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Abstract

Locating an unknown-position source using received signal strength (RSS)
measurements in an accurate and low-complexity manner is addressed in
this paper. Given that the source transmit power is unknown, we employ
the differential RSS information to devise two computationally attractive
localization methods based on the weighted least squares (WLS) approach.
The main ingredients in the first algorithm development are to obtain the
unbiased estimates of the squared ranges and introduce an extra variable.
The second method improves the first version by implicitly exploiting the
relationship between the extra variable and source location through a sec-
ond WLS step. The performance of the two estimators is analyzed in the
presence of zero-mean white Gaussian disturbances. Numerical examples are
also included to evaluate their localization accuracy by comparing with the
maximum likelihood approach and Cramér-Rao lower bound.

Keywords:
source localization, received signal strength, positioning algorithm, least
squares

1. Introduction

Source localization refers to finding the position of a target of interest
based on measurements from an array of spatially separated sensors with
a priori known locations. This research topic has many important appli-
cations in radar, sonar, telecommunications, mobile communications and
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wireless sensor network (WSN). Time-of-arrival (TOA), time-difference-of-
arrival (TDOA), angle-of-arrival (AOA) and received signal strength (RSS)
are standard measurements for positioning [1]–[2]. The TOA, TDOA and
RSS contain the range information between the source and sensor while the
AOA provides the source bearing relative to the receiver. Compared with
TOA and TDOA schemes which require clock synchronization among the
sensors and even the source, and with AOA-based localization where an an-
tenna array is needed at each sensor, employing the RSS measurements is
more cost effective. In fact, RSS-based positioning is particularly important
in sensor network applications where each sensor has limited computational
and communication capabilities and thus it is desirable to locate the source
with minimum cost in terms of both hardware and software [3].

Maximum likelihood (ML) [4], semi-definite relaxation (SDR) [5], centroid
[6] and weighted least squares (WLS) [7, 8, 9] approaches are the common
solutions for source localization using RSS measurements. It has been shown
in [4] that the positioning accuracy of the ML methodology attains Cramér-
Rao lower bound (CRLB) at sufficiently small noise conditions. However,
the ML cost function is highly nonlinear. Hence its maximization is sensitive
to initial conditions and there is no guarantee of global optimality. The basic
idea of the SDR technique is to approximate the nonconvex ML formulation
to a convex optimization program which always guarantees a global solu-
tion. Generally speaking, when the relaxation is sufficiently tight, the SDR
solution is an approximate ML estimate, but its computational complexity
is very high. In centroid localization, the source location is approximated as
the weighted average of all receivers within its transmission range. Although
it is simple to implement and robust to variations in the propagation envi-
ronment, its positioning accuracy is generally low. On the other hand, the
WLS approach converts the RSS measurements to a set of linear equations
in the source position, resulting in a computationally simple solution. As-
suming that the source transmit power is known, we have recently devised
a WLS RSS-based positioning algorithm [9] whose performance can achieve
the CRLB in the presence of white Gaussian disturbances. Nevertheless, to
the best of our knowledge, there is no optimum WLS estimator for the more
challenging scenario of unknown source transmit power in the literature. In
this work, we assume that the propagation model, path-loss exponent and
shadowing variances are known a priori through a calibration phase. For
example, all of them can be measured prior to the deployment of nodes in a
WSN localization application. However, the transmit power will be subject
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to large uncertainty even if the node specification is available. It is because
its value is very dependent on the height and orientation of the node. Other
factors affecting the transmit power include tolerances in the transmitter
components, losses in RF connectors and power supply voltage variations.
To eliminate the transmit power uncertainty, we utilize here the differential
RSS measurements to devise accurate and fast WLS-based positioning algo-
rithms. Note that in cognitive radio applications, the transmission power is
also unknown [10].

The rest of the paper is organized as follows. In Section 2, the problem
formulation with the RSS signal model is first introduced. To avoid dealing
with the unknown nuisance parameter of the transmit power, we employ the
differential RSS measurements in our algorithm development. After obtain-
ing the unbiased estimates of the squared range ratios and introducing an
extra variable, a simple WLS RSS-based position estimator is devised and
analyzed. The performance of the proposed method is improved by exploit-
ing the constraint between the source position and the extra variable, and
its derivation as well as analysis are provided in Section 3. Simulation re-
sults are presented in Section 4 to evaluate the localization accuracy of the
proposed approach by comparing with the ML method and CRLB. Finally,
conclusions are drawn in Section 5.

