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On the Symmetry of FIR Filter with Linear

Phase

Stéphane Paquelet, Vincent Savaux∗

Abstract

This paper deals with signal processing theory related to finite impulse response (FIR)

filters with linear phase. The aim is to show a new and complete proof of the equivalence

between linear phase and symmetry or antisymmetry of the real coefficients of the filter. Despite

numerous proofs are available in the literature, they are usually incomplete, even though the

result is commonly used by the signal processing community. We hereby address a pending

issue in digital signal processing: we first prove the uniqueness of the group delay for any

decomposition amplitude-phase of the frequency response. Based on this first step, we then

derive a complete proof of the equivalence: a FIR filter has (anti)symmetric coefficients if and

only if the phase is linear. It must be emphasized that this brief paper deals with theoretical

aspects of FIR filters.

Keywords- FIR Filter, Group Delay, Linear Phase.

I. Introduction

Analysis and design of digital finite impulse response (FIR) filters with linear phase are basics

in the field of signal processing [1]–[4]. Such filters are widely used in electronic devices for their

inherent stability. Furthermore, numerous techniques for FIR filter design and applications have

been proposed, from early 70’s [2] to the present day [5], [6]. However, unlike papers like [2],

[5], [6] which deal with design and applications of FIR filters, the present paper is dedicated to

theoretical aspects related to FIR filters.

Manuscript submitted in June 2017

Stéphane Paquelet and Vincent Savaux are with IRT b<>com, Rennes, FR

* Corresponding author: e-mail: vincent.savaux@b-com.com Phone: +33 256358216.

July 3, 2018 DRAFT



1

It is commonly accepted that a FIR filter has a linear phase if and only if the taps are either

symmetric or antisymmetric. However, to the best of our knowledge, although this result is com-

monly accepted, the proof leading to this fundamental property is not satisfactorily demonstrated

in the literature [1], [7], [8], in which mathematical shortcuts are used. In particular, showing that

a (anti)symmetric filter has a linear phase is straightforward (see [7] for instance), whereas the

inverse implication requires more difficult developments. Otherwise, the authors of [8] made an

attempt to prove the double implication, but they inherently presupposed some features regarding

the group delay and the differentiability of the frequency response of FIR filters.

In this paper, we revisit the proof of the equivalence between linear phase and (anti)symmetry

of FIR filters. To this end, we first prove the existence of the decomposition module/phase of the

frequency response of the filter, where both the module and phase functions are at least of class

C1. Furthermore, we show that the group delay is unique for any decomposition. To the best of

our knowledge, both proofs are original contributions of this paper, and they are a mandatory

prerequisite for the proof of the equivalence between linear phase and (anti)symmetry, since it

justifies the existence of both the phase/module decomposition and the group delay.

Once these properties are justified, we can prove the equivalence between linear phase and

(anti)symmetry of FIR filters with proper assumptions. Showing that a FIR filter has a linear

phase if it is (anti)symmetric is not tackled in this paper, since it has been undertaken in [1], [7].

However, we focus on the inverse implication, i.e. we prove that a FIR filter is (anti)symmetric

if the phase is linear. This is another original contribution of this paper. Moreover, we consider

a very general approach in the sense that the filter coefficients are considered as elements of a

mathematical sequence, and no assumption about FIR filters features is made. From this, the

proof is based on the analysis of the linear independence of sin functions. To summarize, this paper

closes the theoretical concepts related to linearity of the phase of FIR filters, (anti)symmetry of

the taps, and uniqueness of the group delay.

The paper is organized as follows: in Section II, we prove the existence of a decomposition

module/phase of the frequency response of any FIR filter, and the uniqueness of the group delay.

In Section III, we show the following implication: if a FIR filter has a linear phase, then the

coefficients are symmetric or antisymmetric, which completes the existing results concenring the
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inverse implication. Finally, Section IV concludes this paper.

II. Background and Prerequisites

A. Standard Mathematical Notations

The following notations are used throughout the paper: the class Ck(A) of a function f means

that the k-th derivative of f exists and is continuous on the set A; the braces {.} define discrete

sets, and |f | is the modulus of f . The mathematical equivalence between two assertions (A) ⇔ (B)

means that we have the double implication (A) ⇒ (B) and (A) ⇐ (B).

