arXiv:1408.0826v1 [cs.IT] 4 Aug 2014

Optimization of Signal-to-Noise-and-Distortion
Ratio for Dynamic Range Limited Nonlinearities

Kai Ying, Zhenhua YuStudent Member, IEERobert J. BaxleySenior Member, IEEE,
and G. Tong Zhoukellow, IEEE

Abstract—Many components used in signal processing and ing nonlinear components such as power amplifiers (PAs) and
communication applications, such as power amplifiers and mixers.
analog-to-digital converters, are nonlinear and have a fire Different from the previous work, our study discusses
dynamic range. The nonlinearity associated with these desgs . L. . . .
distorts the input, which can degrade the overall system pdor- the cla§s of n_onllnearltles with a tWO'_S'ded_ dynamic _range
mance. Signal-to-noise-and-distortion ratio (SNDR) is a@mmon  Constraint that is more commonly found in optical and adoust
metric to quantify the performance degradation. One way to systems. Authors in_[8]1[12] illustrated the impact of LED
mitigate nonlinear distortions is by maximizing the SNDR. I nonlinearity and clipping noise in OWC systems. Some pre-
this paper, we analyze how to maximize the SNDR of the yigtortion strategies were proposed nl[13]-1[15]. However
nonlinearities in optical wireless communication (OWC) sgtems. . T .
Specifically, we answer the question of how to optimally pre- to the best of qu knowledgg, the optimal nopllnear mapping
distort a double-sided memory-less nonlinearity that has bth a under the two-sided dynamic range constraint has not been
“turn-on” value and a maximum “saturation” value. We show  studied.
that the SNDR-maximizing response given the constraints i&8  There are two major differences from the amplitude-limited
double-sided limiter with a certain linear gain and a certain bias nonlinearity. First, the signal will be subject to turn-dipping

value. Both the gain and the bias are functions of the probaliity . - . .
density function (PDF) of the input signal and the noise powe and saturation clipping to meet the dynamic range constrain

We also find a lower bound of the nonlinear system capacity, Second, DC biasing must be used to shift the signal to
which is given by the SDNR and an upper bound determined an appropriate level to minimize distortion. In this paper,

by dynamic signal-to-noise ratio (DSNR). An application ofthe we will show that the ideal linearizer that maximizes the
results herein is to design predistortion linearization ofnonlinear  g\pDR is a double-sided limiter that has an affine response.
devices like light emitting diodes (LEDS).
The parameters of the response can be calculated from the

Index Terms—Nonlinear distortion, dynamic range, clipping, distribution of the input signal and the noise power.
predistortion, optical wireless communication. In additional to deriving the SNDR-optimal predistorter,
we also relate a lower bound on channel capacity to the
SNDR, further motivating the SNDR considerations. Finally
we employ another common distortion metric, dynamic signal

In addition to being nonlinear, many components in a sign@-noise ratio (DSNR) to provide an upper bound on the
processing or communication system have a dynamic rangsuble-sided clipping channel.
constraint. For example, light emitting diodes (LEDs) are The remainder of this paper is organized as follows: Section
dynamic range constrained devices that appear in intensityhtroduces the system model for dynamic range limited-non
modulation (IM) and direct detection (DD) based opticalnearity and the corresponding SNDR definition. In Section
wireless communication (OWC) systems [1] [2]. To drive anl, we derive the optimal nonlinear mapping that maximizes
LED, the input electric signal must be positive and exceede SNDR and illustrate some examples. In section 1V, we
the turn-on voltage of the device. On the other hand, thelated the SNDR to the capacity of the nonlinear channel.
signal is also limited by the saturation point or maximurfinally, Section VII concludes the paper. The detailed fsoo
permissible value of the LED. Thus, the dynamic rangsf this paper are deferred to the Appendices.
constraint can be modeled as two-sided clipping. The same

situation may happen in other applications such as digital Il. SYSTEM MODEL AND SNDR DEFINITION

audio processing [3]. < odel
Both nonlinearity and clipping result in distortions whicf: System Mode

may cause system performance degradation. SNDR is a comket us consider a system modeled by

monly used metric to quantify the distortion that is uncerre B

lated to the signal]4]{]7]. Previous work in this area mginl Yo(t) = ho(wo(t)) + v(t) (1)

concentrated on a family of amplitude-limited nonlingast wherez, () is a real-valued signal with mear), and variance

that is common in radio frequency (RF) system design involyZ; +(t) is a zero-mean additive noise process with variance
02; ho(+) is @ memoryless nonlinear mapping with dynamic
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ho(-) — Ay andz = z, — u,. Then we have an equivalent The SNDR optimization problem can be stated as follows:
system modeled by
9)

