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Abstract

This paper treats the estimation of a flat fading Rayleigh channel with Jakes’

Doppler spectrum model and slow fading variations. A common method is

to use a Kalman filter (KF) based on an auto-regressive model of order p

(AR(p)). The parameters of the AR model can be simply tuned by using the

correlation matching (CM) criterion. However, the major drawback of this

method is that high orders are required to approach the Bayesian Cramer–

Rao lower bound. The choice of p together with the tuning of the model

parameters is thus critical, and a tradeoff must be found between the numer-

ical complexity and the performance. The reasonable tradeoff arising from

setting p = 2 has received much attention in the literature. However, the

methods proposed for tuning the model parameters are either based on an

extensive grid-search analysis or experimental results, which limits their ap-
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plicability. A general solution for any scenario is simply missing for p = 2

and this paper aims at filling this gap. We propose using a Minimization of

Asymptotic Variance (MAV) criterion, for which a general closed-form for-

mula has been derived for the optimal tuning of the model and the mean

square error. This provides deeper insight into the behaviour of the KF with

respect to the channel state (Doppler frequency and signal to noise ratio).

Moreover, the paper interprets the proposed solution, especially the depen-

dence of the shape of the optimal AR(2) spectrum on the channel state.

Analytic and numerical comparisons with first- and second-order algorithms

in the literature are also performed. Simulation results show that the pro-

posed AR(2)-MAV model performs better than the literature and similarly

to AR(p)-CM models with p ≥ 15.

1. Introduction

This paper treats the estimation of a flat fading channel in the context of slow

fading, i.e. normalized Doppler frequencies less than 10−2. Note that this

context includes a large number of practical applications, including vehicu-

lar applications. For instance, with the vehicular communication standard

802.11p[2], this corresponds to a speed of hundreds of km/h (228 km/h). The

principle of this channel estimation is the tracking of the complex baseband

equivalent flat fading coefficient, called the channel complex gain (CG), which

will be denoted by α. Here, the widely accepted Rayleigh random model with

Jakes’ Doppler spectrum (a model proposed by Clarke in 1968 [3]) will be

employed. Common approaches to channel estimation are to employ adap-

tive filters, such as least mean square (LMS) and Kalman filters (KF). The
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LMS is a computationally less demanding technique than KF, but at the

cost of a slower convergence. The design of KF requires selecting a linear

recursive state-space model for the parameter to be tracked [4–8]. As the

true CG does not follow such a model, the linear recursive state-space model

is considered an approximation. Thus, it has to be selected and tuned care-

fully in order to limit any degradation. The conventional state-space model

is an autoregressive model of some order p (AR(p))[9, 10], whose parame-

ters are tuned by matching the autocorrelation of the true channel CG with

that of the AR process. This criterion is known as the correlation matching

(CM) criterion [9, 11–13]1 and the solution is obtained by solving the Yule–

Walker equations [14]. Over the past two decades, an extensive literature

on Rayleigh Channel estimation was based on an AR(p)-KF tuned using the

CM criterion [12, 15–18, 11] and still continues nowadays [19–24].

1.1. Challenge of slow fading channel estimation with an AR(p)-Kalman fil-

ter of low order

In the context of very high mobility, such as high speed trains, [25, 26] used

an AR(p)-KF of order p = 1 tuned with the CM criterion. Simulation results

show outstanding performance in such scenarios in terms of MSE. In the most

common context of a slow fading scenario, the use of a CM criterion with

an AR(p)-KF of low order (p = 1 or 2) for Clarke model channel estimation

was also usual up to ten years ago [12, 15, 16, 13]. However, those papers

1Note that this is one of the methods used in Matlab to approximate correlated fading

channels for the computer simulation of the Rayleigh fading channel model with Jakes’

Doppler spectrum.
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do not compare the MSE to lower bounds such as the Bayesian Cramer–Rao

Bound (BCRB). Abeida et al. [27] make this comparison and note an MSE

very far from the modified CRB (see [27] fig. 3, with fdT = 7.38 × 10−4,

p = 1), arguing that the CRB is not achievable in a low SNR region. But

the right explanation, due to Ghandour-Haidar et al. [28] in 2012, after the

preliminary work of Barbieri et al. [29] in 2009, is that the CM criterion

with low order p is not able to follow the dynamics of the fading, since

the dynamic MSE is approximately constant with respect to the Doppler

frequency (see eq. (22) or fig. B.1 in [28]), whereas it should be able to

decrease for low Doppler (the channel is theoretically easier to estimate). In

conclusion, disappointing performance is obtained with low-order AR(p)-KF

tuned with the CM criterion for the slow fading scenario, which is the most

common one for practical applications, and solutions have to be found. It

should be noted that in spite of this important warning highlighted from 2012,

many authors still continue to use the KF with an AR (p = 1 or 2) model

tuned with the CM criterion for Clarke channel estimation [19–24] with low

to moderate Doppler frequencies. It appears thus important to continue to

communicate on this point, and recommend alternative solutions.

1.2. Existing techniques, limitations, and open questions

In [9] and [18] there is proposed a correction of the CM criterion by the ad-

dition of a very small regularization term ε to the diagonal of the correlation

matrix, to enhance its conditioning. This correction considerably improves

the performance, but the parameter ε is only set by simulation and high or-

ders are still required in order to get closer to the BCRB, as can be seen in

Fig. 1, where the MSE performance for the AR(p)-CM+ε is presented. Thus,
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Figure 1: Performance in terms of MSE of the AR(p)-CM+ε where ε is set according to

[9] for fdT = 10−3 and SNR = 10 dB.

the choice of the order together with the tuning of the model parameters is

critical and a trade-off must be found between numerical complexity and per-

formance. The case p = 1 was fully resolved in [28, 29], but it leaves room for

possible improvement regarding the BCRB. The reasonable trade-off arising

from p = 2, when considering a tuning other than the CM, has received much

attention in the literature, but without a satisfactory analytical solution, as

detailed below.

The AR(2) model has one pair of parameters to be tuned: the coefficients

{a1, a2} of the linear difference equation, or, equivalently, the resonance

frequency and the pole radius {fAR(2), r}. [30] provides analytical tuning for

only one parameter, fAR(2), while the second parameter r is fixed through

intensive simulations with a search grid. Similarly, [31, 4, 32] use the same
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tuning for fAR(2) and additionally give an analytical expression for r via

experimentation in terms of the Doppler frequency without considering the

signal to noise ratio (SNR). In [29], {a1,a2} depends on a set of coefficients

that have to be evaluated off-line using look-up tables from simulation results

for a range of values of the SNR. Consequently, these solutions work well

only in the specific context for which they have been tuned, and a general

analytical solution for the tuning of the AR(2) model, that will work in any

scenario, is still missing.

Recently, an alternative model, the random walk (RW) model, with a mini-

mum asymptotic variance (MAV) criterion, has been employed for KF chan-

nel estimation [33, 34]. The RW model is also a Gauss–Markov model (when

p = 1, or an integrated version if p > 1) but unlike the AR(p) model, the

RW(p) model is not stationary: it has a variance that grows to infinity with

the number of iterations, and it is why it is most often used for the (modulo-

2π) phase estimation problem. Analytic solutions for the tuning of the RW(p)

model have been found for p = 1 [35], p = 2 [33] and p = 3 [36]. We can

conclude from these studies that the MSE performance of the RW(p)-KF is

close to the BCRB for p ≥ 2.

The questions that now arise are: Is it also theoretically possible to obtain a

performance close to the BCRB with the AR(2) model? Is this performance

equivalent to or better than what was obtained with the RW(2) model? In

addition to being open questions that deserve better answers than those that

can be found in the literature, there would be an advantage to working with

a stationary model, which the RW(2) model is not. The answers to these

questions will be given in this paper.
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Note that part of the results of the present paper was presented in the con-

ference paper [1]. However, [1] followed a sub-optimal approach that was

slightly different: the adjustment of the parameter a1 imposed a linear con-

straint with the Doppler frequency for the parameter a2 deduced from grid

search. Furthermore, no complete proof, interpretation, or extensive com-

parison was provided.

1.3. Contributions of this paper

In this paper, a novel optimal tuning of an AR(2) model with Kalman filter

is proposed to achieve better performance in terms of MSE channel estima-

tion in radio mobile communications with a flat fading scenario, assuming a

Clarke model. To sum up, the contributions are as follows:

• Optimal tuning of an AR(2) model under the MAV criterion. Closed-

form expressions for the tuning of the parameters are provided as func-

tions of the channel state (Doppler frequency and SNR), which make

them highly useful in practice. Moreover, an expression for the opti-

mal MSE is provided, which is useful to predict the performance of the

channel estimation, also with respect to the channel state. To do so,

the Riccati equations of the asymptotic KF are solved by resorting to

an eigenvalue based method commonly used in optimal linear control

[37].