2. Basic Algorithm

The notations used in this paper are first introduced as follows. The sym-
bols in bold upper case represent matrices and the bold lower case symbols
denote vectors. The M × 1 vector 1M has all elements 1, IM is the M ×M
identity matrix, and 0M×N is the M × N zero matrix. The [a]i represents
the ith element of vector a and [A]i,j denotes the (i, j) entry of matrix A.
The diag and sgn denote the diagonal and signum functions, respectively.
The T is the transpose operator, Tr(·) is the trace operator, and rank(·) is
the rank operator. In addition, E(·) and cov(·) represent the expectation
and covariance operators, respectively. The Ā is the noise-free component
in A, and â and ã denote the estimate and variable of a, respectively. Fi-
nally, q ∼ N (μ, σ2) means that the random variable q follows a Gaussian
distribution with mean μ and variance σ2.

Since multipath fading can be smoothed out by averaging the RSS mea-
surements over frequency and time while the shadow fading cannot be re-
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moved, the RSS path-loss model is [7]:

Pi = Ps − 10γ log10 di + ni, i = 1, 2, · · · , N (1)

where Pi is the averaged signal strength in dB received at the ith sensor, Ps is
the unknown source transmit power in dB, γ is the known path-loss factor,
di is the distance between the unknown-position source and ith receiver,
and {ni} are the average shadow fadings which are modeled as uncorrelated
zero-mean Gaussian variables with known variances {σ2

i }. Note that since
Pi is the averaged RSS, the averaging reduces the measurement noise to
an insignificant level compared to the shadow fading effects.The number of
receiver is N ≥ 4. For simplicity but without loss of generality, we consider
two-dimensional positioning and

di =
√
(x− xi)2 + (y − yi)2 (2)

where x = [x y]T is the unknown source location and (xi, yi) are the known
coordinates of the ith receiver. The task is to find x given the N RSS
measurements of (1). To avoid estimating Ps, we use the first receiver as the
reference and convert (1) to the differential RSS model:

P ′
i,1 = −γ ln

(
di
d1

)
+mi,1, i = 2, 3, · · · , N (3)

where P ′
i,1 = 0.1 ln(10) (Pi − P1) and mi,1 = 0.1 ln(10) (ni − n1).

Our algorithm development is based on the linearization approach which
requires d2i . In order to get an estimate of d2i , we first express (3) as:

e−
2
γ
P ′
i,1 =

(
di
d1

)2

e−
2
γ
mi,1 , i = 2, 3, · · · , N (4)

where the noise component is now multiplicative. From [11], the expected
value of (4) is

E

{
e−

2
γ
P ′
i,1

}
=

(
di
d1

)2

e
2
γ2

(λ2
i+λ2

1) (5)

where λ2
i = 0.01(ln(10))2σ2

i . Based on (4) and (5), we get an unbiased
estimate of d2i /d

2
1, denoted by ri,1:

ri,1 = e
− 2

γ
P ′
i,1− 2

γ2
(λ2

i+λ2
1), i = 2, 3, · · · , N (6)
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For sufficiently small noise conditions, we then have:

ri,1d
2
1 ≈ d2i , i = 2, 3, · · · , N (7)

Following [12], we introduce a variable R = x2 + y2 to express d2i as:

d2i = R − 2xix− 2yiy + x2
i + y2i , i = 1, 2, · · · , N (8)

Substituting (8) into (7) yields a set of linear equations:

Aθ = b+w (9)

where

A =

⎡⎢⎣ 2x2 − 2r2,1x1 2y2 − 2r2,1y1 r2,1 − 1
...

...
...

2xN − 2rN,1x1 2yN − 2rN,1y1 rN,1 − 1

⎤⎥⎦

b =

⎡⎢⎣ x2
2 + y22 − r2,1(x

2
1 + y21)

...
x2
N + y2N − rN,1(x

2
1 + y21)

⎤⎥⎦
θ = [x R]T and w = [w2 · · ·wN ]

T is the error vector. From (7), it is clear
that wi = d21ri,1 − d2i , i = 2, 3, · · · , N , with E{w} = 0(N−1)×1 according to
(5).

