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The conventional methods are not effective and efficient for image multi-level thresholding due to time-
consuming and expensive computation cost. The multi-level thresholding problem can be posed as an
optimization problem, optimizing some thresholding criterion. In this paper, membrane computing is
introduced to propose an efficient and robust multi-level thresholding method, where a cell-like P system
with the nested structure of three layers is designed as its computing framework. Moreover, an improved
velocity-position model is developed to evolve the objects in membranes based on the special membrane
structure and communication mechanism of objects. Under the control of evolution-communication
mechanism of objects, the cell-like P system can efficiently exploit the best multi-level thresholds for an
image. Simulation experiments on nine standard images compare the proposed multi-level thresholding
method with several state-of-the-art multi-level thresholding methods and demonstrate its superiority.
1. Introduction

Image segmentation is one of the most important tasks in com-
puter vision and video applications. Thresholding has been widely 
used as a popular image segmentation technique [1]. The goal of 
thresholding is to separate objects from background image or dis-
criminate objects from objects that have distinct gray levels. The 
existing thresholding methods can be roughly classified as two cat-
egories: bi-level thresholding and multi-level thresholding [2–4]. 
Bi-level thresholding segments an image into two different regions. 
The pixels with gray values greater than a certain threshold are 
classified into object, and those with gray values lower than the 
threshold are regarded as background. Thresholding problem can 
be posed as an optimization problem. Otsu’s method [5] and Ka-
pur’s method [6] are simple and effective bi-level thresholding, 
which maximize the between-class variance of gray levels and the 
entropy of the histogram to optimize single threshold for an im-
age respectively. Multi-level thresholding determines more than 
one threshold for an image and segments the image into several 
distinct regions, which correspond to one background and sev-
eral objects. The Otsu’s and Kapur’s methods can be extendable 
to multi-level thresholding, however, they are inefficient because 
gray level histograms of most of the real-life images are multi-
modal. Thus, multi-level thresholding has received much attention 
in recent years. In order to solve the multi-level thresholding prob-
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lem, some natural computing methods have been applied to solve 
the multi-level thresholding problem, for example, genetic algo-
rithms (GA), particle swarm optimization (PSO), ant colony op-
timization (ACO), differential evolution (DE), artificial bee colony 
(ABC), and bacterial foraging (BF) algorithm. Tao et al. [7] pre-
sented a three-level thresholding method that used the GA to find 
the best thresholds. Hammouche et al. [8] proposed a multi-level 
thresholding method, which allowed the determination of the ap-
propriate number of thresholds as well as the adequate thresholds. 
However, GA has several shortcomings, for example, slow conver-
gence rate and premature convergence to local minima. Thus, some 
PSO-based multi-level thresholding methods have been developed 
[9–11]. In addition, Tao et al. [12] used the ACO to obtain the best 
parameters of the presented entropy-based object segmentation 
method, while Sathya et al. [13] proposed a multi-level thresh-
olding method using the bacterial foraging algorithm. Akay et al. 
[14] presented a study on PSO and ABC algorithms for multilevel
thresholding. Agrawal et al. [15] presented an optimal multi-level
thresholding method using cuckoo search algorithm. Osuna-Enciso
et al. [16] reported a comparison study of PSO, ABC and DE for
multi-threshold image segmentation. Fan et al. [17] proposed a
molecular kinetic theory optimization algorithm (MKTOA) to solve
the multi-level thresholding problem. Yin et al. [18] proposed a
multilevel image segmentation through fuzzy entropy maximiza-
tion and graph cut optimization.

Membrane computing initiated by Gh. Pǎun [19], as a new 
branch of natural computing, is inspired from the structure and 
functioning of living cells as well as interaction of living cells in 
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tissues and organs. Membrane computing is a novel class of dis-
tributed parallel computing models, known as P systems [20]. In 
the past years, a variety of variants of P systems have been pro-
posed [21–27], including membrane algorithm of solving global 
optimization problems [28]. The research results on a variety of 
optimization problems have indicated that compared to the exist-
ing evolutionary algorithms, membrane algorithm offers a more 
competitive method due to its three advantages: better conver-
gence, stronger robustness and better balance between exploration 
and exploitation [29–31].

Based on the above consideration, this paper introduces mem-
brane computing to deal with multi-level thresholding problem 
and proposes a novel multi-level thresholding method. A cell-like P 
system with the nested structure of three layers, including several 
evolution membranes, several local store membranes and a global 
store membrane, is considered as its optimization framework to 
exploit the best thresholds for an image. Moreover, based on the 
special membrane structure and communication mechanism of ob-
jects, an improved velocity-position model is developed to evolve 
the objects in the system. In recent, Peng et al. [32] presented a 
multi-level thresholding method based on tissue-like P systems, 
where fuzzy entropy is used as the objective function to optimize 
the thresholds. However, there are three differences with Peng’s 
method [32]: (1) this paper uses the between-class variance crite-
rion and entropy criterion as objective functions respectively, and 
the existing works have indicated that they are two most effective 
measures in histogram-based thresholding; (2) a variant with a 
special membrane structure, namely, a cell-like P system with the 
nested structure of three layers, is considered in this paper, so the 
proposed method is inspired from the different mechanism from 
Peng’s method; (3) the external best objects are used to guide the 
evolution of objects in Peng’s method, which can cause the degra-
dation of the objects when initial objects in evolution membranes 
are very close to each others in solution space.