(10)

max SNDR

y=h(z)+v st 0<g()<1

)

whereh(-) is a memoryless nonlinear mapping with dynamic ) o . .
range constrainb < h(z) < A = A, — A, andz is a zero- f02rag|ven distribution ofy, dynamic rangel and noise power

mean signal with variance?. To-
B. SNDR Definition g(r)4
According to Bussgang’s Theorem [16], the nonlinear map- 1L

ping in (2) can be decomposed as

T~

hz)=az+d 3)

whered is the distortion caused by(-) and« is a constant,
selected so that is uncorrelated with, i.e., E[zd] = 0. Thus

J

_ Elzh(z)] - E[zd] _ Efzh(z)] _ Elzh(z)] @ - e : >
B e O I
The distortion power is given by L S U
eq = Bld®] — (E[d])? . . . .
(5) Fig.1. Anexample of nonlinear mappimg-) that satisfies the < g(-) < 1

— E[?(@)] — o®02 — E*[(a)]

The signal-to-noise-and-distortion ratio (SNDR) is defiirzes

constraint.

Fig.[d illustrates an example of thg-). The region ofy is

SNDR — oo} divided into three setd, S andU.
eq+ 0'12)
(E[zh(x)])2 /o2 9(v) =0, for ~e€L; (11)
~ B[R2(x)] - (Elwh(2)])? /02 — E2[h(z)] + o3 0<g(y) <1, for v€S; (12)
(6) g(v)=1, for yeU. (13)

th Tth_e d_gfir;)ition of Sll\ll?hR hgre ils a litde ?it dcijﬁter:en(;_frrgr?Thus, to determine a nonlinear mappin@), we need to find
at|r_1 L%Cebgau_se aTh © tsrllgn; St art'_e real and the ollskardlthe setsL, S, U and the shape of the functigsq-) in S.
contains 'asing. Thus, the distortion POWers Moderd a yyq i solve this problem with the following steps:

variance rather than the secondary moment. . ] .
We see from({6) that the SNDR is related to the distribution 1) find the optimalg(-) given L, S, U; _
of z, the noise powes? and the nonlinear mappirfg(-). Our ~ 2) Show thatS should be as large as possible;
aim in the next section is to determine the functiep) that ~ 3) determinel, andU for the optimal solution.
maximizes the SNDR given a signal distribution and the two- Lemma 1: Assume that the sefs, S andU are known, and
sided clipping constraint. LUSUU = R. Theg(-) function that maximizes the SNDR
expression in[{8) is of the form

IIl. SNDR OPTIMIZATION AND EXAMPLES

g
= - 14
A. Optimization of SNDR 9(7) n o a4
Similar to [7], let us use a functiop(-) to normalize the where
nonlinear mappingd(-):
h(z) = Ag <i) @) n— cycy +cof —cgoy
7 0§ —CJCs —(CP +(1 - Cat/a
where0 < g(-) < 1. Lety = z/0, and substitute[{7) intd16), _cjei+ ey —cgey
we obtain - CYCE+(1-CF)o2 /A%
E?[yg(7)]
SNDR = U S U U S 2742
Elg?(n] = E2hg()] = E2lg()] + o0/A% - gy g Go 0[1] +SCo ClU + C; C’vU/ A (16)
_ E2[vg(7)] CyC? +Cy —CyCy
var(g(y)] — E2[yg(v)] + o3 /A? with
where var[g(vy)] is the variance ofg(y) and var[g(v)] =
Elg®(7)] — E*[g(v)]- Cret = E[Y™ ™ Lyet (7)) (17)



and Is.:(y) is the indicator function:

Tset (7) = {

This lemma holds if and only if5 satisfies0 < % +5<1
forall v € S.
Proof: See Appendit_A.

L,
0,

if v € set,
. (18)
otherwise

This result rules out the(-) functions whose shape over ‘ ‘

S is nonlinear. Fig R demonstrates exampleg@f functions

that may satisi. emma 1 Here, the slope of the linear curve

in S can be either positive or negative.
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Fig. 2. Examples of nonlinear mapping-) that may satisfLemma 1
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Fig. 3. lllustration ofLemma 2

Even with the setS determined, we still need to determine
L andU.

Lemma 3:1f n > 0, the g(-) that maximizes the SNDR
satisfiesL ¢ R~ andU C RT; if n < 0, the g(-) that
maximizes the SNDR satisfids C RT andU Cc R~.