• New interpretations of the power spectral density (PSD) of the optimal

AR(2) process are also provided. More precisely, a closed-form expres-
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sion for the damping ratio sheds light on the shape of the PSD. Unlike

classical parametric modeling, where the goal is to fit the PSD of an

AR process to the true PSD, here the PSD of the optimal AR process

is not necessarily the one that best fits the true PSD. We demonstrate

that this is particularly true with harsh channel states, i.e. relatively

high Doppler frequencies (still under the slow fading assumption) and

low SNR. This is understandable, since our criterion is an optimal es-

timation rather than a modeling criterion. In addition, interpretations

of the autocorrelation functions are also provided.

• An extensive and fair comparison with the algorithms commonly used

in the literature for tracking time-varying flat fading channels is pro-

vided, from theoretical formulas or numerical simulations. The consid-

ered algorithms are Kalman filters based on an AR(p) model with CM

[11–13] and improved criterion [4, 31, 28], or based on an RW(p) model

[33], but also least mean square (LMS) algorithms [35, 38, 39] or rather

their integrated versions [40, 41] to have the same model order p = 2

as the proposed algorithm.

1.4. Outline of this paper

The rest of this paper is organized as follows. Section 2 provides an introduc-

tion to the system model. In this section, the true channel model is given,

then the approximate channel model using the AR(2) and the equivalent

pairs of parameters of interest are presented. Section 3 presents the Kalman

filter equation, the Kalman filter in steady-state, and analytic expressions
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of the Kalman filter gain, which will be useful in the optimization process.

The variance of the MSE in steady-state and the optimization are given in

Section 4. Interpretations and simulation results are provided in Section 5.

Section 6 concludes the paper.

2. System Model

2.1. True channel model

We consider the estimation of a flat Rayleigh fading channel. The observation

is 2

y(k) = α(k) + w(k), (1)

where k is the time index, w(k) is a zero-mean additive white circular complex

Gaussian noise with variance σ2
w, and α(k) is a zero-mean correlated circular

complex Gaussian channel gain with variance σ2
α. The signal to noise ratio

is SNR = σ2
α/σ

2
w and the normalized Doppler frequency of this channel is

fdT , where T is the symbol period. In this paper, slow fading is assumed,

i.e. fdT � 1. This assumption corresponds to many transmission scenarios,

e.g. 802.11p [2], where the carrier frequency is around 5.9 GHz and the

symbol period is 8µs. As fdT is proportional to the symbol period T , values

around 10−2 can correspond to a relatively high mobility with such systems

(hundreds of km/h). This prompts the need for a comprehensive study of

2 Model (1) assumes that symbols are normalized and known (or decided), in addition

to the flat fading assumption. Although this model is admittedly simplistic, it can be

applied to different (more involved) contexts, such as pilot-aided multi-carrier systems in

frequency-selective wireless channels [42].
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Figure 2: Centred Jakes’ PSD for fdT = 10−3.

channel estimation for fdT ≤ 10−2 � 1 . The Jakes’ Doppler spectrum

(illustrated in Fig. 2) for this channel is

Γ(f) =


σ2
α

πfd

√
1−

(
f
fd

)2 if |f | < fd.

0 if |f | > fd.

(2)

It has two infinite peaks when f tends to fd and −fd. The autocorrelation

coefficient Rα[m] of the stationary channel CG α(k) is defined for a lag m by

Rα[m] = E{α(k).α
∗
(k−m)} = σ2

αJ0(2πfdTm), (3)

where J0 is the zeroth-order Bessel function of the first kind.
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2.2. Approximate channel model

In this article, the true channel CG is approximated by an AR(2) process

denoted by α̃(k):

α̃(k) = a1α̃(k−1) + a2α̃(k−2) + u(k), (4)

where u(k) is a complex white circular Gaussian state noise with variance

σ2
u. The possible range of the real parameters of the AR(2) are a1 ∈ [0, 2[

and a2 ∈]− 1, 0[ to ensure stationarity. Moreover, to approximate the Jakes’

Doppler spectrum in the slow fading scenario, a1 and a2 will be necessarily

close to 2 and -1, respectively (as will be deduced later from (11)).

Assume that α̃(k) has the same power as α(k), i.e. Rα̃[0] = σ2
α. The Yule–

Walker equations are [14]

Rα̃[1] =
a1Rα̃[0]

1− a2
(5)

Rα̃[2] = a1Rα̃[1] + a2Rα̃[0] (6)

σ2
u = Rα̃[0]− a1Rα̃[1]− a2Rα̃[2]. (7)

Using (5), (6) and (7) also gives σ2
u as a function of a1 and a2 alone, which

will be useful for the following:

σ2
u = σ2

α

(1 + a2)(1− a1 − a2)(1 + a1 − a2)
(1− a2)

. (8)

Note that the CM solution for the tuning of a1 and a2 is obtained from (5)

and (6) by imposing Rα̃[p] = Rα[p] for p = {0, 1, 2}.

2.3. Equivalent pairs of parameters of interest for {a1, a2}

So far, one pair of parameters {a1, a2} has been presented. Now, two equiv-

alent pairs of parameters will also be considered. The optimal tuning will

11



be investigated with the second pair, while the third pair will be used for

purposes of interpretation.

2.3.1. Parameters {fAR(2)T, r}

The pair of parameter {fAR(2)T, r}, equivalent to {a1, a2}, is derived from

the transfer function of the AR(2) model, obtained from the z-transform of

(4):

H(z) =
1

1− a1z−1 − a2z−2
. (9)

In order to design a low-pass filter, a set of complex conjugate poles should

be placed in the z-plane at z1 = r ·e−j2πfAR(2)T and z2 = r ·e+j2πfAR(2)T [4, 30]:

H(z) =
1

(1− z1z−1)(1− z2z−1)
.

(10)

Comparing Eqs (9) and (10), we have

a1 = 2r cos(2πfAR(2)T ) a2 = −r2, (11)

where r ∈ [0, 1[ is the radius of the poles, and fAR(2)T ∈ [0, 1[ is the normal-

ized resonance frequency of the AR(2) process.

In order to obtain a resonance peak, it is well known that r must be close

to 1. Put δ = 1 − r. This leads to the assumption 0 < δ � 1, which will

be exploited to get simple approximate closed-form expressions. Then, to

position the peak at fdT , the resonance frequency fAR(2)T must be around

fdT , yielding fAR(2)T � 1. Initially, fAR(2)T was fixed to fdT [4]. Then, [31]

showed that the best choice for the Kalman estimation is actually

fAR(2)T =
1√
2
fdT. (12)
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Figure 3: An example of PSDs for an AR(2) for fdT = 10−3 with fAR(2)T = fdT√
2

and

different values of δ = 1− r.

The compensation factor
√

2 has also been justified in [30]. Assumption

(12) is adopted a priori in this article, and will be in addition verified in

Fig. 5 through simulations. However, in [30, 31], no expression is given

for the tuning of r. The optimal tuning of r is the topic of the next sec-

tions. To end this subsection, an example of the PSD of the AR(2) process

S(f) = σ2
u |H(ej2πfT )|2 is given in Fig. 3 for three different values of δ, thus

illustrating the connection between the value of δ and the height of the peaks.

2.3.2. Parameters {fn,AR(2)T, ζAR(2)}

The equivalent natural frequency fn,AR(2)T and damping ratio ζAR(2) of the

discrete-time second-order low-pass filter H(z) could also be investigated.
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These parameters are indeed the most used to tune second order filters, in

the case of continuous-time systems [43, 34]. The following notation will be

used in the following sections: ωAR(2) = 2πfAR(2) and ωn,AR(2) = 2πfn,AR(2).

Even though we will tune the AR(2) process with {fAR(2)T, r}, this third

pair of positive parameters {fn,AR(2)T, ζAR(2)} is of interest due to its physical

meaning and we will refer to it for purposes of interpretation. Indeed, it is

known that the height of the PSD peaks is inversely proportional to ζAR(2),

actually just like δ. So it is legitimate to ask about the link between these

two pairs of parameters. This is found in Appendix A.1, where we prove the

following relations between {fn,AR(2)T, ζAR(2)} and {fAR(2)T, r}:

fn,AR(2)T =
1

2π

√
(2πfAR(2)T )2 + ln(r)2 (13)

ζAR(2) =
−ln(r)

2πfn,AR(2)T
(14)

' δ

ωAR(2)

. (15)

The transition from (14) to (15) is detailed in Appendix A.2. With this

formula, we show, as expected, that the coefficient δ of the AR(2) process

is proportional to the damping ratio, but that it is also proportional to the

resonance frequency of an equivalent second-order analog system.