Without considering the dependency between x and R, the WLS estimate
of θ for (9), which is also the best linear unbiased estimator, is [13]:

θ̂ = (ATC−1
w A)−1ATC−1

w b (10)

where Cw = cov(w). In Appendix A, it is proved that

Cw = ΣΛΣ (11)

where

Λ =

⎡⎢⎢⎣e
4
γ2

(λ2
2+λ2

1) − 1 e
4
γ2

λ2
1 − 1 · · · e

4
γ2

λ2
1 − 1

...
...

. . .
...

e
4
γ2

λ2
1 − 1 e

4
γ2

λ2
1 − 1 · · · e

4
γ2

(λ2
N+λ2

1) − 1

⎤⎥⎥⎦
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and Σ = diag (d22, · · · , d2N). As scaling of Cw does not affect the solution in
(10), we can use Σ = diag (d22/d

2
1, · · · , d2N/d

2
1). For sufficiently small noise

conditions, we replace d2i /d
2
1 by ri,1 to yield a practical form of Cw:

Cw ≈ Σ′ΛΣ′ (12)

where Σ′ = diag (r2,1, · · · , rN,1) according to (7). The position estimate is

thus given as x̂ =
[
[θ̂]1 [θ̂]2

]T
.

In Appendix B, we have proved that the covariance for θ̂ is

C
̂θ ≈ (ĀTC−1

w Ā)−1 (13)

As a result, the theoretical root mean square error (RMSE) for x̂, denoted
by RMSE(x̂), is

RMSE(x̂) =
√
[C

̂θ]1,1 + [C
̂θ]2,2 (14)

3. Improved Version

Following [9] and [12], a second WLS step which utilizes the relationship
between the unknown position x and extra variable R, can increase the es-
timation performance. Based on x2 + y2 = R and under sufficiently small
noise conditions such that x ≈ [θ̂]1 and y ≈ [θ̂]2, we can construct:

Gz = h+ q (15)

where

G =

[
1 0 1
0 1 1

]T

z = [x2 y2]T

h =
[
[θ̂]21 [θ̂]22 [θ̂]3

]T
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and

q =

⎡⎢⎣x2 − [θ̂]21
y2 − [θ̂]22
R− [θ̂]3

⎤⎥⎦ =

⎡⎢⎣(x+ [θ̂]1)(x− [θ̂]1)

(y + [θ̂]2)(y − [θ̂]2)

R− [θ̂]3

⎤⎥⎦ ≈

⎡⎢⎣2x(x− [θ̂]1)

2y(y − [θ̂]2)

R− [θ̂]3

⎤⎥⎦
The WLS estimate of z is

ẑ = (GTC−1
q G)−1GTC−1

q h (16)

where Cq = cov(q) = diag (2x, 2y, 1)C
̂θdiag (2x, 2y, 1). Since x, y, and

Ā are not available, we employ x ≈ [θ̂]1, y ≈ [θ̂]2 and C
̂θ ≈ (ATC−1

w A)−1 in
the actual implementation.

As (16) are the estimates of x2 and y2 , we employ the sign information
of (10) to find (x, y) . Fusing (10) and (16), the improved position estimate,
denoted by x̂o, is:

x̂o =
[
sgn([θ̂]1)

√
[ẑ]1 sgn([θ̂]2)

√
[ẑ]2

]T
(17)

To derive the covariance of x̂o, we first notice that (17) can be viewed
as minimizing the WLS cost function constructed from (9) subject to [θ]21 +
[θ]22 = [θ]3, and thus the corresponding cost function is:

J(x̃) =

(
[A1 a]

[
x̃

x̃T x̃

]
− b

)T

C−1
w

(
[A1 a]

[
x̃

x̃T x̃

]
− b

)
=
(
A1x̃ + ax̃T x̃− b

)T
C−1

w

(
A1x̃ + ax̃T x̃− b

) (18)

where x̃ is the optimization variable for x and A = [A1 a] with A1 being
the first two columns of A and a is its last column. Applying the covariance
formula for unconstrained optimization problems at sufficiently small noise
conditions [14]–[15] yields:

