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Fully Bayesian Inference for α-Stable Distributions
Using a Poisson Series Representation

Tatjana Lemke, Marina Riabiz and Simon J. Godsill

Abstract

In this paper we develop an approach to Bayesian Monte Carlo inference for skewed α-stable distributions. Based on a series
representation of the stable law in terms of infinite summations of random Poisson process arrival times, our framework leads
to a simple representation in terms of conditionally Gaussian distributions for certain latent variables. Inference can therefore
be carried out straightforwardly using techniques such as auxiliary variables versions of Markov chain Monte Carlo (MCMC)
methods. The Poisson series representation (PSR) is further extended to practical application by introducing an approximation of
the series residual terms based on exact moment calculations. Simulations illustrate the proposed framework applied to skewed
α-stable simulated and real-world data, successfully estimating the distribution parameter values and being consistent with other
(non-Bayesian) approaches. The methods are highly suitable for incorporation into hierarchical Bayesian models, and in this case
the conditionally Gaussian structure of our model will lead to very efficient computations compared to other approaches.

Index Terms

Asymmetric α-stable distribution, Lepage series, Poisson series representation, residual approximation, conditionally Gaussian,
Markov chain Monte Carlo.

I. A NOTE OF RELEVANCE TO THIS SPECIAL ISSUE

Professor Bill Fitzgerald was an influential and motivational personality who inspired many in our laboratory and throughout
the world to carry out research in Bayesian methods, see e.g. [1] for his much-used text on Bayesian methods for signal
processing. The third author would like to warmly acknowledge the inspiration of Bill Fitzgerald for the current paper. Around
1993, while I was carrying out my PhD research in audio signal restoration, Bill introduced me to the beautiful topic of stable
law distributions and generalised versions of the central limit theorem. This topic fascinated me and has led to a series of
papers on Bayesian methods for inference in the presence of α-stable distributions, initially focussed on symmetric stable laws,
for which very elegant scale mixture of normals representations and associated inference procedures can be devised [2]–[7].
More recently we have studied powerful and general representations of continuous time α-stable Lévy processes based on
series of Poisson random variables [8]–[10], and it is this representation which forms the basis of the current paper.

II. INTRODUCTION

In a diverse range of fields, including natural science, economics and engineering areas as radar processing, telecom-
munications and acoustics [11]–[13], real-world processes which exhibit jumps and asymmetric behaviour are present. An
underlying Gaussian distribution is rather unsuitable to describe these characteristics. Thus, the extension to the family of
stable distributions, which forms a generalisation to the Gaussian law, arising from the generalised version of the central
limit theorem (GCLT) as shown in Gnedenko and Kolmogorov, and Feller [14], [15], seems to be the natural way to go.
In contrast to the classical CLT the generalised version forgoes the condition of a finite variance and assigns a much less
restrictive requirement on tail behaviour. Compared to the Gaussian distribution the general stable distribution depends upon
two additional parameters, which represent the asymmetry and heavy tailedness, and is therefore more suited to modelling
phenomena showing these empirical features. Other more general classes of distribution can also be considered for heavy-tailed
modelling, and we mention just a few which are linked to the α-stable case. Rosiński [16] formally introduced the class of
tempered stable distribution, which combine both alpha-stable and Gaussian properties. Alternative classes of distributions, the
so-called modified stable laws and normal modified stable laws provide additional flexibility in modelling the dynamics of
financial time series and are discussed by Barndorff-Nielsen and Shephard [17].

Exact simulation of general α-stable random variates can be carried out using an elegant auxiliary variables framework,
see [18]. This same representation was used in an early and fundamental contribution to the Bayesian inference area by
Buckle [19], employing Markov chain Monte Carlo (MCMC) methods to infer parameters of the distribution, and extended to
time series problems by Quiou and Ravishanker [20]. Despite its elegance, practitioners have typically found these methods
hard to tune and apply successfully to real problems. In an alternative approach, Kuruoğlu [21] addressed positive α-stable
probability distributions, providing an analytical approximation based on a decomposition into a product of a Pearson and
another positive stable random variable, while inference for autoregressive (AR) processes with possibly asymmetric α-stable
innovations has been presented by Gençaǧa et al. [22] using a sequential Bayesian approach.
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Limiting the models to the symmetric case, Godsill and Kuruoğlu [4], [5] introduced Monte Carlo Expectation-Maximisation
(MCEM) and Markov chain Monte Carlo methods, based on the Scale Mixtures of Normals (SMiN) representation of symmetric
stable distributions, see also the related methods proposed by Tsionas [23]. An on-line Bayesian filtering and smoothing method,
also based on the SMiN, was proposed by Lombardi and Godsill [6]. We will see later that these representations can be viewed
as a special case of the approach in this paper for the full asymmetric class of distributions.

In this paper we take a new approach, making use of some remarkable Poisson series representations (PSR) for asymmetric
α-stable distributed random variables in order to provide a conditionally Gaussian framework for inference. By so doing we
allow for Bayesian parameter estimation using simple Gibbs sampling-based Markov chain Monte Carlo (MCMC) approaches.
We have presented parts of this work in conference publications [8]–[10]. Further details can be found in [24]. This paper
however presents for the first time the full technical details and methodology for our proposed sampling schemes. Our motivating
examples in the paper are for simple parameter inference in independent and identically distributed (i.i.d.) stable-law data, but
we stress that the approach’s real potential is attained when the sampler is embedded in a complex hierarchical model with
other parameters to estimate in addition to the stable law distribution parameters, see [9], [24] for some initial examples in
this direction.

The original contribution of this paper consists in the use of the approximated PSR and the resulting conditionally Gaussian
framework for α-stable random variables to perform Bayesian MCMC inference for the distribution parameters. The advantages
of the proposed approach are twofold. On the one hand our inference technique inherits the benefits of Bayesian methods,
enabling the characterization of the whole posterior distribution of the parameters, as opposed to the (approximated) frequentist
point estimators present in the literature. In particular in Section VI we make comparisons with the maximum likelihood
estimator described by Nolan [25], with the method based on the inversion of the empirical characteristic function, as in
[26], and with the estimator based on the quantiles of the distribution introduced by McCulloch [27]. On the other hand
the PSR approach results in a Gibbs sampler algorithm with full conditional distributions which are either straightforward to
sample from, or easy to target through a Metropolis-Hastings within Gibbs sampler step. This is in contrast to the above cited
Bayesian method [19], where proposing the new parameters requires, at each step, either accurate hand-tuning of the proposal
distributions, or the implementation of rejection sampling envelopes on the full conditionals. Both our method and Buckle’s
method can be embedded in Bayesian hierarchical frameworks for the inference of linear discrete time series models driven by
stable innovations. Examples that aim at the simultaneous estimation of the parameters characterizing the stable law and the
parameters of the linear autoregressive (AR) model can be found in [9], [24] for the PSR, and in [20] for the Buckle model.
However, the very significant advantage of our approach compared with the Buckle method is that we achieve a conditionally
Gaussian framework for the sampler. This means that our method may be added in as an extra Gibbs sampling step in a
sampler already devised for the Gaussian case. This not only means that existing code can be largely re-used when switching
from a Gaussian noise case to an asymmetric stable law, as was done in [9] (based on the earlier code of [28], [29]) but
it also means that our methods are amenable to more efficient block-sampling schemes for many parameters simultaneously,
Rao-Blackwellised and collapsed Gibbs sampler schemes. A significant consequence of this is that in our sampler the skewness
parameter β and scale parameter σ can be indirectly marginalised completely from the formulation, thus further simplifying
the sampler and its statistical efficiency. An additional benefit (not detailed in this paper) is a simple representation for stable
law Lévy processes, which is not achievable using the Buckle method, see for example sequential state estimation in the
continuous time autoregressive model, based on the PSR [8], [24]. The conditionally Gaussian representation allows to use
the Kalman filter to estimate the linear part of the state and the Rao-Blackwellised particle filter to estimate the non-linear
part. The parameters of the distribution are assumed to be known, but their estimation can in principle also be embedded in
the sampler. Finally we remark that the PSR of the α-stable distribution substantially generalizes the above mentioned works
based on the SMiN representation to the asymmetric case.

With respect to our previous work [10], [24], we include in this paper for the first time the estimation of the location
parameter, and we also detail additional sampling procedures for data points lying in the tails of the distribution, which are
crucial for the practical performance of the sampler.

The paper is organised as follows. In Section III, we introduce α-stable distributions and state the definition and the PSR
of an α-stable random variable. In Section IV, we present our residual approximation approach. In Section V, we discuss
inference for α-stable distribution parameters via MCMC. In Section VI, we present results of our work and compare them
with the mentioned common frequentist approaches. Finally Section VII concludes the paper.

III. THE α-STABLE DISTRIBUTION

The family of α-stable distributions forms a rich class of distributions, which allow for asymmetry and heavy tails. In general,
closed-form density functions of Sα(σ, β, µ) are not known. Beside the Gaussian distribution for α = 2, the exceptions are for
α = 1 and β = 0, yielding the Cauchy distribution and α = 1/2, β = ±1 for the Lévy distribution. As a generalisation of the
classical central limit theorem, the α-stable distribution follows a generalised central limit theorem, which states that the sum
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of a number of random variables with power-law tail distributions decreasing as 1/|x|α+1 where 0 < α < 2 will converge to
an α-stable distribution as the number of random variables approaches infinity. The α-stable family of distributions Sα(σ, β, µ)
is defined in terms of its characteristic function φX(.) [15], [30], [31]:

Theorem 3.1: A real-valued random variable X is stable if and only if there exists 0 < α ≤ 2, σ > 0, −1 ≤ β ≤ 1, µ ∈ R
such that for all t ∈ R

E[exp(itX)] =

{
exp(−σα|t|α[1− iβsign(t)tan(απ2 )] + iµt), α 6= 1

exp(−σ|t|[1 + iβ 2
π sign(t) ln |t|] + iµt), α = 1,

(1)

The four parameters and their domains are as follows:
• α ∈ (0, 2] is referred to as the characteristic exponent or index of stability, which measures the tail thickness,
• β ∈ [−1, 1] is termed the skewness parameter. For β = 1 (β = −1), the family of distributions Sα(σ, β, µ) specialises to

the positive (negative) stable family, whereas β = 0 indicates the symmetric α-stable (SαS) distribution,
• σ > 0 denotes the scale parameter,
• µ ∈ R denotes the location parameter.

