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A Flexible Semi-definite Programming

Approach for Source Localization Problems
Frankie K.W. Chan, H. C. So. W.-K. Ma and Kenneth W. K. Lui

Abstract

In this paper, a new semi-definite programming approach is devised for approximating nonlinear

estimation problems. The main idea is to include the noise components as parameters of interests, which

increases the flexibility in the convex optimization formulation. Using the source localization as an

illustration, we develop semi-definite relaxation (SDR) positioning algorithms using angle-of-arrival,

time-of-arrival and time-difference-of-arrival measurements. Numerical examples are included to show

the effectiveness of the proposed SDR approach.

Index Terms

Source localization, convex optimization, angle-of-arrival, time-of-arrival, time-different-of-arrival

I. INTRODUCTION

Finding the position of a target based on measurements from an array of spatially separated sensors has

been one of the central problems in many fields such as radar, sonar [1], telecommunications [2], mobile

communications [3] and wireless sensor networks [4]. Angle-of-arrival (AOA) [5], time-of-arrival (TOA)

[6], time-difference-of-arrival (TDOA) [7], received signal strength (RSS) [8], and acoustic energy (AE)

[9] of the emitted signal are commonly used measurements for source localization. Basically, AOAs are

the source bearings relative to the receivers while TOAs, TDOAs, RSSs and AEs provide the distance

information between the source and sensors. However, positioning is not a trivial task because these

measurements are nonlinearly related to the source location. In this work, we focus on estimating the

source position given the AOA, TOA or TDOA measurements. Without loss of generality, two-dimensional

positioning is considered. AOA is the arrival angle of the emitted source signal observed at a receiver.

From each AOA, we can draw a line of bearing (LOB) from the target to the receiver and the intersection

of at least two LOBs will give the source location. On the other hand, in TOA-based positioning, the
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distance between the source and each receiver is determined from the one-way propagation time of the

signal traveling between them. This provides a circle centered at the receiver on which the target must

lie and it is clear that at least three receivers are needed to provide a unique solution. TDOA is the

difference between two TOAs, which is employed when clock synchronization is not available at the

source. That is, TDOAs correspond to the range-difference measurements and hyperbolic equations are

constructed from them.

Nonlinear and linear [10] approaches are two conventional methodologies to solve for the position of the

target. The first category deals with the nonlinear equations directly constructed from the AOA, TOA and

TDOA measurements, which includes the nonlinear least squares (NLS) and maximum likelihood (ML)

estimators. On the other hand, the second approach converts the nonlinear equations to be linear. Generally

speaking, the former has superior estimation performance but there is no guarantee of obtaining the global

solution because the corresponding cost functions are multi-modal. While the latter is computationally

simple, its accuracy is often degraded by the linearization process especially under large noise conditions

[11]–[12]. Convex optimization, particularly the semi-definite relaxation (SDR) method [13]–[15], is a

more recent positioning approach which strikes a balance between nonlinear and linear methods, namely,

high accuracy and global convergence. It starts from transforming the NLS or ML estimator to an

equivalent constrained optimization problem and then relaxes the constraints so that a global solution

can be obtained. Nevertheless, to the best of our knowledge, SDR-based positioning with solely AOA

measurements has not been yet addressed in the literature.

The main contribution of this paper is to devise a new SDR formulation for positioning problems

by considering the measurement noises as the parameters of interest. In doing so, the flexibility of

expressing the NLS or ML estimation problems is highly increased. As a result, it is possible to obtain

the SDR formulation for AOA-based positioning. Its development is provided in Section II and extension

to receiver position uncertainty is also investigated. In Sections III and IV, we apply this new SDR

formulation technique to TOA and TDOA measurements, respectively. In particular, we prove that in the

uncorrelated noise scenario, our TOA-based position estimator is equivalent to a standard formulation

[14]. Numerical examples for evaluating the performance of the proposed approach are included in Section

V. Finally, conclusions are drawn in Section VI.

II. LOCALIZATION WITH ANGLE-OF-ARRIVAL

Line-of-sight transmission is assumed so that there is a direct propagation path between the source and

each receiver. Let x = [x y]T be the unknown source position and xl = [xl yl]
T be the known coordinates
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of the lth sensor, l = 1, 2, · · · , L, where L ≥ 2 is the number of receivers. In the following, we first

address the basic AOA-based localization problem where the receiver positions are perfectly known and

then extend the development when they are subject to uncertainty.

