research on developing SAR image segmentation al-
gorithms is still a challenging issue to be explored. The
difficulties in segmenting SAR images reside mainly on
the presence of speckle noise. This paper provides a
segmentation algorithm which is applied to SAR image,
without speckle filtering preprocessing. Firstly, our ap-
proach divides an image into a great number of small
regions by a statistical region growing procedure and
accomplished a statistical analysis of speckle by using
the coefficient of variation analysis. The region growing
algorithm creates an initial partition which is forward
processed by the hierarchical merging technique.

The statistical region growing step is necessary to
generate and process conveniently the initial regions
in order to provide input information for the merging
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Figure 12. (a) SAR image Tapajos and (b) edge map with
119 segments and (c) edge map of segmentation result using
ENVI software.

process, thus avoiding simple image tessellation. The
region growing procedure based on the coefficient of
variation favors the formation of the initial regions in
homogeneous areas.

The proposed merging technique is a combination of
hierarchical image analysis and hypothesis test. The
former is implemented based on a cost function that
uses the features of the regions to be merged, in addi-
tion to local ratio of means analysis. The two samples
Kolmogorov-Smirnov (KS) hypothesis test is utilized to
effective provide the merging a pair of regions, elected
in the hierarchical region adjacency graph. Hierarchi-

cal analysis favors a coordinated process, whereas re-
gions are merged based on the statistical distribution
of raw pixels .

The user can interact with the segmentation pro-
cess by indicating the parameters: 1) the maximum of
pixels (maxpixels) for the regions during the growing
process (this can be left also as an internal parameter
of the algorithm); 2) the number of looks (n) in which
the radar image was processed and 3) the significance
level of the KS test (p0) set by the user, which controls
the amount of regions present in the segmented image.

Further studies can include the following issues:

• The evaluation methodology can include other
techniques that process filtered SAR images, as
well as the comparison with current SAR segmen-
tation approaches that work on non filtered SAR
images, in order to improve the presented algo-
rithms;

• This algorithm may be applied in environment
monitoring which use SAR image such as coastal
monitoring and oil spills detection in areas under
petroleum exploitation.

• In situations which it is quite important to iden-
tify land use, e.g crops, forest or urban areas the
region growing algorithm can be adjusted to the
distributions displayed in .

The contribution of this paper concerns a new ap-
proach to perform image segmentation using the raw
pixels as input data, without preprocessing. This
methodology eliminates the filtering step, as well as
it favors fine structures detection in speckled images.
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