A. General Scheme Based upon Conditional Gaussians

Our aim in this work is to simplify inference in α-stable models by making use of powerful auxiliary variables representations
of α-stable random variables and processes. Such formulations are able to represent the α-stable models exactly, in terms of
distributions which may either be evaluated point-wise, or sampled using standard techniques. In particular we will seek
conditionally Gaussian representations of these models, where both the mean and precision parameters of the models are
considered as random variables. In the symmetric stable case our previous work has demonstrated such a framework, using
just scale mixtures of normals, see [4], [5], and also [23]. This is in contrast with the MCMC approach of Buckle [19], in
which an exact auxiliary variables approach is proposed, but computations are difficult because no conditionally Gaussian
structure arises. Our current work provides a new framework which includes [4], [5] as a special case (as discussed later).

In order to motivate the subsequent developments, suppose we have the following marginal-conditional representation for
the marginal stable law, X ∼ Sα(σ, β, µ) :

(X,µX , σX) ∼ N (X|µX , σ2
X)pα,β,σ(µX , σX),

where pα,β,σ(µX , σX) denotes the distribution of the possibly dependent latent variables µX , σX , which in turn depends on the
distribution parameters α, β, σ. This is an auxiliary variables representation of the distribution and would facilitate inference
procedures. For example, a conditional distribution for the latent variables µX , σX can be formed as follows:

p(µX , σX |X) ∝ N (X|µX , σ2
X)pα,β,σ(µX , σX)

and this may be sampled in a Gibbs sampler style of implementation. The form of pα,β,σ(µX , σX), the mixing density,
determines the form of the marginal p(X), and in subsequent sections we will show how this can be specified exactly, sampled
and characterised in the α-stable case.

B. Poisson Series Representation

There are a number of possible approximate representations of α-stable laws, including the series expansions of Bergström
[32] and the Gaussian mixtures representations of Kuruoğlu [3]. Here, however, we study a remarkable representation that has
not received much attention in the estimation literature for α-stable models. In the basic result, which is based on a Lepage type
series, see for example [33], and which we term the Poisson series representation (PSR), a skewed α-stable random variable
Z can be represented in terms of a convergent sum based on arrival times of a Poisson process {Γi}, and some i.i.d. random
variables {Wi}. Such series have been used for forward simulation of stable law variables and processes, see e.g. [33], [34],
but not to our knowledge in inference frameworks. The basic result is (see [31, Theorem 1.4.5] for a full development and
proof):

M∑
i=1

(
Γ
−1/α
i Wi − k(α)

i

)
a.s.−−→ Z ∼ Sα(σ, β, 0), as M →∞, (2)

which also includes the general skewed case (β 6= 0). Here the terms are defined as:

k
(α)
i =


0 if 0 < α < 1,

E[W1

∫ |W1|/(i−1)

|W1|/i
x−2sin(x)dx] if α = 1,

α
α−1

(
i
α−1
α − (i− 1)

α−1
α

)
E[W1] if 1 < α < 2

(3)
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and
σα =

E|W1|α
Cα

, β =
E[|W1|α sgnW1]

E|W1|α
. (4)

The sequences of independent random variables {W1,W2, ...} and {Γ1,Γ2, ...} are defined as follows. The Wi are i.i.d. but
otherwise essentially arbitrary, subject to having finite moments as follows:

E[|W1|α] <∞ if α 6= 1, (5)
E[|W1 ln(|W1||)] <∞ if α = 1, (6)

and Γi are arrival times of a unit rate Poisson process, such that (Γi−Γi−1) ∼ Exponential(1). The constant Cα is defined as

Cα =

{
1−α

Γ(2−α) cos(πα/2) if α 6= 1,

2/π if α = 1.
(7)

We refer to Appendix A for a consideration on the relationship between the distribution of Wi and the possibility of achieving
any value of σ > 0 and β ∈ [−1, 1], for a fixed value of the characteristic exponent α, through the equations in (4).

Adding the location parameter µ, we obtain the PSR for any α-stable random variable, X ∼ Sα(σ, β, µ):
M∑
i=1

(
Γ
−1/α
i Wi − k(α)

i

)
+ µ

a.s.−−→ Z + µ =: X ∼ Sα(σ, β, µ), as M →∞. (8)

We further define k̃(α)
i := k

(α)
i /E[W1]. The constant k(α)

i gives the compensation for the otherwise divergent sum
∑∞
i=1 Γ

−1/α
i Wi

when α > 1 and the Wi are asymmetric. Asymptotically, as i → ∞, k(α)
i equals to E[Γ

−1/α
i Wi]. For the sake of simplicity,

we do not consider the special case α = 1 within this paper, although similar representations do exist for this boundary case
[31, Theorem 1.4.5].

a) Interpretation in terms of Lévy processes: While this representation looks to have the flavour of a generalised Central
Limit Theorem, we should note that in fact the terms Γ

−1/α
i Wi are not i.i.d., and so something more subtle is involved. A

convenient and intuitive interpretation of the result is provided by Samorodnitsky and Taqqu [31] in terms of the increments
of an α-stable Lévy Process. In this interpretation, the terms Γ

−1/α
i Wi can be considered as the individual increments of

the process over a finite time interval. Since there are almost surely an infinite number of jumps in any finite time interval
for the α-stable Lévy process, the summation is an infinite summation. The jumps are ordered in the series by decreasing
expected scale, since the Wi are i.i.d., while the Γ

−1/α
i are strictly decreasing with i. We notice that the earliest jumps in the

series induce the heavy-tailed bahaviour of the random variable, since Γ
−1/α
1 can take very large values with high probability,

while later terms in the series correspond to small jumps and less heavy-tailed behaviour. This observation motivates our later
Gaussian approximation for the residual terms when the series is truncated at a finite limit. It also motivates use of the α-stable
model in a financial returns application later in the paper, since we interpret the jumps as individual ‘shocks’ to the price of
the commodity which are accumulated over time intervals. In the limiting case the number of shocks tends to infinity.

b) Conditionally Gaussian Representation: The convergence in (2) demonstrates that skewed α-stable random variables
can be simulated using independent and identically distributed random variables {Wi}∞i=1, whose distribution is essentially
arbitrary, and the arrival times of a unit rate Poisson process {Γi}∞i=1. Note especially that we are free to choose any convenient
distribution for the i.i.d. variables Wi, subject to the finite moment conditions. Making use of the above PSR then permits
a Gaussian framework conditional upon {Γi}∞i=1 by choosing the i.i.d. random variables Wi in (2) to be Gaussian, Wi ∼
N (µW , σ

2
W ), which from (4) above implies particular values of the α-stable distribution parameters, β = E[|W1|α sgnW1]

E|W1|α and

σα = E|W1|α
Cα

, and E[W1] = µW in (3). The conditionally Gaussian structure for X ∼ Sα(σ, β, µ) can now be obtained directly
from (2), and the assumption that Wi ∼ N (µW , σ

2
W ), as:

X|{Γi}∞i=1 ∼ N
(
µW

∞∑
i=1

(
Γ
−1/α
i − k̃(α)

i

)
+ µ, σ2

W

∞∑
i=1

Γ
−2/α
i

)
:= N

(
µX , σ

2
X

)
. (9)

C. Relationship with Symmetric Case

We note here that the symmetric case β = 0 as studied in [4], [5] can be obtained as a special case of the above form, since
with µW = 0 we have:

X|{Γi}∞i=1 ∼ N
(
µ, σ2

W

∞∑
i=1

Γ
−2/α
i

)
:= N

(
µX = µ, σ2

X

)
(10)
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and we have from (2) that
M∑
i=1

Γ
−2/α
i

a.s.−−→ λ ∼ Sα/2((Cα/2)−2/α, 1, 0), as M →∞. (11)

This latter is the fully skewed mixing distribution used in the scale mixtures of normals case [4], [5]. In that earlier work, the
problem was substantially simplified by the full characterisation of the mixing density as a skewed stable random variable.
Thus, only one auxiliary variable λ needed to be sampled. In the current (asymmetric) setting, however, the problem is more
challenging since we have to sample/characterise a bivariate, dependent, random variable µX , σ2

X , for which we do not have
any convenient form except for the full infinite summations as given in (9).

IV. RESIDUAL APPROXIMATION

In order to apply the representation in practice, the infinite series in (9) must be truncated at some finite limit and the
residuals need to be approximated. This is the only source of approximation in our models apart from the errors due to
standard Monte Carlo inference procedures. We do however, substantially mitigate the approximation error by computing very
accurate moment-based approximations to the residual error terms and including these in our inference procedures.

Our approach to approximating the residual series terms is designed to keep the structure of the PSR, where µW appears as
a factor in µX , and σ2

W appears as a factor in σ2
X , see equation (9). We approach the approximation through computing the

first two moments of the residual terms of the mean and variance of the conditionally Gaussian framework directly, and then
approximating those residuals using a bivariate Gaussian distribution. This residual approximation approach is referred to as
the Gaussian approximation of moments approach (GAMA). A bivariate Gaussian distribution for the residuals of the moments
of the PSR is an approximation, but preliminary Central Limit Theorem results indicate that the Gaussian approximation is
valid as M → ∞, see [24]. We do expect the residuals to be light tailed since the heavy-tailed behaviour is induced by the
potentially large first terms of the series appearing in the moments of (9), as the terms Γ

−1/α
i are decreasing. Assuming that

Γ1 ΓΓ2 ΓM ΓM+1
. . . . . .

d → ∞c0

Fig. 1. Setup of the residual approximation approach, showing the increasing sequence of Poisson arrival times {Γi}, the truncation limit c and the upper
limit d→∞.

the summation terminates once ΓM+1 exceeds some fixed value c, (see Fig. 1), we consider a fixed interval [c, d] first. Then,
for any interval [c, d], {Γi}i≥1 is defined as a unit rate Poisson process on this interval, satisfying the properties

|{Γi : Γi ∈ [c, d]}| ∼ Poisson(d− c) for d > c (12)

and given the number of Γi in [c, d], each Γi is uniformly and independently distributed on [c, d],

Γi
∣∣|{Γi : Γi ∈ [c, d]}| i.i.d.∼ U([c, d]). (13)

Note that Γi in [c, d] are now an unordered set of random cardinality. With d going to infinity we will account for all residual
terms in the PSR from c to ∞. The consideration of the Γs in a fixed interval facilitates the computation of moments since
the Γis are independent.