Proof: Let us compare the SNDR between Hig. A(a) and
Fig.[4(B). Forn > 0, if there is a subseAL of L in R" or a
subsetAU of U in R, which is illustrated in Fig_4(b), then
we see that?[yg(v)] is decreased while the variancegify)
is increased. Thus, th&NDR = f;[;i]ygzzj)]fdﬁ/f&z of
Fig.[4(DB) is less than the SDNR of F(]yg'h(as. Similarly, we can
draw the same conclusion for the case wijtk: 0. ]

In the final analysisLemma 1 Lemma 2and Lemma 3
imply that the optimalL, S andU, in the sense of maximizing

Lemma lanswered the question pertaining to the best shagg SNDR, arel = (—o0, —f1], S = (—8n,7 — 81) and

of the ¢g(-) function with givenL, S and U. The remaining
guestion is how to determine the optimal sétsS and U

U= [n-pBn+o0)if n > 0; or L = [-pn,+0), S =
(n— Bn,—pn) andU = [—o0,n — Bn) if n <O0.

so that t_he SNDR is maximum. This turns out to b.e a Very Theorem 1:Within the class ofy(-) satisfying0 < g(-) <
challenging problem since we are seeking joint optimizatio | the following ¢(-) maximizes the SNDR expression [d (8):

over multiple sets. Let us considérfirst.

Lemma 2:Given setsL, S and U, if S can be enlarged
to S* such thatS c S* C (—p*n*,n* — 8*n*) or (n* —
B8*n*, —p*n*), then a higher SNDR can be achieved.

Proof: See AppendiXB. [

Fig.[3 shows how_,emma 2works. S can be enlarged by for n* > 0, or

occupying the subsets af and U. The larger the sefS,
the better the SNDR that can be achieved. Justemma
1, Lemma 2holds if and only if S* satisfies) < nl +p* <1
for all v € S* that is, S* C (-g*n*,n* — g*n*) or
(" = B*n*, =B n").

0, v < =B,

9(v) = F B =Bt <y <y =B, (19)
L, Y=t =B
L, Y0t =B,

9(y) = FHB =Bt <y < =B, (20)
0, v = =B
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Fig. 4. lllustration ofLemma 3

for n* < 0, where then* and 5* are found by solving the
following transcendental equations:

C([)]*C‘ls* + C{]* _ CéS*C{]*

= 21
crorva-cpae &Y
g — CU CS" +CV OV + O 02/ A2 2
CUCs + oV — ¢S ey
with
A fnﬂ_oﬁ* *p( )dry, forn* >0, -
o J"n () dy, for nt < 0; (23)
)dry, for n* < 0;
n*_B*n*
N - dvy, forn* >0,
CO _ [5 ( ) Y n (24)
S p(y)dy,  for gt < 0;
* f 6 77 d,y7 for ,',I* > O,
G = . (25)
S P W)d% for n* < 0;
ot S e (), for it >0, s
1 - 77*75*77* . ' ( )
77" ap(y)dy, for p <0;
n*—=p*n*
* - dy, forn* >0,
Cl — [5 ( ) Y n (27)
[ ap()dy, for gt <0

andp(~) is the probability density function (PDF) of. The
optimal SNDR is found as

1

SNDR* = — (28)
"o L
where
Ry, ") = C5 +n*CV" +npprcy” (29)
and
n*—p*n*
N e dy, fornp* >0,
02 B 5 ( ) Y n (30)

S APp()dy,  for g <.

Proof: See the proofs dfemma 1Lemma 2andLemma
|
Theorem lestablishes that the nonlinearity in the shape of
Fig.[3 is optimal.
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Fig. 5. lllustration of optimalg(-) functions to maximize the SNDR
Predistortion is a well-known linearization strategy innya
applications such as RF amplifier linearization. For the dy-

namic range constrained nonlinearities like LED electrioa
optical conversion, predistortion has been proposed tigaté

the nonlinear effects. Specifically, given a system noaliite
u(+), it is possible to apply a predistortion mappifg-) so

the overall response is linear. According Theorem 1it is
best to makeu(f(-)) equal to theg(-) function given in [(IB)

or (20) if u(-) is normalized with dynamic range constraint
0 < u(-) < 1. Using the analytical tools presented above,
we can answer the questions regarding the selection of the
gain factor1/n, DC biasing8 and the clipping regions on
both sides, or equivalently, the sefs and U. Theorem 1
shows that these optimal parameters (in terms of SNDR)
depend on the PDF of and the dynamic signal-to-noise ratio



DSNR = A?/s2. Thus, our work can serve as a guideline for Equation [(3B) can be rewritten as a quadratic equation
the system design. In the next subsection, examples arae give w2 9 o .
to illustrate the calculations of the optimal factors and 5*. o= (16\/§UU/A + 4\/§)77 +12=0. (39)

) ) Thus, we can obtain a closed-form solution for the optimal
B. Examples for selections of optimal parameters .

n.