Note that as already stated, the damping ratio should be ζAR(2) � 1. Then

the formula fn,AR(2)T =
fAR(2)T√
1− ζ2AR(2)

, obtained from (A.4), becomes

fn,AR(2)T ' fAR(2)T. (16)

Hence, the resonance frequency of the AR(2) process and the natural fre-

quency of the equivalent second-order system have (almost) the same value.
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3. The Kalman Filter

First of all, recall that we chose the MAV criterion, which consists in min-

imizing the mean square error (MSE) in steady state mode (k → +∞),

σ2
ε = E

{
|α(k) − α̂(k|k)|2

}
, where α̂(k|k) is the estimate of α(k) given by the

Kalman filter, as detailed in Section 3.1. Then, to implement this criterion,

an expression for the steady state Kalman gain will be found in Section 3.2.

An approximate version, more tractable for the optimization, will be pro-

vided in Section 3.3, together with the list of the assumptions that allow us

to derive it. All these assumptions match the specified context of slow fading

and SNR greater than one, which is in general the case in practice.

3.1. The equations of the Kalman filter

The second order autoregressive model can be reformulated as a state space

model model. The state vector to be considered includes the channel CG

at k and k − 1, α(k) = [α(k), α(k−1)]
T and α̃(k) = [α̃(k), α̃(k−1)]

T . The state

transition matrix is M =

a1 a2

1 0

 and the state noise vector is u(k) =

[u(k), 0]T . The selection vector has dimensions 1×2 and is given by sT = [1, 0].

The state evolution of (4) and observation (1) becomes

α̃(k) = Mα̃(k−1) + u(k) (17)

y(k) = sTα(k) + w(k). (18)

Now we define the prediction vector α̂(k|k−1) =
[
α̂(k|k−1), α̂(k−1|k−1)

]T
and the

estimation vector α̂(k|k) =
[
α̂(k|k), α̂(k−1|k)

]T
, with α̂(k|j) being the estimate of

the CG at time k given the observation at time j. Regarding the state-space

formulation (17) and (18), the two stages of the filter are

15



Time update equations:

α̂(k|k−1) = Mα̂(k−1|k−1) (19)

P(k|k−1) = MP(k−1|k−1)M
H + U (20)

Measurement update equations

K(k) =
P(k|k−1)s

sTP(k|k−1)s + σ2
w

(21)

α̂(k|k) = α̂(k|k−1) + K(k)(y(k) − sT α̂(k|k−1)) (22)

P(k|k) = (I2 −K(k)s
T )P(k|k−1), (23)

where K(k) =

K1(k)

K2(k)

 is the Kalman gain vector, U =

σ2
u 0

0 0

, I2 is the

2 × 2 identity matrix, and P(k|k) and P(k|k−1) are, respectively, the 2 × 2 a

posteriori and the predicted error covariance matrices.

3.2. Steady-state Kalman filter

Since the linear system is observable and controllable, an asymptotic regime

for which the covariances and gain of the filter become constant is quickly

reached:

K(k) = K(k+1) = K∞ =

K1

K2

, P(k|k) = P(k+1|k+1) = P∞ =

P11 P12

P21 P22

 and

16



P(k|k−1) = P(k+1|k) = P
′
∞ =

P ′11 P
′
12

P
′
21 P

′
22

.

Note that once the KF attains the steady state, it becomes a fixed coefficient

filter. After the convergence, the total complexity is reduced to the number of

multiplications required at each iteration for the computation of α̂(k|k−1) and

α̂(k−1|k−1). The total complexity of the steady-state AR(p)-KF is (3p2 + 2p)

multiplications, where p = 2 here, versus 1 multiplication for the LMS. It will

be seen in Section 4 that analytical expressions for K1 and K2 as functions

of the AR(2) parameters a1, a2, σ
2
u and the observation noise variance σ2

w are

required for tuning r. First, we focus on K1, and K2 will be deduced from K1.

To find K1, we need to solve the Riccati equations, which are the equations

(20), (21) and (23) in steady state (k →∞). The Riccati equations are

K1 =
P
′
11

P
′
11 + σ2

w

(24)

K2 =
P
′
21

P
′
11 + σ2

w

(25)

P ′11 P
′
12

P
′
21 P

′
22

 =

a21P11 + a1a2P12 + a1a2P21 + a22P22 + σ2
u a1P11 + a2P21

a1P11 + a2P12 P11

 (26)

P11 P12

P21 P22

 =

 (1−K1)P
′
11 (1−K1)P

′
12

(−K2)P
′
11 + P

′
21 (−K2)P

′
21 + P

′
22

 . (27)
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It can be seen from (24) that we need to find P
′
11 in order to deduce K1. An

exact formula for P
′
11 is given in Appendix B.1 and for K2 in Appendix B.2.

3.3. An approximate expression for K1

The expression for K1 established previously is not mathematically tractable

enough to get an analytical expression for the optimization of σ2
ε . To do so,

the exact expression has to be approximated in closed form, by using the

following assumptions.

3.3.1. Assumptions used for the approximation

(i) fdT � 1 and then fAR(2)T � 1, i.e. slow fading assumptions.

(ii) σw ≤ σα, i.e. the SNR is greater than or equal to 1.

(iii) δ � 1 and (iv) ζAR(2) � 1, i.e. the presence of a pair of even

symmetric peaks in the spectrum.

(v) σu � σw, i.e. the process noise is small compared to the measurement

noise, as is the case in most applications [44, 7] with usual SNR (ii).

(vi) (2πfAR(2)T )2 � σu
σw

it will be seen afterwards, at the end of this section

(through (29), also (34)), that this means that the Kalman filter is

sufficiently fast compared to the fading process.

Assumptions (i), (ii), (iii) and (iv) lead to the following relation (see Ap-

pendix A.3):

(vii) δ2 � σu
σw

.
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3.3.2. Expression for σ2
u

Using Assumptions (i) and (iii), an expression for σ2
u is developed in terms

of r and fAR(2)T in Appendix H. The approximate expression for σ2
u is

σ2
u ' 4σ2

αr(1− r)(ωAR(2)T )2, (28)

where ωAR(2)T = 2πfAR(2)T .

It should be noted that r is the only variable in (28), due to the fact that

ωAR(2)T is fixed using (12). For the purpose of simplicity, the optimization

will be carried out with respect to σ2
u (or a parameter directly linked to σ2

u)

instead of r, and the results will then be expressed in terms of r by using (28).

3.3.3. Formula for K1

Based on Assumptions (i)–(v), we prove in Appendix C that the exact ex-

pression for K1 (24) can be approximated by (29), and then by (30) in using

(28):

K1 '
√

2σu
σw

(29)

'

√
4σαr

1
2 (1− r) 1

2ωAR(2)T

σw
. (30)

From (29) and Assumption (v) it can be deduced that

(viii) K1 � 1 and from (vi) and (vii) it can be respectively deduced that:

(ix) K1 � δ and (x) K1 � fAR(2)T .

All these assumptions on K1 mean that the Kalman gain has been chosen to

be small due to (viii) because of the slow fading assumption but large enough
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due to (x) to perform the tracking (see (31) and (34), where K1 plays the

role of the normalized equivalent bandwidth). Equation (29) means that for

a given noise level, the value of the Kalman gain K1 directly increases with

σu.

4. Error Variance in Steady-State and Optimization

Now that a closed-form expression for the Kalman gain has been established,

we can proceed to the criterion. To do so, we first have to derive an expression

for the error variance, i.e. the steady state MSE, as a function of the Kalman

gain in 4.1. Then, the optimization is carried out in 4.2.

4.1. Error variance in steady-state

Write α̂(z), α(z), y(z), w(z) for the z-transforms of α̂(k|k), α(k), y(k) and w(k),

respectively. Denote by L(z) the transfer function of the filter that gives α̂(z)

with the observation y(z) as input. In a steady state, the solution is given

by the system of equations (19) and (22) of the KF by (see Appendix E)

L(z) =
K1 + a2K2z

−1

1 + z−1(a2K2 − a1(1−K1))− a2(1−K1)z−2
, (31)

where a1 and a2 were defined in (11) in terms of r (and then K1 from (30))

and K2 is expressed in (B.20) in terms of a1, a2 and K1. In comparison with

second order systems [34], this corresponds to a second-order low-pass fil-

ter with normalized natural frequency ωn,L(z)T ' K1√
2

and a damping factor

ζL(z) '
√
2
2

(Appendix F).