The rest of this paper is organized as follows. Section 2 re-
views two multi-level thresholding problems to be solved, which 
use the between-class variance criterion and entropy criterion as 
objective functions, respectively. Section 3 describes the proposed 
multi-level thresholding method based on cell-like P systems. Ex-
perimental results are provided in Section 4, and conclusions are 
discussed in Section 5.

2. Problem statement

Assume that a given image I has L gray levels, {1, 2, . . . , L}.
Let hi denotes the number of pixels with gray level i, thus total 
number of pixels equals N = h1 + h2 + . . . + hL . The occurrence 
probability of gray level i is given by

pi = hi

N
, pi ≥ 0,

L∑
i=1

pi = 1. (1)

For the image I , a multi-level thresholding method determines 
m thresholds, (t1, t2, . . . , tm), and divides the image into m + 1
classes: C0 for [1, . . . , t1], C1 for [t1 + 1, . . . , t2], . . . , and Cm for 
[tm + 1, . . . , L]. Therefore, the gray level probability distributions 
for the m + 1 classes are as follows:

C0

(
p1

ω0
, . . . ,

pt1

ω0

)
, C1

(
pt1+1

ω1
, . . . ,

pt2

ω1

)
, · · · ,

Cm

(
ptm+1

ωm
, . . . ,

pL

ωm

)
(2)

where

ω0 =
t1∑

pi, ω1 =
t2∑

pi, . . . , ωm =
L∑

pi . (3)

i=1 i=t1+1 i=tm+1
Mean levels for the m + 1 classes, μ0, μ1, . . . , μm , respectively, are

μ0 =
t1∑

i=1

ipi

ω0
, μ1 =

t2∑
i=t1+1

ipi

ω1
, . . . , μm =

L∑
i=tm+1

ipi

ωm
.

(4)

Let μT be the mean intensity for whole image. Thus, we have

μT = ω0μ0 + ω1μ1 + · · · + ωmμm, ω0 + ω1 + · · · + ωm = 1.

(5)

Multi-level thresholding can be posed as an optimization prob-
lem, which optimizes the m thresholds by maximizing some 
thresholding criterion (objective function). Usually, there are two 
thresholding criterions broadly used in literature, between-class 
variance criterion and entropy criterion, which can be used as the 
objective function of the optimization problem.

2.1. Case 1: between-class variance criterion

The between-class variance criterion is firstly used in Otsu’s bi-
level thresholding method [33,34], and then is extended to multi-
level thresholding. For the m thresholds, the between-class vari-
ance of the image I can be defined by

σ 2
B = σ0 + σ1 + · · · + σm (6)

where σ0 = ω0(μ0 −μT )2, σ1 = ω1(μ1 −μT )2, . . . , σm = ωm(μm −
μT )2. Thus, the multi-level thresholding problem can be config-
ured as the following optimization problem:

max
1≤t1≤···≤tm≤L

J1(t1, t2, . . . , tm) = max
1≤t1≤···≤tm≤L

σ 2
B (t1, t2, . . . , tm)

(7)

where t1, t2, . . . , tm are m parameters (thresholds) to be optimized.

2.2. Case 2: entropy criterion

The entropy criterion has been developed by Kapur in bi-level 
thresholding [6,35], and has been extended to multi-level thresh-
olding. For the m thresholds, the entropy criterion can be defined 
as follows:

He = H0 + H1 + · · · + Hm (8)

where
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Based on the entropy criterion, the multi-level thresholding prob-
lem can be configured as the following optimization problem:

max
1≤t1≤···≤tm≤L

J2(t1, t2, . . . , tm) = max
1≤t1≤···≤tm≤L

He(t1, t2, . . . , tm)

(9)

where t1, t2, . . . , tm are m parameters (thresholds) to be optimized.



Fig. 1. The cell-like P system with the nested structure of three layers, where arrows denote the communication relations of objects.
3. Proposed multi-level thresholding method

The proposed multi-level thresholding method uses a cell-like 
P system with the nested structure of three layers as its opti-
mization framework. The role of the cell-like P system is to op-
timize the m thresholds for an image. Fig. 1 shows the cell-like 
P system with the nested structure of three layers, consisting of 
(2q + 1) membranes: a skin (the outermost) membrane, q mid-
dle membranes and (the innermost) elementary membranes. The 
q middle membranes are labeled by 1, 2, . . . , q respectively, called 
evolution membranes, role of which is to evolve the objects of the 
system. Each evolution membrane contains an elementary mem-
brane, called local store membrane, role of which is to store the 
best object found so far in the evolution membrane. The local 
store membranes are labeled by 1′, 2′, . . . , q′ , respectively. The skin 
membrane labeled by 0 is also called global store membrane, role 
of which is to store the best object found so far in whole system. 
Note that there are no evolution rules in the global store mem-
brane and the local store membranes.

3.1. Object representation

In the designed cell-like P system, each evolution membrane 
contains n objects, and each of them expresses a set of m thresh-
olds to be optimized. Thus, each object is a m-dimensional vector 
of the form

X = (t1, t2, . . . , tm) (10)

where t1, t2, . . . , tm are m thresholds to be optimized. The cell-like 
P system will find the best thresholds for an image by evolution of 
objects. Each local store membrane contains only an object, called 
local best object, which is the best object found so far in the cor-
responding evolution membrane. The global store membrane also 
contains an object, called global best object, which is the best ob-
ject found so far in whole system.

