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Abstract—Many components used in signal processing and
communication applications, such as power amplifiers and
analog-to-digital converters, are nonlinear and have a finite
dynamic range. The nonlinearity associated with these devices
distorts the input, which can degrade the overall system perfor-
mance. Signal-to-noise-and-distortion ratio (SNDR) is a common
metric to quantify the performance degradation. One way to
mitigate nonlinear distortions is by maximizing the SNDR. In
this paper, we analyze how to maximize the SNDR of the
nonlinearities in optical wireless communication (OWC) systems.
Specifically, we answer the question of how to optimally pre-
distort a double-sided memory-less nonlinearity that has both a
“turn-on” value and a maximum “saturation” value. We show
that the SNDR-maximizing response given the constraints isa
double-sided limiter with a certain linear gain and a certain bias
value. Both the gain and the bias are functions of the probability
density function (PDF) of the input signal and the noise power.
We also find a lower bound of the nonlinear system capacity,
which is given by the SDNR and an upper bound determined
by dynamic signal-to-noise ratio (DSNR). An application ofthe
results herein is to design predistortion linearization ofnonlinear
devices like light emitting diodes (LEDs).

Index Terms—Nonlinear distortion, dynamic range, clipping,
predistortion, optical wireless communication.

I. I NTRODUCTION

In addition to being nonlinear, many components in a signal
processing or communication system have a dynamic range
constraint. For example, light emitting diodes (LEDs) are
dynamic range constrained devices that appear in intensity
modulation (IM) and direct detection (DD) based optical
wireless communication (OWC) systems [1] [2]. To drive an
LED, the input electric signal must be positive and exceed
the turn-on voltage of the device. On the other hand, the
signal is also limited by the saturation point or maximum
permissible value of the LED. Thus, the dynamic range
constraint can be modeled as two-sided clipping. The same
situation may happen in other applications such as digital
audio processing [3].

Both nonlinearity and clipping result in distortions which
may cause system performance degradation. SNDR is a com-
monly used metric to quantify the distortion that is uncorre-
lated to the signal [4]- [7]. Previous work in this area mainly
concentrated on a family of amplitude-limited nonlinearities
that is common in radio frequency (RF) system design involv-
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ing nonlinear components such as power amplifiers (PAs) and
mixers.

Different from the previous work, our study discusses
the class of nonlinearities with a two-sided dynamic range
constraint that is more commonly found in optical and acoustic
systems. Authors in [8]- [12] illustrated the impact of LED
nonlinearity and clipping noise in OWC systems. Some pre-
distortion strategies were proposed in [13]- [15]. However,
to the best of our knowledge, the optimal nonlinear mapping
under the two-sided dynamic range constraint has not been
studied.

There are two major differences from the amplitude-limited
nonlinearity. First, the signal will be subject to turn-on clipping
and saturation clipping to meet the dynamic range constraint.
Second, DC biasing must be used to shift the signal to
an appropriate level to minimize distortion. In this paper,
we will show that the ideal linearizer that maximizes the
SNDR is a double-sided limiter that has an affine response.
The parameters of the response can be calculated from the
distribution of the input signal and the noise power.

In additional to deriving the SNDR-optimal predistorter,
we also relate a lower bound on channel capacity to the
SNDR, further motivating the SNDR considerations. Finally,
we employ another common distortion metric, dynamic signal-
to-noise ratio (DSNR) to provide an upper bound on the
double-sided clipping channel.

The remainder of this paper is organized as follows: Section
II introduces the system model for dynamic range limited non-
linearity and the corresponding SNDR definition. In Section
III, we derive the optimal nonlinear mapping that maximizes
the SNDR and illustrate some examples. In section IV, we
related the SNDR to the capacity of the nonlinear channel.
Finally, Section VII concludes the paper. The detailed proofs
of this paper are deferred to the Appendices.

II. SYSTEM MODEL AND SNDR DEFINITION

A. System Model

Let us consider a system modeled by

yo(t) = ho(xo(t)) + v(t) (1)

wherexo(t) is a real-valued signal with meanµx and variance
σ2
x; v(t) is a zero-mean additive noise process with variance

σ2
v; ho(·) is a memoryless nonlinear mapping with dynamic

range constraintA1 ≤ ho(xo(t)) ≤ A2.
For notational simplicity, we omit thet-dependence in the

memoryless system and replaceho(·) and xo(t) by h(·) =
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ho(·) − A1 and x = xo − µx. Then we have an equivalent
system modeled by

y = h(x) + v (2)

whereh(·) is a memoryless nonlinear mapping with dynamic
range constraint0 ≤ h(x) ≤ A = A2 − A1 andx is a zero-
mean signal with varianceσ2

x.

B. SNDR Definition

According to Bussgang’s Theorem [16], the nonlinear map-
ping in (2) can be decomposed as

h(x) = αx+ d (3)

whered is the distortion caused byh(·) andα is a constant,
selected so thatd is uncorrelated withx, i.e.,E[xd] = 0. Thus

α =
E[xh(x)] − E[xd]

E[x2]
=

E[xh(x)]

E[x2]
=

E[xh(x)]

σ2
x

. (4)

The distortion power is given by

εd = E[d2]− (E[d])2

= E[h2(x)] − α2σ2
x − E2[h(x)].

(5)

The signal-to-noise-and-distortion ratio (SNDR) is defined as

SNDR =
α2σ2

x

εd + σ2
v

=
(E[xh(x)])2/σ2

x

E[h2(x)] − (E[xh(x)])2/σ2
x − E2[h(x)] + σ2

v

.

(6)

The definition of SNDR here is a little bit different from
that in [7], because all the signals are real and the distortion
contains DC biasing. Thus, the distortion power is modeled as
variance rather than the secondary moment.

We see from (6) that the SNDR is related to the distribution
of x, the noise powerσ2

v and the nonlinear mappingh(·). Our
aim in the next section is to determine the functionh(·) that
maximizes the SNDR given a signal distribution and the two-
sided clipping constraint.