A. Basic Algorithm

The AOA measurements are modeled as:

φl = tan−1

(
yl − y

xl − x

)
+ ql, l = 1, 2, · · · , L (1)

where {ql} are zero-mean Gaussian random variables with known covariance matrix E{qqT } = W−1

with q = [q1 q2 · · · qL]T and E, −1 and T being the expectation, inverse and transpose operators,

respectively. That is, q ∼ N (
0L×1,W

−1
)

where 0M×N represents a M ×N zero matrix. The task here

is to find x given {φl} and {xl}. The ML estimator for x is

minimize
x̃,ψ̃

(
ψ̃ − φ

)T
W

(
ψ̃ − φ

)

subject to ψ̃ =

[
tan−1

(
y1 − ỹ

x1 − x̃

)
tan−1

(
y2 − ỹ

x2 − x̃

)
· · · tan−1

(
yL − ỹ

xL − x̃

)]T (2)

where φ =
[
φ1 φ2 · · · φL

]T
and ψ̃ represents the variable for ψ. The main novelty in devising the

new SDR formulation is to include the noises {ql} as variables in the ML cost function by expressing

(2) as the following constrained optimization problem:

minimize
x̃,q̃,ψ̃

q̃TWq̃

subject to q̃ = φ− ψ̃

ψ̃ =

[
tan−1

(
y1 − ỹ

x1 − x̃

)
tan−1

(
y2 − ỹ

x2 − x̃

)
· · · tan−1

(
yL − ỹ

xL − x̃

)]T (3)

Taking tangent on both sides of the first constraint in (3) and applying the difference formula for tangent,

we obtain

tan(q̃) = tan(φ − ψ̃)

⇒ tan(q̃) + diag(tan(ψ̃))diag(tan(φ)) tan(q̃) = tan(φ)− tan(ψ̃)

⇒ diag(a− x̃1L) tan(q̃) + diag(b− ỹ1L)diag(tan(φ)) tan(q̃) = diag(a− x̃1L) tan(φ)− b+ ỹ1L

(4)

where a = [x1 x2 · · · xL]
T , b = [y1 y2 · · · yL]

T and 1L is a column vector of length L with

all entries equal one. Here, diag is the diagonal matrix operator and tan(q̃) corresponds to element-wise
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operation. Rearranging (4) yields

diag(a) tan(φ)− b = (diag(a) + diag(b)diag(tan(φ))) tan(q̃) + x tan(φ)−

y1L − x tan(q̃)− ydiag(tan(φ)) tan(q̃) (5)

Denoting p̃ = [tan(q̃)T x̃ ỹ]T and P̃ = p̃p̃T , (5) can be expressed as

y = Aθ̃ (6)

where

y = diag(a) tan(φ)− b (7)

A =
[
diag(a) + diag(b)diag(tan(φ)) tan(φ) −1L −IL −diag(tan(φ))

]
(8)

θ̃ =
[
p̃T P̃T

1:L,L+1 P̃T
1:L:L+2

]T
(9)

with IL and P̃i:m,j:n being the L × L identity matrix and sub-matrix of P̃ constructed from its (i, j)

to (m,n) entries, respectively. Assuming that q̃l is sufficiently small, we have Pl,l = tan2(ql) ≈ q2l ,

l = 1, 2, · · · , L. The optimization problem for AOA-based localization in (3) is then approximated as:

minimize
θ̃,P̃

tr(WP̃1:L,1:L)

subject to y = Aθ̃

P̃ = p̃p̃T

(10)

where tr denotes the trace operator. It is worth noting that although y = Aθ̃ is underdetermined, unique

solution is obtained through minimizing the objective function. Adopting the SDR approach, we relax

(10) as a convex optimization problem as:

minimize
θ̃,P̃

tr(WP̃1:L,1:L)

subject to y = Aθ̃⎡
⎣ P̃ p̃

p̃T 1

⎤
⎦ � 0(L+3)×(L+3)

(11)

where � corresponds to the positive semi-definite operator.