We approximate the residual terms (R1, R2) in the summations of the mean and variance of the conditional framework,

X|{Γi}Mi=1

approx.∼ N
(
µWm+ µ, σ2

W s
)
, (14)

where

m :=

M∑
i=1

Γ
−1/α
i +R1, s :=

M∑
i=1

Γ
−2/α
i +R2, (15)

by a bivariate Gaussian distribution, N (µR,ΣR), which takes account of the correlation between R1 and R2. Note that the
number of summation terms M is a random variable itself, defined as M = |{i : Γi < c}|. The residuals R1 and R2 are
expressed as the limits of

R
(d)
1 : =

∑
i:Γi∈[c,d]

Γ
−1/α
i −

∑
n:Γn∈[0,d]

k̃(α)
n , (16)

R
(d)
2 :=

∑
i:Γi∈[c,d]

Γ
−2/α
i (17)
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as d→∞. In a next step the number of terms in the sums is approximated by the expectations E[|{Γi : Γi ∈ [c, d]}|] = d− c
and E[|{Γi : Γi ∈ [0, d]}|] = d. Now, we can easily compute the mean and variance-covariance matrix of (R

(d)
1 , R

(d)
2 ), and

finally obtain µ(α)
R and Σ

(α)
R by letting d go infinity. The following lemma states the resulting GAMA.

Lemma 4.1 (Gaussian approximation of moments approach): The moments for a bivariate Gaussian approximation for the
residuals (R1, R2) of a Poisson series representation as given in (9) can be obtained exactly as (see Appendix B):

µ
(α)
R =

[
α

1−αc
α−1
α

α
2−αc

α−2
α

]
(18)

and

Σ
(α)
R =

[
α

2−αc
α−2
α

α
3−αc

α−3
α

α
3−αc

α−3
α

α
4−αc

α−4
α

]
. (19)

Hence, the approximated conditionally Gaussian framework for X ∼ Sα(σ, β, µ) can be written as

X|{Γi}Mi=1

approx.∼ N
(
µX , σ

2
X

)
, (20)

where

µX = µW

(
M∑
i=1

Γ
−1/α
i +R1

)
+ µ (21)

σ2
X = σ2

W

(
M∑
i=1

Γ
−2/α
i +R2

)
, (22)

with (
R1

R2

)
∼ N

(
µ

(α)
R ,Σ

(α)
R

)
(23)

and µ(α)
R and Σ

(α)
R as in (18) and (19).

We remark that we would ideally like to sample the infinite sequence of Γs appearing in (9), but this is not possible to
achieve without approximation or truncation. The role of (R1, R2) then is to provide a summary approximation of the terms
(
∑∞
i=M+1 Γ

−1/α
i ,

∑∞
i=M+1 Γ

−2/α
i ), containing the Γs missed due to the truncation to M . This justifies why the Gaussian

distribution for the residuals depends on the fixed limit c and the parameter α. The implication in the MCMC based parameter
estimation is that two approaches are possible when a new α value is proposed for a move from α to α′. On one hand we
could consider as target distribution the ideal full conditional p(α|X, {Γi}Mi=1 , {Γi}

∞
i=M+1). In terms of the full conditional

p(α|X, {Γi}Mi=1 ,R), which we prove to be available in practice, this means that new residuals need to be sampled to evaluate
p(α|X, {Γi}Mi=1 ,R

′), the full conditional in the new value α′. This is because (R′1, R
′
2) are the residuals corresponding to

the unseen terms {Γi}∞i=M+1, transformed through the newly drawn α′. On the other hand, it would be possible to directly
consider R as the variables entering the sampling scheme. A standard Gibbs sampler could then be adopted, fixing R at its
current value. However we found in simulations not reported here that the acceptance rate for such a scheme was poor. We
thus choose to follow the first alternative. In this, we consider {Γi}∞i=M+1 to be fixed in the Gibbs sampling step for α. There
remains however statistical uncertainty about the value of (R′1, R

′
2) = (

∑∞
i=M+1 Γ

−1/α′

i ,
∑∞
i=M+1 Γ

−2/α′

i ) conditioned on
the current residuals (R1, R2), since we do not have access to the individual Γi terms from (R1, R2). Thus, when proposing
the new α′, (R′1, R

′
2) must also be drawn from their conditional distribution p((R′1, R

′
2)|(R1, R2), α, α′), which we again

characterise exactly through its first two moments, and then approximate the conditional distribution as a bivariate Gaussian
with the same moments. The general scheme can be seen as an example of retrospective sampling whereby we only simulate
the summary stastics of {Γi}∞i=M+1 as they are required by the sampler. To achieve this conditionally Gaussian framework,
we require the Gaussian distribution conditioned on R:(

R′1
R′2

) ∣∣∣(R1

R2

)
∼ N (µcond

R ,Σcond
R ).

Making the final assumption of joint Gaussianity of (R,R′), the conditional mean and variance can be computed as

µcond
R = µ′R + Σ12Σ−1

22

(
[R1, R2]T − µR

)
and

Σcond
R = Σ11 − Σ12Σ−1

22 Σ21



7

with
Σ12 =

[
Cov[R′1, R1] Cov[R′1, R2]
Cov[R′2, R1] Cov[R′2, R2]

]
,

and µ′R = µ
(α′)
R and µR = µ

(α)
R as in (18), Σ11 = Σ

(α′)
R , Σ22 = Σ

(α)
R , and Σ12 = ΣT21. According to (49) in Appendix B, we

compute the entries of Σ12 with d→∞ as

Cov[R′1, R1]
d→∞−−−→ 1

(1/α′ + 1/α)− 1
c−(1/α′+1/α)+1,

Cov[R′1, R2]
d→∞−−−→ 1

(1/α′ + 2/α)− 1
c−(1/α′+2/α)+1,

Cov[R′2, R1]
d→∞−−−→ 1

(2/α′ + 1/α)− 1
c−(2/α′+1/α)+1,

Cov[R′2, R2]
d→∞−−−→ 1

(2/α′ + 2/α)− 1
c−(2/α′+2/α)+1.

The GAMA form of approximation is very convenient in that the mean and variance expressions scale directly in terms of
the parameters µW and σ2

W . As a consequence these two parameters can be marginalised by direct integration in Bayesian
inference frameworks. The down-side is that we will have to simulate the residual terms R1 and R2 as additional random
variables in order to perform inference.

A. Evaluation of the Residual Approximation

To demonstrate the accuracy of the approximated PSR using our residual approximation GAMA we provide three exemplary
distributions with values 0.9, 1.3 and 1.7 for α. The shift parameter is set to zero and (µW , σW ) = (−1, 1), which corresponds
to (1.7694,−0.8466), (2.0984,−0.8836) and (2.9570,−0.9098) for the distribution parameters (σ, β), respectively. Random
variables obtained from the asymmetric stable law, applying the Chambers-Mallows-Stuck (CMS) method [18], serve as a
benchmark for our comparison of the representations shown in Fig. 2. The presented residual approximation (‘PSR + GAMA’)
with an average number of summation terms of c = 100 shows a clear improvement to a simple truncation (‘truncated PSR,
c=100’), even for a distinctly higher c = 500 (‘truncated PSR, c=500’) and achieves results almost indistinguishable from the
benchmark (’CMS benchmark’) as can be seen in Fig. 2. Similar improvements were obtained for a wide range of different
α-stable parameter settings. Note the left hand panel of the Figure shows a location shift when simply truncating the PSR,
with α close to, but smaller than 1. This problem increases as α → 1 from the left, but is completely eliminated when the
moments of the residual are correctly incorporated.
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Fig. 2. Comparing the approximated PSR to the real distribution with α = 0.9, 1.3 and 1.7 (from left to right), see text for other parameters.

V. INFERENCE FOR α-STABLE DISTRIBUTIONS VIA MCMC

The parameters of interest are σ, the scale parameter, β, the skewness parameter, µ the location parameter, and α, the index
of stability. Given the samples X , we aim for the posterior of the latent variable set Γ := {{Γi,n}Mi=1}Nn=1, the variables
µW and σW , as well as the residual approximations R := {Rn = (R1,n, R2,n)}Nn=1, which all arise from the PSR, and the
distribution parameters α and µ.
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A. Marginal and conditional distributions

First, we shall explore the structure of the conditionally Gaussian framework with a view to simplifying inference by
deriving closed form conditionally distributions for the parameters σW , µW and µ. In a second step these parameters will be
marginalised out to obtain an independent expression for α and the latent variables Γ and R.

Suppose there are N i.i.d. samples
Xn ∼ Sα(σ, β, µ) for n = 1, . . . , N

from which we aim to draw conclusions about the distribution parameters, or rather about the parameters σW , µW , α and
µ, since we make use of the conditionally Gaussian framework for the α-stable vector X = (X1, . . . , XN )T . With standard
calculations (see Appendix C) it is possible to show that

p(X|Γ, σW , µW , µ, α) =
(2πσ2

W )−N/2∏N
n=1

√
sn

exp

{
− 1

2σ2
W

(
X̃T X̃− X̃TM̃µ− µTM̃T X̃ + µTM̃TM̃µ

)}
(24)

with

mn =

∞∑
i=1

(
Γ
−1/α
i,n − k̃(α)

i

)
, sn =

∞∑
i=1

Γ
−2/α
i,n , (25)

X̃ =

(
X1√
s1
, . . . ,

XN√
sN

)
, M̃ =


m1√
s1

1√
s1

...
...

mN√
sN

1√
sN

 , µ =

[
µW
µ

]
. (26)

Applying the residual approximation method GAMA, we replace mn, sn in (25) and (26) by their approximated expressions

mn ≈
Mn∑
i=1

Γ
−1/α
i,n +R1,n, sn ≈

Mn∑
i=1

Γ
−2/α
i,n +R2,n.

In the following, we aim for a straightforward Gibbs sampler for µ and σ2
W . Their joint conditional distribution can be rewritten

as a composition given by

p(µ, σ2
W |X,Γ,R, α) = p(µ|X,Γ,R, σW , α)p(σ2

W |X,Γ,R, α).

Taking uniform priors on µW and µ, we obtain the proportionality

p(µ|X, σW ,Γ,R, α) ∝ p(X|µ, σW ,Γ,R, α)

Now, rearranging (24), it is possible to obtain a bivariate Gaussian with respect to µ, as shown in Appendix C

p(µ|X, σW ,Γ,R, α) ∝ N (µ|aµ,Σµ) , (27)

with

aµ = (M̃TM̃)−1M̃T X̃, (28)

Σµ = (M̃TM̃)−1 (29)

Next, we derive the conditional distribution for σ2
W , p(σ2

W |X,Γ,R, α). Through standard calculations (see Appendix C) and
taking a uniform prior on σW we obtain

p(σ2
W |X,Γ,R, α) = p(µ, σ2

W |X,Γ,R, α)p(µ|X,Γ,R, σW , α)−1

∝ IG
(
σ2
W

∣∣∣∣N − 4

2
,
B

2

)
, (30)

with

B = X̃T X̃− X̃TM̃(M̃TM̃)−1M̃T X̃, (31)

and where IG denotes an inverse gamma distribution, obtained by identifying with the parameters of the inverted gamma
distribution1. Explicit conditional distributions are advantageous, since they allow Gibbs sampling, avoiding the risk of low
acceptance rates and therefore bad mixing of the MCMC sampler.