III. SNDR OPTIMIZATION AND EXAMPLES

A. Optimization of SNDR

Similar to [7], let us use a functiong(·) to normalize the
nonlinear mappingh(·):

h(x) = Ag

(
x

σx

)

(7)

where0 ≤ g(·) ≤ 1. Let γ = x/σx and substitute (7) into (6),
we obtain

SNDR =
E2[γg(γ)]

E[g2(γ)]− E2[γg(γ)]− E2[g(γ)] + σ2
v/A

2

=
E2[γg(γ)]

var[g(γ)]− E2[γg(γ)] + σ2
v/A

2

(8)

where var[g(γ)] is the variance ofg(γ) and var[g(γ)] =
E[g2(γ)]− E2[g(γ)].

The SNDR optimization problem can be stated as follows:

max
g(·)

SNDR (9)

s.t. 0 ≤ g(·) ≤ 1 (10)

for a given distribution ofγ, dynamic rangeA and noise power
σ2
v.

( )g  

 

L US

Fig. 1. An example of nonlinear mappingg(·) that satisfies the0 ≤ g(·) ≤ 1
constraint.

Fig. 1 illustrates an example of theg(·). The region ofγ is
divided into three setsL, S andU .

g(γ) = 0, for γ ∈ L; (11)

0 < g(γ) < 1, for γ ∈ S; (12)

g(γ) = 1, for γ ∈ U. (13)

Thus, to determine a nonlinear mappingg(·), we need to find
the setsL, S, U and the shape of the functiong(·) in S.

We will solve this problem with the following steps:

1) find the optimalg(·) givenL, S, U ;
2) show thatS should be as large as possible;
3) determineL andU for the optimal solution.

Lemma 1:Assume that the setsL, S andU are known, and
L∪ S ∪U = R. The g(·) function that maximizes the SNDR
expression in (8) is of the form

g(γ) =
γ

η
+ β (14)

where

η =
CU

0 CS
1 + CU

1 − CS
0 C

U
1

CU
0 − CU

0 CS
0 − (CU

0 )2 + (1− CU
0 )σ2

v/A
2

=
CU

0 CS
1 + CU

1 − CS
0 C

U
1

CU
0 CL

0 + (1− CS
0 )σ

2
v/A

2
,

(15)

β =
CU

0 CS
1 + CU

0 CU
1 + CS

1 σ
2
v/A

2

CU
0 CS

1 + CU
1 − CS

0 C
U
1

(16)

with

Cset
num = E[γnumIset(γ)] (17)
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andIset(γ) is the indicator function:

Iset(γ) =

{

1, if γ ∈ set,

0, otherwise.
(18)

This lemma holds if and only ifS satisfies0 < γ
η + β < 1

for all γ ∈ S.
Proof: See Appendix A.

This result rules out theg(·) functions whose shape over
S is nonlinear. Fig 2 demonstrates examples ofg(·) functions
that may satisfyLemma 1. Here, the slope of the linear curve
in S can be either positive or negative.

( )g  

 

L US

(a) η > 0

( )g  

 

LU S

(b) η < 0

Fig. 2. Examples of nonlinear mappingg(·) that may satisfyLemma 1

Lemma 1answered the question pertaining to the best shape
of the g(·) function with givenL, S andU . The remaining
question is how to determine the optimal setsL, S and U
so that the SNDR is maximum. This turns out to be a very
challenging problem since we are seeking joint optimization
over multiple sets. Let us considerS first.

Lemma 2:Given setsL, S and U , if S can be enlarged
to S∗ such thatS ⊂ S∗ ⊆ (−β∗η∗, η∗ − β∗η∗) or (η∗ −
β∗η∗,−β∗η∗), then a higher SNDR can be achieved.

Proof: See Appendix B.
Fig. 3 shows howLemma 2works. S can be enlarged by

occupying the subsets ofL and U . The larger the setS,
the better the SNDR that can be achieved. Just asLemma
1, Lemma 2holds if and only ifS∗ satisfies0 < γ

η∗
+β∗ < 1

for all γ ∈ S∗, that is, S∗ ⊆ (−β∗η∗, η∗ − β∗η∗) or
(η∗ − β∗η∗,−β∗η∗).

( )g  

 

L US

(a) L, S, U

( )g  

 
S  L

 

U  

L U 

(b) L∗ = L−∆L, S∗ = S +∆L+∆U , U∗ = U −∆U

Fig. 3. Illustration ofLemma 2

Even with the setS determined, we still need to determine
L andU .

Lemma 3: If η > 0, the g(·) that maximizes the SNDR
satisfiesL ⊂ R

− and U ⊂ R
+; if η < 0, the g(·) that

maximizes the SNDR satisfiesL ⊂ R+ andU ⊂ R−.
Proof: Let us compare the SNDR between Fig. 4(a) and

Fig. 4(b). Forη > 0, if there is a subset∆L of L in R+ or a
subset∆U of U in R−, which is illustrated in Fig. 4(b), then
we see thatE2[γg(γ)] is decreased while the variance ofg(γ)

is increased. Thus, theSNDR = E2[γg(γ)]
var[g(γ)]−E2[γg(γ)]+σ2

v
/A2 of

Fig. 4(b) is less than the SDNR of Fig. 4(a). Similarly, we can
draw the same conclusion for the case withη < 0.

In the final analysis,Lemma 1, Lemma 2and Lemma 3
imply that the optimalL, S andU , in the sense of maximizing
the SNDR, areL = (−∞,−βη], S = (−βη, η − βη) and
U = [η − βη,+∞) if η > 0; or L = [−βη,+∞), S =
(η − βη,−βη) andU = [−∞, η − βη) if η < 0.