Cx̂o ≈ [E{H(J(x̃))}]−1
E{∇(J(x̃))∇TJ(x̃)} [E{H(J(x̃))}]−1

∣∣
x̃=x

(19)

where H(J(x̃)) = ∂2J(x̃)/∂x̃∂x̃T and ∇(J(x̃)) = ∂J(x̃)/∂x̃ are the corre-
sponding Hessian matrix and gradient vector, respectively. In Appendix C,
we have derived Cx̂o as:

Cx̂o ≈ (BTC−1
m B

)−1
(20)
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where

B =
5γ

ln(10)
Σ−1(A1 + 2axT )

= − 10γ

ln(10)

⎡⎢⎢⎢⎣
x− x2

d22
− x− x1

d21

y − y2
d22

− y − y1
d21

...
...

x− xN

d2N
− x− x1

d21

y − yN
d2N

− y − y1
d21

⎤⎥⎥⎥⎦
(21)

andCm = E{mmT } = diag (σ2
2 , · · · , σ2

N )+σ2
11N−11

T
N−1 withm = [m2,1 m3,1

· · · mN,2]
T . It is also proved in Appendix C that (20) is equal to the CRLB

based on the RSS measurements of (1), indicating the optimality of (17).
That is to say, the optimum solution derived from (1), which estimates both
the position and transmit power, provides the same localization accuracy as
that of (3). Nevertheless, it seems that finding (x, y) from (3) is simpler than
employing (1).

4. Numerical Examples

Computer simulations are carried out to evaluate the RMSE performance
of the proposed WLS and two-step WLS algorithms by comparing with the
ML method. The ML approach [4] is implemented using the Levenberg-
Marquardt (LM) scheme with a damping factor of 10 and 20 iterations, which
is initialized by x̂ of (10). In all simulation settings, the LMmethod converges
to a minimum within 20 iterations. Note that apart from employing the
number of iterations, we can also exploit the difference between successive
estimates as the stopping criterion. Unless stated otherwise, the path-loss
factor is γ = 4 and there are eight receivers, that is, N = 8, and their
coordinates are (0, 0), (10, 0), (10, 10), (0, 10), (5, 0), (10, 5), (5, 10) and (0, 5),
which are all located on the boundary of a 10×10 area. The shadow fadings
{ni} are zero-mean white Gaussian variables with known identical variances
of σ2

i = σ2. All results are averages of 5000 independent runs.
Figure 1 shows the RMSEs of the WLS and ML methods at x = [3 7]T

for σ ∈ [−10, 10] dB. The theoretical standard deviation for x̂, namely, (14),
and that of the two-step WLS estimator, which is also the square root of the
CRLB, are included. The performance of the standard WLS estimator agrees
with (14) for the whole range of σ. On the other hand, the RMSEs of both
two-step WLS estimator and ML scheme attain

√
CRLB although the latter

8



is sightly superior for σ ≤ 5 dB. Regarding implementation complexity, the
average computation times per trial for the WLS, improved WLS and ML
methods are 1.7×10−4s, 2.7×10−4s and 2.1×10−3s, respectively, indicating
the computational attractiveness of the proposed approach. The RMSEs for
different γ ∈ [1, 5] at σ = 5 dB are plotted in Figure 2. The WLS algorithms
attain their theoretical standard deviations when γ > 2 while the ML method
is optimal in the whole range of γ. It is seen that although the RSS decreases
with γ, the localization accuracy increases with γ, which is also indicated by
the CRLB. Figure 3 shows the RMSEs at σ = 5 dB when the number of
receivers varies from N = 4 to N = 8. That is, for each N , the N receivers
which are closest to x are employed. It is seen that the performance of
all methods improves as N increases. In particular, the two-step scheme
is comparable with the ML estimator and the performance of all methods
deviates from their theoretical calculations at N = 4.

The first test is repeated when the unknown-position source is randomly
located within the 10 × 10 area in each trial, and the results are plotted in
Figure 4. We see that the RMSE of x̂ is around 1.5 times of that of x̂o, which
is similar to Figure 1. The RMSEs of the proposed WLS and two-step WLS
methods also meet their theoretical standard deviations for sufficiently small
noise conditions but the ML approach cannot provide reliable performance.
Note that some RMSEs of the ML estimator are very large and thus are
not included in the plot. It is because the ML cost function is multimodal
and the LM algorithm cannot guarantee a global minimization. Even when
initialized by the WLS estimate of (10), which is close to the global solution,
the LM scheme still converges occasionally to a local minimum. The only
way to achieve the global optimality is to perform a dense grid search but
its computational complexity is very demanding. We also repeat the first
test for x = [−3 7]T , which is located outside the square bounded by the
sensor coordinates, and the results are plotted in Figure 5. It is observed
that the standard and two-step WLS algorithms can attain their theoretical
performance when σ ≤ −2 dB and σ ≤ −5 dB, respectively, indicating that
they are also effective in locating a source outside the convex hull. On the
other hand, the ML method is only optimal when σ is close to −10 dB.