In the last subsection, we learned that the optimal factors . — s
n* and 8* can be calculated by solving two transcendental " = 8V307 /A% +2v/3 — 4\/120% /A% + 602 /A% (40)

equations[(21) and_(22). However, there may not be ClosedWe know that there should be two solutions for equation
form expressions for the solutions. Additionally, solvi&f) ). In fact, the other solution &.57* > /3, which means

and [22) may result in multiple solutions, but we only kee at bothC{{* andCU" are 0. Thus, the solution given Hy{40)

thzreal-l\/alued (l)(ngs since all the S|gn$Is r:ere a][g feﬂ‘*?a' iithe unique optimal selection for the gain factgr> 0. If
ere, let us take into account a specific class o mput&gn% < 0 is desired, the optimal solution is

whose distributions exhibit axial symmetry, such as umifor
distribution and Gaussian distribution. When the distitiu ~ 7* = —8v/302/A% — 2V/3 + 41/1204 /A% + 602 /A2. (41)
of the input signal is axial symmetric, the optimal clipping

regionsL* and U* are also symmetric. Thu&,?" = CL° Example 2:When the original signat, (t) is Gaussian dis-
CcU — _CL andCS* = 0. Then the factorﬁ*oand n* gan tributed, then the normalized signahas a standard Gaussian
be calculated: distribution with the PDF
* * 1 1.2
c¥cy p(y) = e 27, (42)
* = = 05 31 A/
B Og* O{]* + Céﬁ C{]* 9 ( ) 27T
For the case withy* > 0, we have
. 200 *C]{]* B 201 * (32) “+oo 1 1.2 1 1 2
TS 20T A T O T 203/ A o = [ et et )
0.5m*
We see that the DC biasing will be the midpoint of the . 1 nl *
dynamic range. When the gain factgr > 0, it can be further cg = 3~ 56?‘]“(2\/5) (44)

expressed as:
whereer f(-) is the error function with the definition

z

2 fora ¥p(7)dy

N === . (33) _ b -2
Of5n* p(7)dy + 202/ A2 erf(z) = 7=/ e Vdn. (45)
When the gain facton* < 0, it can expressed as: Substituting [4B) and[{34) intd (B3) and simplifying, we
- obtain
. 2 [ yp(v)dy (34)
—  0.5np* :
Cno P(Y)dy +207/A * | a2
L 0 / . 77*(1 - lerf( 1) +202/4%) = 2 b, (46)
There is still no closed-form expression for gain facor 2 2 2v/2 V2

Next, as examples, let us consider the calculations fooumif Here the optimal* does not have a closed-form expression

distribution and Gaussian o!is_tributi_on specifigally. . but can be easily calculated numerically. We can draw the
Example 1:When the original signak:,(¢) is uniformly similar conclusion for the case witht < 0.

distributed in the intervalu, — b, u, + b], we infer that the
normalized signaly is uniformly distributed in the interval

[—v/3, /3] with the PDF C. Numerical results
Fig.[8 shows the optimaj* as a function of DSNR for the
ﬁ, V3 <y < V3, above examples.
p(y) = 0 therwi (35) Next, we illustrate the SNDR of two different nonlinear
’ otherwise mappings.g1 () is the optimal solution chosen bjheorem
For the case witm* > 0, it is straightforward to calculate 1. go(v) is a fixed mapping given below:
V3
x 1 1 1
cv = / ——dy=—=(3- 1%, (36
! o 23 PV RUAR D) 0, N <04,
- V3o V3 — 0.50* 92(7) = 7404, —0.4<7v<0.6, (47)
Cy = —dy = ——F———. (37)
0.57+ 2v/3 2v/3 1 v >0.6.
Substituting [35) and {37) int@(B3), we obtain The corresponding SNDR curves are shown in Elg. 7. This

example illustrates that the nonlinearity(~) yields a higher
=7 - ) (38) SNDR as compared to the other nonlinearity, as expected
YIS+ 202 A2 according toTheorem 1

1 1, %2
m(3—zn )

*
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IV. RELATIONSHIP BETWEENSNDRAND CAPACITY
A. Lower Bound on Capacity
The capacity is given by

C = max I(y,;z,) = max I(y; x) (48)
Dz

Pz,

where I(y;x) = H(x) — H(z|ly) = H(y) — H(y|z) is the

max I(xs + v;xs)
Pas
s.t. 0<z;<A (50)

which means that we need to find an input distribution in the
interval [0, A] to maximize the mutual information. Specially,
when the noise is Gaussian, the issue is similar to Smith’s
work in [17]. In this case, if DSNR is low, the capacity is
achieved by an equal pair of mass point$ aind 4; if DSNR

is high, the asymptotic capacity is the same as the infoomati
rate due to a uniformly distributed input {0, A] [17].