B. Model

We consider a finite impulse response (FIR) filter composed of M real coefficients {hm, 0 ≤

m ≤ M − 1}. The filter frequency response is obtained by means of the discrete-time Fourier

transform (DTFT) as follows:

H(ν) =
M−1∑

m=0

hme−2jπmν , (1)

where ν ∈ I = [−1
2 , 1

2 ] is the normalized frequency. In order to highlight the amplitude response

of the FIR (not to be confused with the magnitude |H| [2], [4]), it is more relevant to consider,

if it exists, the following decomposition of H(ν):

H(ν) = Hr(ν)ejφ(ν), (2)

where Hr and φ must be (at least) C1(R) functions. Note that the differentiability class of Hr is

rarely discussed in the literature, even it is usually stated that it is sufficient for Hr to be C0(R).

Now, it must be emphasized that the existence of the group delay, defined as α = − 1
2π

dφ(ν)
dν

,

presupposes the existence of a decomposition (2) with φ a C1(R) function, such that the derivative

of φ is unique for any possible decomposition. As a consequence, we deduce that Hr is necessarily

C1(R) since Hr(ν) = H(ν)e−jφ(ν), where H(ν) is C∞ by construction (1). Such assertions are

proved hereafter.
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C. Existence of the Decomposition (2)

Theorem 1. ∀ν ∈ I = [−1
2 , 1

2 ], ∃Hr and φ of class C1(R), such that H(ν) defined in (1) can be

decomposed as H(ν) = Hr(ν)ejφ(ν).

Proof. Since any polynomial can be decomposed as a product of monomials, one can show that

every monomial is C1(R) to prove that the polynomial is C1(R). For the sake of clarity, we rewrite

(1) by using the z transform notation, where z = e2jπν . Thus, if we suppose that hM−1 6= 0, (1)

is factorized as:

H(z) =
M−1∑

m=0

hmz−m = hM−1

M−1∏

m=0

(z−1 − z−1
m ), (3)

where z−1
m is the root of the monomial (z−1 −z−1

m ). Let us denote zm = ρmejθm , where (ρm, θm) ∈

R
2. We aim to show that, for any m ∈ {0, 1, .., M − 1}, the monomials can be expressed as

z−1 − z−1
m = Hm(ν) = Hm,r(ν)ejφm(ν), (4)

where Hm,r and φm are C1(R) functions, which will be proved afterward.

Two cases have to be dealt with, according to ρm = 1 or ρm 6= 1:

• if ρm = 1, some straightforward trigonometric manipulations allow us to rewrite the mono-

mial as follows:

z−1 − z−1
m = e−2jπν − e−jθm (5)

= 2 sin
(

πν −
θm

2

)

e−j(πν+ θm

2
+ π

2
), (6)

where we identify Hm,r(ν) = 2 sin
(

πν − θm

2

)

and φm(ν) = −(πν + θm

2 + π
2 ). Note that both

functions are of class C∞(R), hence C1(R).

• If ρm 6= 1, Hm is of class C∞ from R to C
∗, as Hm(ν) 6= 0 for any ν ∈ I. Then, from lifting

property of the map p : R 7→ S1 given by p(ν) = Hm(ν)
|Hm(ν)| , where S1 is the unit circle (see

[9] for more details), we know that the polar form of Hm(ν) = Hm,r(ν)ejφm(ν) exists, with

Hm,r = |Hm| and φm of the same class as Hm. Hence Hm,r and φm are of class C1(R). This

concludes the proof.
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The existence of the decomposition in (2) being proved, we can now prove that the group delay

is unique for any decomposition module/phase of H. To this end, we show the uniqueness of the

derivative of φ.

D. Uniqueness of the Derivative of φ

Theorem 2. The derivative of φ is unique for any decomposition of H defined in (2).

Proof. Let νn and νn+1 be two consecutive zeros of H. We consider the interval Jn =]νn, νn+1[,

where H(ν) 6= 0. Furthermore, we denote by (Hr,1, φ1) and (Hr,2, φ2) two possible decompositions

of H. Thus, for any ν ∈ Jn, since |Hr,1(ν)| = |Hr,2(ν)|, we have Hr,1(ν) = κ(ν)Hr,2(ν), where

κ(ν) = {±1}. Therefore, we deduce that:

ej(φ1(ν)−φ2(ν)) = ±1, (7)

and then φ1(ν)−φ2(ν)
π

= kn, where kn ∈ Z. We proved that φ1 and φ2 are continuous on R, hence

they are on J̄n ∋ νn+1, thus φ1(νn+1)−φ2(νn+1)
π

= kn, and on J̄n+1 ∋ νn+1, thus φ1(νn+1)−φ2(νn+1)
π

=

kn+1. Then, for any n, we deduce that kn = kn+1 = k, and κ(ν) = (−1)k. To summarize, the above

results show that every possible decomposition of H can be deduced from a unique one (Hr, φ)

as ((−1)kHr, φ + kπ). Finally, this points out that the derivative of φ (which is proportional to

the group delay if the phase is linear) is unique and independent of the decomposition, which

concludes the proof.