From the filtering equations, we have α̂(z) = L(z)(α(z) + w(z)) (illustrated

20



Figure 4: Scheme of the KF in steady-state

in Fig. 4) and the estimation error ε(z) is

ε(z) = α(z)− α̂(z) = (1− L(z))α(z)− L(z)w(z). (32)

Therefore, it remains to calculate the power of the error from ε(z) (32),

which can be split into two additive contributions:

σ2
ε = σ2

εw + σ2
εα. (33)

• The static error variance σ2
εw is due to the additive noise w(k) filtered

by the low pass filter L(z). The details of the calculation, together with

the analytical results, are given in Appendix G, where we also derive an

approximate expression by resorting to Assumptions (i), (ii), (iii), (iv), (v),

and (viii):

σ2
εw ' σ2

w

3K1

4
. (34)

Equation (34) means that
3K1

4
plays the role of the normalized equivalent

bandwidth of the closed-loop steady-state Kalman L(z), which a posteriori

sheds light on Assumptions (v), (vi), (viii) and (x).

• The dynamic error variance σ2
εα is due to the variations of α(k) filtered by

the high pass filter 1− L(z):

σ2
εα ' σ2

α

6π4(fdT )4

K4
1

. (35)
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An exact expression for σ2
εα as well as an approximation for it are given in

Appendix G.1.

In summary, we have the global MSE σ2
ε in terms of K1 and fdT :

σ2
ε ' σ2

w

3K1

4
+ σ2

α

6π4(fdT )4

K4
1

, (36)

where K1 is in terms of σu and σw (see (29)).

4.2. Optimization

In this section, we first look for the minimization of σ2
ε . To do so, we pro-

ceeded in two steps. First, we find the optimal σ2
u, denoted by σ2

u(MAV),

that minimizes σ2
ε . Then, the expressions for r and ζAR(2) are deduced from

σ2
u(MAV) in terms of the channel state (fdT and SNR).

Thus, expressing (36) with (29), differentiating it with respect to σ2
u, and

equating the derivative to zero, yields

σ2
u(MAV) = 4π

16
5 (σ2

α(fdT )4
√
σw)

4
5 (37)

and the theoretical minimum MSE

σ2
ε(AR(2)-MAV) =

15

8
π

4
5 (σ2

α)
1
5 (fdTσ

2
w)

4
5 . (38)

Part of this work has been presented in [1], but without rigorous justifica-

tions. In [1], a sub-optimal adjustment of {a1, a2} was proposed by giving

an analytical expression for a1 in terms of a2, where a2 is given by imposing

a linear constraint obtained through experimentation, with respect to the

Doppler frequency. In the following, the optimal tuning of r and ζAR(2) is

given in terms of the Doppler frequency and the SNR. This is one of the

contributions of the present paper.
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4.2.1. Optimal tuning of r and ζAR(2)

The optimal tuning of the parameters r and ζAR(2) are given in this section.

Using the expression for σ2
u defined in (28),

σ2
u

4σ2
α(ωAR(2)T )2

' (1− r)r. (39)

Hence r is one solution of the second degree equation

r2 − r +
σ2
u

4σ2
α(ωAR(2)T )2

' 0. (40)

Solving this equation, we find

r ' 1

2
+

1

2

√
1− σ2

u

σ2
α(ωAR(2)T )2

. (41)

Due to the fact that
σ2
u

σ2
α(ωAR(2)T )2

' 4(1− r)r � 1 (Eq. (39)), we have

r ' 1− σ2
u

4σ2
α(ωAR(2)T )2

. (42)

Equation (42) is always valid under the assumptions 3.3.1.

In the special case of the MAV criterion, one can calculate the optimal radius

r(MAV) from the optimal state noise σ2
u(MAV) (37):

r(MAV) = 1−
σ2
u(MAV)

4σ2
α(ωAR(2)T )2

= 1−
π

6
5 (fdT )

6
5

(
σ2
w

σ2
α

) 1
5

2
, (43)

where ωAR(2)T = 2πfAR(2)T and fAR(2)T is fixed using the optimal choice

already defined in (12). Having r(MAV), an expression for the dumping ratio of
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the AR(2) process ζAR(2) (MAV) can be deduced from (15), using that r = 1−δ:

ζAR(2) (MAV) '
1− r(MAV)

ωAR(2)

'
√

2

4

(
πfdT

σ2
w

σ2
α

) 1
5

. (44)

The above equation gives insight into the shape of the PSD of the optimal

AR(2) process. As mentioned previously, the height of the peak is inversely

proportional to ζAR(2). Thus, (44) means that the greater the SNR and the

lower the fdT , the higher the peak. This will be illustrated in the simulation

section.

4.3. Comparison with AR(1)-MAV and RW(2)

The AR(1)-MAV has been obtained in [28], where the theoretical MSE was

calculated as follows:

σ2
ε(AR(1)-MAV) '

3

2
.π

2
3 (σ2

α)
1
3 (fdTσ

2
w)

2
3 . (45)

Comparing (38) and (45), we have

σ2
ε(AR(2)-MAV) < σ2

ε(AR(1)-MAV). (46)

It will be seen later, in the simulation section, that AR(2)-MAV outperforms

AR(1)-MAV, which confirms the comparison above.

On the other hand, the performance of the stationary AR(2) model under

the MAV criterion is close to the one obtained with a non-stationary model,

the second order random walk (RW(2)) model [33] under the same criterion:

σ2
ε(RW(2)-MAV)

σ2
ε(AR(2)-MAV)

= 2
2
5 (47)
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Note that the expression for the transfer function L(z) obtained in (31) for

the AR(2)-KF is different from the one obtained in [33] for the RW(2) model,

due to the difference between the two discrete-time second-order systems. In

addition, the two components of the Kalman gain are nearly equal (K2 ' K1,

see Appendix D) for the AR(2) model, while this is not the case for the RW(2)

model, for which K2 '
K2

1

2
[33]. Despite these differences, the damping fac-

tors (issuing from the equivalent approximate analog second-order systems)

of the two KFs have the same value ζL(z) ≈
√
2
2

, which means that the shapes

of the frequency domain transfer functions L(ej2πfT ) of the AR(2)-KF and

RW(2)-KF are very close, under the slow fading assumption. Also, in both

cases, the normalized natural frequency is linked to the first component of

the Kalman gain by ωn,L(z)T ≈ K1/
√

2. Table 1 provides a clear presenta-

tion of the differences and common points between the AR(2)-MAV, AR(1)-

MAV[28] and RW(2) [33] Kalman filters.

5. Simulation Results

5.1. Illustration of system parameters and interpretation

The objective of this section is to illustrate and interpret the values of the

optimal system parameters for a given channel state (fdT and SNR), and

to compare them with other possible choices in the literature. The autocor-

relation functions (ACFs) as well as the PSDs of the AR(2) processes are

discussed and illustrated. A comparison of the MSEs obtained by Monte

Carlo simulations for different values of fAR(2)T is first presented in Fig. 5,

to assess the value adopted from the literature and the significance of the
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MAV criterion.

5.1.1. MSE for different values of fAR(2)T

Figure 5 shows the impact of the parameter fAR(2)T on the asymptotic MSE.

In order to illustrate the choice fAR(2)T in (12), Monte Carlo simulations have

been carried out for fAR(2)T = {fdT
2
, fdT√

2
, fdT} at different SNR and fdT .

They confirm [31] and [30], claiming that fAR(2)T = fdT√
2

is the optimal choice

in terms of MSE. Note also that the AR(2)-CM performs poorly compared

to AR(2)-MAV with fAR(2)T =
fdT√

2
.

5.1.2. ACF of AR(2)

In this subsection, the Yule–Walker [14] equations are used to get the ACF

of the AR(2):

Rα̃[k] = a1Rα̃[k − 1] + a2Rα̃[k − 2]. (48)

Figure 6 plots the ACFs of different AR(2) processes: the AR(2)-MAV with

fAR(2)T = fdT√
2

and fAR(2)T = fdT , and the AR(2)-CM. For comparison, the

true ACF, i.e. the Bessel function (3), is also plotted. As expected from our

discussions in Section 2, it can be seen that the ACF of the AR(2)-MAV with

fAR(2)T = fdT√
2

is very close (in terms of Euclidean distance) to the true ACF

(Bessel function), for the first lobe region.

5.1.3. PSD of optimal AR(2)

Figure 7 shows the PSDs of the optimal AR(2)-MAV with fAR(2)T = fdT√
2

for

different values of SNR and fdT . It can be seen that the level of the peaks

depends on the SNR and fdT . More precisely, the highest value of the peak
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is obtained for the lowest fdT = 10−4 and the highest SNR = 20 dB, which

is consistent with (44). Moreover, it is interesting to compare these levels

with the one obtained with the AR(2)-CM. In fact, the example of the PSD

given in Fig. 3 has been obtained with the CM criterion (δ = 2.46 × 10−6

in Fig. 3). The PSD for the CM has an overhead of about 40 dB compared

to the value at 0 Hz, and this is independent of the SNR. Indeed, the CM

solution for a1 and a2 does not depend on the SNR. This value, 40 dB, is to

be compared with the one obtained for the MAV, which is only about 12 dB

for SNR = 0 dB and fdT = 10−3.