Theorem 1:Within the class ofg(·) satisfying0 ≤ g(·) ≤
1, the followingg(·) maximizes the SNDR expression in (8):

g(γ) =







0, γ ≤ −β⋆η⋆,

γ
η⋆ + β⋆, −β⋆η⋆ ≤ γ ≤ η⋆ − β⋆η⋆,

1, γ ≥ η⋆ − β⋆η⋆

(19)

for η⋆ > 0, or

g(γ) =







1, γ ≤ η⋆ − β⋆η⋆,

γ
η⋆ + β⋆, η⋆ − β⋆η⋆ ≤ γ ≤ −β⋆η⋆,

0, γ ≥ −β⋆η⋆

(20)
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(a) L ⊂ R−, U ⊂ R+

( )g  

 

S

L U 

(b) ∆L ⊂ R+, ∆U ⊂ R−

Fig. 4. Illustration ofLemma 3

for η⋆ < 0, where theη⋆ and β⋆ are found by solving the
following transcendental equations:

η⋆ =
CU⋆

0 CS⋆

1 + CU⋆

1 − CS⋆

0 CU⋆

1

CU⋆

0 CL⋆

0 + (1− CS⋆

0 )σ2
v/A

2
, (21)

β⋆ =
CU⋆

0 CS⋆

1 + CU⋆

0 CU⋆

1 + CS⋆

1 σ2
v/A

2

CU⋆

0 CS⋆

1 + CU⋆

1 − CS⋆

0 CU⋆

1

(22)

with

CU⋆

0 =

{ ∫ +∞
η⋆−β⋆η⋆ p(γ)dγ, for η⋆ > 0,
∫ η⋆−β⋆η⋆

−∞ p(γ)dγ, for η⋆ < 0;
(23)

CS⋆

0 =







∫ η⋆−β⋆η⋆

−β⋆η⋆ p(γ)dγ, for η⋆ > 0,
∫ −β⋆η⋆

η⋆−β⋆η⋆ p(γ)dγ, for η⋆ < 0;
(24)

CL⋆

0 =

{ ∫ −β⋆η⋆

−∞ p(γ)dγ, for η⋆ > 0,
∫∞
−β⋆η⋆ p(γ)dγ, for η⋆ < 0;

(25)

CU⋆

1 =

{ ∫ +∞
η⋆−β⋆η⋆ γp(γ)dγ, for η⋆ > 0,
∫ η⋆−β⋆η⋆

−∞ γp(γ)dγ, for η⋆ < 0;
(26)

CS⋆

1 =







∫ η⋆−β⋆η⋆

−β⋆η⋆ γp(γ)dγ, for η⋆ > 0,
∫ −β⋆η⋆

η⋆−β⋆η⋆ γp(γ)dγ, for η⋆ < 0
(27)

andp(γ) is the probability density function (PDF) ofγ. The
optimal SNDR is found as

SNDR⋆ =
1

1
R(η⋆,β⋆) − 1

(28)

where

R(η⋆, β⋆) = CS⋆

2 + η⋆CU⋆

1 + η⋆β⋆CS⋆

1 (29)

and

CS⋆

2 =







∫ η⋆−β⋆η⋆

−β⋆η⋆ γ2p(γ)dγ, for η⋆ > 0,
∫ −β⋆η⋆

η⋆−β⋆η⋆ γ
2p(γ)dγ, for η⋆ < 0.

(30)

Proof: See the proofs ofLemma 1, Lemma 2andLemma
3.

Theorem 1establishes that the nonlinearity in the shape of
Fig. 5 is optimal.

( )g  

!  

"!#   " "!#    

(a) η⋆ > 0

( )g  

 

!  

"!#   " "!#   

(b) η⋆ < 0

Fig. 5. Illustration of optimalg(·) functions to maximize the SNDR

Predistortion is a well-known linearization strategy in many
applications such as RF amplifier linearization. For the dy-
namic range constrained nonlinearities like LED electrical-to-
optical conversion, predistortion has been proposed to mitigate
the nonlinear effects. Specifically, given a system nonlinearity
u(·), it is possible to apply a predistortion mappingf(·) so
the overall response is linear. According toTheorem 1, it is
best to makeu(f(·)) equal to theg(·) function given in (19)
or (20) if u(·) is normalized with dynamic range constraint
0 ≤ u(·) ≤ 1. Using the analytical tools presented above,
we can answer the questions regarding the selection of the
gain factor1/η, DC biasingβ and the clipping regions on
both sides, or equivalently, the setsL and U . Theorem 1
shows that these optimal parameters (in terms of SNDR)
depend on the PDF ofγ and the dynamic signal-to-noise ratio
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DSNR = A2/σ2
v. Thus, our work can serve as a guideline for

the system design. In the next subsection, examples are given
to illustrate the calculations of the optimal factorsη⋆ andβ⋆.

B. Examples for selections of optimal parameters

In the last subsection, we learned that the optimal factors
η⋆ and β⋆ can be calculated by solving two transcendental
equations (21) and (22). However, there may not be closed-
form expressions for the solutions. Additionally, solving(21)
and (22) may result in multiple solutions, but we only keep
the real-valued ones since all the signals here are real-valued.

Here, let us take into account a specific class of input signals
whose distributions exhibit axial symmetry, such as uniform
distribution and Gaussian distribution. When the distribution
of the input signal is axial symmetric, the optimal clipping
regionsL⋆ andU⋆ are also symmetric. Thus,CU⋆

0 = CL⋆

0 ,
CU⋆

1 = −CL⋆

1 andCS⋆

1 = 0. Then the factorsβ⋆ andη⋆ can
be calculated:

β⋆ =
CU⋆

0 CU⋆

1

CU⋆

0 CU⋆

1 + CL⋆

0 CU⋆

1

= 0.5, (31)

η⋆ =
2CU⋆

0 CU⋆

1

(CU⋆

0 )2 + 2CU⋆

0 σ2
v/A

2
=

2CU⋆

1

CU⋆

0 + 2σ2
v/A

2
. (32)

We see that the DC biasing will be the midpoint of the
dynamic range. When the gain factorη⋆ > 0, it can be further
expressed as:

η⋆ =
2
∫ +∞
0.5η⋆ γp(γ)dγ

∫ +∞
0.5η⋆ p(γ)dγ + 2σ2

v/A
2
. (33)

When the gain factorη⋆ < 0, it can expressed as:

η⋆ =
2
∫ 0.5η⋆

−∞ γp(γ)dγ
∫ 0.5η⋆

−∞ p(γ)dγ + 2σ2
v/A

2
. (34)

There is still no closed-form expression for gain factorη⋆.
Next, as examples, let us consider the calculations for uniform
distribution and Gaussian distribution specifically.