B. Extension to Receiver Position Uncertainty

In practice, the receiver positions may not be known perfectly [15] and treating them to be exact

may lead to degradation of estimation accuracy [16]–[17]. In this section, we take the receiver position
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uncertainty into account in the algorithm development. First, the erroneous receiver positions are modeled

as:

zl,1 = xl + ul,1 (12)

zl,2 = yl + ul,2 (13)

where ul,1 and ul,2 are the zero-mean disturbances in the lth receiver position and ul ∼ N (02×1,Φl)

with ul = [ul,1 ul,2]
T and Φl is the covariance matrix for ul which is assumed known. The AOA

measurements are:

φl = tan−1

(
zl,2 − ul,2 − y

zl,1 − ul,1 − x

)
+ ql, l = 1, 2, · · · , L (14)

Extending (2), the ML estimator for x is now:

minimize
ψ̃,x̃,ũ1···ũL

(
ψ̃ − φ

)T
W

(
ψ̃ − φ

)
+

L∑
l=1

ũT
l Φ

−1
l ũl

subject to ψ̃ =

[
tan−1

(
z1,2 − ũ1,2 − ỹ

z1,1 − ũ1,1 − x̃

)
tan−1

(
z2,2 − ũ2,2 − ỹ

z2,1 − ũ2,1 − x̃

)
· · · tan−1

(
zL,2 − ũL,2 − ỹ

zL,1 − ũL,1 − x̃

)]T

(15)

Similar to (3), we reexpress the objective function in (15) as:

minimize
ψ̃,x̃,ũ1···ũL,q̃

q̃TWq̃+

L∑
l=1

ũT
l Φ

−1
l ũl

subject to q̃ = φ− ψ̃

ψ̃ =

[
tan−1

(
z1,2 − ũ1,2 − ỹ

z1,1 − ũ1,1 − x̃

)
tan−1

(
z2,2 − ũ2,2 − ỹ

z2,1 − ũ2,1 − x̃

)
· · · tan−1

(
zL,2 − ũL,2 − ỹ

zL,1 − ũL,1 − x̃

)]T

(16)

Following (4)–(5), we obtain from the first constraint in (16):

tan(q̃) = tan(φ − ψ̃)

⇒ tan(q̃) + diag(tan(ψ̃))diag(tan(φ)) tan(q̃) = tan(φ)− tan(ψ̃)

⇒ diag(z1 − ũ1 − x̃1L) tan(q̃) + diag(z2 − ũ2 − ỹ1L)diag(tan(φ)) tan(q̃) =

diag(z1 − ũ1 − x̃1L) tan(φ)− z2 + ũ2 + ỹ1L

⇒ diag(z1) tan(φ)− z2 = (diag(z1) + diag(z2)diag(tan(φ))) tan(q̃) + x̃ tan(φ)− ỹ1L−

x̃ tan(q̃)− ỹdiag(tan(φ)) tan(q̃) + diag(ũ1) tan(φ)−

diag(ũ1) tan(q̃)− diag(ũ2)diag(tan(φ)) tan(q̃)− ũ2 (17)
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where z1 = [z1,1 z2,1 · · · zL,1]
T , z2 = [z1,2 z2,2 · · · zL,2]

T , ũ1 = [ũ1,1 ũ2,1 · · · ũL,1]
T and

ũ2 = [ũ1,2 ũ2,2 · · · ũL,2]
T .

Denoting p̃ = [tan(q̃)T x̃ ỹ ũT
1 ũT

2 ]
T , P̃ = p̃p̃T and T = diag(tan(φ)), (17) can be written as

diag(z1) tan(φ)− z2 = (diag(z1) + diag(z2)T) tan(q̃) + x̃ tan(φ)− ỹ1L − P̃1:L,L+1 −TP̃1:L,L+2+

Tp̃L+3:2L+2 − diag(P̃1:L,L+3:2L+2)−Tdiag(P̃1:L,2L+3:3L+2)− p̃2L+3:3L+2 (18)

More compactly, we have

y = Aθ̃ (19)

where y = diag(z1) tan(φ)− z2 (20)

A =
[
diag(z1) + diag(z2)T tan(φ) −1L −IL −T

]
(21)

θ̃ =
[
tan(q̃)T s̃T t̃T

]T
(22)

s̃ = P̃T
1:L,L+1 + diag(P̃1:L,L+3:2L+2)

T + p̃T
2L+3:3L+2 (23)

t̃ = P̃T
1:L:L+2 − p̃T

L+3:2L+2 + diag(P̃1:L,2L+3:3L+2)
T (24)