3.2. Object evolution

Object evolution is realized by evolution rules. In this work, 
an improved position-velocity model is developed based on inher-
ent communication mechanism of cell-like P systems, which can 
be regarded as a variant of the velocity-position model in particle 
swarm optimization (PSO) [36,37]. For jth object in kth evolution 
membrane, Xk, j , the extended velocity-position model can be de-
scribed as follows:

Vk, j = ω · Xk, j + c1r1(Pk, j − Xk, j) + c2r2(Gk − Xk, j)

+ c3r3(G∗ − Xk, j),

Xk, j = floor(Xk, j + Vk, j), j = 1,2, . . . ,n, k = 1,2, . . . ,q, (11)

where ω is an inertia weight, c1, c2 and c3 are learning fac-
tors, r1, r2, r3 are three random numbers in (0, 1), floor(·) is a 
rounded function, Vk, j is the velocity vector associated with Xk, j , 
and Pk, j is the found best position of object Xk, j so far. Different 
from the classical velocity-position model, the extended velocity-
position model uses two best objects to guide the evolution of 
objects in each evolution membrane: one is the best object in cur-
rent evolution membrane, Gk , and another is the found global best 
object in all evolution membranes so far, G∗ . The consideration can 
bring two benefits: (1) the mechanism that the global best object 
involves the co-evolution of objects in multiple evolution mem-
branes can speed up the convergence of the system; (2) since the 
two best objects are from different sources, this mechanism can 
better improve the diversity of objects in the system, thus it can 
avoid premature convergence to local optima.

3.3. Object communication

Another mechanism of the cell-like P system is communication 
of objects between each evolution membrane and the correspond-
ing local store membrane or between each evolution membrane 
and the global store membrane. The arrows in Fig. 1 show the 
communication relations of objects. The communication often hap-
pens after the evolution of objects in evolution membranes. After 
all objects are evolved, each evolution membrane automatically 
communicates its best object into the corresponding local store 
membrane and the global store membrane to update the corre-
sponding local best object and the global best object, respectively. 
The update strategy used is as follows: if fitness value of the com-
municated object is higher than that of the existing object in local 
store membranes or global store membrane, it will replace the ex-
isting object; otherwise, it will be discarded.

3.4. Halting and output

As usual in P systems, all of the evolution membranes as paral-
lel computing units work in a maximally parallel way (a universal 
clock is considered here). Moreover, the global store membrane is 
assigned as output region of whole system. For simplicity, a max-
imum execution step number given in advance is considered as 
halting condition. The cell-like P system will continue to run un-
der the control of its evolution–communication mechanism until 
the halting condition is reached. When the system halts, the global 
best object in the global store membrane is regarded as the output 
of whole system, namely, m best thresholds.

Based on the cell-like P system, the proposed multi-level 
thresholding method is summarized in Table 1. In the following, 
we briefly discuss its computational complexity. We consider its 
two versions: parallel version and non-parallel version. The thresh-
olding method consists of three main steps: initialization, object 
evolution and halting. From Table 1, it can be observed that ini-
tialization step contains double loop (q and n times, respectively), 
so its time complexity is O (qn). For object evolution step, there 
are triple loop (q, n, and S times, respectively), therefore, its time 
complexity is O (qnS). For halting step, its time complexity is O (1). 
Therefore, for non-parallel version, its time complexity is O (qnS). 
However, in the case of parallel version, the proposed multi-level 
thresholding method has O (nS) complexity since all of the q evo-
lution membranes are parallel computing units.



4. Experimental results and analysis

In experiments, we have implemented non-parallel version of 
the proposed multi-level thresholding method (due to the limit of 
series architecture of the used computer) as well as two recently 
developed multi-level thresholding methods, which are BF-based 
and PSO-based methods. Table 2 gives the input parameters of the 
three methods used in experiments. Nine well-known test images 
with 256 gray levels and size 512 × 512 are used for conducing 
our experiments, which are “Lena”, “Peppers”, “Baboon”, “Hunter”, 
“Stanwick”, “Living room”, “House”, “Airplane” and “Butterfly”, re-
spectively. Fig. 2 shows these images and their histograms.

Two case studies are considered to evaluate the efficiency and 
effectiveness of the proposed method, where Ostu’s between-class 
variance and Kapur’s entropy are used as objective functions of 
the optimal multi-level thresholding problem respectively. For each 
case study, the comparison is considered in terms of quantitative 
and qualitative results, including best thresholds, objective func-
tion value, PSNR (Peak Signal-to-Noise Ratio), computing time and 
the thresholded image. A higher objective function value indices 
a better result. A larger PSNR value indicates a better quality of 
thresholding. The shown objective function values and computing 

Table 1
The multi-level thresholding method based on cell-like P systems.

Input parameters: Histogram {hi | i = 1, 2, . . . , L}, the number of evolution 
membranes q, the number of objects in each evolution membrane n,
maximum execution step number S , learning factors c1, c2 and c3, and
inertia weight ω.

Output results: the best thresholds, G∗ = (t∗
1, t∗

2, . . . , t∗
m).