5.1.4. Dependence of the optimal parameters on the channel state

In this subsection, the dependence of ζAR(2)(MAV) and δ(MAV) = 1− r(MAV) on

the channel state (fdT and SNR) is discussed. Both parameters are plotted as

functions of fdT for the three values of SNR = 0, 20, 40 dB in Fig. 11. It can

be seen that δ(MAV) = 1 − r(MAV) increases proportionally to the 6
5
th power

of fdT , and decreases proportionally to the 1
5
th power of the SNR, which

agrees with (43). In the same way, we can see that ζAR(2) (MAV) increases

proportionally to the 1
5
th power of the product ( fdT

SNR
), which is in accordance

with (44). As was mentioned in the previous section, the power spectral

density depends on ζAR(2) (MAV), in that ζAR(2) (MAV) influences the overhead of

the peak of H(z). The maximum value of ζAR(2) (MAV), about 0.1, is obtained

for the minimum SNR = 0 dB and maximum fdT = 10−2, which again

illustrates the fact that the peak is the lowest at the minimum SNR and

maximum fdT . Even in this worst case, the second-order model is still under-

damped.
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Figure 5: Variation of MSE versus δ = 1− r for different values of fAR(2)T for SNR = 0

dB and 20 dB.
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function for fdT = 10−3 and fdT = 10−4 for SNR = 0 dB and 20 dB.
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5.2. Performance

5.2.1. Performance in terms of MSE

Figure 8 plots the asymptotic MSE of the KF estimates when the AR(2)

model is tuned with our proposed MAV criterion (AR(2)-MAV). For com-

parison, the KF with the following AR(2) models from the literature are

considered: the AR(2)-CM [11–13] together with the improved AR(2)-CM

with ε [9], the AR(2) of [4, 31] where r is tuned based on experimental re-

sults as follows: r = 0.999− 0.1× 2πfdT and fAR(2)T = fdT√
2

. Note that the

expression for r does not depend on the SNR.

Moreover, due to the fact that the least mean square (LMS) algorithm (or in-

tegrated versions) gives similar steady-space performance as some KF (with

random-walk state-space models [40][41]), the AR(2)-MAV KF is compared

to a set of LMS adaptive algorithms:

1. The Wiener least mean square algorithm (WLMS) proposed by [40].

In this model, the AR(2) process is used for the prediction of the next

CG.

2. The adaptive LMS (A-LMS) algorithm by [41], where a second order

random walk model is used.

The on-line BCRB [45] is also plotted.

First, it can be verified that the MSE computed by simulation is very close to

σ2
ε(AR(2)-MAV) as obtained by the closed-form expression in (38), thus validat-

ing the theoretical analysis. Then, it is seen in Fig. 8 that the AR(2)-MAV

outperforms the other algorithms from the literature. Fig. 9 plots the MSE

of the WLMS, A-LMS, AR(2) [13] and AR(2)-MAV as a function of fdT
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Figure 8: Comparison of the asymptotic MSE of the Kalman filters for proposed AR(2)-

MAV with the literature: AR(2)-CM [11–13], AR(2)-CM+ε [9], AR(2) [4], A-LMS [41],

WLMS [40], in terms of SNR for fdT = 10−4 and fdT = 10−3.
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Figure 9: Comparison of the asymptotic MSE of the proposed AR(2)-MAV with the

literature: A-LMS[41], W-LMS[40], AR(2)[4], for different values of fdT and SNR = 10

dB.
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Figure 10: Comparison of AR(1)-MAV [28], AR(2)-MAV and AR(p)-CM+ε where ε is set

according to [9] for fdT = 10−3 and SNR = 10 dB.
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Figure 11: δ(MAV) = 1 − r(MAV) (43) and ζAR(2) MAV (44) for different values of fdT and

SNR.

for SNR=10 dB. The MSE obtained with the AR(2)-MAV remains close to

the BCRB, which is not the case for the other algorithms, especially for

fdT = 10−4. This result shows that the AR(2)-MAV can be used up to

fdT = 10−2, which corresponds to moderate normalized Doppler frequencies.

Fig. 10 plots the MSE of the KF estimates as a function of the order p of the

AR model for the CM criterion [9] and the MAV criterion. The figure shows

that the AR(2)-MAV outperforms the AR(1)-MAV[28], which is confirmed

by the theory in (46). It shows also that the MSE of the AR(2)-MAV is

equivalent to the one of the far more complex AR(15)-CM, which highlights

the interest of our study.

35



0 5 10 15 20

SNR [dB]

10
-4

10
-2

10
0

B
E
R

AR(2)-CM
A-LMS
WLMS
AR(1)-MAV
AR(2)-MAV
Perfect knowledge of CSI

Figure 12: Comparison of the BER of the proposed AR(2)-MAV with the literature:

AR(2)-CM[11–13], A-LMS[41], W-LMS[40], AR(1)-MAV[28], versus SNR for QPSK mod-

ulation and fdT = 10−4.

5.2.2. Performance in terms of BER

Until now, all the performances were given in terms of the MSE. The per-

formances in terms of the Bit Error Rate (BER) are given in Fig. 12, where

QPSK transmitted symbols are used. The estimation is in semi-blind mode,

that is, the data block is composed of 20 pilot symbols followed by 200

unknown symbols. The method used consists in changing the observation

model in (1) to become y(k) = α(k) × s(k) + w(k) where s(k) is a QPSK sym-

bol. In this case, Eq. (22) of the KF equations is also modified by replac-

ing y(k) by y(k) × ŝ∗(k|k−1), where ŝ(k|k−1) = s(k) if s(k) is a pilot symbol or

ŝ(k|k−1) = sgn
{(
Re(y(k) × α̂∗(k|k−1)

)}
if s(k) is an unknown symbol. In this

case, ŝ(k|k−1) represents the decision a priori, and the final decision will be
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ŝ(k|k) = sgn
{(
Re(y(k) × α̂∗(k|k)

)}
. Fig. 12 shows the simulation result, where

it is seen that the AR(2)-MAV outperforms the literature, with a BER close

to that with a perfect knowledge of the channel state information (CSI).

6. Conclusion

This paper addresses the problem of estimating a channel supposed to follow

a Rayleigh model with Jakes’ Doppler spectrum (initially called the Clarke

model) using a second order autoregressive model with Kalman filter (KF).

Analytic results clearly show that the widely used AR(2) model tuned by

the correlation matching (CM) criterion is not accurate for low SNR and

low to moderate Doppler frequencies fdT ≤ 10−2. Therefore, we suggested

switching to the minimum asymptotic variance (MAV) criterion to improve

the estimation performance. We provided closed-form formulas for the op-

timal tuning of the AR(2) parameters and for the theoretical performance.

Moreover, we also obtained some insight into the physical meaning and inter-

pretations of the AR(2) parameters through the shape of the spectrum of the

optimal AR(2) process. In particular, it has been shown that the dumping

ratio of the spectrum of the AR(2) process should be tuned proportionally to

the 1
5
th power of the ratio of the Doppler frequency to the SNR. Simulation

results show better MSE performance for the proposed AR(2)-MAV KF com-

pared to AR(2)-KF, AR(1)-KF and second-order LMS based algorithms of

the literature, and similar performance compared to the much more complex

Correlation Matching based AR(p)-KF with order p = 15. The performance

is also equivalent to that of the second order Random Walk model-based

Kalman filter of the literature, but with a stationary instead of unstationary
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state-space model to approximate the fading dynamic.

Appendix A. Physical Parameters of AR(2)

Appendix A.1. Proofs of (13) and (14)

The AR(2) model (4) is a stochastic difference equation. To establish the

connection between the two pairs of parameters {fAR(2)T, r} and the pa-

rameters of a second-order continuous-time (analog) deterministic model

{fn,AR(2)T, ζAR(2)}, it is more convenient to consider the deterministic ver-

sion of the AR(2) model given in the absence of state noise (σ2
u = 0), which

generates a damped cosine cycle. An expression for this cycle can be ob-

tained by recursion, by using a1 and a2 as defined in (11). The kth iteration

of this recursion is

α̃(k) = c · rk cos(2πfAR(2)kT ), (A.1)

where c is the amplitude of the cycle generated by the initial values of α̃(0)

and α̃(−1). Indeed, (A.1) can be proved recursively. Suppose it is true for a

given iteration k. Then the k + 1th iteration is given by

α̃(k+1) = a1α̃(k) + a2α̃(k−1)2cr
k+1 cos(2πfAR(2)T ) cos(2πfAR(2)kT )

−crk+1 cos(2πfAR(2)(k − 1)T ) = crk+1 cos(2πfAR(2)(k + 1)T ).