However, in most cases, we are most interested in the
achievable data rate given a nonlinear channel mapping with
any input and any noise. Similar to the work i [7], we obtain
a lower bound on the information rate:

I(y; )

1 1 o
9y — o’ch

1
= Hx) - B log(2mec?)

Arvarlg(y)] + 1
?—gvar[g(v)] +1- ?—§E2[79(7)]

—|—110
2g

1 1
= H(z) - 3 log(2meo?) + 3 log(1 +SNDR) (52)

by referring to[(B). Sinc€ > I(y; x) for any input distribution
Pz, DY settingp,. to be the PDF of a zero-mean Gaussian r.v.,
we obtain

C > %log(l + SNDR) (53)

with the SNDR evalutated for a Gaussian

B. Upper Bound on Capacity

In this subsection, we find an upper bound for the capacity.
Similar to [7], supposing;, is the PDF ofy that maximizes
the capacity, i.e.,

py = argmax[H (y) — H(ylz)]. (54)
We can write the capacity as
CZI(?J?@lp; H(y) Py — H(ylz)
= H(y)lp; — H(v) (55)

Next, we bound the entrop¥/(y) with the entropy of a

mutual information betweery and z [18]. To obtain the Gaussiary, yielding

capacity of the dynamic range constrained channel, we n

to solve the following optimization problem:

I(y; )

0<h()<A (49)

for a specific zero-mean noise with variance Moreover, it
can be simplified as:

d
Ko < %log(Qweaz) — H(v)

1 1 1
= 5 log(27recr§) ~5 log(2mea?) + B log(2mec?) — H(v)

= llog (1 + ALW) + %log(27recrg) — H(v)
1

UU
A2 1 5
< —log(1+4 ype) + 3 log(2meoy) — H(v)

[\)

(56)

[\]



wherevar[g(vy)] < + with g(y) € [0,1]. Specifically, if the

noise is Gaussian, we have the upper bound:

APPENDIXA
PROOF OFLemma 1

1 A? Since we are solving the optimization problem w.rt. a
C= 2 log (1 + H) (57) function, the functional derivative is introduced here [Z9].
Sinceey > 0 anda®o? < var[h()] < 1A%, we must have By using the D_|rac delt_a fgnct.|oﬁ(~).as a test function, the
notion of functional derivative is defined as:
o’o? A?
2 atoy Aoy OFlg0] _ gy, Flo) + €50 =20 = Fla)] 50,
‘;‘—2 is the defined DSNR which is the same as thatin [10]. 0g(v0) e—0 €

Just as the variable derivative operation, the linear ptgpe

C. Example of Bounds product rule and chain rule hold for functional derivatiye.

Since SNDR is determined by DSNR and the distributiogddition, from [5D), we infer that

of signal, we plot the bounds as functions of DSNR for
Gaussian distributed signal, which is shown in Fig. 8. We als

compare the lower bounds given by two different nonlinear %9(7) = 0(y =), (60)
mappingsg: (y) and g»(7), which are introduced in the last 592(70)

section. This example illustrates that the nonlineagityy) 69°(7) 29(7)(v — 7o) (61)
chosen according tdheorem 1lyields a tighter lower bound 69(70) '

as compared to the other nonlinearity. In addition, we can se To maximize the SNDR w.r4(-), we need

that the capacity of Gaussian channel as determined by Smith

[17] is between the lower bounds and upper bound that we OSNDR _ cs (62)
have. 359(70) » V0 .

We infer that

25

Elg(v)]l = E[L(v)g(M)] + ElIs(v)g(1)] + Ellu(v)g(7)]
= E[Is(v)g(")] + Ellu (v)]
“““ Lower bound, log(1+SNDRY)/2, gl(v) U
2r -~ Lower bound, log(1+SNDR)/2, g,(y) : 1 = E[IS (7)9(7)] + Co .
—— Upper bound, log(1+DSNR/4)/2 (63)
= = = Capacity with Gaussian noise
2 Similarly,
= Elg(7)] E[Is(v)v9(v)] + CY (64)
[
g Elg*(1)] = ElIs(7)g°(y)]+Cq- (65)
CY andCV are defined as i (17). It follows easily that
oo Cy +C5+Ci = 1, (66)
chycy+cv = o (67)
n -15 -10 ‘T;-I‘D’SLI% " 5 10 15 20 and
- ck,c,c¥ >o. (68)
Fig. 8. Bounds on capacity. Substituting [(6B),[(64) and (65) intb](8)
SNDR = Y19(7)] (69)
V. CONCLUSION Dig()]
The main contribution of this paper is the SNDR optimizawhere
tion within the family of dynamic range constrained memory- Qlg(Y)] = E[Is(y)vg()] +CV, (70)
less nonlinearities. We showed that, under the dynamicerang
constraint, the optimal nonlinear mapping that maximizes t )
SNDR is a double-sided limiter with a particular gain and Nlg(v)]l = Q%[g(m)], (71)
a particular bias level, which are determined based on the
distribution of the input signal and the DSNR. In addition,
N Y{g(7)] = Ells(v)g()] + Cf, (72)