On the other hand, we rewrite the second term in the objective function of (15) as

L∑
l=1

ũT
l Φ

−1
l ũl =

L∑
l=1

tr(Φ−1
l H̃l) (25)

where H̃l =

⎡
⎣ P̃L+2+l,L+2+l P̃L+2+l,2L+2+l

P̃2L+2+l,L+2+l P̃2L+2+l,2L+2+l

⎤
⎦ (26)

Considering sufficiently small noise condition, the optimization problem for AOA-based localization

with receiver position uncertainty in (15) is relaxed and approximated as

minimize
θ̃,P̃

tr(WP̃1:L,1:L) +
∑L

l=1 tr(Φ−1
l H̃l)

subject to y = Aθ̃⎡
⎣ P̃ p̃

p̃T 1

⎤
⎦ � 0(3L+3)×(3L+3)

(27)

III. LOCALIZATION WITH TIME-OF-ARRIVAL

The distance between the source and receiver is obtained by multiplying the TOA measurement by

the propagation speed of the traveling signal. With L ≥ 3 receivers, the position of the source can be

determined. In the following, we first present the estimator for TOA-based localization in uncorrelated

noises, which will be shown to be equivalent to a conventional SDR solution. Extensions to correlated

noises and receiver position uncertainty are also included.
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A. Basic Algorithm

The range measurements are obtained by multiplying the TOAs with the known propagation speed,

which are modeled as:

rl = dl + ql, l = 1, 2, · · · , L (28)

where dl represents the distance between the source and the lth sensor and has the form of:

dl = ‖x− xl‖2 =
√

(x− xl)2 + (y − yl)2, l = 1, 2, · · · , L (29)

with ‖ ‖2 being the 2-norm operator. The {ql} denote the additive uncorrelated errors and each of them

is modeled as ql ∼ N (
0, σ2

l

)
, that is, ql is a zero-mean Gaussian process with known variance σ2

l . The

task here is to find x given {rl}, {xl} and {σ2
l }. Apparently, the ML estimator for x is

minimize
x̃

L∑
l=1

1

σ2
l

(rl − ‖x̃− xl‖2)2 , (30)

where x̃ represents the variable for x.

Analogous to Section II, we express (30) as the following constrained optimization problem:

minimize
x̃,{q̃i}

L∑
l=1

q̃2l
σ2
l

subject to rl − q̃l = ‖x̃− xl‖2, l = 1, 2, · · · , L
(31)

Each nonlinear constraint in (31) can be converted to a linear one by squaring both sides and introducing

new variables, namely, R̃ = x̃T x̃ and p̃l = q̃2l , l = 1, 2, · · · , L:

(rl − q̃l)
2 = ‖x̃− xl‖22 ⇔ r2l − xT

l xl = R̃− 2xT
l x̃+ 2q̃lrl − p̃l, l = 1, 2, · · · , L (32)

Note that the constraints in (31) and (32) are generally equivalent because q̃l > rl does not align with

minimizing
∑L

l=1 q̃
2
l /σ

2
l . As a result, we can rewrite (31) as:

minimize
θ̃

L∑
l=1

p̃l
σ2
l

subject to y = Aθ̃

p̃l = q̃2l , l = 1, 2, · · · , L
R̃ = x̃T x̃

(33)

where

y =

⎡
⎢⎢⎢⎢⎢⎢⎣

r21 − xT
1 x1

r22 − xT
2 x2

...

r2L − xT
LxL

⎤
⎥⎥⎥⎥⎥⎥⎦

(34)
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A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−2xT
1 1 2r1 0 · · · 0 −1 0 · · · 0

−2xT
2 1 0 2r2 · · · 0 0 −1 · · · 0

...
...

...
...

. . .
...

...
...

. . .
...

−2xT
L 1 0 0 · · · 2rL 0 0 · · · −1

⎤
⎥⎥⎥⎥⎥⎥⎦

(35)

θ̃ =
[
x̃ R̃ q̃ p̃

]T
(36)

with q̃ = [q̃1, q̃2, · · · , q̃L]T and p̃ = [p̃1, p̃2, · · · , p̃L]T . Adopting the SDR approach, we relax (33) as a

convex optimization problem as:

minimize
θ̃

L∑
l=1

p̃l
σ2
l

subject to y = Aθ̃

p̃l ≥ q̃2l , l = 1, 2, · · · , L
R̃ ≥ x̃T x̃

(37)

Note that the constraints of p̃l ≥ q̃2l , l = 1, 2, · · · , L, are tight. It is because p̃l and q̃l have opposite signs

in y = Aθ̃ and minimizing p̃l implies maximizing q̃l which results in p̃l = q̃2l . That is, relaxation is only

employed in R̃ ≥ x̃T x̃.