Example 1:When the original signalxo(t) is uniformly
distributed in the interval[µx − b, µx + b], we infer that the
normalized signalγ is uniformly distributed in the interval
[−

√
3,
√
3] with the PDF

p(γ) =

{
1

2
√
3
, −

√
3 ≤ γ ≤

√
3,

0, otherwise.
(35)

For the case withη⋆ > 0, it is straightforward to calculate

CU⋆

1 =

∫
√
3

0.5η⋆

γ
1

2
√
3
dγ =

1

4
√
3
(3− 1

4
η⋆2), (36)

CU⋆

0 =

∫ √
3

0.5η⋆

1

2
√
3
dγ =

√
3− 0.5η⋆

2
√
3

. (37)

Substituting (36) and (37) into (33), we obtain

η⋆ =

1
2
√
3
(3 − 1

4η
⋆2)

√
3−0.5η⋆

2
√
3

+ 2σ2
v/A

2
. (38)

Equation (38) can be rewritten as a quadratic equation

η⋆2 − (16
√
3σ2

v/A
2 + 4

√
3)η⋆ + 12 = 0. (39)

Thus, we can obtain a closed-form solution for the optimal
η⋆:

η⋆ = 8
√
3σ2

v/A
2 + 2

√
3− 4

√

12σ4
v/A

4 + 6σ2
v/A

2. (40)

We know that there should be two solutions for equation
(39). In fact, the other solution is0.5η⋆ >

√
3, which means

that bothCU⋆

0 andCU⋆

1 are 0. Thus, the solution given by (40)
is the unique optimal selection for the gain factorη⋆ > 0. If
η⋆ < 0 is desired, the optimal solution is

η⋆ = −8
√
3σ2

v/A
2 − 2

√
3 + 4

√

12σ4
v/A

4 + 6σ2
v/A

2. (41)

Example 2:When the original signalxo(t) is Gaussian dis-
tributed, then the normalized signalγ has a standard Gaussian
distribution with the PDF

p(γ) =
1√
2π

e−
1

2
γ2

. (42)

For the case withη⋆ > 0, we have

CU⋆

1 =

∫ +∞

0.5η⋆

γ
1√
2π

e−
1

2
γ2

=
1√
2π

e−
1

8
η⋆2

, (43)

CU⋆

0 =
1

2
− 1

2
erf(

η⋆

2
√
2
) (44)

whereerf(·) is the error function with the definition

erf(z) =
1√
π

∫ z

−z

e−γ2

dγ. (45)

Substituting (43) and (44) into (33) and simplifying, we
obtain

η⋆(
1

2
− 1

2
erf(

η⋆

2
√
2
) + 2σ2

v/A
2) =

2√
2π

e−
1

8
η⋆2

. (46)

Here the optimalη⋆ does not have a closed-form expression
but can be easily calculated numerically. We can draw the
similar conclusion for the case withη⋆ < 0.

C. Numerical results

Fig. 6 shows the optimalη⋆ as a function of DSNR for the
above examples.

Next, we illustrate the SNDR of two different nonlinear
mappings.g1(γ) is the optimal solution chosen byTheorem
1. g2(γ) is a fixed mapping given below:

g2(γ) =







0, γ ≤ −0.4,

γ + 0.4, −0.4 ≤ γ ≤ 0.6,

1, γ ≥ 0.6.

(47)

The corresponding SNDR curves are shown in Fig. 7. This
example illustrates that the nonlinearityg1(γ) yields a higher
SNDR as compared to the other nonlinearity, as expected
according toTheorem 1.
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Fig. 6. Optimal gain factorη⋆ as a function of DSNR forExample 1and
Example 2with η⋆ > 0.
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Fig. 7. SNDR for uniformly and gaussian distributedγ with different
nonlinear mappings.

IV. RELATIONSHIP BETWEEN SNDR AND CAPACITY

A. Lower Bound on Capacity

The capacity is given by

C = max
pxo

I(yo;xo) = max
px

I(y;x) (48)

where I(y;x) = H(x) − H(x|y) = H(y) − H(y|x) is the
mutual information betweeny and x [18]. To obtain the
capacity of the dynamic range constrained channel, we need
to solve the following optimization problem:

max
px,h(·)

I(y;x)

s.t. 0 ≤ h(·) ≤ A (49)

for a specific zero-mean noise with varianceσ2
v . Moreover, it

can be simplified as:

max
pxs

I(xs + v;xs)

s.t. 0 ≤ xs ≤ A (50)

which means that we need to find an input distribution in the
interval [0, A] to maximize the mutual information. Specially,
when the noisev is Gaussian, the issue is similar to Smith’s
work in [17]. In this case, if DSNR is low, the capacity is
achieved by an equal pair of mass points at0 andA; if DSNR
is high, the asymptotic capacity is the same as the information
rate due to a uniformly distributed input in[0, A] [17].

However, in most cases, we are most interested in the
achievable data rate given a nonlinear channel mapping with
any input and any noise. Similar to the work in [7], we obtain
a lower bound on the information rate:

I(y;x)

≥ H(x)− 1

2
log(2πeσ2

x) +
1

2
log




σ2
y

σ2
y −

σ2
xy

σ2
x



 (51)

= H(x)− 1

2
log(2πeσ2

x)

+
1

2
log





A2

σ2
v

var[g(γ)] + 1

A2

σ2
v

var[g(γ)] + 1− A2

σ2
v

E2[γg(γ)]





= H(x)− 1

2
log(2πeσ2

x) +
1

2
log(1 + SNDR) (52)

by referring to (8). SinceC ≥ I(y;x) for any input distribution
px, by settingpx to be the PDF of a zero-mean Gaussian r.v.,
we obtain

C ≥ 1

2
log(1 + SNDR) (53)

with the SNDR evalutated for a Gaussianx.