1Inverse gamma distribution: The inverse gamma probability density function is defined over the support x > 0 as

f(x) =
ts

Γ(s)
X−(s+1) exp

(
−
t

x

)
with shape parameter s and scale parameter t.
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Finally, marginalising µ and σ2
W gives

p(X|Γ,R, α) ∝p(X|Γ,R, σW ,µ, α)p−1(µ|X,Γ,R, σW , α)p−1(σ2
W |X,Γ,R, α)

∝
Γ((N − 4)/2)

∣∣∣(M̃TM̃)−1
∣∣∣

(B/2)
(N−4)/2

(2π)(N−2)/2
∏N
n=1

√
sn
, (32)

where Γ(.) denotes the gamma function2.
Note that the above marginal distribution provides a relation between Γ,R, α and the given set of data X , which can be

used for independent samplers from µW and σ2
W .

B. Parameters µW , σW , α and µ

The α-stable distribution parameters α, β and σ are reparametrised through the PSR in terms of α, µW and σW , for which
we consider possible MCMC sampling methods below.

1) Gibbs sampler for (µW , µ) and σW : The parameters µ and σW can be sampled straight away according to the available
joint conditional distribution, which can be written as the product of a bivariate Gaussian and an inverse gamma distribution
as derived in (27) and (30):

p
(
µ, σ2

W |X,Γ,R, α
)

= p(µ|X,Γ,R, σW , α)p
(
σ2
W |X,Γ,R, α

)
= N (µ|aµ,Σµ) IG

(
σ2
W

∣∣∣∣N − 4

2
,
B

2

)
,

where A,B and C are as in (26) using the approximated mn, sn.

2) Metropolis-Hastings (‘MH’) sampler for α: To sample the α parameter, we choose the marginalised conditional distri-
bution with a uniform prior on α to obtain the proportionality

p(α|X,Γ,R) ∝ p(X|Γ,R, α),

with p(X|Γ,R, α) as derived in (32). Then, the acceptance probability for the ‘MH’ sampler is computed as

ρ(α, α′) = min

(
1,
p(X|Γ,R′, α′)q(α|α′)
p(X|Γ,R, α)q(α′|α)

)
, (33)

where α is proposed from q(α′|α) = N (α, σ2
α) with some variance σ2

α. Observe that, in order to evaluate the full conditional
in the new value of the parameter, we sample also new values of the residuals, as explained in Section IV.

C. Auxiliary variables Γ and R

Apart from the parameters of interest, we also need to sample the auxiliary variables Γ and R arising from the PSR and
the residual approximation.

1) Metropolis-Hastings sampler for Γ and R: One possibility to update the latent variables Γ and R is the use of a ‘MH’
sampling step. Setting the proposals to be the priors q(Γ′n|Γn) = p(Γ′n) and q(R′n|Rn) = p(R′n), the corresponding acceptance
probabilities result in

ρ(Γn,Γ
′
n) = min

(
1,
p(Xn|Γ′n,Rn,µ, σ

2
W , α)

p(Xn|Γn,Rn,µ, σ2
W , α)

)
(34)

= min

(
1,
N (Xn|µ′Xn , σ′Xn)

N (Xn|µXn , σXn)

)
(35)

2Gamma function: The gamma function is defined for complex numbers i with a positive real part (Re(i) > 0) as the integral

Γ(i) =

∫ ∞
0

xi−1exp(−x)dx.
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combined with the subsequent ‘MH’ step for the residual terms, which are accepted with probability

ρ(Rn,R
′
n) = min

(
1,
p(Xn|Γn,R′n,µ, σ2

W , α)

p(Xn|Γn,Rn,µ, σ2
W , α)

)
(36)

= min

(
1,
N (Xn|µ′Xn , σ′Xn)

N (Xn|µXn , σXn)

)
. (37)

The set of Γs may be updated jointly with the residuals R. Otherwise, the update takes place in two sequential steps.

2) Rejection sampler for Γn: Alternatively to the above presented ‘MH’ samplers we can use rejection sampling to obtain
samples for Γ and R. Note that Γn and Rn need to be updated sequentially now to ensure that their full conditionals are
bounded. The rejection sampler is expected to be slower than the ‘MH’ sampler, since it proposes samples until one is accepted
in each iteration. On the other hand, it provides samples from the exact full conditional while the ‘MH’ sampler might need
some period to converge.

As usual, we write the conditionally Gaussian distribution as

Xn|{Γi,n}Mn
i=1

approx.∼ N (µWmn + µ, σ2
W sn) = N (µXn , σ

2
Xn),

where mn and sn are as in (25). For the set Γ we sample Γn = {Γi,n}Mn
i=1 for the n-th observation from the full conditional

distribution using rejection sampling with the envelope function,

p (Γn|Xn,Rn,µ, σW , α) ∝ N
(
Xn

∣∣µXn , σ2
Xn

)
p (Γn)

<
(
2πσ2

WR2,n

)−1/2
p (Γn) . (38)

3) Rejection sampler for Rn: Residuals are updated using the same scheme as with the set Γn with the bounding envelope
function

p
(
Rn

∣∣∣Xn, {Γi,n}Mn

i=1 ,µ, σW , α
)
<

(
2πσ2

W

Mn∑
i=1

Γi,n
−2/α

)−1/2

p (Rn|α) . (39)

D. Improvements for Γ and R

On closer inspection, some of the above introduced samplers might raise an issue concerning their convergence. While the
explicit full conditionals for µW and σ2

W as well as the marginalised likelihood for α seem to be rather less problematic,
the samplers for the multivariate Γn and Rn might suffer from bad mixing or high rejection rates. For instance, it is likely
that a very small Γn,1 is required to generate a large value for mn for an adequate representation of Xn. Improvements of
the acceptance rate, in particular for large observation values, can be achieved through various modifications and/or additional
adjustment sampling steps.

A fundamental task for Monte Carlo inference in our framework is the sampling of the latent random variables mn and sn
from their full conditional distribution

p(mn, sn|Xn, µW , σW , µ) ∝ N
(
Xn

∣∣µWmn + µ, σ2
W sn

)
p(mn, sn).

This can be done either indirectly in terms of the latent process Γn in combination with the residual approximations Rn as
presented above, or directly in terms of mn and sn. Considering mn and sn, their prior marginals are known, but their joint
distribution has not yet been characterised. Thus, one difficulty here is that we need to account for the mutual dependence of mn

and sn. Another issue in case of rejection sampling arises from the unbounded envelope function N
(
Xn

∣∣µWmn + µ, σ2
W sn

)
as sn → 0.

Studying the likelihood function, we have for some fixed mn,

N
(
Xn

∣∣µWmn + µ, σ2
W sn

)
=

1√
2πσ2

W sn
exp

(
− 1

2σ2
W sn

(X − µWmn − µ)2

)
.

The supremum with respect to sn is achieved when

sn = (Xn − µWmn − µ)2/(2σ2
W ),

and the likelihood is finite at this supremum except for sn → 0, i.e. for Xn = µWmn−µ. Note, however, that sn does not hit
zero or even come close to it for large observations in practice. In the following, we present an approximation which addresses
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Fig. 3. Scatter plot of (m, s) samples with α = 1.7, overlaid on the curve s = m2. Series truncated to 1,000 terms with Gaussian approximation of the
residual.

the mutual dependence of mn and sn.

Simulations of (mn, sn) pairs indicate that sn is quite strongly dependent upon mn, and only occupies a fairly small band
of values conditional upon mn, especially for large values of mn, as illustrated in Figure 3. Evidently, to get a very large
value of mn, the first dominating term in the series Γ

−1/α
1 needs to be very large as well, hence,( ∞∑

i=1

Γ
−1/α
i,n

)2

≈
∞∑
i=1

Γ
−2/α
i,n .

Thus, we have a near-deterministic relationship between mn and sn. The near-deterministic behaviour is even more pronounced
for lower values of α (more heavy-tailed distributions). Hence, considering the large Xn case, we expect the conditional posterior
to have support only for large values of mn. Thus, taking sn ≈ m2

n, the likelihood becomes

p(Xn|mn, sn = m2
n, µW , σW ) =

1√
2πσ2

Wm
2
n

exp

(
− 1

2σ2
Wm

2
n

(X − µWmn − µ)2

)
. (40)

Now, this can be used to achieve an accurate m in a first step via a rejection step after maximising over m and bounding the
likelihood (40) in this way. Then, given m the set of Γs, Γi=2:M , and residuals (R1, R2) can be regenerated running a short
MCMC chain (for details see Appendix D).
Alternatively, the above described rejection sampling for m for observations in the tails can be used to propose m, while
Γi=2:M and (R1, R2) are proposed from their priors. An MCMC chain is then run to target their joint posterior (for details
see Appendix E).

While the preceding improvements relate to large observations, we can also improve the acceptance rate of the exact rejection
sampler for all Xn by more tightly bounding the likelihood values based on the idea of the approximation s ≈ m2 for samples
in the tails of the α-stable distribution. This can be done by approximating p(m, s) to have much more limited support. A
simple and effective scheme bounds the support of p(m, s) between two squares (m+ k1)2 and (m− k2)2, and a lower limit
smin such that

s < (m+ k1)2 for m > −k1,

s > (m− k2)2 for m > k2,

s > smin,

as illustrated in Figure 4. Having that particularly convenient constraint region over which to maximise the likelihood at hand,
we can maximise the likelihood on each quadratic curve using a slight modification of (51) and maximise on s = smin in
between the quadratic functions. Then, we choose the maximum of the three as the global maximum of the likelihood over
the whole constrained domain. The derivations can be found in Appendix F.

Algorithm 1 outlines the main steps of the MCMC sampler for inference for α-stable distribution parameters.