In both the WLS and ML algorithms, σ2 is assumed known. However, in
many situations, σ2 is only approximately known, and its value can also vary
with time. The next experiment examines the sensitivity of the algorithms
to deviations in σ2 from the assumed value. That is, now we only have
an estimate of σ2 for each RSS measurement, which is modeled as σ̂2

∼
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N (σ2, 0.3σ2). Repeating the simulations of Figure 1 but with uncertainty
in the value of σ2 gives the RMSE in Figure 6. Under this condition, the
two-step WLS solution is more robust than ML estimator which exhibits
large errors at some instances. Note that some RMSEs of the ML estimator
are very large and thus are not included in the plot. When σ2 is sufficiently

small, Appendix C shows that ri,1 ≈ e−
2
γ
P ′
i,1 , that is, uncertainty in σ2 has

only a small impact on A and b, and the estimation accuracy.
Finally, the performance of the investigated positioning algorithms is eval-

uated using the real RSS data collected in the measurement campaign re-
ported in [1]. In the data set, there are RSS measurements between 44
known-position sensors in an office environment as well as the estimated
path-loss factor and noise powers. Although the transit power Ps is also
provided, we do not utilize this information. When estimating each sensor
position, we use 43 RSS measurements from the remaining receivers, that is,
non-cooperative localization is assumed. The root squared error (RSE) per-
formance of the WLS and ML algorithms is plotted in Figure 7. Moreover,
the average RSEs over the 44 sensors of the standard WLS, two-step WLS
and ML methods are measured as 2.3 m, 1.8 m and 1.4 m, respectively. These
indicate that the WLS approaches are comparable with the ML scheme in
terms of localization accuracy. Note that the RSE comes from a single trial,
which is different from the statistical RMSE. Hence it is quite conceivable
that the two-step WLS and ML methods can produce a higher RSE than the
suboptimal WLS estimator.

5. Conclusion

Two received signal strength (RSS)-based positioning algorithms are de-
veloped using the weighted least squares (WLS) approach, which changes
nonlinear equations to linear equations via the introduction of an interme-
diate variable. For unknown source transmit power, the first algorithm is
a standard WLS technique which utilizes unbiased estimates of the squared
ranges. The second estimator improves the first version by implicitly exploit-
ing the constraint between the source location and the intermediate variable.
The mean square errors of the two WLS methods are derived and confirmed
by computer simulations. In particular, the localization accuracy of the im-
proved algorithm attains Cramér-Rao lower bound under sufficiently small
noise conditions.
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Appendix A

The covariance matrix of (11) is derived as follows. According to (9), the
elements of Cw are:

[Cw]i,j = E
{
(d21ri+1,1 − d2i+1)(d

2
1rj+1,1 − d2j+1)

}
= d41E{ri+1,1rj+1,1} − d21d

2
i+1E{rj+1,1} − d21d

2
j+1E{ri+1,1}+ d2i+1d

2
j+1,

i, j = 1, 2, · · · , N − 1

(A.1)

From (3), we have

−2/γP ′
i,1 ∼ N (

2 ln(di/d1), 4/γ2(λ2
i + λ2

1)
)

−2/γ
(
P ′
i,1 + P ′

j,1

)
∼ N (

2(ln(di/d1) + ln(dj/d1)), 4/γ2
(
λ2
i + λ2

j + 4λ2
1

))
, i �= j

It is well known [16] that if q is a Gaussian variable with mean μ and variance
σ2, then E{eq} = eμ+σ2/2 and var(eq) = (eσ

2 − 1)e2μ+σ2
. As a result, the

expected values of r2i,1 and ri,1rj,1 are

E{r2i,1} =
d4i
d41

e
4
γ2

(λ2
i+λ2

1) (A.2)

and

E{ri,1rj,1} =
d2id

2
j

d41
e

4
γ2

λ2
1 i, j = 2, 3, · · · , N, i �= j (A.3)

Substituting (A.2)–(A.3) into (A.1) with E{ri,1} = d2i /d
2
1, i = 2, 3, · · · , N−1,

and according to (5), we obtain (11).