This completes the recursive process since (A.1) is also true for the initial

iteration k = 1.

On the other hand, the pair of parameters {fn,AR(2)T, ζAR(2)} are the physical

parameters of the second order filter in continuous time. Within the context
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of basic vibration theory [46] for continuous time, the general solution of the

classical second order ordinary differential equation is of the form

α̃(t) = c · e−ζAR(2)2πfn,AR(2)t cos(2πfAR(2)t), (A.2)

where t is continuous time. Sampling the above equation with a sampling

period of T yields

α̃(k) = c · e−ζAR(2)2πfn,AR(2)kT cos(2πfAR(2)kT ). (A.3)

Comparing (A.1) and (A.3) yields e−ζAR(2)2πfn,AR(2)T = r, which gives (14).

Then, from [46], we have

(2πfAR(2)T )2 = (1− ζ2AR(2))(2πfn,AR(2)T )2. (A.4)

Substituting for ζAR(2) from (14) into (A.4) yields (13).

Appendix A.2. Proof of (44)

Substituting 1− δ for r in (14) and using ln(1 − δ) w −δ, which is justified

by (iii), yields ζAR(2) '
δ

ωn,AR(2)T
. Then, using (16) yields

ζAR(2) '
δ

ωAR(2)T
. (A.5)

Applying (A.5) to δ = δ(MAV) gives (44).

Appendix A.3. Proof of Assumption (vii)

As previously stated, ζAR(2) should be � 1 in order to have a peak. In this

case, from (A.5),

δ � ωAR(2)T (A.6)

δ2 � δωAR(2)T
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and since 2
√

1− δ > 1 due to (iii),

δ2 � 2δ
√

1− δωAR(2)T.

Using Assumption (iii) yields δ2 � δ �
√
δ, which results in

δ2 � 2
√
δ(1− δ)ωAR(2)T.

Then, combining Assumptions (ii) and (28) (which is obtained from Assump-

tions (i) and (iii) as explained in detail in Appendix H) gives Assumption

(vii).

Appendix B. Exact Solutions for P
′

11, K1 and K2

Appendix B.1. Solution for P
′
11 and K1

Optimal linear control with quadratic performance criteria is widely used.

A non-recursive algebraic solution for the optimal gains is presented in [37].

This method can be used in our case for the determination of the steady-

state Kalman filter. This solution allows determining the steady-state gains

and covariance matrices directly, without iteration. In [37] it is shown that

the solution of the filter equations (20) and (23) is obtained by finding the

eigenvalues and eigenvectors of the following 4× 4 matrix:

Hf =

 Φ−T Φ−TR†f

Q∗fΦ
−T Φ + Q∗fΦ

−TRf
†

 , (B.1)

where Φ−T = M−T , Rf
† =

s · sT

σ2
w

, and Q∗f =
sT · s
σ2
u

with M and s as defined in Section 3.1.

In [37] it is also shown that if λi is an eigenvalue of Hf , then 1/λi is also an
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eigenvalue, and the problem is reduced to finding two eigenvalues instead of

four.

If λi is an eigenvalue of Hf , the corresponding eigenvector can be found to

be

vi =


1

a2λi

σ2
w(a2λi(λi + a1/a2)− 1)

(σ2
w(a2λi(λi + a1/a2)− 1))/λi

 . (B.2)

The steady state solution for P
′
∞ is then given by [37]

P
′

∞ = W21W
−1
11 , (B.3)

where W21 and W11 are defined as follows:

Put W to be the 4 × 4 matrix formed from the eigenvectors v1, v2, v
′
1

and v2
′ and their corresponding eigenvalues λ1, λ2, 1/λ1 and 1/λ2: W =

[v1,v2,v
′
1,v2

′] =

W11 W12

W21 W22

 with W11,W12,W21 and W22 being the

2× 2 matrices

W11 =

 1 1

a2λ1 a2λ2

 (B.4)

W21 =

 x y

x/λ1 y/λ2

 , (B.5)

where x = σ2
w(a2λ1(λ1 +

a1
a2

)− 1) and y = σ2
w(a2λ2(λ2 +

a1
a2

)− 1).
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Using this method, we have a matrix P
′
∞ from which we can extract P

′
11:

P
′

11 = −σ2
w(1 + a2λ1λ2). (B.6)

Therefore it remains to calculate the product λ1λ2 to find P
′
11. The method

proposed in [47] is based on the characteristic polynomial of the matrix Hf .

An expression for the characteristic polynomial Pol1 is evaluated by calcu-

lating the determinant of the matrix |Hf − λI|, where I is the 4× 4 identity

matrix. The corresponding characteristic polynomial is

Pol1 = λ4 − aλ3 + (b+ 2)λ2 − aλ+ 1 (B.7)

where

a =
a1a2 − a1

a2
(B.8)

b = −a
2
1 + a22 + σ2

u/σ
2
w + 1

a2
− 2. (B.9)

In addition, because of the fact that the inverse of an eigenvalue is also an

eigenvalue, there must be another expression for the characteristic polynomial

of the following form:

Pol2 = (λ− λ1)(λ− λ2)(λ− 1/λ1)(λ− 1/λ2)

= λ4 − (λ1 + λ2 + 1/λ1 + 1/λ2)λ
3 +

((λ1 + 1/λ1)(λ2 + 1/λ2) + 2)λ2

−(λ1 + λ2 + 1/λ1 + 1/λ2)λ+ 1. (B.10)

Identifying (B.10) and (B.7) we get

a = λ1 + λ2 + 1/λ1 + 1/λ2. (B.11)

b = (λ1 + 1/λ1)(λ2 + 1/λ2). (B.12)
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Equation (B.11) can be rewritten as

λ1 + λ2 = a
λ1λ2

λ1λ2 + 1
. (B.13)

Thus we have a relation between the sum and the product of the eigenvalues.

Now developing the product in (B.12) and using (B.13) yields

b = λ1λ2 +
1

λ1λ2
+

a2

λ1λ2 +
1

λ1λ2
+ 2
− 2. (B.14)

Put d = λ1λ2 +
1

λ1λ2
. Equation (B.14) is a second-order equation in d with

solution

d =
1

2
(b+

√
(b+ 4)2 − 4a2). (B.15)

Moreover, d = λ1λ2 +
1

λ1λ2
is a second-order equation in λ1λ2, hence with

the solution

λ1λ2 =
1

2
(d+

√
d2 − 4), (B.16)

with d given in (B.15), b in (B.9), and a in (B.8). To sum up, an exact

expression for K1 is given by (24) where P
′
11 was given in (B.6) and λ1λ2 in

(B.16).

It remains now to calculate K2. In the following, an expression for K2 is

obtained after some direct manipulations of the Riccati equations.

Appendix B.2. Expression for K2

In this appendix an expression forK2 is calculated. It is known that cov(x, y) =

cov(y, x), where cov(x, y) is the covariance of the two variables x and y. That

is why P12 = P21, where P12 and P21 are the elements of the posteriori error

covariance matrix defined in (27). The same is true for P
′
12 = P

′
21, where P

′
12
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and P
′
21 are the elements of the predicted error covariance matrix defined in

(26).

Then from (27) and by comparing the expressions for P12 and P21 we get

(1−K1)P
′
12 +K2P

′
11 = P

′
12, yielding

P
′

12 =
K2P

′
11

K1

. (B.17)

Also from (27), P12 = (1 −K1)P
′
12 and P11 = (1 −K1)P

′
11. By substituting

these equations into (B.17), we get

P12 =
K2P11

K1

. (B.18)

Another expression for P12 could be deduced from (26) and (27), using P
′
12 =

a1P11 + a2P21 and P12 = (1−K1)P
′
12 is

P12 =
a1(1−K1)P11

1− a2 + a2K1

. (B.19)

By comparing Eqs (B.18) and (B.19), an exact expression for K2 is obtained

in terms of K1, a1 and a2:

K2 =
a1(1−K1)K1

1− a2 + a2K1

. (B.20)

Appendix C. Approximation for K1: Proof of (29)

The aim of this section is to find approximate expressions for Eqs (B.8),

(B.9), (B.15), and (B.16), given in Section Appendix B.1, in order to obtain

the approximate expression (29) for K1. The approach we follow is to work

with the pair of parameters {fAR(2)T, r = 1−δ} instead of {a1, a2} to exploit

the assumptions of Section 3.3.1.
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Appendix C.1. Approximation for a (B.8)

Using (11) and r = 1− δ gives

a =
2 cos(ωAR(2)T )(1 + (1− δ)2)

(1− δ)
.