Such as aforementioned, it is usual to consider Hr(ν) = |H(ν)| in the literature, or otherwise

the differentiability class of Hr and φ is not discussed [2], [4]. However, it can be noticed that if

the C0(R) condition is imposed to Hr instead of C1, as in the case of the modulus on the zeros

of H, then φ is not C1(R) and the group delay is not defined anymore. Furthermore, it must be

noticed that all the possible decompositions ((−1)kHr, φ + kπ), k ∈ Z, are of the same class.

Since at least one is of class C∞ (see proof of Theorem 1 for instance), then all decompositions

are C∞.
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III. Symmetry of FIR Filter with Linear Phase

The aim of this section is to show that any FIR filter has a linear phase if and only if their

real coefficients are either symmetric or antisymmetric. Mathematically, this can be expressed as

(A)







H(ν) = Hr(ν)ejφ(ν)

φ(ν) = β − 2παν

⇔







α = M−1
2

β ∈ {kπ, π
2 + kπ}

hm = εβhM−1−m

(B), (8)

εβ =







1, if β = π
2 + kπ

−1, if β = kπ

, (9)

k ∈ Z, (α, β) ∈ R
2, (10)

The proof of the implication (A) ⇐ (B) is straightforward and frequently proposed in the

literature such as [1], [7], therefore it is not reported in this paper. However, we propose an

original proof of the implication (A) ⇒ (B). This is undertaken by considering a very general

context, where no a priori constraint on the values of the filter coefficients hm is imposed. In

particular, it is mathematically possible to assume h0 = 0 or hM−1 = 0, even though, in practice,

it is unlikely that the extremal coefficients are zero.

A. Preliminaries

Let J be an interval J ⊂ I such as ∀ν ∈ J ,
∑M−1

m=0 hm cos(2πmν) 6= 0. The existence of J is

guaranteed since the number of roots of a trigonometric polynomial is finite. If non-zero FIR

filters with linear phase exists, for any ν ∈ J , the decomposition of the equation (1) = (2) into

real and imaginary parts yields






Hr(ν) cos(β − 2παν) =
∑M−1

m=0 hm cos(2πmν)

Hr(ν) sin(β − 2παν) = −
∑M−1

m=0 hm sin(2πmν)

. (11)

Hence, for any ν ∈ J , we can write:

tan(β − 2παν) =
−

∑M−1
m=0 hm sin(2πmν)

∑M−1
m=0 hm cos(2πmν)

. (12)

Then, after some straightforward trigonometric manipulations, we obtain:

M−1∑

m=0

hm sin(2π (α − m)
︸ ︷︷ ︸

αm

ν + β) = 0, (13)
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where αm is defined for the sake of readability. In the following, we analyze the linear indepen-

dence of the elements of set {sin(2παmν + β), 0 ≤ m ≤ M − 1, ν ∈ J} in order to deduce the

symmetry/antisymmetry properties of the coefficients hm.

It is usually claimed in the literature that no additional result can be deduced from (13), except

that "obvious" non-null solutions are obtained when β ∈ {kπ, π
2 + kπ}, k ∈ Z, and α = M−1

2 ,

and in that case the filter is either symmetric or antisymmetric. However, this is a shortcut

that should be mathematically proved. We hereafter provide an original and complete proof of

(A) ⇒ (B) from (13), from which we deduce the α value based on mathematical considerations.

B. Linear Independence and Notations

It must be emphasized that if the |αm| elements in (13) are all distinct, then the functions

ν ∈ J 7→ sin(2παmν + β), 0 ≤ m ≤ M − 1, are linearly independent, except if one of the sin

function is null. In any case, the only solution is either the null filter, or a trivial single-coefficient

filter. As a consequence, we deduce that a non-trivial solution exists only if there are at least

two different indexes m and m′ such that |αm| = |αm′ |, or equivalently αm = −αm′ , and hence:

m + m′

2
= α. (14)

This remark suggests splitting the index of the sum in (13) into two subsets: one gathering

of indexes m for which a value |αm| appears only once, denoted by E1, and one for which |αm|

appears twice, denoted by E2. By construction, E1 ∪ E2 = {0, 1, .., M − 1} and E1 ∩ E2 = {∅}:

it is a partition of {0, 1, .., M − 1}.