VI. NUMERICAL RESULTS

The Gibbs sampler was run for 10,000 iterations for each of the following examples on real and generated data of length
N = 500. The first half of the MCMC outputs were considered as a burn-in period and neglected for the posterior densities
as well as the estimated parameter values. Based on the traceplots, convergence seems to be assured within 5000 iterations for
most of the parameter settings tested.
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Algorithm 1 α-stable distribution parameter estimation - pseudo code -
1: procedure MCMC SAMPLER
2: set j = 0 and initialise α, µ, σW , Γ and R:
3: assign α0, µ0 and σW,0
4: for n=1:N do
5: Γn,0 ∼ p(Γ) ({Γi,n ∼

i∑
j=1

ej , with ej ∼ Exp(1)}Mn
i=1, where Mn : ΓMn,n < c and ΓMn+1,n > c)

6: (R1,n,0, R2,n,0) ∼ N (µR0
,ΣR0

) . Lemma 4.1
7: end for
8: for j=1:MCMC iterations do
9: sample α, µ, σW , Γ and R from their full conditional posteriors:

10: for n=1:N do
11: Γn,j ∼ p (Γ|Xn, αj−1, µW,j−1, σW,j−1,Rn,j−1) . ‘MH’ or rejection steps
12: Rn,j ∼ p (R|Xn, αj−1, µW,j−1, σW,j−1,Γn,j) . as in Section V-C
13: end for
14: µj ∼ N (., .) . Gibbs step (27)
15: σ2

W,j ∼ IG(., .) . Gibbs step (30)
16: (αj ,Rj) ∼ p (α,R|X,Γj ,Rj) . ‘MH’ step (33)
17: end for
18: end procedure

In particular we run the sampler on a number of datasets simulated using the method of Chambers, Mallows and Stuck [18]
with (α, β, σ, µ) = (0.8,−0.84, 1.71, µ), (1.6,−0.90, 2.62, µ), (1.8,−0.92, 3.52, µ), and with either µ = 0, assumed to be
known, or µ = 20, in which case it is also to be estimated. The values of σ and β are computed in terms of the approximated
PSR representation with µW = −1 and σW = 1. In examples where µ = 0 is known, the conditional densities for sampling
are simplified slightly from the general case given in expressions (27) and (30), see [10] for details.

We provide illustrative simulations of the basic Metropolis-Hastings schemes, with improvement steps on the Γs and the
residuals added in for large data points, in parameter regimes where the basic algorithm is slow to converge. Observe that,
with regards to the sets of parameters tested, we consider large those observations with absolute value greater than 50,
but, more generally, quantiles could be used to decide when to execute an enhanced version of the sampler. In the results
presented we refer by the abbreviation ‘MH’ to the Metropolis-Hastings step without improvements, as shown in Section V-C,
equations (35) and (37). In the case of large observations, the sampling step for the Γs and (R1, R2) can be enhanced either
by regenerating them through an additional short MCMC chain, after sampling a value for m, as shown in appendix D, termed
‘MH-regeneration’, or by a joint sampling of m, the Γs and (R1, R2), as explained in appendix E, and termed ‘MH-joint’.
The alternative sampling scheme presented in Section V-C, equations (38) and (39), involves a rejection step on the Γs and the
residuals. In order to increase the computational speed, we consider directly two improved versions of it: we either re-sample
m, the Γs and the residuals jointly in the presence of large data points (Appendix E, ‘Rejection-joint’) or constrain the region
over which to bound the likelihood for each data point (see Section V-D and Appendix F, ‘Rejection-bounded’).

Realizations of the stable density obtained with our posterior estimates of all four parameters are compared to the point
estimates computed with the three frequentist techniques mentioned in Section II (maximum likelihood, quantiles based,
empirical characteristic function based estimators). The implementation of these methods is provided in the STABLE Matlab
Toolbox, available at www.RobustAnalysis.com.

Finally as application to a real dataset, we consider daily price returns of Dow Jones Industrial average shares in a 4 year
period, and show how the estimated stable density fits the data, compared to a Gaussian model.
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Fig. 5. Inference on the parameter α, when the true value is α = 0.8, using the ‘MH’ step for the Γs and the residuals. Left: Histogram from the MCMC
output. The true value is marked by the vertical line. Right, top: MCMC sampled parameter value α. The true value is marked by the horizontal line. Right,
bottom: ACF as a function of lag.

A. Example 1: Synthetic data, estimate of (α, β, σ)

We simulate two data sets under the hypothesis that the location µ = 0 is known, initially with α = 0.8, corresponding
to a very heavy tailed model with occasional very large observations, and then with α = 1.8, corresponding to less frequent
and less extreme observations. We analyse the posterior distribution of the parameters through the traceplots of the chains, the
histrograms of the marginals, the autocorrelation functions (ACFs) ρ(t) and the integrated autocorrelation times (IACTs). The
latter is defined as τ = 1 + 2

∑∞
t=1 ρ(t) and appears as a multiplicative factor in the asymptotic variance of the posterior mean

estimator, when this is not computed through i.i.d samples. It corresponds thus to the reduction in the effective number of
independent samples due to autocorrelation, with lower IACTs indicating better mixing of the chains, see e.g. [35]. In particular
we truncate the series when the sum of two adjacent sample ACFs values is larger than the sum of the previous pair, or when
the sum of two adjacent values of the ACF becomes negative, according to the initial monotone sequence estimator (IMS) of
the IACT, see [36].

In the case of α smaller than one, we initialise the sampler to (α, µW , σW ) = (0.4,−3, 3), well away from the true values.
The Gibbs sampler with the ‘MH’ step shows good performance (chain mixing and computational speed) on a variety of
datasets corresponding to the fixed parameters and for several runs over a fixed dataset. We thus present the outputs coming
from the simple ‘MH’, as in such parameter regime this basic sampler gives perfectly adequate performance. Figures 5 and 6
show an instance of the MCMC sampled parameter values for α, µW and σW on the right-hand side with the ACFs below. On
the left-hand side we see the unimodal histograms centred around the true values. With the MCMC samples for the parameters
α, µW and σW of the PSR we obtain the corresponding paths for the distribution parameters β and σ by reparametrising
according to (4). The resulting traceplots and histograms are shown in Figure 7. As with the parameters µW and σW , the
samples for β and σ lead to unimodal histograms centred around the true values. For the dataset considered, the sample means
averaged over four runs, corresponding each to a different random seed, yield the estimates α̂ = 0.8, β̂ = −0.84 and σ̂ = 1.69,
with average standard deviations 0.01, 0.04 and 0.11, respectively.

We now reduce the weight in the tails of the distribution, focusing on values of α greater than one. When α = 1.8, the chains
obtained with the basic ‘MH’ scheme may lead to poor mixing for some of the generated datasets, particularly as regards
µW , σW and β. Much longer MCMC runs of the basic sampler would thus be required for such parameter regimes, and
hence instead we present the MCMC outputs for simulations based on the four improved samplers detailed above (‘MH-joint’,
‘MH-regeneration’, ‘Rejection-joint’, ‘Rejection-bounded’).
Table I reports the IACTs for the four improved samplers, averaged over four datasets and all significantly improved compared
to the basic ‘MH’ approach. Although the IACT values are roughly similar for the four improved methods, we observed that
‘MH-regeneration’ and ‘Rejection-bounded’ have more reliable performance on difficult datasets.
Thus Figures 8, 9 and 10 display the MCMC outputs of an instance of the sampler with the ‘MH-regeneration’ and the
‘Rejection-bounded’ methods, on a dataset (D1). Figure 8 presents the unimodal posterior distribution for α, centred on the
true value. This is a fairly typical result, and indeed gets a closer value to the true α than the ML method (see Table II).
However, it should be observed that the chains are quite correlated over iteration number and certain parameters can get stuck
in low probability regions for several iterations, see e.g. the trace plot for β in Figure 10. This means that longer MCMC
chains may be needed still for this parameter regime, with α close to 2.
With regard to the computational cost of the four enhanced versions of the sampler, we have that, denoting with TCPU (·) the
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Fig. 6. Inference on the parameters µW and σW when α = 0.8, using the ‘MH’ step for the Γs and the residuals. Left: Histograms from the MCMC output.
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TABLE I
IACTS OF THE PARAMETERS (µW , σW , α, β, σ) VARYING THE SAMPLING STEP ON THE ΓS AND THE RESIDUALS, AVERAGED OVER 4 DATASETS, WITH

α = 1.8.

Method IACT(µW ) IACT(σW ) IACT(α) IACT(β) IACT(σ)

‘MH-joint’ 199 367 146 132 10
‘MH-regeneration’ 170 317 197 140 9
‘Rejection-joint’ 137 227 142 128 6

‘Rejection-bounded’ 169 265 124 128 7

CPU time required

TCPU (‘MH-joint’) < TCPU (‘MH-regeneration’) < TCPU (‘Rejection-joint’) < TCPU (‘Rejection-bounded’).

The first inequality is due to the extra-computational cost needed for running the short additional Markov chain in the ‘MH-
regeneration’ step (200 iterations in the simulations shown). This is, in turn, still lower than the time necessary for the
rejection sampler step. The first three methods diverge from the basic ‘MH’ only for large observations, while the last one
applies a restricted search of the maximum likelihood for each data point and this justifies its highest computational time. This
consideration and the above analyses suggests that the ‘MH-regeneration’ step provides a satisfactory trade off between the
IACTs and the computational time when α approaches 2.

B. Example 2: Synthetic data, estimate of (α, σ, β, µ)

Here we present simulation results on data generated from the α-stable distribution with α = 1.6 and µ = 20 (dataset D2).
We display only the output of the Gibbs sampler with the ‘MH-regeneration’ step, compared to the point estimators available
in the STABLE toolbox, but considerations similar to the above can be deduced for the alternative enhanced samplers. Figures
11, 12, 13 and 14 show that the proposed method, initialized to (α, µW , σW , µ) = (1.2,−3, 3, 30), is capable of targeting the
posterior distribution with a good mixing of the chains. For the dataset considered, the posterior of σ is concentrated on values
lower than the true one; nevertheless its mean is fairly consistent with the frequentist point estimates, as shown in Table III,
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Fig. 7. Inference on the parameters β and σ, when α = 0.8, using the ‘MH’ step for the Γs and the residuals. Top: MCMC sampled parameter values β
and σ. The true values are marked by the horizontal lines. Bottom: Histograms from the MCMC output. The true values are marked by the vertical lines.

TABLE II
ESTIMATES OF THE DISTRIBUTION PARAMETERS FOR THE DATASET D1 (α = 1.8): TRUE VALUES AND MAXIMUM LIKELIHOOD ESTIMATES; MCMC

POSTERIOR MEANS, STANDARD DEVIATIONS, AND IACTS FOR THE FOUR ENHANCED SAMPLERS, AVERAGED OVER 5 RUNS.