Appendix B

The covariance matrix of (13) is derived as follows. We first express
A = Ā +Δ where Δ = w[−2x1/d

2
1 − 2y1/d

2
1 1/d21] is its noise component

with E{Δ} = 0(N−1)×3. The covariance matrix for θ̂ is:

C
̂θ = E

{
(θ̂ − θ)(θ̂ − θ)T

}
= E

{
(ATC−1

w A)−1ATC−1
w wwTC−1

w A(ATC−1
w A)−1

} (B.1)
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Applying Slutsky’s theorem [17], (B.1) is approximated as:

C
̂θ ≈ [E{ATC−1

w A
}]−1

E
{
ATC−1

w

}
E
{
wwT

}
E
{
C−1

w A
} [

E
{
ATC−1

w A
}]−1

=
[
E
{
ATC−1

w A
}]−1

ĀTC−1
w Ā

[
E
{
ATC−1

w A
}]−1

(B.2)

For sufficiently small noise conditions, wi = d2i

(
e
− 2

γ
mi,1− 2

γ2
(λ2

i+λ2
1)
)
≈ 0 and

thus Δ is negligible compared with Ā element by element, we then have

E
{
ATC−1

w A
}
= ĀTC−1

w Ā+ E
{
ΔTC−1

w Δ
} ≈ ĀTC−1

w Ā (B.3)

Substituting (B.3) into (B.2) yields (13).

Appendix C

In this Appendix, we first derive (20) and then the CRLB based on the
signal model of (1). It is also shown that the CRLBs for (1) and (3) are
equivalent. The expected value of Hessian matrix for J(x̃) is expressed as:

E

{
∂2J(x̃)

∂x̃x̃T

}∣∣∣∣
x̃=x

=

[
E

{
∂

∂x̃

(
∂J(x̃)

∂x̃

)}∣∣∣∣
x̃=x

E

{
∂

∂ỹ

(
∂J(x̃)

∂x̃

)}∣∣∣∣
x̃=x

]
(C.1)

We start with differentiating (18) with respect to x̃ to obtain

∂J(x̃)

∂x̃
= 2

(
A1 + 2ax̃T

)T
C−1

w

(
A1x̃ + ax̃T x̃− b

)
(C.2)

Differentiating (C.2) with respect to x̃, we get

∂

∂x̃

(
∂J(x̃)

∂x̃

)
=4[1 0]TaTC−1

w

(
A1x̃ + ax̃T x̃− b

)
+ 2(A1 + 2ax̃T )TC−1

w

(
A1[1 0]T + 2ax

) (C.3)

Putting x̃ = x into (C.3) yields

∂

∂x̃

(
∂J(x̃)

∂x̃

) ∣∣∣
x̃=x

=4[1 0]TaTC−1
w

(
A1x+ axTx− b

)
+ 2(A1 + 2axT )TC−1

w

(
A1[1 0]T + 2ax

) (C.4)
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Taking expectation on both sides of (C.4) with the use of E {w} = 0(N−1)×1,
we have:

E

{
∂

∂x̃

(
∂J(x̃)

∂x̃

)}∣∣∣∣
x̃=x

= 2(A1 + 2axT )TC−1
w

(
A1[1 0]T + 2ax

)
(C.5)

Similarly, repeating the derivation of (C.4)–(C.5) with the variable ỹ yields

E

{
∂

∂ỹ

(
∂J(x̃)

∂x̃

)}∣∣∣∣
x̃=x

= 2(A1 + 2axT )TC−1
w

(
A1[0 1]T + 2ay

)
(C.6)

Using (C.5)–(C.6), (C.1) becomes:

E

{
∂2J(x̃)

∂x̃x̃T

}∣∣∣∣
x̃=x

= 2(A1 + 2axT )TC−1
w

(
A1 + 2axT

)
(C.7)

In a similar manner, we obtain:

E

{
∂J(x̃)

∂x̃

(
∂J(x̃)