we found thatj log(1 + SNDR) provides a lower bound on
the nonlinear channel capacity, aédiog(l + iDSNR) serves

as the upper bound. The results of this paper can be applied
for optimal linearization of nonlinear components and &ffit
transmission of signals with double-sided clipping.

o2

Dlg()] = BlIs(m)g* (] + Co + 75 (73)
— Q*[g(M] = Y?[g(9)].



Denote byp(v) the PDF of the random variabte Then

E[Is(v)g*(7)] = / Is(7)g*(Mp()dy. (74)
Taking the functional derivative w.rg(vo), we obtain
SE[Is(v)g° ()]
69(70)
= / Is(7)29(7)0(y = v0)p(7)dy (75)
= 29(v0)p(10)- (76)
Similarly,
5E[I§g((77) 07)9(7)] = 70p(70); (77)
dE[Is(v)g(7)]
5q (%) =p(70) (78)
Therefore,
22— aqlg)lronton). (79
P2~ agr0lpr0)-2Qlg() hop(0)~2¥ lg ) (o).
9(0) (80)
Condition [62) requires
dN[g()] _ 6D[g(v)]
Substituting and simplifying, we obtain
g(v0) = % +8 (82)
where
_ E[Is(v)y9(y)] + CF
" Elstgto) + of - o &
B = Elg(y)] = Ells(v)9(7)] + C¢ (84)

as the solution for[{82). Sinc€ (82) holdsy € S, we must
have

g(y) = % +8, Vyes. (85)
Substituting [(8b) into[(83) and (84), we obtain
CY +C5/n+CPB
=~y 5/ 2 5 25 _ a2 3742 (86)
Cy +C3 /n*+2BCY /n+ B2Cy — B> +02/A
B=Cy +Cf/n+ BCy (87)

whereCy, CY andCy are given by[(1l7).

Solving forn and 3, we further simplify them to[(15) and

@1s).

In summary, under the dynamic range constraint, the opti-
mal g(-) that maximizes the SNDR is given by {85), where

andj are given by[(I5) and_(16).

APPENDIXB
PROOF OFLemma 2

Comparing [(IR) with[(85), we infer thax < %-i-ﬁ <1lon
S. Therefore, the sef must be a subset &* = (—j3n, n—/5n)
if n > 0orS* = (n—pBn,—pn) if n < 0. The objective here is
to determine the optima such that the SNDR is maximized.
To further this objective, we rewrite SNDR as

1 _ BlPO)] - B2le()] + %
SNDR ™! = A 1. (88
Bl ©9
Sinceg(y) = % + B for v € S, we infer that
Elg(y)] = C§ +CF/n+BCy, (89)
Elg*(v)] = Cf +C5/n* +26CF /n+ B2C5, (90)
Elyg*(v)] = Of +C5/n+CPp. (91)
From [86), we have
ap/A? = CY [n+ C3 [n? + CT B/n + B ©2)
- Cf =G5/ —28CF [n - B°C5.
Thus, [88) can be further simplified to
- CY/n+C5/n* + CYB/n
SNDR™! = 2 ! -1 (93
cr+cspmrcspr L
= (G5 +nCY +0C7B) " =1 (94)
As a result, the original problem can be written as
max  C5 +CY +nCyB
s.t. LUSUU =R, (95)

or

S C(=pn,n—pn) (n — Bn,—pn).

Recall thatCs, C¥, CY, n and 3 are all functions off, S
andU. Set

R(L,S,U)
= C5 +n(L,S,U)3(L,S,U)CY +n(L,S,U)CY
No(L, S, U
- DOEL, S, U% (96)
where
No(L, S,U)
= CyCf Cy + Gy (CY)? +2C7CY CY + (CF)? (97)
— CG(CY )+ C5 (1= CF)oa JA? + (CF)?ap /A
and
Do(L,S,U) = CYCE + (1 — C§)o? /A% (98)

Differing from the traditional optimization problem, the
variables here are sets. Let us consider two cases.

Case 1: Suppose thatl(, S, U) is a feasible solution. Let
us consider a sef; C S and

Sl = S-— Ala (99)
Li = L+ A, (100)
U, = U (101)

which means a subset ¢f is partitioned intoL.