B. Upper Bound on Capacity

In this subsection, we find an upper bound for the capacity.
Similar to [7], supposingp∗y is the PDF ofy that maximizes
the capacity, i.e.,

p∗y = argmax
py

[H(y)−H(y|x)]. (54)

We can write the capacity as

C = I(y;x)|p∗

y
= H(y)|p∗

y
−H(y|x)

= H(y)|p∗

y
−H(v) (55)

Next, we bound the entropyH(y) with the entropy of a
Gaussiany, yielding

C ≤ 1

2
log(2πeσ2

y)−H(v)

=
1

2
log(2πeσ2

y)−
1

2
log(2πeσ2

v) +
1

2
log(2πeσ2

v)−H(v)

=
1

2
log

(

1 +
A2var[g(γ)]

σ2
v

)

+
1

2
log(2πeσ2

v)−H(v)

≤ 1

2
log

(

1 +
A2

4σ2
v

)

+
1

2
log(2πeσ2

v)−H(v) (56)
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wherevar[g(γ)] ≤ 1
4 with g(γ) ∈ [0, 1]. Specifically, if the

noise is Gaussian, we have the upper bound:

C ≤ 1

2
log

(

1 +
A2

4σ2
v

)

(57)

Sinceεd ≥ 0 andα2σ2
x ≤ var[h(γ)] ≤ 1

4A
2, we must have

SNDR =
α2σ2

x

εd + σ2
v

≤ A2

4σ2
v

. (58)

A2

σ2
v

is the defined DSNR which is the same as that in [10].

C. Example of Bounds

Since SNDR is determined by DSNR and the distribution
of signal, we plot the bounds as functions of DSNR for
Gaussian distributed signal, which is shown in Fig. 8. We also
compare the lower bounds given by two different nonlinear
mappingsg1(γ) and g2(γ), which are introduced in the last
section. This example illustrates that the nonlinearityg1(γ)
chosen according toTheorem 1yields a tighter lower bound
as compared to the other nonlinearity. In addition, we can see
that the capacity of Gaussian channel as determined by Smith
[17] is between the lower bounds and upper bound that we
have.

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

DSNR [dB]

C
ap

ac
ity

 b
ou

nd

 

 

Lower bound, log(1+SNDR)/2, g
1
(γ)

Lower bound, log(1+SNDR)/2, g
2
(γ)

Upper bound, log(1+DSNR/4)/2
Capacity with Gaussian noise

Fig. 8. Bounds on capacity.

V. CONCLUSION

The main contribution of this paper is the SNDR optimiza-
tion within the family of dynamic range constrained memory-
less nonlinearities. We showed that, under the dynamic range
constraint, the optimal nonlinear mapping that maximizes the
SNDR is a double-sided limiter with a particular gain and
a particular bias level, which are determined based on the
distribution of the input signal and the DSNR. In addition,
we found that12 log(1 + SNDR) provides a lower bound on
the nonlinear channel capacity, and1

2 log(1+
1
4DSNR) serves

as the upper bound. The results of this paper can be applied
for optimal linearization of nonlinear components and efficient
transmission of signals with double-sided clipping.

APPENDIX A
PROOF OFLemma 1

Since we are solving the optimization problem w.r.t. a
function, the functional derivative is introduced here [7][19].
By using the Dirac delta functionδ(·) as a test function, the
notion of functional derivative is defined as:

δF [g(γ)]

δg(γ0)
= lim

ǫ→0

F [g(γ) + ǫδ(γ − γ0)]− F [g(γ)]

ǫ
. (59)

Just as the variable derivative operation, the linear property,
product rule and chain rule hold for functional derivative.In
addition, from (59), we infer that

δg(γ)

δg(γ0)
= δ(γ − γ0), (60)

δg2(γ)

δg(γ0)
= 2g(γ)δ(γ − γ0). (61)

To maximize the SNDR w.r.tg(·), we need

δSNDR

δg(γ0)
= 0, ∀γ0 ∈ S. (62)

We infer that

E[g(γ)] = E[IL(γ)g(γ)] + E[IS(γ)g(γ)] + E[IU (γ)g(γ)]

= E[IS(γ)g(γ)] + E[IU (γ)]

= E[IS(γ)g(γ)] + CU
0 .

(63)

Similarly,

E[γg(γ)] = E[IS(γ)γg(γ)] + CU
1 , (64)

E[g2(γ)] = E[IS(γ)g
2(γ)] + CU

0 . (65)

CU
0 andCU

1 are defined as in (17). It follows easily that

CL
0 + CS

0 + CU
0 = 1, (66)

CL
1 + CS

1 + CU
1 = 0 (67)

and
CL

0 , C
S
0 , C

U
0 ≥ 0. (68)

Substituting (63), (64) and (65) into (8)

SNDR =
N [g(γ)]

D[g(γ)]
(69)

where
Q[g(γ)] = E[IS(γ)γg(γ)] + CU

1 , (70)

N [g(γ)] = Q2[g(γ)], (71)

Y [g(γ)] = E[IS(γ)g(γ)] + CU
0 , (72)

D[g(γ)] = E[IS(γ)g
2(γ)] + CU

0 +
σ2
v

A2

−Q2[g(γ)]− Y 2[g(γ)].
(73)
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Denote byp(γ) the PDF of the random variableγ. Then

E[IS(γ)g
2(γ)] =

∫

IS(γ)g
2(γ)p(γ)dγ. (74)

Taking the functional derivative w.r.tg(γ0), we obtain

δE[IS(γ)g
2(γ)]

δg(γ0)

=

∫

IS(γ)2g(γ)δ(γ − γ0)p(γ)dγ (75)

= 2g(γ0)p(γ0). (76)

Similarly,
δE[IS(γ)γg(γ)]

δg(γ0)
= γ0p(γ0), (77)

δE[IS(γ)g(γ)]

δg(γ0)
= p(γ0). (78)

Therefore,
δN [g(γ)]

δg(γ0)
= 2Q[g(γ)]γ0p(γ0), (79)

δD[g(γ)]

δg(γ0)
= 2g(γ0)p(γ0)−2Q[g(γ)]γ0p(γ0)−2Y [g(γ)]p(γ0).