Step 1. Initialization
for k = 1 to q

for j = 1 to n
Generate j-th initial object for evolution membrane k, Xkj;
Compute the fitness value of the object according to Eq. (6) or Eq. (8);

end for
Fill local best object Gk using the best initial object in evolution

membrane k;
end for
Fill global best object G∗ using the best of all initial objects;
Set computing step s = 0;

Step 2. Object evolution in evolution membranes
for each evolution membrane k (k = 1, 2, . . . , q) in parallel do

for j = 1 to n
Evolve object Xkj using the improved velocity-position model (10);
Compute the fitness value of the object according to Eq. (6) or Eq. (8);

end for
Update the local best object Gk in the corresponding local store

membrane;
Update the global best object G∗ in the global store membrane;

end for
Step 3. Halting condition judgment

if s ≤ S is satisfied
s = s + 1;
goto Step 2;

end if
The system exports the global best object G∗ and halts;
times are the averages over 50 runs, and mean value and standard 
deviation of PSNR are also provided.

4.1. Case study 1

Case study 1 is considered to solve the optimal multi-level 
thresholding problem (7), in which Ostu’s between-class variance 
is used for its objective function. Table 3 provides the best thresh-
olds, average objective function values of the three methods over 
50 runs, in which four number of thresholds are considered, i.e., 
m = 2, 3, 4 and 5. The best thresholds of a method refer to a set 
of thresholds with the largest objective function value. It can be 
clear observed from Table 3 that the proposed method achieves 
the largest objective function value in comparison to other two 
methods.

Figs. 3–5 show the detailed qualitative segmentation results of 
P system for the nine images. Table 4 gives mean values and stan-
dard deviations of PSNR values obtained by the three methods over 
50 runs. It can be seen from Table 4 that average PSNR values of 
P system are higher than that of PSO and BF. The quantitative and 
qualitative results illustrate that compared with PSO and BF, P sys-
tem has better quality of thresholding. Meanwhile, the P system 
has the lowest standard deviation for each of the nine images. The 
comparison results demonstrate that P system outperforms other 
two methods in terms of robustness.

Table 4 also provides the comparison results of the three meth-
ods in terms of computing time (second). Note that the computing 
time refers to spending time of a method when it converges to its 
best objective function value during its a run. It can be seen from 
Table 4 that BF has the smallest average computing time, second is 
PSO, while P system is the longest in the three methods. However, 
an interesting conclusion is observed in the comparison results. 
According to the parameter configure of the three methods listed 
in Table 2, the P system has all 250 objects, which apparently cor-
responds to a PSO with 250 particles or a BF with 250 bacteria. 
Intuitively, the computing time of the non-parallel version of the 
P system is several times more than that of PSO or BF. However, 
its computing time is slightly higher than that of PSO or BF. The 
results illustrate that the non-parallel version of the P system has 
also relatively faster convergence.

4.2. Case study 2

Case study 2 is used to test the performance of the three meth-
ods for the optimal multi-level thresholding problem (9), where 
Kapur’s entropy is used for its objective function. Table 5 reports 
the best thresholds, average objective function values of the three 
methods over 50 runs. The results clear show that the P system 
can exploit the best thresholds for the nine images.

Table 6 provides the comparison results of PSNR values ob-
tained by the three methods over 50 runs in terms of mean value 
and standard deviation, respectively. It can be seen from Table 6
Table 2
Input parameters of cell-like P system, BP and PSO.

Cell-like P system BP PSO

Number of membranes (q) 5 Number of bacterium (S) 50 Population size (N) 50
Number of objects (n) 50 Number of chemotactic steps (Nc ) 10 Maximum number of iterations 200
Maximum number of iterations 200 Swimming length (Ns) 10 Inertia weight (wmax, wmin) 0.9, 0.4
Inertia weight (wmax, wmin) 0.9, 0.4 Number of reproduction steps (Nre) 4 Learning factors (c1, c2) 2
Learning factors (c1, c2, c3) 1.0 Number of elimination of dispersal event (Ned) 2

Probability of elimination and dispersal (Ped) 0.02
Depth of attractant (datt) 0.1
Width of attract (Watt) 0.2
Height of repellent (hrep) 0.1
Width of repellent (Wrep) 10



Fig. 2. The tested images and their histograms: (a) Lena, (b) Peppers, (c) Baboon, (d) Hunter, (e) Stanwick, (f) Living room, (g) House, (h) Airplane and (i) Butterfly.



Table 3
Comparison of best thresholds and average objective function values obtained by three methods for case study 1.