Ni(L1,S1,U1)Do(L, S, U) — No(L, S,U)D1 (L, Sy, Un)
= ((C5C§ + (CT)*)Do(L, S, U) = CF No(L, S,U))C'* + (C5 Do (L, 8,U) = No(L, 8,U))Cy* o / A®
—CYCEDy(L, 8, U)CR — (1 — C)\Do(L, S, U)C5 02 JA? + 2CY CEDy(L, S, U)CR — 20 Do(L, S,U)CP 02 | A?
= 2(C5 Cf = CYa3 JA%)(CY Cf + (1= G oy [AP)CP = (CT oy [A® = O CF)P Ot — (CF Cf + (1 = CF oy /A%)C2
<2/CJ CF = CYal JA?|(CT CF + (1 = CF)a2 [A%)|CP | = (CT ol /A — CF L CRt — (CF CF + (1 = CF Yoz /A®)*C3

=2|CJCf = Coy/A%|(CECF + (1= C)ay /A4) (ICF = 1/ G5/ C3™)
=0 <0

— (IC¥03 /A% = CCF I\ G = (CF Cy + (1= CF)os /A% C5)?

>0

<0
(109)

g(y)4 where

Ni(Lq,51,U1)
/ = (C5 = C3)CF (G + C3) + CF (CF — CP)?
+2C7 (€Y — el — (Cf — Cih)(Cr)?
/ +(C5 = C3)(1 = CF + C)oy JA

+(CF = C)?a} /A% + (OF )P (103)
= No(L,S,U) + c5cYod —cyckop

—cfepres 20 ciop + e (e )?

— 205 CY CP + (O °Cyt = 02 Gyt + (CF)?
+(CFC = (1= CF)0y — 207 O )y /A

v

—_
I

(@ L, S U
g(y)s

1+ .

and
/ Dl(Ll,Sl,Ul)
Sl/

=CY(CE+CEY+(1-C5 +C8 )02 /A2 (104)
= Do(L,S,U) + CYCS + C5r o2/ A%

/

4
; ' == ‘ i ’}, Next, we would like to compareR(L,,S:,U;) and
\L 7\ U R(L,S,U) to help us establish the optim8l maximizing the
! : SNDR. However, it is a challenge to make the comparison
)y Li=L+A1, 81 =S-A, U1 =U directly since there are too many terms in the objective

expression. Here, we utilize a two-step comparison.
First, rewrite
Ni(L1, S1,Ur)
= No(L,8,U) + (C5C§ + (CY)*)Cy — Cf G €y
— 2G5 (CF + OO + G ((C)? = G5 Cy)
Fig.[d demonstrates an example@dse 1 Then we have + (OQSOoAl —(1- C()S)Ofl — chsclﬁl)gg/AQ
+((CF)? = G O )oy /A
< No(L,8,U) + (C5C + (C7)*)Cg
—cYctoy +2cyclep
+(C505" = (1= CF)0y = 207 C oy /A2
= Ni(L1, S1,Ur)

Fig. 9. Example ofCase 1

Ni(Ly,51,Ur)

R(L1 5100 = 50T 500

(102) (105)
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where g(y)s

(CP)? < 63 Cp (106) N
by the Cauchy-Schwartz inequalityZ[0¢]) < E[0?|E[¢?]
with 6 = vIa,(v) and¢ = Ia, (7).
Next, we useN; (L1, S1,U;) instead of Ny (L4, S1,U;) to
make the comparison. Consider /
Ni(Ly,S1,Un) _ No(L,5,U) ‘ ‘ / | | y
Di(Ly,51,Uh)  Do(L,S,U) & s U
_ Ni(L1,81,U1)Do(L, S,U) = No(L, S,U) D1 (L1, 51,Un)
B D1 (L1, 81,U1)Do(L, S,U) @ LU
(107) g4
where 14 -
N0(Lt, $1.U2)Do(L. 5. U) — No(L S.U) Dy (L, 81, Uy < 0 —

(108)
which is given by [(100). —
Since bothD, (L1, 51,U;) andDy(L, S,U) are greater than /

zero, it can be concluded A

»
2

2
A~ ' J m | 7
< Nl(Ll,Sl,Ul) \L \S2/<U2/

oL ) b sy, (110
= Di(Ly,81,U1) — ( ) (110)

Case ldemonstrates that the SNDR will be decreased if
any subset ofS is occupied byL. Let us consider anotherFig. 10. Example ofCase 2