B. Connection to Traditional Formulation

A traditional SDR formulation for TOA-based positioning is [14]

minimize
{β̃l},{g̃l},R̃,x̃

L∑
l=1

1

σ2
l

(
r2l − 2rlg̃l + β̃l

)

subject to β̃l = R̃− 2xT
l x̃+ xT

l xl, l = 1, 2, · · · , L
β̃l ≥ g̃2l , l = 1, 2, · · · , L
R̃ ≥ x̃T x̃

(38)

where g̃l = ‖x̃− xl‖2, l = 1, 2, · · · , L. According to the constraint of (31), we employ g̃l = rl − q̃l and

β̃l = g̃2l to express the objective function in (38) as

r2l − 2rlg̃l + β̃l = (rl − g̃l)
2 = q̃2l = p̃l (39)

On the other hand, the first set of constraints in (37) can be written as

r2l − 2rlq̃l + p̃l = R̃− 2xT
l x̃+ xT

l xl, l = 1, 2, · · · , L (40)
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which is equivalent to the lth row of y = Aθ after simple manipulations. Furthermore, (39) can be

expressed as

p̃l = r2l − 2dlg̃l + β̃l + g̃2l − g̃2l

= (rl − g̃l)
2 + β̃l − g̃2l

= q̃2l + β̃l − g̃2l (41)

which implies

p̃l ≥ q̃2l ⇐⇒ β̃l ≥ g̃2l , l = 1, 2, · · · , L (42)

That is, the second set of constraints in (38) is the same as that in (37). The equivalence between the

two SDR formulations in (38) and (37) is thus proved.

C. Extension to Correlated Noises

For colored {ql} with known noise covariance matrix W−1, we follow (33) to obtain the ML estimator

for x:

minimize
θ̃,Q̃

tr(WQ̃)

subject to y = Aθ̃,

Q̃ = q̃q̃T

R̃ = x̃T x̃

(43)

where θ̃ =
[
x̃T R̃ q̃T diag(Q̃)T

]T
. Note that the elements of p̃ in previous sections is the same as

the diagonal elements of Q̃. Applying relaxation, the corresponding SDR formulation is then:

minimize
θ̃,Q̃

tr(WQ̃)

subject to y = Aθ̃,⎡
⎣ Q̃ q̃

q̃T 1

⎤
⎦ � 0(L+1)×(L+1)

R̃ ≥ x̃T x̃

(44)

D. Extension to Receiver Position Uncertainty

When the receiver positions are subject to uncertainty, the observed coordinates are:

zl = xl + ul, l = 1, 2, · · · , L (45)
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where zl is the noisy version of xl and it is assumed that the disturbance is modeled as ul ∼ N (02×1,Φl)

where Φl, l = 1, 2, · · · , L, are known. By combining (45) and (29), the distance measurements are now:

rl = ‖x− xl‖2 + ql = ‖x− (zl − ul)‖2 + ql, l = 1, 2, · · · , L (46)

The ML estimator for the position according to (46) is then

minimize
{q̃l},{ũl},x̃

L∑
l=1

q̃2l
σ2
l

+

L∑
l=1

ũT
l Φ

−1
l ũl

subject to rl − q̃l = ‖x̃− (zl − ũl)‖2, l = 1, 2, · · · , L
(47)

To convert (47) into a SDR problem, we first rewrite the second term in the objective function as

L∑
l=1

ũT
l Φ

−1
l ũl =

L∑
l=1

tr(Φ−1
l Ξ̃l), l = 1, 2 · · · , L (48)

where Ξ̃l = ũlũ
T
l . On the other hand, we linearize the constraints by squaring both sides to obtain:

r2l − zTl zl = x̃T x̃− 2x̃T zl + 2xT ũl + 2rlq̃l − q̃2l − 2zTl ũl + ũT
l ũl, l = 1, 2, · · · , L (49)