Method α̂ β̂ σ̂

True values 1.8 -0.92 3.52

Maximum likelihood 1.78 -1.00 3.51

E[α|X] std[α|X] IACT E[β|X] std[β|X] IACT E[σ|X] std[σ|X] IACT

‘MH-joint’ 1.81 0.04 160 -0.91 0.12 107 3.51 0.14 13
‘MH-regeneration’ 1.80 0.04 170 -0.84 0.16 125 3.51 0.15 7
‘Rejection-joint’ 1.81 0.04 126 -0.89 0.12 100 3.51 0.14 5

‘Rejection-bounded’ 1.81 0.04 115 -0.88 0.13 111 3.51 0.14 5

Fig. 8. Inference on the parameter α, for the dataset D1 (α = 1.8), using the ‘MH-regeneration’ step (dark grey) and the ‘Rejection-bounded’ step (light
grey) for the Γs and the residuals. Left: Kernel density estimates from the MCMC output. The true value is marked by the vertical line. Right, top: MCMC
sampled parameter value α. The true value is marked by the horizontal line. Right, bottom: ACF as a function of lag.

where the MCMC outputs are averaged over 4 runs.
Figure 15 displays the stable density with the true value of the parameters (solid line, plotted thanks to the function stablepdf
available from the STABLE Toolbox), which overlaps almost perfectly with a kernel smoothing function estimate (K.s.d,
dashed line). They are compared to the stable density with the parameters estimated in the run shown in the previous set
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Fig. 9. Inference on the parameters µW and σW , for the dataset D1 (α = 1.8), using the ‘MH-regeneration’ step (dark grey) and the ‘Rejection-bounded’
step (light grey) for the Γs and the residuals. Left: Histograms from the MCMC output. The true values are marked the vertical lines. Right: MCMC sampled
parameter values µW and σW with the ACFs as functions of lag below each. The true values are marked by the horizontal lines.

Fig. 10. Inference on the parameters β and σ, for the dataset D1 (α = 1.8), using the ‘MH-regeneration’ step (dark grey) and the ‘Rejection-bounded’
step (light grey) for the Γs and the residuals. Top: MCMC sampled parameter values β and σ. The true values are marked by the horizontal lines. Bottom:
Histograms from the MCMC output. The true values are marked by the vertical lines.

of figures (dashed line). The latter pdf is slightly more peaked to the centre and this could be attributed to the fact that
both the estimated α̂ = 1.58 and σ̂ = 2.42 are lower than the true values, assigning more probability mass in the tails.
The full Bayeisan posterior distribution estimated via the MCMC sampler can be summarised by the confidence interval over
the density functions sampled by the MCMC, represented by the grey area in Figure 16 (in log-scale on the ordinate axis).
This is formed by considering the mean and standard deviation of 20 sampled stable pdfs (obtained using tabulated density
values), corresponding to the parameters sampled by the chains every 250 iterations following burn-in. The interval reassuringly
includes the density obtained with the true parameters, as well as the stable densities estimated from the maximum likelihood,
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TABLE III
ESTIMATES OF THE DISTRIBUTION PARAMETERS FOR THE DATASET D2 (α = 1.6): TRUE VALUES, MAXIMUM LIKELIHOOD, QUANTILES METHOD,

EMPIRICAL CHARACTERISTIC FUNCTION METHOD ESTIMATES; MCMC POSTERIOR MEANS, STANDARD DEVIATIONS, AND IACTS FOR THE
‘MH-REGENERATION’ SAMPLER, AVERAGED OVER 4 RUNS.

Method α̂ β̂ σ̂ µ̂

True values 1.6 -0.90 2.62 20

Maximum likelihood 1.58 -0.90 2.40 20.02

Quantiles method 1.51 -0.78 2.38 19.78

E.C.F. method 1.58 -0.73 2.40 20.27

E[α|X] std[α|X] IACT E[β|X] std[β|X] IACT E[σ|X] std[σ|X] IACT E[µ|X] std[µ|X] IACT

‘MH-regeneration’ 1.55 0.06 173 -0.86 0.09 70 2.42 0.10 8 19.93 0.33 32

α

1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75
0

100

200

300

400

500

600

700

800

MCMC iteration number
0 2000 4000 6000 8000 10000

α

1

1.5

2

Lag
0 10 20 30 40 50

A
C
F

0

0.5

1

Fig. 11. Inference on the parameter α, for the dataset D2 (α = 1.6), using the ‘MH-regeneration’ for the Γs and the residuals. Left: Histogram from the
MCMC output. The true value is marked by the vertical line. Right, top: MCMC sampled parameter value α. The true value is marked by the horizontal line.
Right, bottom: ACF as a function of lag.

the quantile and the empirical characteristic function methods: all of the esimates are a plausible explanation of the data.
Despite the greater computational time required for the MCMC, the advantage and main motivation for using the Bayesian
approach is that it provides a useful measure of the uncertainty of the estimate, through the whole posterior distribution of
the parameters. Moreover, inference of the distribution parameters based on the PSR can be embedded into more complex
hierarchical model structures (aimed at discrete and continuous time stochastic processes inference) in a way that is not at all
straightforward with the classical methods.

C. Example 3: Dow Jones Industrial Average data

For our real data example we consider daily price returns of Dow Jones Industrial average (DJIA) shares between 14/05/2010
and 14/05/2014, yielding 1005 values. The returns Rt are defined as the percentage change in price Rt = (pt − pt−1)/pt−1,
with the share price on day t being denoted by pt.
We initialize the sampler to (α, µW , σW , µ) = (1.4, 0, 0.1, 0). Figures 17 and 18 show the MCMC sampled parameter values
for α and µ on the right-hand side with the ACFs below. In particular the step used on the Γs and the residuals is the basic
‘MH’ without improvements for large observations, which produces good mixing of the chains and unimodal histograms for
the posterior distributions, as displayed on the left-hand side of the figures. Good results are provided also for the reconstructed
parameters β and σ, as presented in Figure 19. An average over 4 runs of the same algorithm provides the posterior mean
estimates (α̂, β̂, σ̂, µ̂) = (1.59,−0.09, 5× 10−3, 5× 10−4).
A comparison of the α-stable distribution with the estimated parameters with respect to a fitted Gaussian pdf shows that the
first one is more suitable to capture the presence of heavy tails in the given data (see Fig. 20).
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Fig. 12. Inference on the parameters µW and σW , for the dataset D2 (α = 1.6), using the ‘MH-regeneration’ for the Γs and the residuals. Left: Histograms
from the MCMC output. The true values are marked the vertical lines. Right: MCMC sampled parameter values µW and σW with the ACFs as functions of
lag below each. The true values are marked by the horizontal lines.
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Fig. 13. Inference on the parameters β and σ, for the dataset D2 (α = 1.6), using the ‘MH-regeneration’ for the Γs and the residuals. Top: MCMC sampled
parameter values β and σ. The true values are marked by the horizontal lines. Bottom: Histograms from the MCMC output. The true values are marked by
the vertical lines.
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Fig. 14. Inference on the parameter µ, for the dataset D2 (α = 1.6), using the ‘MH-regeneration’ for the Γs and the residuals. Left: Histogram from the
MCMC output. The true value is marked by the vertical line. Right, top: MCMC sampled parameter value µ. The true value is marked by the horizontal line.
Right, bottom: ACF as a function of lag.
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Fig. 15. Stable density corresponding to the true value of the parameters (solid line), for the dataset D2 (α = 1.6), kernel density estimate on the dataset
(dashed-dotted line), overlapped with the stable pdf corresponding to the MCMC posterior means of one run (dashed line).
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Fig. 16. Confidence interval (mean ± 2 standard deviations) on the stable pdf corresponding to the dataset D2 (α = 1.6), obtained with 20 densities
curves (grey region); stable density corresponding to the true parameters (black solid line), to the MCMC posterior means estimates (black dashed line),
to the maximum likelihood estimator (red line), to the quantile estimator (green line) and to the empirical characteristic function method (blue line). For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.
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Fig. 17. Inference on the parameter α for DJIA shares data, using the ‘MH’ step for the Γs and the residuals. Left: Histogram from the MCMC output.
Right, top: MCMC sampled parameter value α. Right, bottom: ACF as a function of lag.
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Fig. 18. Inference on the parameter µ for DJIA shares data, using the ‘MH’ step for the Γs and the residuals. Left: Histogram from the MCMC output.
Right, top: MCMC sampled parameter value µ. Right, bottom: ACF as a function of lag.
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Fig. 19. Inference on the parameters β and σ for DJIA shares data, using the ‘MH’ step for the Γs and the residuals. Top: MCMC sampled parameter values
β and σ. Bottom: Histograms from the MCMC output.
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Fig. 20. DJIA shares data: comparison of the α-stable density with the estimated parameters (averaged over 4 runs) and a Gaussian fit.
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VII. CONCLUSION

We have achieved satisfactory results for parameter estimation for asymmetric α-stable distributions applying Bayesian
inference methods, which are based on our conditionally Gaussian framework resulting from an approximated Poisson series
representation. To this end, we introduced a novel residual approximation method of the series residual terms, which exactly
characterises the mean and variance of the approximation. Additional improvement steps for updating the latent variables given
by the PSR ensure that observations far in the tails can be represented accurately enough.

We would like to stress that this paper exposes only the basic parameter estimation ideas for the Poisson Series Representation.
In this we find that it is competitive in accuracy and sometimes better in performance than other competitive parameter estimation
procedures. However, it is quite computationally intensive, certainly compared to some of the approximate frequentist procedures
available. Where our approach is likely to win out more significantly is in more complex hierarchical models in which the
α-stable noise model drives a time series or stochastic process model. Then we will really see the advantages of having a
simple conditionally Gaussian inference framework, since then conditional Kalman filter-smoothers and other standard Gaussian
modelling tools can be routinely applied. In fact, it would in practice be straightforward to convert any Bayesian Monte Carlo
algorithm currently running on a Gaussian model into the corresponding α-stable model via the addition of some extra sampling
steps for the auxiliary random variables µX and σX . Initial examples of such models have already been given in our conference
papers [8]–[10], for both continuous time and discrete time models, and using batch MCMC approaches and sequential Particle
Filters, but we do plan to elaborate these ideas significantly in future work.

APPENDIX A
TRANSFORMATIONS FOR σ AND β

Here we show that the mappings expressed in (4) allow to obtain any value of σ > 0 and β ∈ [−1, 1], given α and the
distribution of {Wi}∞i=1. Assume that the latter is continuous, with density fW (w); we can introduce the following density
function

g(w) =
|w|αfW (w)∫

R |w|αfW (w)dw
=
g̃(w)

I
,

where g̃(w) and I denote the unnormalized density and the normalizing constant, respectively. Then the first transformation
in (4) can be rewritten as

σ =

∫
R g̃(w)dw

Cα
=

I

Cα
.