(80)
Condition (62) requires

δN [g(γ)]

δg(γ0)
D[g(γ)] =

δD[g(γ)]

δg(γ0)
N [g(γ)]. (81)

Substituting and simplifying, we obtain

g(γ0) =
γ0
η

+ β (82)

where

η =
E[IS(γ)γg(γ)] + CU

1

E[IS(γ)g2(γ)] + CU
0 − β2 + σ2

v/A
2
, (83)

β = E[g(γ)] = E[IS(γ)g(γ)] + CU
0 (84)

as the solution for (62). Since (82) holds∀γ0 ∈ S, we must
have

g(γ) =
γ

η
+ β, ∀γ ∈ S. (85)

Substituting (85) into (83) and (84), we obtain

η =
CU

1 + CS
2 /η + CS

1 β

CU
0 + CS

2 /η
2 + 2βCS

1 /η + β2CS
0 − β2 + σ2

v/A
2
, (86)

β = CU
0 + CS

1 /η + βCS
0 (87)

whereCS
0 , CS

1 andCS
2 are given by (17).

Solving for η andβ, we further simplify them to (15) and
(16).

In summary, under the dynamic range constraint, the opti-
mal g(·) that maximizes the SNDR is given by (85), whereη
andβ are given by (15) and (16).

APPENDIX B
PROOF OFLemma 2

Comparing (12) with (85), we infer that0 < γ
η + β < 1 on

S. Therefore, the setS must be a subset ofS⋆ = (−βη, η−βη)
if η > 0 or S⋆ = (η−βη,−βη) if η < 0. The objective here is
to determine the optimalS such that the SNDR is maximized.

To further this objective, we rewrite SNDR as

SNDR−1 =
E[g2(γ)]− E2[g(γ)] +

σ2

v

A2

E2[γg(γ)]
− 1. (88)

Sinceg(γ) = γ
η + β for γ ∈ S, we infer that

E[g(γ)] = CU
0 + CS

1 /η + βCS
0 , (89)

E[g2(γ)] = CU
0 + CS

2 /η
2 + 2βCS

1 /η + β2CS
0 , (90)

E[γg2(γ)] = CU
1 + CS

2 /η + CS
1 β. (91)

From (86), we have

σ2
v/A

2 = CU
1 /η + CS

2 /η
2 + CS

1 β/η + β2

− CU
0 − CS

2 /η
2 − 2βCS

1 /η − β2CS
0 .

(92)

Thus, (88) can be further simplified to

SNDR−1 =
CU

1 /η + CS
2 /η

2 + CS
1 β/η

(CU
1 + CS

2 /η + CS
1 β)

2
− 1 (93)

= (CS
2 + ηCU

1 + ηCS
1 β)

−1 − 1. (94)

As a result, the original problem can be written as

max
L,S,U

CS
2 + ηCU

1 + ηCS
1 β

s.t. L ∪ S ∪ U = R, (95)

S ⊆ (−βη, η − βη) or (η − βη,−βη).

Recall thatCS
2 , CS

1 , CU
1 , η andβ are all functions ofL, S

andU . Set

R(L, S, U)

= CS
2 + η(L, S, U)β(L, S, U)CS

1 + η(L, S, U)CU
1

=
N0(L, S, U)

D0(L, S, U)
(96)

where

N0(L, S, U)

= CS
2 C

U
0 CL

0 + CU
0 (CS

1 )
2 + 2CU

0 CU
1 CS

1 + (CU
1 )2

− CS
0 (C

U
1 )2 + CS

2 (1− CS
0 )σ

2
v/A

2 + (CS
1 )

2σ2
v/A

2

(97)

and
D0(L, S, U) = CU

0 CL
0 + (1− CS

0 )σ
2
v/A

2. (98)

Differing from the traditional optimization problem, the
variables here are sets. Let us consider two cases.

Case 1: Suppose that (L, S, U ) is a feasible solution. Let
us consider a setS1 ⊂ S and

S1 = S −∆1, (99)

L1 = L+∆1, (100)

U1 = U (101)

which means a subset ofS is partitioned intoL.
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N̂1(L1, S1, U1)D0(L, S, U)−N0(L, S, U)D1(L1, S1, U1)

= ((CS
2 C

U
0 + (CU

1 )2)D0(L, S, U)− CU
0 N0(L, S, U))C∆1

0 + (CS
2 D0(L, S, U)−N0(L, S, U))C∆1

0 σ2
v/A

2

− CU
0 CL

0 D0(L, S, U)C∆1

2 − (1− CS
0 )D0(L, S, U)C∆1

2 σ2
v/A

2 + 2CU
0 CL

1 D0(L, S, U)C∆1

1 − 2CS
1 D0(L, S, U)C∆1

1 σ2
v/A

2

= 2(CU
0 CL

1 − CS
1 σ

2
v/A

2)(CU
0 CL

0 + (1− CS
0 )σ

2
v/A

2)C∆1

1 − (CS
1 σ

2
v/A

2 − CU
0 CL

1 )
2C∆1

0 − (CU
0 CL

0 + (1 − CS
0 )σ

2
v/A

2)2C∆1

2

≤ 2|CU
0 CL

1 − CS
1 σ

2
v/A

2|(CU
0 CL

0 + (1− CS
0 )σ

2
v/A

2)|C∆1

1 | − (CS
1 σ

2
v/A

2 − CU
0 CL

1 )
2C∆1

0 − (CU
0 CL

0 + (1− CS
0 )σ

2
v/A

2)2C∆1

2

= 2 |CU
0 CL

1 − CS
1 σ

2
v/A

2|(CU
0 CL

0 + (1− CS
0 )σ

2
v/A

2)
︸ ︷︷ ︸

≥0

(|C∆1

1 | −
√

C∆1

0

√

C∆1

2 )
︸ ︷︷ ︸

≤0

− (|CS
1 σ

2
v/A

2 − CU
0 CL

1 |
√

C∆1

0 − (CU
0 CL

0 + (1− CS
0 )σ

2
v/A

2)