Accordingly, the development of the sum in (13) leads to the following expression:

∑

m∈E1

hm sin(2παmν + β) (15)

+
∑

m,m′∈E2

[

(hm + hm′) cos(2παmν) sin(β) (16)

+ (hm − hm′) sin(2παmν) cos(β)
]

= 0. (17)

C. h Symmetry and β Possible Values

E1 Examination: By linear independence of the functions sin(2παmν + β), we deduce that if

m ∈ E1, hm = 0, except in the case of a null sin function, i.e. αm = 0 and β = kπ, k ∈ Z.
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Fig. 1. Filter coefficients, Min = 2 and Max = 8.

In the latter case, m = α and hα ∈ R. Moreover, note that, if α is an integer, from (14)

α ∈ {0, 1, .., M − 1}, and α ∈ E1 because |α − m| = 0 can appear only once.

E2 Examination: The linear independence of the families sin(2παmν) and cos(2παmν), in the

second sum in (17), yields: if cos(β) sin(β) = 1
2 sin(2β) 6= 0, i.e. β 6= k π

2 , k ∈ Z, the expression

(17) holds only if hm + hm′ = hm − hm′ = 0, i.e.:

hm = hm′ = 0. (18)

This result imposes specific values to β and coefficient pairing in order to obtain non-zero

solutions, namely:

• β = 0 [π], and in this case (17) holds if hm = h2α−m, m ∈ E2, which corresponds to the

symmetric case;

• β = π
2 + kπ, k ∈ Z, and in this case (17) holds if hm = −h2α−m, m ∈ E2, which corresponds

to the antisymmetric case.

D. α Value

Let Min and Max be the indexes defined such as follows:

Min = arg min
m

hm 6= 0, (19)

Max = arg max
m

hm 6= 0. (20)
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The above definition of Min and Max is illustrated in Fig. 1, where M = 10. In this example,

it can be observed that Min = 2 and Max = 8. We now investigate the belonging of Min and

Max to E1 and E2 in order to derive the α value:

• Case 1: Min and Max belong to different subsets. For instance, suppose that Min ∈ E1

and Max ∈ E2. By examining E1 in Section III-C, we know that hMin 6= 0, then αMin = 0,

which yields α = Min and β = kπ, k ∈ Z. Since Max ∈ E2, E2 6= {∅}, which contains at

least two indexes m, m′ necessarily larger than Min. Hence α = m+m′

2 > Min, which is in

contradiction with Min = α.

The same reasoning can be carried out when Max ∈ E1, which also leads to a contradiction.

As a consequence, we deduce that both Min and Max belong to either E1 or E2, such as

hereafter investigated.

• Case 2: Min, Max ∈ E2: we deduce from (14) that hMin = h2α−Min and hMax = h2α−Max,

where 2α − Min and 2α − Max belong to E2. Hence, we obtain Min ≤ 2α − Max and

2α − Min ≤ Max and therefore Min+Max
2 ≤ α ≤ Min+Max

2 , i.e.:

α =
Min + Max

2
. (21)

Combined with those presented in Section III-C, the result in (21) highlights that the

coefficients of the filter are (anti)symmetric to α.

• Case 3: Min, Max ∈ E1: the unique trivial solution is Min = Max = α, β = kπ, k ∈ Z. This

result corresponds to the case where the filter is composed of a unique non-zero coefficient

hm = hα ∈ R.

E. Summary

It has been shown that a constant group delay necessarily implies that:

• α = Min+Max
2 ,

• β ∈ {kπ, π
2 + kπ}, k ∈ Z, and εβ =







1, if β = π
2 + kπ

−1, if β = kπ

.

• hm = εβh2α−m, which shows that the coefficients are (anti)symmetric to α.

It must be emphasized that in practice, the extremal coefficients are non-zero values, i.e.

Min = 0 and Max = M − 1. Eventually, even if it means discarding null coefficients at the
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edges, we recognize the usual expression α = M−1
2 such as defined in (10). Thus, we have shown

that (A) ⇒ (B), which finally proves the equivalence (A) ⇔ (B).

IV. Conclusion

In this paper, we proposed an original proof of the equivalence between the linear phase of

FIR filters and the (anti)symmetry of the coefficients. As a prerequisite, the uniqueness of the

group delay for any decomposition of the filter frequency response has been proved as well. The

proof of equivalence has been carried out by considering a very general model, in which the taps

of the filters are elements of a mathematical sequence. From this paradigm, we analyzed the

independence of sin functions in order to deduce some properties of the FIR filters, namely the

(anti)symmetry property of the coefficients, as well as the values of the linear phase parameters

α and β. It is worth noting that the proposed proof remains valid if FIR filters with complex

coefficients are considered. In that case, however, the coefficients are conjugate (anti)symmetric.
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