It can be deduced from (i) and (iii) that
1

1− δ
' 1 + δ + δ2 and δ3 � δ2 �

δ � 1, so

a ' 2 cos(ωAR(2)T )(2− 2δ + δ2)(1 + δ + δ2)

' 2 cos(ωAR(2)T )(2 + δ2 − δ3 + δ4)

' 2 cos(ωAR(2)T )(2 + δ2). (C.1)

Appendix C.2. Approximation for b (B.9)

b =
−a21
a2
− a2 −

1

a2
− σ2

u

σ2
wa2
− 2

=
−4r2 cos2(ωAR(2)T )

−r2
+ r2 +

1

r2
+

σ2
u

σ2
wr

2
− 2

' 4 cos(ωAR(2)T )2 + (1− δ)2 +
σ2
u + σ2

w

σ2
w(1− δ)2

− 2. (C.2)

From (iii) we can use
1

(1− δ)2
=
∑∞

n=0(n+ 1)δn ' 1 + 2δ + 3δ2, yielding

b ' 4 cos(ωAR(2)T )2 +
σ2
u(1 + 2δ + 3δ2)

σ2
w

+ 4δ2. (C.3)

Again, we use (iii), resulting in
3σ2

uδ
2

σ2
w

� 2σ2
uδ

σ2
w

� σ2
u

σ2
w

, and next (v) to deduce

b ' 4 cos(ωAR(2)T )2 +
σ2
u

σ2
w

+ 4δ2. (C.4)
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Appendix C.3. Approximation for d (B.15)

We use the notation µ = (b+4)2−4a2. From (i), we have cos(ωAR(2)T ) ' 1−
(ωAR(2)T )2

2
. Using (C.1) and (C.4) together with the previous approximation

yields

µ '
(

4 cos(ωAR(2)T )2 +
σ2
u

σ2
w

+ 4δ2 + 4

)2

−16 cos(ωAR(2)T )2(2+δ2)2. (C.5)

However, by using the double-angle trigonometric identity and Assumption

(i) we have cos(ωAR(2)T )2 =
1 + cos(2ωAR(2)T )

2
' 1

2

(
1 +

(
1−

(2ωAR(2)T )2

2

))
'

1− (ωAR(2)T )2, and so

µ ' 16(ωAR(2)T )4 +

(
16δ4 + 32δ2 − 8

σ2
u

σ2
w

)
(ωAR(2)T )2

+
σ4
u

σ4
w

+ 16
σ2
u

σ2
w

+ 8δ2
σ2
u

σ2
w

. (C.6)

Assumptions (i), (iii) and (v) lead to (ωAR(2)T )4 � (ωAR(2)T )2 � 1, δ4 �

δ2 � δ � 1 and
σ4
u

σ4
w

� σ2
u

σ2
w

� 1, respectively. Thus, µ can be approximated

by µ ' 16
σ2
u

σ2
w

. From this equation we can write

d ' 1

2

(
4 cos(ωAR(2)T )2 +

σ2
u

σ2
w

+ 4δ2 +
√
µ

)
' 1

2

(
4
(
1− (ωAR(2)T )2

)
+
σ2
u

σ2
w

+ 4δ2 + 4
σu
σw

)
.

Using (v), (vi), and (vii) results in

d ' 2 + 2
σu
σw
. (C.7)

Appendix C.4. Approximation for λ1λ2 (B.16)

Substituting (C.7) into (B.16) gives

λ1λ2 ' 1 +
σu
σw

+
1

2

√
4 + 8

σu
σw

+ 4
σ2
u

σ2
w

− 4.
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Assumption (v) results in
σ2
u

σ2
w

� σu
σw
�
√
σu
σw

:

λ1λ2 ' 1 +
σu
σw

+

√
2σu
σw

λ1λ2 ' 1 +

√
2σu
σw

. (C.8)

Appendix C.5. Approximation for P
′
11 (B.6)

Substituting (C.8) into (B.6) gives

P
′

11 ' −σ2
w

(
1− (1− δ)2

(
1 +

√
2σu
σw

))
.

Using δ2 � δ � 1 from (iii) together with (vii) yields

P
′

11 ' σ2
w

√
2σu
σw

. (C.9)

Appendix C.6. Approximation for K1 (24)

First, we have P
′
11 � σ2

w, which, in turn, using (24) yields K1 '
P
′

11

σ2
w

. From

the previous equation and (C.9), we obtain (29).

Appendix D. Approximation for K2 (B.20):

The aim of this the section is to find an approximate expression of (B.20)

already established in Appendix B.2 in terms of K1. The approximation used

in this section is based on the pair of parameters {fAR(2)T, r = 1−δ} instead

of {a1, a2}. Using (11) and r = 1− δ in (B.20) gives

K2 =
2(1− δ) cos(ωAR(2)T )(1−K1)K1

1 + (1− δ)2 − (1− δ)2K1

(D.1)
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From (i), we have cos(ωAR(2)T ) ' 1 −
(ωAR(2)T )2

2
. The expression in (D.1)

becomes

K2 '
2(1− δ)(1− (ωAR(2)T )

2

2
)(1−K1)K1

1 + (1− δ)2 − (1− δ)2K1

(D.2)

Assumptions (i), (iii) and (viii) lead to (ωAR(2)T )2 � (ωAR(2)T ) � 1, δ2 �

δ � 1 and K2
1 � K1 � 1, respectively. Thus, (D.2) can be approximated

by

K2 ' K1 (D.3)

Appendix E. Expression for L(z): Proof of (31)

Equations (19) and (22) of the Kalman filter, taken in the steady-state mode,

give

α̂(k|k−1) = a1α̂(k−1|k−1) + a2α̂(k−2|k−1) (E.1)

α̂(k|k) = α̂(k|k−1) +K1(y(k) − α̂(k|k−1)) (E.2)

α̂(k−1|k) = α̂(k−1|k−1) +K2(y(k) − α̂(k|k−1)). (E.3)

We define the error signal as the difference between the observation and the

prediction:

vε(k) = y(k) − α̂(k|k−1). (E.4)

By substituting (E.1) and (E.3) into (E.2) we have

α̂(k|k) = a1α̂(k−1|k−1) + a2(α̂(k−2|k−2) + K2vε(k−1)) + K1vε(k).

Then, applying the z-transformation gives

α̂(z)[1− a1z−1 − a2z−2] = [a2K2z
−1 +K1]vε(z). (E.5)
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Using α̂(k|k−1) = α̂(k|k) −K1vε(k) from (E.2) in (E.4) gives

vε(k) = y(k) − α̂(k|k) +K1vε(k). (E.6)

Taking the z-transform yields

vε(z) =
y(z)− α̂(z)

1−K1

. (E.7)

Substituting (E.7) into (E.5), we can find an expression for the closed-loop

transfer function L(z) =
α̂(z)

y(z)
, which leads to (31).

Appendix F. Expressions and approximations for ωn,L(z)T and ζL(z)

The aim of this appendix is to establish the expressions and the approxima-

tions for the normalized natural frequency ωn,L(z)T and the damping ratio

ζL(z) of the transfer function of KF, L(z) given in (31).

Appendix F.1. Expressions for ωn,L(z)T and ζL(z)

The transfer function of a continuous-time second order systems as a function

of the natural frequency and the damping ratio is [34]:

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(F.1)

Using z = ej2πfT and then z−1 ' 1 − j2πfT for fT � 1 in (31), and

comparing the obtained expression with the transfer function in (F.1), we

obtain

(ωn,L(z)T )2 =
K1(a1 + a2) +K2a2 + 1− a1 − a2

−a2(1−K1)
(F.2)

(2ζL(z)ωn,L(z)T ) =
K1(−a1 − 2a2)− a2K2 + a1 + 2a2

−a2(1−K1)
(F.3)
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From (F.2) and (F.3), the expressions for (ωn,L(z)T ) and ζL(z) are deduced

in terms of a1, a2, K1 and K2. However the goal is to obtain approximate

expressions for (ωn,L(z)T ) and ζL(z).