Test image m Best thresholds Average objective function value

P system PSO BF P system PSO BF

Lena 2 93,151 94,152 91,151 1961.523 1961.413 1961.555
3 80,126,171 79,127,170 79,125,170 2128.126 2127.776 2128.071
4 75,114,145,180 78,112,134,175 76,117,151,182 2191.442 2180.686 2189.026
5 73,109,136,160,188 79,110,140,167,188 66,92,122,149,183 2217.434 2212.554 2215.609

Peppers 2 49,116 76,144 73,137 2866.337 2469.578 2474.808
3 43,99,153 72,124,171 63,125,174 3066.248 2623.273 2625.362
4 41,89,135,175 57,92,130,172 54,89,128,171 3151.990 2695.886 2697.783
5 39,80,118,150,182 56,84,115,150,179 47,86,123,158,183 3195.937 2733.508 2735.644

Baboon 2 97,149 96,149 98,150 1548.140 1547.997 1548.012
3 85,125,161 85,126,166 84,126,159 1638.320 1635.362 1637.007
4 72,106,137,168 79,105,140,174 77,109,139,169 1692.149 1684.335 1690.722
5 67,99,125,149,174 74,104,134,161,180 70,99,127,154,177 1717.890 1721.958 1716.727

Hunter 2 51,116 52,116 51,117 3064.210 3064.067 3064.118
3 36,86,135 39,86,135 36,86,135 3213.445 3212.058 3213.446
4 30,72,111,146 36,84,130,157 31,80,120,152 3269.515 3257.176 3266.349
5 22,53,88,122,152 37,85,125,154,177 31,73,109,141,178 3308.141 3276.317 3291.132

Stanwick 2 110,183 113,177 109,176 2331.370 2340.395 2340.395
3 99,148,199 81,145,197 98,146,189 2519.875 2526.303 2529.934
4 85,125,169,221 92,133,162,206 88,134,173,222 2609.491 2618.489 2621.146
5 68,114,135,178,228 79,116,139,162,204 80,109,135,165,224 2658.407 2665.412 2668.069

Living room 2 88,147 88,145 87,146 1626.643 1627.796 1627.824
3 76,124,164 81,127,165 75,124,164 1758.850 1757.466 1759.845
4 57,99,133,169 69,110,143,178 64,102,134,172 1827.456 1822.113 1826.628
5 50,89,120,146,179 56,98,128,156,190 56,94,125,148,180 1870.574 1865.476 1869.996

House 2 55,128 57,127 56,129 3420.715 3420.985 3421.282
3 42,98,162 48,104,165 43,102,165 3622.756 3617.983 3622.305
4 31,75,123,178 40,88,140,194 34,82,135,182 3725.315 3702.288 3711.701
5 24,56,92,130,178 32,74,129,158,188 33,80,124,170,212 3785.194 3752.146 3759.015

Airplane 2 116,174 117,174 117,175 1837.797 1837.723 1837.751
3 95,146,191 99,158,193 91,147,190 1669.278 1665.758 1667.289
4 88,132,173,204 84,125,168,201 84,127,169,202 1955.048 1953.886 1954.248
5 71,108,143,179,204 60,101,138,177,204 71,110,138,175,203 1979.959 1977.874 1978.433

Butterfly 2 98,151 99,150 99,151 1553.073 1553.067 1553.072
3 82,118,160 79,119,164 78,117,162 1669.278 1665.756 1667.289
4 71,99,126,161 80,113,145,177 75,105,135,165 1711.219 1702.905 1707.098
5 71,99,125,153,179 75,106,129,157,180 76,104,129,154,180 1736.657 1730.786 1733.031

Fig. 3. The thresholded images generated by P system in case study 1 for Lena, peppers and baboon: (a)–(c) represent 2-level thresholding; (a’)–(c’) represent 3-level
thresholding; (a”)–(c”) represent 4-level thresholding; (a”’)–(c”’) represent 5-level thresholding.



Fig. 4. The thresholded images generated by P system in case study 1 for hunter, Stanwick and living room: (a)–(c) represent 2-level thresholding; (a’)–(c’) represent 3-level
thresholding; (a”)–(c”) represent 4-level thresholding; (a”’)–(c”’) represent 5-level thresholding.

Fig. 5. The thresholded images generated by P system in case study 1 for house, airplane and butterfly: (a)–(c) represent 2-level thresholding; (a’)–(c’) represent 3-level
thresholding; (a”)–(c”) represent 4-level thresholding; (a”’)–(c”’) represent 5-level thresholding.



Table 4
Comparison of PSNR value and computing time over 50 runs for case study 1.

Test images m PSNR Average computing time (second)

Mean value Standard deviation

P system PSO BF P system PSO BF P system PSO BF

Lena 2 17.536 14.873 15.163 0.000 0.000 0.000 7.128 6.749 6.353
3 20.532 16.753 17.338 0.000 2.265e−6 3.718e−6 8.993 8.503 7.791
4 21.521 18.832 19.397 3.162e−12 3.561e−5 2.526e−6 9.271 8.925 8.382
5 22.372 19.446 20.562 5.336e−9 6.173e−5 4.772e−6 10.387 9.836 8.832

Peppers 2 18.645 12.821 12.598 0.000 0.000 0.000 7.238 6.538 5.823
3 19.479 16.592 15.961 0.000 4.123e−6 8.462e−6 8.362 7.491 6.358
4 21.516 19.126 16.639 5.323e−12 2.735e−5 7.636e−5 8.992 7.875 6.782
5 22.478 20.365 20.113 6.721e−7 3.142e−4 6.537e−4 10.529 9.016 6.981

Baboon 2 18.327 13.032 13.009 0.000 0.000 0.000 7.437 6.792 6.331
3 19.492 16.981 17.982 2.321e−14 3.571e−6 1.432e−5 8.325 7.442 6.825
4 20.335 17.028 18.325 1.992e−9 4.713e−6 8.546e−6 8.581 8.035 7.339
5 20.975 18.115 18.693 5.237e−7 1.115e−5 2.159e−5 9.416 8.521 7.956