√

C∆1

2 )2

︸ ︷︷ ︸

≥0

≤ 0
(109)

( )g  

 

L US

(a) L, S, U

( )g  

 

1L 1U1S

1 

(b) L1 = L+∆1, S1 = S −∆1, U1 = U

Fig. 9. Example ofCase 1

Fig. 9 demonstrates an example ofCase 1. Then we have

R(L1, S1, U1) =
N1(L1, S1, U1)

D1(L1, S1, U1)
(102)

where

N1(L1, S1, U1)

= (CS
2 − C∆1

2 )CU
0 (CL

0 + C∆1

0 ) + CU
0 (CS

1 − C∆1

1 )2

+ 2CU
0 (CS

1 − C∆1

1 )CU
1 − (CS

0 − C∆1

0 )(CU
1 )2

+ (CS
2 − C∆1

2 )(1− CS
0 + C∆1

0 )σ2
v/A

2

+ (CS
1 − C∆1

1 )2σ2
v/A

2 + (CU
1 )2

= N0(L, S, U) + CS
2 C

U
0 C∆1

0 − CU
0 CL

0 C
∆1

2

− CU
0 C∆1

2 C∆1

0 − 2CU
0 CS

1 C
∆1

1 + CU
0 (C∆1

1 )2

− 2CU
0 CU

1 C∆1

1 + (CU
1 )2C∆1

0 − C∆1

2 C∆1

0 + (C∆1

1 )2

+ (CS
2 C

∆1

0 − (1− CS
0 )C

∆1

2 − 2CS
1 C

∆1

1 )σ2
v/A

2

(103)

and

D1(L1, S1, U1)

= CU
0 (CL

0 + C∆1

0 ) + (1− CS
0 + C∆1

0 )σ2
v/A

2

= D0(L, S, U) + CU
0 C∆1

0 + C∆1

0 σ2
v/A

2.

(104)

Next, we would like to compareR(L1, S1, U1) and
R(L, S, U) to help us establish the optimalS maximizing the
SNDR. However, it is a challenge to make the comparison
directly since there are too many terms in the objective
expression. Here, we utilize a two-step comparison.

First, rewrite

N1(L1, S1, U1)

= N0(L, S, U) + (CS
2 C

U
0 + (CU

1 )2)C∆1

0 − CU
0 CL

0 C
∆1

2

− 2CU
0 (CS

1 + CU
1 )C∆1

1 + CU
0 ((C∆1

1 )2 − C∆1

2 C∆1

0 )

+ (CS
2 C

∆1

0 − (1 − CS
0 )C

∆1

2 − 2CS
1 C

∆1

1 )σ2
v/A

2

+ ((C∆1

1 )2 − C∆1

2 C∆1

0 )σ2
v/A

2

≤ N0(L, S, U) + (CS
2 C

U
0 + (CU

1 )2)C∆1

0

− CU
0 CL

0 C
∆1

2 + 2CU
0 CL

1 C
∆1

1

+ (CS
2 C

∆1

0 − (1 − CS
0 )C

∆1

2 − 2CS
1 C

∆1

1 )σ2
v/A

2

= N̂1(L1, S1, U1)
(105)
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where
(C∆1

1 )2 ≤ C∆1

2 C∆1

0 (106)

by the Cauchy-Schwartz inequality(E[θφ]) ≤ E[θ2]E[φ2]
with θ = γI∆1

(γ) andφ = I∆1
(γ).

Next, we useN̂1(L1, S1, U1) instead ofN1(L1, S1, U1) to
make the comparison. Consider

N̂1(L1, S1, U1)

D1(L1, S1, U1)
− N0(L, S, U)

D0(L, S, U)

=
N̂1(L1, S1, U1)D0(L, S, U)−N0(L, S, U)D1(L1, S1, U1)

D1(L1, S1, U1)D0(L, S, U)
(107)

where

N̂1(L1, S1, U1)D0(L, S, U)−N0(L, S, U)D1(L1, S1, U1 ≤ 0
(108)

which is given by (109).
Since bothD1(L1, S1, U1) andD0(L, S, U) are greater than

zero, it can be concluded

R(L1, S1, U1) ≤
N̂1(L1, S1, U1)

D1(L1, S1, U1)
≤ R(L, S, U). (110)

Case 1demonstrates that the SNDR will be decreased if
any subset ofS is occupied byL. Let us consider another
case.

Case 2:S2 ⊂ S and

S2 = S −∆2, (111)

L2 = L, (112)

U2 = U +∆2 (113)

which means a subset ofS is partitioned intoU .
Fig. 10 demonstrates an example ofCase 2. Then we have

R(L2, S2, U2) =
N2(L2, S2, U2)

D2(L2, S2, U2)
(114)

where

N2(L2, S2, U2)

= (CS
2 − C∆2

2 )(CU
0 + C∆2

0 )CL
0 + (CU

0 + C∆2

0 )(CS
1 − C∆2

1 )2

+ 2(CU
0 + C∆2

0 )(CU
1 + C∆2

1 )(CS
1 − C∆2

1 )

+ (CU
1 + C∆2

1 )2 − (CS
0 − C∆2

0 )(CU
1 + C∆2

1 )2

+ (CS
2 − C∆2

2 )(1− CS
0 + C∆2

0 )σ2
v/A

2 + (CS
1 − C∆2

1 )2σ2
v/A

2

= N0(L, S, U) + CS
2 C

L
0 C

∆2

0 − CU
0 CL

0 C
∆2

2 − CL
0 C

∆2

2 C∆2

0

− 2CU
0 CS

1 C
∆2

1 + CU
0 (C∆2

1 )2 + (CS
1 )