The second-order terms can be removed by introducing new variables. That is, we let Ỹ = X̃T X̃ where

X̃ = [ũ1, ũ2, · · · , ũL, x̃], which means Ỹk,l = ũT
k ũl, 1 ≤ k, l ≤ L and ỸL+1,L+1 = x̃T x̃. Note that Ξl

and Yl,l are related by

tr(Ξ̃l) = ũT
l ũl = Ỹl,l, l = 1, 2, · · · , L (50)

Using (48)–(50), (47) is expressed as

minimize
X̃,Ỹ,{p̃l},{q̃l},{Ξ̃l}

L∑
l=1

p̃l
σ2
l

+ tr(Φ−1
l Ξ̃l)

subject to r2l − zTl zl = 2rlq̃l − 2zTl ũl − 2zTl x̃+

−p̃l + 2Ỹl,L+1 + Ỹl,l + ỸL+1,L+1, l = 1, 2, · · · , L
p̃l = q̃2l , l = 1, 2, · · · , L
tr(Ξ̃l) = Ỹl,l, i = 1, 2, · · · , L
Ξ̃l = ũlũ

T
l , l = 1, 2, · · · , L

Ỹ = X̃T X̃

(51)
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Writing the constraints of (51) in matrix form and applying relaxation, we have the following SDR

formulation:

minimize
X̃,Ỹ,p̃,q̃,{Ξ̃l}

L∑
l=1

p̃l
σ2
l

+ tr(Φ−1
l Ξ̃l)

subject to y = Aθ̃

p̃l ≥ q̃2l , l = 1, 2, · · · , L
tr(Ξ̃l) = Ỹl,l, l = 1, 2, · · · , L⎡
⎣Ξ̃l ũl

ũT
l 1

⎤
⎦ � 03×3, l = 1, 2, · · · , L

⎡
⎣Ỹ X̃T

X̃ I2

⎤
⎦ � 0(L+3)×(L+3)

(52)

where y =
[
r21 − 2zT1 z1 r22 − 2zT2 z2 · · · r2L − zTLzL

]T
(53)

A =
[
2diag(r1, · · · , rL) −2diag(zT1 , z

T
2 , · · · , zTL) −2ZT −IL 2IL IL 1L

]
(54)

θ̃ =
[
q̃T vecT (X̃) p̃T ỹT

L+1 diag(Ỹ)
]T

(55)

ỹL+1 =
[
Ỹ1,L+1 Ỹ2,L+1 · · · ỸL,L+1

]T
(56)

p̃ =
[
p̃1 p̃2 · · · p̃L

]T
(57)

q̃ =
[
q̃1 q̃2 · · · q̃L

]T
(58)

Z =
[
z1 z2 · · · zL

]
(59)

IV. LOCALIZATION WITH TIME-DIFFERENCE-OF-ARRIVAL

Without loss of generality, let the first receiver be the reference. Based on the TDOA information, the

range-difference measurement between the lth and the first receivers, denoted by rl,1, is:

rl,1 = dl − d1 + ql,1, l = 2, 3, · · · , L (60)

When the observed data at the receivers are processed optimally [18], the disturbances {ql,1} can be

modeled as (ql − q1) where {ql} are uncorrelated zero-mean Gaussian processes with known variances

{σ2
l }. In TDOA-based positioning, x is estimated using rl,1, l = 2, 3, · · · , L, xl and σ2

l , l = 1, 2, · · · , L.

Rearranging and squaring both sides of (60), we have

(rl,1 + ‖x− x1‖2)2 = (‖x− xl‖2 + ql − q1)
2, l = 2, 3, · · · , L

r2l,1 − 2xT
1 x+ xT

1 x1 + 2rl,1d1 = xT
l xl − 2xT

l x+ (ql − q1)
2 + 2(ql − q1)dl, l = 2, 3, · · · , L

(61)
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Substituting dl by rl,1 + d1 − (ql − q1) to reduce the number of variables, we obtain

r2l,1 − xT
l xl + xT

1 x1 = 2(xT
1 − xT

l )x− 2rl,1q1 + 2rl,1ql − 2rl,1d1 − 2d1q1 + 2d1ql − q21 − q2l + 2qlq1,

l = 2, 3, · · · , L (62)

which can be written in matrix form as

y = Aθ (63)

where y =
[
r22,1 − xT

2 x2 + xT
1 x1 r23,1 − xT

3 x3 + xT
1 x1 · · · d2L,1 − xT

LxL + xT
1 x1

]T
(64)