R(L1, S1,U1)
(b) Lo =L, So=8— Az, Uz =U + Ag

case.
Case 2: 5, C S and
and
Sy = S—A, (111)
Ly = L, (112) Ds(L2, S2,Us)
Uy = U+Ay (113) = (CY +C8)CEk + (1 -5 + 8202 /A% (116)
which means a subset 6f is partitioned intoU. = Do(L, 8,U) + C5Cg* + Cy oy /A%,

Fig.[10 demonstrates an exampleQdse 2 Then we have

In Case 2 we also try to determine the difference between
Na(La, So,Us)

R(Ls, Sy, Uy) = =212 2 22 (114) R(Lz,S2,Uz2) and R(L, S,U) by utilizing the two-step com-
Dy(Lz, S2,Uz) parison.
where First, rewrite
No(Lz, S2,Uz) Na(Lso, S2,Us)
= (C5 — C39)(CY + P20k + (Y +C)(CF — oy =MoL, S,U) + (CEC +(CF + CPCy = G G ey
+2(C8 + CF)(CY + OP)(CF - Cpe) +205CY OP* + O ((CP2)* = G5 O™
+ (OIU + ClAg)Q _ (065' _ OOAZ)(OIU + ClAg)Q + (CQSCOA2 — (1 — COS)CQA2 — 2050?2)05/142

Ag\2 Ao ~As 2 2
+(C5 — C8)(1 - CF + CP2)o2 A% 4 (CF — 0220242+ ((O17)7 = G52 Co ), [A .
= No(L, S, U) + CSCLct> — eV kot — clhoda o < No(L, S, U) + (C5C§ + (C1)))

UL A2 L AU ~A2
=200 CFCP + CF (CP)? + (O — 207 Cpeope -~ Co Co G 200 Gy .
+ OOAZ (ClAz)Q + 205]050?2 + 201[10190()&2 + (Cﬁgco 2—(1- 069)02 2 — 20501 2)012)/142
+207CRr 0P 20y CY Pt — 20y (CP)? = Na(L2, 55, V)

117
— 207 C§2CP® — 2052 (C2)? + 207 P2 + (C2)? ()

—2050V 0P — CF(CP?)? + (CV)2C8e + 20V 0§ 0P where
+ 052 (CP2)? + (G5 G2 — (1 - CF)Cy* — 032Gy (C22)2 < CB20h (118)

+ (CP2)2p — 207 CP2) o2 | A
(115) by the Cauchy-Schwartz inequality.



No(La, Sa,Us)Do(L, S,U) — No(L, S, U)Da(Lz, Sz, Us)
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= ((C5Cg + (C1))Do(L, S,U) = C§ No(L, S, U))Cy'* + (C5' Do(L, S, U) = No(L, S, U))Cg2; [ A®
—CYCEDy(L, 8,U)CR2 — (1 — C5)\Do(L, S, U)C5202 JA? + 2CECY Dy (L, S,U)CP? — 205 Do (L, S, U)CP2 02 | A?

=2(CfCy — Co2 /A% (CY Cf + (1 - CF)o2 /A% O

— (Cioz/A? = cfel ey — (Cfch + (1 - CF)os /A% Cpe

< 20507 = Oy /A%|(CF O + (1= CF)ay [AD)|CF?| = (CTab/A® = CECY )20 — (G5 Gy + (1= G )os /A%)Cy
=2|CyCY — Cioy/A%|(Cy Cy + (1= C5)oy /A?) (|CT2] — 1/ C5*y/ C3)

20 <0

—(IC¥03 /A% = Cy O/ G = (C§ C + (1= CF)os /A% C32)?

>0
<0

(121)

Second, consider [6]
Na(Ls, S3,Us)  No(L,S,U)
Dy(Lo, S2,Uz)  Do(L,S,U)
_ No(Lz, S2,Uz)Do(L, S,U) — No(L, S,U)Dz(Ls, S2,Us)
D3 (La, S2,Uz)Do(L, S, U)

(7]

(8]

(119)

where [0
Ns(La, S2,Uz)Do(L, S,U)—No(L, S,U)D(La, S2,Uz) < 0
(120) [10]
which is given by [(T2]1).
Since bothD4y (Lo, Se, Us) and Dy (L, S, U) are greater than

zero, it can be concluded [11]

No(La, S2,Us) (12]
Mol 5. 1%)  pop sy, (122
Do(La, Sa,Uz) ( ) 122)

Case 2demonstrates that the SNDR will be also decreaS([elé]
if any subset ofS is occupied byU.

Additionally, Case landCase 2also imply that the SNDR
can be increased # can be enlarged by occupying the subseEs
of L andU. Thus,Lemma Zholds and the optima' is implied
to be S* = (=fBn,n — Bn) if n >0 or S* = (n — Bn, —pBn)
if n<0.

R(L2, S2,Us) <

[15]
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