Given that Cα > 0, it results that σ > 0. Moreover, for any fixed value of α (and consequently Cα), it is possible to achieve
any σ > 0, by determining the parameters of the distribution of Wi that give the necessary value of I (the reader can think for
example to a scale parameter, which in the Gaussian case corresponds to σW ). As regard the second transformation expressed
in (4), we can write

β =
−
∫ 0

−∞ g̃(w)dw +
∫∞

0
g̃(w)dw

I

= −
∫ 0

−∞
g(w)dw +

∫ ∞
0

g(w)dw

= −
(
1− I+

)
+ I+

= 2I+ − 1,

where I+ is the probability mass assigned by g(w) to R+. Then any β ∈ [−1, 1] can be obtained by setting the parameters
of the distribution of Wi to obtain the necessary I+ ∈ [0, 1] (the reader can think for example to a location parameter,
corresponding to µW in the Gaussian case).

APPENDIX B
GAUSSIAN APPROXIMATION OF MOMENTS

The remaining summation terms are studied by reverting to the Poisson process representation of the Γms on a finite interval
[c, d]. Specifically, since {Γm} is a unit rate Poisson process, the number of the Γs in the interval follows a Poisson distribution,

|{Γm : Γm ∈ [c, d]}| ∼ Poisson(d− c) for d > c, (41)

and each Γm is uniformly and independent distributed on [c, d],

Γm
∣∣|{Γm : Γm ∈ [c, d]}| ∼ U([c, d]). (42)
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Taking the limit as d→∞ accounts for all residual terms. Taking (16) and (17) with d→∞ we compute the limits for µ(α)
R

and Σ
(α)
R as

µ
(α)
R =

[
E[R1]
E[R2]

]
=


limd→∞

α
α−1

(
d
α−1
α − cα−1

α

)
if α < 1,

limd→∞
α
α−1

(
d
α−1
α − cα−1

α

)
− dα−1

α if α > 1

limd→∞
α
α−2

(
d
α−2
α − cα−2

α

)


=


limd→∞

α
α−1

(
d
α−1
α − cα−1

α

)
if α < 1,

α
α−1

(
−cα−1

α

)
if α > 1

limd→∞
α
α−2

(
d
α−2
α − cα−2

α

)
 =

[
α

1−αc
α−1
α

α
2−αc

α−2
α

]
. (43)

In order to obtain the variance-covariance matrix

Σ
(α)
R =

[
Var[R1] Cov[R1, R2]

Cov[R2, R1] Var[R2]

]
(44)

on the limit d→∞, we work out each of the components as

Var[R1] = lim
d→∞

α

α− 2

(
d
α−2
α − cα−2

α

)
− 1

d− c
α2

(α− 1)2

(
d
α−1
α − cα−1

α

)2

(45)

=
α

2− αc
α−2
α , (46)

Var[R2] = lim
d→∞

α

α− 4

(
d
α−4
α − cα−4

α

)
− 1

d− c
α2

(α− 2)2

(
d
α−2
α − cα−2

α

)2

(47)

=
α

4− αc
α−4
α , (48)

and

Cov[R1, R2] = Cov[R2, R1] = lim
d→∞

∑
m:Γm∈[c,d]

∑
n:Γn∈[c,d]

Cov
(

Γ1/α
m ,Γ−2/α

n

)
= lim
d→∞

∑
m:Γm∈[c,d]

α

α− 3

(
d
α−3
α − cα−3

α

)
− 1

d− c
α2

(α− 1)(α− 2)

(
d
α−1
α − cα−1

α

)(
d
α−2
α − cα−2

α

)
=

α

3− αc
α−2
α . (49)

APPENDIX C
MARGINAL AND CONDITIONAL DISTRIBUTIONS

Expression (24) is based on the conditionally Gaussian representation of stable random variables, and can be derived in the
following way

p(X|Γ, σW , µW , µ, α) =

N∏
n=1

N
(
Xn

∣∣∣∣∣µW
∞∑
i=1

(
Γ
−1/α
i,n − k̃(α)

i

)
+ µ, σ2

W

∞∑
i=1

Γ
−2/α
i,n

)

=

N∏
n=1

N
(
Xn

∣∣µWmn + µ, σ2
W sn

)

=
(2πσ2

W )−N/2∏N
n=1

√
sn

exp

{
− 1

2σ2
W

N∑
n=1

(Xn − µWmn − µ)
2
/sn

}

=
(2πσ2

W )−N/2∏N
n=1

√
sn

exp

− 1

2σ2
W

N∑
n=1

(
Xn√
sn
−
[
mn/
√
sn

1/sn

]T [
µW
µ

])2

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=
(2πσ2

W )−N/2∏N
n=1

√
sn

exp

{
− 1

2σ2
W

∣∣∣(X̃− M̃µ
)∣∣∣2}

=
(2πσ2

W )−N/2∏N
n=1

√
sn

exp

{
− 1

2σ2
W

(
X̃T X̃− X̃TM̃µ− µTM̃T X̃ + µTM̃TM̃µ

)}
,

with mn, sn as in (25), X̃, M̃, µ as in (26).
The conditional distribution for µ in equation (27) is obtained by rearranging (24) with respect to µ, aiming for an expression
proportional to a bivariate Gaussian distribution,

p(X|Γ, σW ,µ, α) ∝ N (µ|., .). (50)

To this end, we write

p(X|Γ,R, σW ,µ, α) =
1

(2πσ2
W )N/2

∏N
n=1

√
sn

exp

{
− 1

2σ2
W

(
(µ− aµ)TΣ−1

µ (µ− aµ) +B
)}

=
|Σµ|1/2

(2πσ2
W )(N−2)/2

∏N
n=1

√
sn
N (µ|aµ,Σµ) exp

{
− B

2σ2
W

}
,

where B is defined as in (31).
Finally the conditional distribution for σW in equation (30) is computed taking a uniform prior on σW , considered independent
on µ, which gives the proportionality p(µ, σ2

W |X,Γ,R, α) ∝ p(X|Γ,R, σW ,µ, α)

p(σ2
W |X,Γ,R, α) = p(µ, σ2

W |X,Γ,R, α)p(µ|X,Γ,R, σW , α)−1

∝ p(X|Γ,R, σW ,µ, α)N (µ|aµ,Σµ)
−1

=
|Σµ|1/2

(2πσ2
W )(N−2)/2

∏N
n=1

√
sn
N (µ|aµ,Σµ)−1

exp

{
− 1

2σ2
W

(
X̃T X̃− X̃TM̃(M̃TM̃)−1M̃T X̃

)}

∝ B
N−4

2

Γ(N−4
2 )

(σ2
W )(N−2)/2 exp

{
− B

2σ2
W

}

= IG
(
σ2
W

∣∣∣∣N − 4

2
,
B

2

)
.

APPENDIX D
SAMPLING mn FOR OBSERVATIONS IN THE TAILS OF THE DISTRIBUTION

The supremum of (40) is the solution to

∂p(Xn|mn, sn = m2
n, µW , σW )

∂mn
∝ σ2

Wm
2
n +XnµWmn −X2

n = 0

computed as

m̂n =
−Xn(µW −

√
µ2
W + 4σ2

W )

2σ2
W

. (51)

We can determine the approximate support of the likelihood as a function of mn, say mn,min and mn,max. Then, one possibility
would be to generate tail samples from p(m) over the support of the likelihood using the Pareto approximation

p(m) ∝ m−(α+1) (52)

for large mn. The cumulative distribution function over the interval [mn,min,mn,max] is given by

F (mn) =
m−αn,min −m−αn
m−αn,min −m−αn,max

.



25

Hence, to sample the approximation over [mn,min,mn,max] we generate a uniform random variable u ∈ [0, 1] and obtain mn

by the inverse transformation method3 as

m−αn = (1− u)m−αn,min + um−αn,max.

To choose mm,min and mn,max we search for the value of mn for which the posterior

p(mn|Xn, sn = m2
n, µW , σW ) ∝ p(Xn|mn, sn = m2

n, µW , σW )p(mn)

peaks. The maximisation problem requires the solution to

(α+ 2)σ2
Wm

2
n +XnµWmn −X2

n = 0,

which is given by

m̃n =
−Xn(µW −

√
µ2
W + 4(α+ 2)σ2

W )

2(α+ 2)σ2
W

.

Scaling m̃n up and down gives us mn,max and mn,min. Finally, the rejection step can be performed with the bounding envelope
function

1√
2πσ2

W m̂
2
n

exp

(
− 1

2σ2
W m̂

2
n

(Xn − µW m̂n)2

)
p(mn).

Some suitable procedure needs to be used to decide whether to use the full rejection sampler, which is expected to be slow
for certain observations, or the fast approximate tail rejection sampler as introduced above. Note, however, that the presented
approximate tail rejection sampler just allows for the sampling of µW and σ2

W in a subsequent step, but not of the distribution
parameter α. To be able to apply the ‘MH’ sampler for α for all n data points Xn, the set Γn and Rn given mn and the
current α need to be obtained first.

Regenerating the set of Γs and (R1, R2) given m with an MCMC chain

Given some accepted mn from the method described in the previous section, a short MCMC chain is started to regenerate
the set of Γs, {Γi,n}Mn

i=2, the residual approximations, (R1,n, R2,n), and sn. To shorten the notation, the observation index n
shall be omitted throughout the rest of this section. We then have

p(m|Γ2:M ,R, α) = p
(

Γ
−1/α
1

∣∣∣Γ2:M ,R, α
)

=

∣∣∣∣∣∂Γ
1/α
1

∂Γ1

∣∣∣∣∣
−1

p(Γ1|Γ2:M )

= IΓ1>0

∣∣∣∣− 1

α
Γ
−(1/α+1)
1

∣∣∣∣−1
1

Γ2
= IΓ1>0

α

Γ2
Γ

(1/α+1)
1 .