∂x̃

)T
}∣∣∣∣∣

x̃=x

= 4
(
A1 + 2axT

)T
C−1

w

(
A1 + 2axT

)
(C.8)

Substituting (C.7)–(C.8) into (19) yields:

Cx̂o ≈ [(A1 + 2axT )TC−1
w

(
A1 + 2axT

)]−1
(C.9)

For sufficiently small noise conditions such that

e
4
γ2

(λ2
i+λ2

1) ≈ 1 +
4(λ2

i + λ2
1)

γ2
= 1 +

(
ln(10)

5γ

)2

(σ2
i + σ2

1) (C.10)

C−1
w is approximated as:

C−1
w ≈

(
5γ

ln(10)

)2

Σ−1C−1
m Σ−1 (C.11)

Putting (C.11) into (C.9), we obtain (20). It is noteworthy that (20) is
identical to the CRLB for the differential RSS model of (3) [18].

To derive the CRLB for (1), we first compute its corresponding Fisher in-
formation matrix (FIM). When the measurement errors are zero-mean Gaus-
sian distributed, the FIM based on RSS measurements of (1), denoted by
FIM(η), where η = [x y Ps]

T , is easily computed as:

FIM(η) = DTC−1
n D (C.12)
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where

D =
∂f(η)

∂η
= − 10γ

ln(10)

⎡⎢⎢⎢⎣
x− x1

d21

y − y1
d21

− ln(10)
10γ

...
...

...
x− xN

d2N

y − yN
d2N

− ln(10)
10γ

⎤⎥⎥⎥⎦
and Cn = diag (σ2

1 , σ
2
2, · · · , σ2

N). Since the CRLBs for x and y are given by
[FIM−1(η)]1,1 and [FIM−1(η)]2,2, respectively, we express FIM−1(η) as [19]:

FIM−1(η) =

[
LTDTC−1

n DL LTDTC−1
n 1N

1T
NC

−1
n DL 1T

NC
−1
n 1N

]−1

(C.13)

where LT = [I2 02×1]. With the use of the partitioned inversion formula
and 1T

NC
−1
n 1N = Tr(C−1

n ), the upper left 2 × 2 sub-matrix of FIM−1(η),
LT (DTC−1

n D)−1L, can be computed as

LT (DTC−1
n D)−1L =

[
LTDT

(
C−1

n − C−1
n 1N1

T
NC

−1
n

Tr(C−1
n )

)
DL

]−1

(C.14)

To relate (20) and (C.14), we let P = [−1N−1 IN−1] to express B and Cm as
B = PDL and Cm = PCnP

T so that (20) can be written as:

Cx̂o =
[
LTDTPT (PCnP

T )−1PDL
]−1

(C.15)

Using the property of P1N = 0(N−1)×1, we construct an idempotent matrix
S ∈ R

N×N , which has the form of

S =
C

−1/2
n 1N1

T
NC

−1/2
n

Tr(C−1
n )

+C1/2
n PT (PCnP

T )−1PC1/2
n (C.16)

Since rank(S) = Tr(S) = N , employing the full rank property of S as well as
the idempotent property of S(IN − S) = 0N×N yield

S = IN (C.17)

Pre-multiplying and post-multiplying both sides of (C.16) byC
−1/2
n and using

(C.17), we obtain

PT (PCnP
T )−1P = C−1

n − C−1
n 1N1

T
NC

−1
n

Tr(C−1
n )

(C.18)
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From (C.14), (C.15) and (C.18), we see that the estimation performance
of the improved WLS method is equal to CRLB for RSS-based positioning
with unknown source transmit power. Furthermore, as the CRLBs for (1)
and (3) are identical, there is no performance loss in converting the RSS to
differential RSS when Ps is unknown.
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Figure 1: Root mean square error versus σ at x = [3 7]T when γ = 4 and N = 8
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Figure 2: Root mean square error versus γ at x = [3 7]T when σ = 5 dB and N = 8
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Figure 3: Root mean square error versus N at x = [3 7]T when σ = 5 dB and γ = 4
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Figure 4: Root mean square error versus σ with random source
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Figure 5: Root mean square error versus σ at x = [−3 7]T when γ = 4 and N = 8
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Figure 6: Root mean square error versus σ at x = [3 7]T with noise power uncertainty
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Figure 7: Root squared errors based on real measurements of [1]
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