Appendix F.2. Approximate expressions for ωn,L(z)T and ζL(z)

In this section the approximate expressions for (ωn,L(z)T ) and ζL(z) are pro-

vided. The approximations used in this section are based on the pair of

parameters {fAR(2)T, r = 1− δ} instead of {a1, a2}. Using (11) and r = 1− δ

in (F.2) and (F.3) gives

(ωL(z)T )2 '

K1(2(1− δ) cos (ωAR(2)T )− (1− δ2))
−K2(1− δ)2 + 1− 2(1− δ) cos (ωAR(2)T ) + (1− δ)2

(1− δ)2(1−K1)
(F.4)

(2ζL(z)ωL(z)T ) '

(1− δ)2K2 + 2(1− δ) cos (ωAR(2)T )

× (1−K1)− 2(1− δ)2(1−K1)

(1− δ)2(1−K1)
(F.5)

Appendix F.2.1. Approximate expression for ωL(z)T

Replacing K2 (Eq. (B.20)) by its expression in (F.4) and referring to As-

sumptions (i), (iii) and (viii) that lead respectively to cos(ωAR(2)T ) ' 1 −
(ωAR(2)T )2

2
, (fAR(2)T )2 � fAR(2)T � 1, δ2 � δ � 1 and K2

1 � K1 � 1, we

have

(ωn,L(z)T )2 w K1 −
K1(1− δ −K1)

1− δ − K1

2

. (F.6)

and since K1 � 1 and δ � K1, from (viii) and (ix) respectively, we have

(ωn,L(z)T )2 w
K2

1

2
. (F.7)

In this case

ωn,L(z)T w
K1√

2
. (F.8)

50



Appendix F.2.2. Approximate expression for ζL(z)

In this section we provide an approximate expression for ζL(z). In addition to

all the assumptions used in the previous section, we use the approximation

K2 ' K1 (see (D.1)), and then (F.5) becomes

(2ζL(z)ωn,L(z)T ) '

−2K1(δ − (ωAR(2)T )2) + (1− 2δ)K2

+ 2(δ − (ωAR(2)T )2)

1− 2δ −K1

(F.9)

' K2

(1−K1)
(F.10)

' K1. (F.11)

From (F.8) and (F.11),

ζL(z) '
√

2

2
(F.12)

Appendix G. Calculation and approximation for σ2
εw: Proof of (34)

In this appendix, the goal is to calculate and approximate the static error

variance σ2
εw due to the observation noise variance σ2

w, which can be rewritten

σ2
εw

def
= σ2

wT

1
2T∫

− 1
2T

|L(e2iπfT )|2df = σ2
w ×BNW, (G.1)

where BNW is the normalized equivalent noise bandwidth of the system,

defined by

BNW = T

1
2T∫

− 1
2T

|L(e2iπfT )|2df. (G.2)

An exact expression for BNW can be derived by using the method presented

in [48]. It can be evaluated analytically by solving a system of equations in
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matrix form. The elements of this matrix are the coefficients of the numerator

and denominator of the integrand L(z). Now L(z) can be written

L(z) =
B0z

2 +B1z +B2

A0z2 + A1z + A2

, (G.3)

where A0 = 1, A1 = a2K2 − a1(1 − K1), A2 = −a2(1 − K1), B0 = K1,

B1 = K2a2, and B2 = 0,

and the corresponding matrix equation is
A0 A1 A2

A1 A0 + A2 A1

A2 0 A2

×

A0BNW

M1

M2

 =


B2

0 +B2
1 +B2

2

2(B0B1 +B1B2)

2B0B2

 , (G.4)

where M1 and M2 are evaluated in terms of BNW , A0, A1, A2, B0, B1 and

B2. Replacing K2 by its expression defined in (B.20), the calculation result

of (G.4) leads to the following exact calculation in terms of K1, a1 and a2,

BNW =
AK5

1 +BK4
1 + CK3

1 +DK2
1

EK5
1 + FK4

1 +GK3
1 +HK2

1 + IK1 + J
, (G.5)
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where

A = a21a
3
2 + a32

B = −3a21a
3
2 − a21a22 + 2a21a2 − 3a32 + 3a22

C = 3a21a
3
2 + 2a21a

2
2 − 4a21a2 + 3a32 − 6a22 + 3a2

D = −a21a32 − a21a22 + 2a21a2 − a32 + 3a22 − 3a2 + 1

E = −a52

F = 5a52 − 3a42

G = a21a
3
2 − 2a21a

2
2 + a21a2 − 10a52 + 12a42 − 2a32

H = −3a21a
3
2 + 5a21a

2
2 − a21a2 − a21 + 10a52 − 18a42 + 6a32 + 2a22

I = 3a21a
3
2 − 4a21a

2
2 − a21a2 + 2a21 − 5a52 + 12a42 − 6a32 − 4a22 + 3a2

J = −a21a32 + a21a
2
2 + a21a2 − a21 + a52 − 3a42 + 2a22 + 2a32 − 3a2 + 1.

The above exact expressions are next approximated using Assumptions (i),

(ii), (iii), (iv), (v), (viii) defined in Section 3.3.1 and the expressions for a1 and

a2 formulated in (11). In addition, we use the approximation cos(2πfAR(2)T ) '
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1− (2πfAR(2)T )
2

2
and (1− δ)n ' 1− nδ, so

A ' 32δ − 12(2πfAR(2)T )2 (G.6)

B ' 6− 22δ (G.7)

C ' 32δ − 12(2πfAR(2)T )2 (G.8)

D ' 8(2πfAR(2)T )2 (G.9)

E ' −1 + 10δ (G.10)

F ' −8 + 74δ (G.11)

G ' −112δ + 8 (G.12)

H ' 48δ (G.13)

I ' 64δ2 (G.14)

J ' 32δ(2πfAR(2)T )2. (G.15)

The above approximations allow expressing BNW in terms of the pair of

AR(2) parameters fAR(2)T, r = 1− δ. By replacing each term by its approx-

imation in (G.5) and using the previous assumptions,

BNW ' 6K4
1 + 32δK1

8K3
1 + 48δK2

1

'
6K3

1(K1 + 32
6
δ)

8K2
1(K1 + 6δ)

' 3

4
K1, (G.16)

using that
K1 + 32

6
δ

K1 + 6δ
' 1, which can be assumed from (v).
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Appendix G.1. Calculation and expression for (35)

The aim of this appendix is to calculate and approximate the dynamic error

variance σ2
εα. This variance is due to the variations of α(k) filtered by the

high pass filter 1− L(z):

σ2
εα

def
=

+fd∫
−fd

|1− L(e2iπfT )|2Γα(f)df. (G.17)

In order to obtain the result of the integration in (G.17), the term |1 −

L(e2iπfT )|2 needs to be calculated in the frequency range [−fd, fd]. To do

so, we first substitute (31) for L and we develop the calculation assuming

low normalized frequencies, which leads to z = e2iπfT ' 1 + i2πfT . The de-

tails of the calculation are provided in the on-line report [49]. The obtained

expression is not tractable and needs further approximations. As the domi-

nating values of the Jakes’ spectrum are located in the vicinity of {−fd, fd},

we employ an approximation for |1 − L|2 valid in this range of frequencies.

We use Assumptions (i)–(viii) of Section 3.3.1 and the fact that it can be

deduced from (viii) that K4
1 � K3

1 � K2
1 � K1 � 1, and from (i) and (iii)

that fdT
4 � fdT

3 � fdT
2 � fdT � 1. After some manipulations, we find

|1 − L(e2iπfT )|2 ' (2πfT )4

K4
1

for f in the vicinity of fd,−fd (the details of the

calculation can be found in [49]). The integration is then computed from

Γα(f) defined in (2) by changing variables, replacing (f/fd) by cos(θ):

σ2
εα '

+fd∫
−fd

(2πfT )4

K4
1

Γα(f)df = σ2
α

6π4(fdT )4

K4
1

, (G.18)

which is equivalent to (35)
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Appendix H. Approximation for σ2
u

In this section, an approximate expression for σ2
u is given. Replacing r by

1− δ in the expression (11) for a2 yields

a2 = −(1− δ)2 w −(1− 2δ + δ2) w −(1− 2δ). (H.1)

Supposing that δ2 � δ (from Assumption (iii)), we have

1 + a2 w 2δ (H.2)

1− a2 w (1− δ). (H.3)

By inserting the above equations into the expression for σ2
u defined in (8),

σ2
u ' σ2

α

2δ

2(1− δ)
(2(1− δ)− 2(1− δ) cos(2πfAR(2)T ))

× (2(1− δ) + 2(1− δ) cos(2πfAR(2)T ))

' 4σ2
αδ(1− δ)(1− cos(2πfAR(2)T )2). (H.4)

However, cos(2πfAR(2)T )2 w

(
1−

(2πfAR(2)T )2

2

)2

w 1− (2πfAR(2)T )2 since

(2πfAR(2)T )4 � (2πfAR(2)T )2 � 1, so (H.4) leads to

σ2
u ' 4σ2

αr(1− r)(2πfAR(2)T )2, (H.5)

which is equivalent to (28).
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