Hunter 2 15.836 11.037 11.316 0.000 0.000 0.000 7.151 6.921 6.353
3 17.358 14.382 14.539 7.457e−10 2.251e−6 5.773e−7 7.892 7.585 7.082
4 18.117 15.291 16.194 2.842e−8 5.912e−6 3.162e−6 8.452 8.126 7.391
5 18.673 16.448 17.319 5.383e−7 2.364e−4 6.921e−5 9.117 8.614 7.938

Stanwick 2 17.523 13.665 14.217 0.000 0.000 0.000 7.353 6.237 5.523
3 18.281 14.361 15.372 3.352e−8 3.118e−5 1.982e−6 7.894 6.731 6.415
4 19.795 15.722 16.553 2.916e−7 2.261e−5 5.337e−6 8.392 7.535 6.821
5 21.316 16.628 18.449 4.615e−5 5.712e−4 3.321e−5 9.476 8.256 7.135

Living room 2 14.323 13.015 12.917 0.000 0.000 0.000 7.137 6.438 6.129
3 17.982 17.108 17.035 0.000 8.113e−6 2.662e−6 7.831 7.225 6.743
4 19.447 19.216 19.118 4.227e−9 9.847e−6 5.831e−6 8.328 7.689 7.208
5 21.152 21.147 20.836 6.883e−8 9.558e−5 5.554e−5 9.336 8.872 8.131

House 2 17.821 12.583 12.681 0.000 0.000 0.000 7.215 6.735 6.295
3 19.582 13.772 13.989 4.112e−8 4.568e−5 2.769e−6 7.669 7.421 6.887
4 21.733 14.821 15.832 2.834e−7 8.883e−5 4.651e−6 8.095 7.883 7.513
5 22.812 16.135 16.669 5.064e−7 9.647e−5 8.482e−5 9.572 8.982 8.142

Airplane 2 16.445 13.447 13.631 0.000 0.000 0.000 7.359 6.532 6.149
3 19.063 15.472 15.693 3.236e−8 4.335e−6 3.448e−7 8.314 7.681 6.975
4 21.261 15.533 16.181 8.495e−8 3.821e−6 6.425e−7 9.217 7.983 7.236
5 22.519 17.465 17.592 2.532e−7 5.484e−5 6.119e−6 9.976 8.523 7.952

Butterfly 2 16.345 13.027 13.042 0.000 0.000 0.000 7.431 6.638 6.447
3 19.021 16.558 17.115 5.882e−15 6.335e−5 3.116e−6 7.982 7.318 6.759
4 21.283 18.735 19.425 6.421e−13 7.223e−4 2.625e−5 8.689 7.956 7.365
5 22.891 21.298 21.733 3.836e−7 1.363e−3 7.353e−5 9.894 8.526 8.237
that the P system has the highest average PSNR value for each im-
age in comparison to BF and PSO. Figs. 6–8 show the thresholded 
images generated by the P system. The quantitative and qualitative 
results demonstrate that the P system can achieve a better quality 
of thresholding for nine images. Meanwhile, the comparison re-
sults in Table 6 show that the P system have the lowest standard 
deviation in the three methods, which illustrates the P system is 
robust for the optimal multi-level thresholding problem (9).

The comparison results of the three methods in terms of com-
puting time are provided in Table 6. Although the computing 
time of the P system is slightly larger than that of PSO and BF, 
however, the comparison results indicate that its non-parallel ver-
sion has also relatively faster convergence based on above analy-
sis.

4.3. Statistical significance test

A nonparametric statistical significance test, Wilcoxon’s rank 
sum test, is conducted at the 5% significance level in the exper-
iments. We create three groups for each case study, which are 
corresponding to the three methods (P system, BF and PSO) re-
spectively. Each group consists of best objective function values 
and RMSE values produced by 50 consecutive runs of the corre-
sponding methods for the nine images, respectively. Table 7 and 
Table 8 give the p-values of two groups (one group correspond-
ing to P system and another group corresponding to some other 
method) for the two case studies, respectively. The shown results 
indicate that all p-values are less than 0.05 (5% significance level). 
This is a strong evidence for establishing significant superiority of 
the proposed multi-level thresholding method.

5. Conclusions and further work

This paper has presented a novel method inspired from mem-
brane computing to solve the optimal multi-level thresholding 
problem. A cell-like P system with the nested structure of three 
layers has been considered as its computing framework designed, 
and an extended velocity-position model has been developed to 
evolve the objects of the system. Based on inherent evolution-
communication mechanism, the cell-like P system can effectively 
and efficiently exploit the best thresholds for an image. More-
over, the mechanism can also accelerate the convergence of the 
proposed thresholding method and enhance the diversity of ob-
jects in the system. The proposed multi-level thresholding method 
has been tested on nine standard images and compared with 
two recently developed thresholding methods, PSO-based and 
BF-based multi-level thresholding methods. Simulation results of 
both qualitative and quantitative comparisons for the three multi-
level thresholding methods demonstrate the proposed multi-level 
thresholding method has a better quality, robustness and compu-
tation efficiency.

The parallel computing is one of advantages of the cell-like 
P system, however, the parallel computing has not been realized 
in the simulation due to the limit of series architecture of the 
computer used in the experiments. In order to overcome the short-
coming, our further work is to consider the realization of its high 



Table 5
Comparison of best thresholds and average objective function values obtained by three methods for case study 2.