A =
[
2X 2Pr 2P+ P− 2IL−1

]
(65)

θ =
[
xT qT QT

1:L,L+1 diag (Q1:L,1:L) QT
2:L,1

]T
(66)

X =
[
x1 − x2 x1 − x3 · · · x1 − xL

]
(67)

Pr =
[
−r diag (r) −r

]
(68)

r =
[
r2,1 r3,1 · · · rL,1

]T
(69)

P± =
[
−1L−1 ±IL−1

]
(70)

q =
[
q1 q2 · · · qL d1

]T
(71)

Q = qqT (72)

Note that QL+1,L+1 is related to x as

QL+1,L+1 = d21 = R− 2xTx1 + xT
1 x1 (73)

where R = xTx is introduced to make the equation linear. Then, the optimization problem becomes

minimize
θ̃,R̃,Q̃

tr
(
WQ̃1:L,1:L

)

subject to y = Aθ̃

Q̃ = q̃q̃T

Q̃L+1,L+1 = R̃− 2xT
1 x̃+ xT

1 x1

R̃ = x̃T x̃

(74)

where W = diag
(
1/σ2

1 , 1/σ
2
2 , · · · , 1/σ2

L

)
. Relaxing the non-convex constraints in (74) gives the SDR
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formulation for TDOA-based positioning:

minimize
θ̃,R̃,Q̃

tr
(
WQ̃1:L,1:L

)

subject to y = Aθ̃,

Q̃ � q̃q̃T ,

Q̃L+1,L+1 = R̃− 2xT
1 x̃+ xT

1 x1,

R̃ ≥ x̃T x̃

(75)

When the receiver positions are not perfectly known, we have xl = zl − ul according to (36).

Substituting dl = ‖x− zl + ul‖ into (61) yields

r2l,1 − 2(zl + ul)
Tx+ (z1 + u1)

T (z1 + u1) + 2rl,1d1

= (zl + ul)
Txl − 2(zl + ul)

Tx+ (ql − q1)
2 + 2(ql − q1)dl, l = 2, 3, · · · , L (76)

Expressing (76) in matrix form, we have y = Aθ where

y =
[
r22,1 − xT

2 x2 + xT
1 x1 r23,1 − xT

3 x3 + xT
1 x1 · · · d2L,1 − xT

LxL + xT
1 x1

]T
(77)

A =
[
2Pr 2X 21L−1x

T
1 −2diag(xT

2 , · · · ,xT
L) 2P+ P− 2IL−1 2P+ P+

]
(78)

θ =
[
qT QT

1:L,1:L diag(Q1:L,1:L) QT
2:L,1 gT

1 gT
2

]T
(79)

X =
[
x1 − x2 x1 − x3 · · · x1 − xL

]
(80)

g1 =
[
tr(QL+2:L+3,L+4:L+5) tr(QL+2:L+3,L+6:L+7) · · · tr(QL+2:L+3,3L+2:3L+3)

]T
(81)

g2 =
[
tr(QL+4:L+5,L+4:L+5) tr(QL+6:L+7,L+6:L+7) · · · tr(Q3L+2:3L+3,3L+2:3L+3)

]T
(82)

q =
[
q1 · · · qL d1 xT uT

1 · · · uT
L

]T
(83)

The SDR formulation of (75) is modified as

minimize
θ̃,Q̃

tr
(
WQ̃1:L,1:L

)
+

L∑
l=1

tr(Φ−1
l Q̃L+l+3:L+l+4,L+l+3:L+l+4)

subject to y = Aθ̃,

Q̃ � q̃q̃T ,

Q̃L+1,L+1 = Q̃L+2,L+2 + Q̃L+3,L+3 + zT1 z1

+Q̃L+4,L+4 + Q̃L+5,L+5 − 2zT1 q̃M+2:M+3

+2Q̃L+4,L+2 + 2Q̃L+5,L+3 − 2zT1 qL+4:L+5

(84)

where the last equality corresponds to R̃ ≥ x̃T x̃.
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V. SIMULATION RESULTS