Note that Γ1 is not sampled in this scheme, but proposed through the relation m =
∑M
i=1 Γ

−1/α
i +R1. The obtained Γ1 is

then used to propose s. Thus, since s is not fixed we also need to consider dependence upon the data X , leading to the full
likelihood

p(X,m|Γ2:M ,R, α) = p(X|m, s(m,Γ2:M ,R, α))p(m|Γ2:M ,R, α),

where the first term p(X|m, s(m,Γ2:M ,R, α)) is the conditional Gaussian N (µWm,σ
2
W s) as before. An independent ‘MH’

procedure can now be run, proposing from the priors p(Γ2:M |R, α) = p(Γ2:M ) and p(R, α) = p(R), and targeting the
conditional distribution

p(Γ2:M ,R|X,m,α) ∝ p(X,m|Γ2:M ,R, α)p(Γ2:M ,R|α)

= IΓ1>0
1√

2πσ2
W s

exp

(
− (X − µWm)2

2σ2
W s

)
α

Γ2
Γ

( 1
α+1)

1 p(Γ2:M )p(R).

3Inverse transformation method: If Y is uniformly distributed on [0, 1] and if X has a cumulative distribution function FX , then the cumulative distribution
function of the random variable F−1

X (Y ) is FX .
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APPENDIX E
TARGETING m, THE SET OF ΓS AND (R1, R2) JOINTLY

To speed up the sampler it is helpful to avoid the additional MCMC chain to regenerate the set of Γs and the residual terms.
Thus, we present an alternative sampler with a joint move for m,Γ and R in the case of large observations. Again, we make
sure that m is proposed from the correct region using a Pareto prior as in (52). Suppose that m,Γ and R are proposed as
follows,

q(m|X,µW , σW , α) ∝

m−(α+1) 1√
2πσ2

Wm
2

exp

(
− (X − µWm)2

2σ2
Wm

2

)
,

q(Γ2:M |m,X, µW , σW , α) = p(Γ2:M ),

q(R|Γ2:M ,m,X, µW , σW , α) = p(R).

Samples from q(m|X,µW , σW , α) are obtained via rejection sampling with the bounding envelope function

m−(α+1) 1√
2πσ2

W m̂
2

exp

(
− (X − µW m̂)2

2σ2
W m̂

2

)
,

where m̂ is as in (51). The importance weight p(x)
g(x′→x) for such a joint move is computed as

ρ =
p(m,Γ2:M ,R|X,µW , σW , α)

q(m|X,µW , σW , α)q(Γ2:M |m,X, µW , σW , α)q(R|Γ2:M ,m,X, µW , σW , α)

=
p(X|m,Γ2:M ,R, µW , σW , α)p(m,Γ2:M ,R|µW , σW , α)

p(X|µW , σW , α)

· 1

p(m|X,µW , σW , α)p(Γ2:M )p(R)

=
p(X|m,Γ2:M ,R, µW , σW , α)p(m|Γ2:M ,R, µW , σW , α)p(Γ2:M ,R|µW , σW , α)

(X|µW , σW , α)

· p(X|µW , σW , α)

p(m|µW , σW , α)p(X|m,µW , σW , α)p(Γ2:M )p(R)

∝IΓ1>0
α

Γ2
Γ

(1/α+1)
1 m(α+2)s−1/2 exp

(
− m2 − s

2σ2
Wm

2s
(X − µWm)2

)
.

Alternatively, we could neglect the information given by the observation when choosing the proposal for m and set

q(m|X,µW , σW , α) ∝ m−(α+1).

Thus, the acceptance probability becomes

ρ((m,Γ2:M ,R), (m′,Γ′2:M ,R
′)) = min

(
1,
ρ′

ρ

)
,

where, in the first case

ρ′

ρ
=

(
Γ′1
Γ1

)(1/α+1)(
m′

m

)(α+2)(
s′

s

)−1/2

· exp

(
− m′2 − s′

2σ2
Wm

′2s′
(X − µWm′)2 +

m2 − s
2σ2

Wm
2s

(X − µWm)2

)
,

while in the second case

ρ′

ρ
=

(
Γ′1
Γ1

)(1+ 1
α )(

m′

m

)(α+1)(
s′

s

)−1/2

· exp

(
− 1

2σ2
W s
′ (X − µWm

′)2 +
1

2σ2
W s

(X − µWm)2

)
.
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APPENDIX F
BOUNDING THE LIKELIHOOD

We compute the supremums m̂k1 and m̂k2 as solutions to

∂p(X|m, s = (m+ k1)2, µW , σW )

∂m
∝ σ2

Wm
2 + (X + µW k1)µWm− (X + µW k1)2 = 0

and

∂p(X|m, s = (m− k2)2, µW , σW )

∂m
∝ σ2

Wm
2 + (X − µW k2)µWm− (X − µW k2)2 = 0,

obtaining

m̂k1 =
−(X + µW k1)(µW −

√
µ2
W + 4σ2

W )

2σ2
W

,

m̂k2 =
−(X − µW k2)(µW −

√
µ2
W + 4σ2

W )

2σ2
W

.

In case the unconstrained m̂k1/k2 values sit outside the constrained region, we take the m value at the quadratic boundary
intersection with s = smin, i.e. mk1 =

√
smin− k1 and mk2 =

√
smin + k2. The maximum along the line s = smin is obtained

when exp(−(X − µWm)2/(2σ2
W smin)) reaches its maximum value of one at m = X/µW if this value of m sits on the

boundary, otherwise we take the end-points mk1 =
√
smin − k1 and mk2 =

√
smin + k2 as before. Suitable values of k1, k2

and smin can be determined off-line for a range of α values based on a very large set of simulated (m, s) pairs. For example,
k1 = k2 = 20, smin = 1.3, works well for α = 1.5.

Moreover, bounding the likelihood allows for joint rejection sampling for Γ and R, which might speed up the sampler.
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[26] I. A. Koutrouvelis, “Regression-type estimation of the parameters of stable laws,” Journal of the American Statistical Association, vol. 75, no. 372, pp.

pp. 918–928, 1980.
[27] J. H. McCulloch, “Simple consistent estimators of stable distribution parameters,” Communications in Statistics - Simulation and Computation, vol. 15,

no. 4, pp. 1109–1136, 1986.
[28] P. Troughton and S. Godsill, “A reversible jump sampler for autoregressive time series,” in The IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), vol. 4, Seattle, WA, USA, 1998, pp. 2257–2260.
[29] S. Godsill, “On the relationship between MCMC model uncertainty methods,” Journal of Computational and Graphical Statistics, vol. 10, no. 2, pp.

230–248, 2001.
[30] D. Applebaum, Lévy Processes and Stochastic Calculus. Cambridge University Press, 2004.
[31] G. Samorodnitsky and M. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall, 1994.
[32] H. Bergström, “On some expansions of stable distribution functions,” Arkiv für Matematik, vol. 2, no. 4, pp. 375–378, 1952.
[33] A. Janicki and A. Weron, Simulation and Chaotic Behavior of α-stable Stochastic Processes. CRC Press, 1993, vol. 178.
[34] N. Azzaoui and L. Clavier, “Statistical channel model based on α-stable random processes and application to the 60 ghz ultra wide band channel,”

Communications, IEEE Transactions on, vol. 58, no. 5, pp. 1457–1467, 2010.
[35] M. B. Thompson, “A comparison of methods for computing autocorrelation time,” ArXiv e-prints, Oct. 2010.
[36] C. J. Geyer, “Practical Markov Chain Monte Carlo,” Statist. Sci., vol. 7, no. 4, pp. 473–483, 11 1992.

Tatjana Lemke received the Dipl.-Math. oec. degree in Business Mathematics majoring in Financial Mathematics, and the Ph.D.
degree (Dr. rer. nat.) in Financial Mathematics from the Kaiserslautern University of Technology, Faculty of Mathematics (Germany),
in 2010 and 2015, respectively. During her Ph.D. she visited the Signal Processing and Communications Laboratory in the Engineering
Department at the University of Cambridge (UK) for a one and a half year research stay, supervised by Prof. Simon J. Godsill.
The focus of her reasearch is on the Bayesian Inference for skewed α-stable distributions and stochastic processes. She is currently
working in risk controlling at the Federal Republic of Germany - Finance Agency.

Marina Riabiz received the Bachelor’s and Masters degree in Mathematical Engineering from Politecnico di Milano (Italy) in
2010 and 2013, respectively. She is currently working towards the Ph.D degree in Information Engineering, at the University of
Cambridge (UK), in the Signal Processing and Communications Laboratory. She is also affiliated as a student at Clare Hall College,
Cambridge. Her current research interests include Bayesian (parametric and non-parametric) inference methods for heavy tailed
statistical distributions that model extreme events.



29

Simon J. Godsill is Professor of Statistical Signal Processing in the Engineering Department at Cambridge University. He is also a
Professorial Fellow and tutor at Corpus Christi College, Cambridge. He coordinates an active research group in Signal Inference and
its Applications within the Signal Processing and Communications Laboratory at Cambridge, specializing in Bayesian computational
methodology, multiple object tracking, audio and music processing, and financial time series modelling. A particular methodological
theme over recent years has been the development of novel techniques for optimal Bayesian filtering and smoothing, using Sequential
Monte Carlo or Particle Filtering methods. Prof. Godsill has published extensively in journals, books and international conference
proceedings, and has given a number of high profile invited and plenary addresses at conferences such as the Valencia conference on
Bayesian Statistics (twice), the IEEE Statistical Signal Processing Workshop and the Conference on Bayesian Inference for Stochasrtic
Processes (BISP) and the IEEE Workshop on Machine Learning in Signal Processing (2013). He co-authored a seminal Springer text
Digital Audio Restoration with Prof. Peter Rayner in 1998. He was technical chair of the successful IEEE NSSPW workshop in 2006
on sequential and nonlinear filtering methods, and has been on the conference panel for numerous other conferences/workshops. Prof.

Godsill has served as Associate Editor for IEEE Tr. Signal Processing and the journal Bayesian Analysis. He was Theme Leader in Tracking and Reasoning
over Time for the UKs Data and Information Fusion Defence Technology Centre (DIF-DTC) and Principal Investigator on many grants funded by the EU,
EPSRC, QinetiQ, General Dynamics, MOD, Microsoft UK, Citibank, Mastercard, Google, DSO Singapore, Huawei and Jaguar Landrover. In 2009-10 he was
co-organiser of an 18 month research program in Sequential Monte Carlo Methods at the SAMSI Institute in North Carolina and in 2014 he co-organised
a research programme at the Isaac Newton Institute on Sequential Monte Carlo methods. In 2018 he will be General Chair of the FUSION Conference in
Cambridge. Two of his journal papers have recently received Best Paper awards from the IEEE and IET. He continues to be a Director of CEDAR Audio Ltd.
(which has received numerous accolades over the years, including a technical Oscar), and for which he was a founding staff member in 1988. The company
has commercialised many of the ideas from Professor Godsills research over the years.