Test image m Best thresholds Average objective function value

P system PSO BF P system PSO BF

Lena 2 97,164 99,165 97,164 12.346 12.345 12.347
3 82,126,175 86,151,180 88,142,188 15.317 15.132 15.226
4 64,97,138,179 92,129,162,191 74,114,149,184 18.012 17.837 17.933
5 63,94,128,163,194 74,115,145,170,197 64,95,128,163,194 20.611 20.442 20.607

Peppers 2 93,177 79,146 79,149 12.553 12.516 12.518
3 73,126,178 104,141,180 69,100,155 15.824 15.093 15.399
4 46,84,130,179 57,110,162,199 63,109,144,178 18.733 18.096 18.268
5 43,76,111,144,181 70,116,138,166,200 54,89,131,164,197 21.402 20.732 20.997

Baboon 2 79,143 76,144 81,144 12.216 12.213 12.216
3 44,98,152 72,130,181 53,112,150 15.281 15.008 15.211
4 33,74,114,159 65,121,153,180 39,90,131,168 18.129 17.574 17.999
5 33,70,105,139,173 73,110,142,166,192 38,79,113,148,180 20.789 20.224 20.719

Hunter 2 92,179 83,179 85,179 12.376 12.369 12.373
3 59,117,179 85,128,166 57,104,175 15.613 15.128 15.552
4 46,90,133,179 74,131,174,200 50,98,139,180 18.526 18.041 18.381
5 46,90,133,179,222 90,120,164,190,219 49,93,137,179,222 21.265 20.533 21.256

Stanwick 2 97,183 97,181 95,181 4.978 4.978 4.978
3 68,145,198 74,140,181 78,125,189 5.571 5.503 5.551
4 56,121,168,203 92,128,152,207 73,132,174,206 5.932 5.689 5.892
5 30,79,133,174,207 66,109,121,150,195 64,106,135,170,210 6.161 5.916 6.066

Living room 2 93,174 86,175 89,170 11.912 12.401 12.405
3 48,105,176 73,158,187 71,124,173 14.906 15.212 15.407
4 48,100,150,198 59,124,172,202 60,104,147,189 17.637 18.141 18.318
5 43,87,126,165,200 72,97,119,158,197 47,94,134,169,200 20.158 20.675 21.119

House 2 71,144 81,144 65,144 10.849 10.832 10.847
3 47,96,154 81,116,155 56,110,172 13.383 13.101 13.265
4 47,81,121,163 75,123,154,193 47,87,131,167 15.631 15.102 15.607
5 39,71,107,143,189 48,97,139,159,189 41,73,112,144,176 17.667 17.251 17.626

Airplane 2 76,174 80,175 76,173 12.176 12.149 12.175
3 73,128,182 72,121,191 66,124,186 15.432 15.292 15.359
4 68,106,144,184 74,129,162,188 71,113,149,185 18.205 18.031 18.177
5 66,96,127,157,187 81,118,144,167,192 68,98,131,161,187 20.768 20.396 20.751

Butterfly 2 96,144 95,141 97,144 10.476 10.474 10.475
3 83,118,152 63,126,172 75,109,154 12.812 12.313 12.754
4 77,105,133,164 71,113,162,184 73,97,127,157 14.921 14.231 14.876
5 73,96,120,144,164 92,116,142,157,182 74,97,120,144,167 16.837 16.337 16.828

Fig. 6. The thresholded images generated by P system in case study 2 for Lena, peppers and baboon: (a)–(c) represent 2-level thresholding; (a’)–(c’) represent 3-level
thresholding; (a”)–(c”) represent 4-level thresholding; (a”’)–(c”’) represent 5-level thresholding.



Table 6
Comparison of PSNR value and computing time over 50 runs for case study 2.

Test images m PSNR Average computing time (second)

Mean value Standard deviation

P system PSO BF P system PSO BF P system PSO BF

Lena 2 17.931 15.591 15.637 0.000 0.000 0.000 12.352 11.873 11.285
3 20.895 17.284 17.528 0.000 2.137e−6 2.371e−6 12.847 12.426 11.712
4 21.874 19.195 19.816 2.352e−12 2.632e−5 1.892e−6 14.415 13.225 12.615
5 22.798 19.937 20.985 4.285e−9 5.217e−5 3.538e−6 14.863 13.576 12.928

Peppers 2 19.136 13.251 12.832 0.000 0.000 0.000 12.361 11.226 10.634
3 19.981 16.869 16.373 0.000 3.247e−6 7.153e−6 12.983 11.792 10.957
4 22.084 19.463 17.295 3.984e−12 1.895e−5 6.582e−5 13.421 12.253 11.528
5 22.892 20.801 20.346 5.426e−7 2.226e−4 5.326e−4 13.792 12.609 11.931

Baboon 2 18.854 13.284 13.521 0.000 0.000 0.000 13.252 12.126 11.827
3 19.935 17.452 18.438 2.148e−14 2.483e−6 1.314e−5 13.876 12.792 12.336
4 20.792 17.385 18.825 1.782e−9 3.652e−6 7.448e−6 14.338 13.237 12.841
5 21.532 18.327 19.083 4.739e−7 1.043e−5 1.835e−5 14.927 13.831 13.215