Computer simulation has been conducted to evaluate the performance of the proposed SDR source

localization methods. We utilize the MATLAB toolbox YALMIP [19] for the algorithm realization where

the solver SDPT3 [20]–[21] is employed. Unless stated otherwise, we examine the geometry depicted

in Figure 1 where the receivers are located at (10, 0), (5, 5
√
3), (−5, 5

√
3), (−10, 0), (−5,−5

√
3) and

(5,−5
√
3) while the source position is located at (−7, 9). Note that the source is located outside the

convex hull of the receivers. In the presence of colored noise, the corresponding covariance is assigned as

a Toeplitz symmetric matrix with the first row being [10 9 8 7 6 5]σ2 in AOA-based and TOA-based

positioning. When the receiver positions are subject to errors, we assign Φl = 100.1I2, l = 1, 2, · · · , L.

The mean square error (MSE) is employed as the performance measure and all the results are based on

averages of 200 independent runs.

First, we investigate the performance of the proposed SDR approach for AOA-based localization.

Comparisons with Cramér-Rao lower bound (CRLB) and [12] which is a linear least squares method, are

also made. We consider correlated AOA measurements and the MSE performance versus σ2 is plotted

in Figure 2. We observe that the proposed SDR method is superior to [12] and its MSEs are close to

the CRLB when σ2 ≤ −8 dB. The average computational times per run are measured as 0.73 s and

5.2×10−5 s, respectively. Figure 3 shows the results of presence of uncertainty in the receiver positions.

It is seen that the algorithm in [12] perform slightly better but both algorithms cannot attain the CRLB.

Second, TOA-based localization is addressed and we first compare the proposed scheme with the

standard SDR algorithm [14] and CRLB in the uncorrelated noise scenarios. For ease of presentation but

without loss of generality, we use σ2 = σ2
l , l = 1, 2, · · · , L. The results are shown in Figure 4 and we see

that there is no obvious difference between the two methods, which aligns with our analysis, and their

MSEs are close to the CRLB. Moreover, the average run times of the proposed and standard algorithms

are 0.32 s and 0.33 s, respectively, indicating that their complexity is similar. This test is repeated such

that the source position is randomly chosen from a circle with center (0, 0) and radius 15 at each trial,

and the results are plotted in Figure 5. The findings are similar to those of Figure 4. Figure 6 shows the

results for the colored noise case and it is seen that the proposed algorithm outperforms [14]. Finally,

the first test is repeated with receiver position uncertainty and the MSE performance is plotted in Figure

7. Both methods perform similarly and their MSEs are close to the CRLB for the whole range of σ2.

Finally, the proposed SDR algorithm for TDOA-based localization is investigated and we first compare

with [15] when the receiver positions are known exactly. The receiver with position (10, 0) is employed
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as the reference and the results are shown in Figure 8. It is seen that the performance of the SDR method

degrades the CRLB by about 1.5 dB because the second constraint in (75) is not tight. However, it is

superior to [15] when the noise power is larger than -10 dB. The computational times of the proposed

SDR algorithm and [15] are 0.92 s and 0.78 s, respectively. Figure 9 shows the MSEs when there is

receiver position uncertainty and the results of [16] are also included. The performance of the proposed

scheme is in between [15] and [16], and all cannot attain CRLB.

VI. CONCLUSION

By including the noise components as the variables, a new semi-definite relaxation (SDR) formulation,

which allows higher design flexibility, is devised. Based on the proposed approach, SDR algorithms for

source localization using angle-of-arrival, time-of-arrival and time-difference-of-arrival measurements are

developed. Simulation results show that the performance of the SDR schemes are close to the Cramér-Rao

lower bound when the constraints are tight.
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Fig. 1. Geometry for the first test
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Fig. 2. Mean square error versus σ2 for AOA-based positioning
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Fig. 3. Mean square error versus σ2 for AOA-based positioning with receiver position uncertainty
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Fig. 4. Mean square error versus σ2 for TOA-based positioning
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Fig. 5. Mean square error versus σ2 for TOA-based positioning with a random source location
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Fig. 6. Mean square error versus σ2 for TOA-based positioning in colored noise
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Fig. 7. Mean square error versus σ2 for TOA-based positioning with receiver position uncertainty
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Fig. 8. Mean square error versus σ2 for TDOA-based positioning
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Fig. 9. Mean square error versus σ2 for TDOA-based positioning with receiver position uncertainty
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