2C∆2

0 − 2CS
1 C

∆2

0 C∆2

1

+ C∆2

0 (C∆2

1 )2 + 2CU
0 CS

1 C
∆2

1 + 2CU
1 CS

1 C
∆2

0

+ 2CS
1 C

∆2

0 C∆2

1 − 2CU
0 CU

1 C∆2

1 − 2CU
0 (C∆2

1 )2

− 2CU
1 C∆2

0 C∆2

1 − 2C∆2

0 (C∆2

1 )2 + 2CU
1 C∆2

1 + (C∆2

1 )2

− 2CS
0 C

U
1 C∆2

1 − CS
0 (C

∆2

1 )2 + (CU
1 )2C∆2

0 + 2CU
1 C∆2

0 C∆2

1

+ C∆2

0 (C∆2

1 )2 + (CS
2 C

∆2

0 − (1− CS
0 )C

∆2

2 − C∆2

2 C∆2

0

+ (C∆2

1 )2v − 2CS
1 C

∆2

1 )σ2
v/A

2

(115)

( )g  

 

L US

(a) L, S, U

( )g  

 

2L 2U2S

2 

(b) L2 = L, S2 = S −∆2, U2 = U +∆2

Fig. 10. Example ofCase 2

and

D2(L2, S2, U2)

= (CU
0 + C∆2

0 )CL
0 + (1− CS

0 + C∆2

0 )σ2
v/A

2

= D0(L, S, U) + CL
0 C

∆2

0 + C∆2

0 σ2
v/A

2.

(116)

In Case 2, we also try to determine the difference between
R(L2, S2, U2) andR(L, S, U) by utilizing the two-step com-
parison.

First, rewrite

N2(L2, S2, U2)

= N0(L, S, U) + (CS
2 C

L
0 + (CU

1 + CS
1 )

2)C∆2

0 − CU
0 CL

0 C
∆2

2

+ 2CL
0 C

U
1 C∆2

1 + CL
0 ((C

∆2

1 )2 − C∆1

2 C∆1

0 )

+ (CS
2 C

∆2

0 − (1− CS
0 )C

∆2

2 − 2CS
1 C

∆2

1 )σ2
v/A

2

+ ((C∆2

1 )2 − C∆2

2 C∆2

0 )σ2
v/A

2

≤ N0(L, S, U) + (CS
2 C

L
0 + (CL

1 )
2)C∆2

0

− CU
0 CL

0 C
∆2

2 + 2CL
0 C

U
1 C∆2

1

+ (CS
2 C

∆2

0 − (1− CS
0 )C

∆2

2 − 2CS
1 C

∆2

1 )σ2
v/A

2

= N̂2(L2, S2, U2)
(117)

where

(C∆2

1 )2 ≤ C∆2

2 C∆2

0 (118)

by the Cauchy-Schwartz inequality.
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N̂2(L2, S2, U2)D0(L, S, U)−N0(L, S, U)D2(L2, S2, U2)

= ((CS
2 C

L
0 + (CL

1 )
2)D0(L, S, U)− CL

0 N0(L, S, U))C∆2

0 + (CS
2 D0(L, S, U)−N0(L, S, U))C∆2

0 σ2
v/A

2

− CU
0 CL

0 D0(L, S, U)C∆2

2 − (1− CS
0 )D0(L, S, U)C∆2

2 σ2
v/A

2 + 2CL
0 C

U
1 D0(L, S, U)C∆2

1 − 2CS
1 D0(L, S, U)C∆2

1 σ2
v/A

2

= 2(CL
0 C

U
1 − CS

1 σ
2
v/A

2)(CU
0 CL

0 + (1− CS
0 )σ

2
v/A

2)C∆1

1 − (CS
1 σ

2
v/A

2 − CL
0 C

U
1 )2C∆2

0 − (CU
0 CL

0 + (1 − CS
0 )σ

2
v/A

2)2C∆2

2

≤ 2|CL
0 C

U
1 − CS

1 σ
2
v/A

2|(CU
0 CL

0 + (1− CS
0 )σ

2
v/A

2)|C∆2

1 | − (CS
1 σ

2
v/A

2 − CL
0 C

U
1 )2C∆2

0 − (CU
0 CL

0 + (1− CS
0 )σ

2
v/A

2)2C∆2

2

= 2 |CL
0 C

U
1 − CS

1 σ
2
v/A

2|(CU
0 CL

0 + (1− CS
0 )σ

2
v/A

2)
︸ ︷︷ ︸

≥0

(|C∆2

1 | −
√

C∆2

0

√

C∆2

2 )
︸ ︷︷ ︸

≤0

− (|CS
1 σ

2
v/A

2 − CL
0 C

U
1 |

√

C∆2

0 − (CU
0 CL

0 + (1− CS
0 )σ

2
v/A

2)

√

C∆2

2 )2

︸ ︷︷ ︸

≥0

≤ 0
(121)

Second, consider

N̂2(L2, S2, U2)

D2(L2, S2, U2)
− N0(L, S, U)

D0(L, S, U)

=
N̂2(L2, S2, U2)D0(L, S, U)−N0(L, S, U)D2(L2, S2, U2)

D2(L2, S2, U2)D0(L, S, U)
(119)

where

N̂2(L2, S2, U2)D0(L, S, U)−N0(L, S, U)D2(L2, S2, U2) ≤ 0
(120)

which is given by (121).
Since bothD2(L2, S2, U2) andD0(L, S, U) are greater than

zero, it can be concluded

R(L2, S2, U2) ≤
N̂2(L2, S2, U2)

D2(L2, S2, U2)
≤ R(L, S, U). (122)

Case 2demonstrates that the SNDR will be also decreased
if any subset ofS is occupied byU .

Additionally, Case 1andCase 2also imply that the SNDR
can be increased ifS can be enlarged by occupying the subsets
of L andU . Thus,Lemma 2holds and the optimalS is implied
to beS⋆ = (−βη, η − βη) if η > 0 or S⋆ = (η − βη,−βη)
if η < 0.
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