Hunter 2 16.415 11.351 11.694 0.000 0.000 0.000 12.588 12.109 11.462
3 17.635 14.672 14.835 6.873e−10 1.836e−6 4.339e−7 13.054 12.783 12.338
4 18.608 15.448 16.382 2.526e−8 5.512e−6 2.835e−6 14.179 13.215 12.874
5 19.236 16.923 17.535 4.681e−7 2.127e−4 6.431e−5 15.326 14.196 13.691

Stanwick 2 17.832 13.882 14.682 0.000 0.000 0.000 13.398 12.146 11.379
3 18.503 14.745 15.593 3.283e−8 2.835e−5 1.768e−6 13.526 12.583 12.531
4 20.215 16.135 17.016 2.754e−7 2.097e−5 5.241e−6 14.478 13.462 12.794
5 21.765 16.916 18.895 4.496e−5 4.565e−4 2.895e−5 15.395 14.391 13.263

Living room 2 14.698 13.472 13.352 0.000 0.000 0.000 12.315 11.625 10.865
3 18.431 17.395 17.416 0.000 7.594e−6 2.436e−6 14.179 12.839 11.576
4 19.889 19.516 19.524 3.518e−9 9.682e−6 5.691e−6 14.516 13.234 12.693
5 21.634 21.445 21.361 5.623e−8 9.732e−5 5.468e−5 15.374 14.236 13.451

House 2 18.275 12.893 12.892 0.000 0.000 0.000 13.236 12.135 11.412
3 19.923 14.193 14.327 3.885e−8 4.253e−5 2.519e−6 13.523 12.362 11.825
4 22.252 15.339 16.269 2.624e−7 8.651e−5 4.375e−6 14.137 12.931 12.314
5 23.365 16.426 17.136 4.379e−7 8.492e−5 7.975e−5 15.982 13.758 12.893

Airplane 2 16.791 13.926 14.095 0.000 0.000 0.000 12.438 11.986 11.358
3 19.452 15.841 15.894 2.851e−8 4.235e−6 3.192e−7 13.835 13.062 12.371
4 21.385 15.908 16.525 7.518e−8 3.674e−6 6.335e−7 14.579 13.357 12.635
5 22.907 17.763 17.876 2.375e−7 5.293e−5 5.869e−6 15.218 14.054 13.184

Butterfly 2 16.573 13.526 13.352 0.000 0.000 0.000 12.463 11.825 11.232
3 19.361 16.994 17.524 5.392e−15 6.281e−5 2.874e−6 13.392 12.476 11.905
4 21.495 19.021 19.831 6.236e−13 6.905e−4 2.438e−5 14.326 13.115 12.523
5 23.214 21.475 22.436 3.724e−7 1.292e−3 6.925e−5 14.618 13.462 12.741

Table 7
The results of p-values of Wilcoxon’s rank sum test for case study 1.

Test images Between-class variance PSNR

P system vs. PSO P system vs. BF P system vs. PSO P system vs. BF

Lena 2.543e−4 1.823e−3 2.513e−3 0.0287
Peppers 3.117e−4 1.664e−3 2.678e−3 0.0274
Baboon 2.825e−4 1.903e−3 2.719e−3 0.0283
Hunter 2.799e−4 1.885e−3 2.645e−3 0.0312
Stanwick 2.692e−4 1.754e−3 2.582e−3 0.0307
Living room 2.875e−4 1.923e−3 2.816e−3 0.0285
House 2.917e−4 1.879e−3 2.596e−3 0.0292
Airplane 2.796e−4 1.851e−3 2.651e−3 0.0325
Butterfly 2.823e−4 1.866e−3 2.743e−3 0.0338

Table 8
The results of p-values of Wilcoxon’s rank sum test for case study 2.

Test images Entropy PSNR

P system vs. PSO P system vs. BF P system vs. PSO P system vs. BF

Lena 2.477e−4 1.534e−3 2.013e−3 0.0186
Peppers 2.521e−4 1.612e−3 2.196e−3 0.0227
Baboon 2.724e−4 1.596e−3 1.995e−3 0.0193
Hunter 2.619e−4 1.599e−3 2.531e−3 0.0231
Stanwick 2.588e−4 1.647e−3 2.016e−3 0.0198
Living room 2.593e−4 1.694e−3 2.526e−3 0.0226
House 2.731e−4 1.705e−3 2.113e−3 0.0205
Airplane 2.635e−4 1.615e−3 2.418e−3 0.0235
Butterfly 2.643e−4 1.662e−3 2.335e−3 0.0218



Fig. 7. The thresholded images generated by P system in case study 2 for hunter, Stanwick and living room: (a)–(c) represent 2-level thresholding; (a’)–(c’) represent 3-level
thresholding; (a”)–(c”) represent 4-level thresholding; (a”’)–(c”’) represent 5-level thresholding.

Fig. 8. The thresholded images generated by P system in case study 2 for house, airplane and butterfly: (a)–(c) represent 2-level thresholding; (a’)–(c’) represent 3-level
thresholding; (a”)–(c”) represent 4-level thresholding; (a”’)–(c”’) represent 5-level thresholding.



performance computing, for example, on GPUs (graphics process-
ing units) or multicore CPU system.
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