
ar
X

iv
:1

81
2.

01
11

5v
2

 [
cs

.L
G

]
 2

8
Ju

n
20

19
1

On learning with shift-invariant structures
Cristian Rusu

Abstract—In this paper, we describe new results and algo-
rithms, based on circulant matrices, for the task of learning
shift-invariant components from training data. We deal with the
shift-invariant dictionary learning problem which we formulate
using circulant and convolutional matrices (including unions of
such matrices), define optimization problems that describe our
goals and propose efficient ways to solve them. Based on these
findings, we also show how to learn a wavelet-like dictionary
from training data. We connect our work with various previous
results from the literature and we show the effectiveness of our
proposed algorithms using synthetic as well as real ECG signals
and images.

I. INTRODUCTION

Circulant matrices [1] are highly structured matrices where

each column is a circular shift of the previous one. Because of

their structure and their connection to the fast Fourier trans-

form [2] (circulant matrices are diagonalized by the Fourier

matrix [1, Section 3]), these matrices have seen many applica-

tions in the past: computing the shift between two signals (the

shift retrieval problem exemplified in the circular convolution

and cross-correlation theorems) for the GPS locking problem

[3], time delay estimation [4], compressed shift retrieval from

Fourier components [5], matching or alignment problems for

image processing [6], designing numerically efficient linear

transformations [7] and overcomplete dictionaries [8], matrix

decompositions [9], convolutional dictionary learning [10],

[11], [12] and sparse coding [13], learning shift invariant

structured from data [14],[15] for medical imaging [16], EEG

[17] and audio [18] signal analysis. A recent review of the

methods, solutions and applications related to circulant and

convolutional representations is given in [19].

In this paper, we propose several numerically efficient

algorithms to extract shift-invariant components or alignments

from data using several structured dictionaries related to

circulant matrices.

Previously, several dictionary learning techniques that ac-

commodate for shift invariance have been proposed: extending

the well-known K-SVD algorithm to deal with shift-invariant

structures [17], [20], [21], proposing a shift-invariant iterative

least squares dictionary learning algorithm [22], extending

the dictionary while solving an eigenvalue problem [23], fast

online learning approach [24], research that combines shift and

2D rotation invariance [25] and proposing new algorithms that

optimize directly the dictionary learning objective functions

with circulant matrices [14], [15], [26]. The convolutional

sparse representation model [27], [28], [29] where the dic-

tionary is a concatenation of circulant matrices has been

extensively studied in the past. Furthermore, recent work [13]

The author is with the Istituto Italiano di Tecnologia (IIT), Gen-
ova, Italy. Contact e-mail address: cristian.rusu@iit.it. Demo source code:
https://github.com/cristian-rusu-research/shift-invariance

uses tools developed in the sparse representations literature to

provide theoretical insights into convolutional sparse coding

where the dictionary is a concatenation of banded circulant

matrices and its connection to convolutional neural networks

[30]. Detailed literature reviews of these learning and convolu-

tional sparse representations problems and proposed solutions

have been recently described in [19, Section II].

Structured dictionaries have received a lot of attention

mainly because of two reasons: the structure means that the

dictionaries will be easier to store and use (lower memory

footprint and lower computational complexity to perform,

for example, matrix-vector multiplication or solving linear

systems) and they act as regularizers modeling some property

of the data that is interesting. In the case of shift-invariant dic-

tionaries these two advantages are transparent: manipulation of

circulant matrices is done via the fast Fourier transform while

storing them takes only linear space (instead of quadratic) and

they are able to model patterns from the data that are repetitive,

as we expect real-world data (especially image data and time-

series) to exhibit such patterns.

We start by outlining in Section II circulant matrices and

their properties, particularly their factorization with the Fourier

matrix, and other structured matrices that we use in this

paper. Then, we propose algorithms to learn shift-invariant

(circulant, convolutional and unions of these) and wavelet-

like components from training data (Section III). Finally, in

Section IV, we show experimental results with various data

sources (synthetic, ECG, images) that highlight the learning

capabilities of the proposed methods.

Notation: bold lowercase x ∈ Rn is used to denote a column

vector, bold uppercase X ∈ Rn×m is used to denote a matrix,

non-bold lowercase Greek letters like α ∈ R are used to denote

scalar values, calligraphic letters K are used to denote sets and

|K| is the cardinality of K (abusing this notation, |α| is the

magnitude of a scalar). Then ‖x‖2 is the ℓ2 norm, ‖x‖0 is the

ℓ0 pseudo-norm, ‖X‖2F = tr(XHX) is the Frobenius norm,

tr(X) denotes the trace, vec(X) ∈ Rnm vectorizes the matrix

X ∈ Rn×m columnwise, diag(x) denotes the diagonal matrix

with the vector x on its diagonal, XH is the complex conjugate

transpose, XT is the matrix transpose, X∗ is the complex

conjugate, X−1 denotes the inverse of a square matrix, xkj

is the (k, j)th entry of X. Tilde variables like X̃ represents

the columnwise Fourier transform of X, X ⊗Y denotes the

Kronecker product and X⊙Y is the Khatri-Rao product [31].

II. THE PROPOSED STRUCTURED DICTIONARIES

A. Circulant dictionaries

We consider in this paper circulant matrices C. These square

matrices are completely defined by their first column c ∈ R
n:

every column is a circular shift of the first one. With a down

http://arxiv.org/abs/1812.01115v2

2

shift direction the right circulant matrices are:

C = circ(c)
def
=















c1 cn . . . c3 c2
c2 c1 . . . c4 c3
...

. . .
. . .

. . .
...

cn−1 cn−2 . . . c1 cn
cn cn−1 . . . c2 c1















=
[

c Pc P2c . . . Pn−1c
]

∈ R
n×n.

(1)

The matrix P ∈ Rn×n denotes the orthonormal circulant

matrix that circularly shifts a target vector c by one position,

i.e., P = circ(e2) where e2 is the second vector of the standard

basis of Rn. Notice that Pq−1 = circ(eq) is also orthonormal

circulant and denotes a cyclic shift by q−1. The main property

of circulant matrices (1) is their eigenvalue factorization which

reads:

C = FHΣF, Σ = diag(σ) ∈ C
n×n, (2)

where F ∈ Cn×n is the unitary Fourier matrix (FHF =
FFH = I) and the diagonal σ =

√
nFc, σ ∈ Cn.

Note that the multiplication with F on the right is equiv-

alent to the application of the Fast Fourier Transform, i.e.,

Fc = FFT(c), while the multiplication with FH is equivalent

to the inverse Fourier transform, i.e., FHc = IFFT(c). Both

transforms are applied in O
(

n logn
)

time and memory.

B. Convolutional dictionaries

Convolutional dictionaries can be reduced to circulant dic-

tionaries by observing that given c ∈ Rn and x ∈ Rm with

m ≥ n the result of their convolution is a vector y of size

p = n+m− 1 as

y =c ∗ x = toep(c)x =































c1 0 . . . 0 0
c2 c1 . . . 0 0
...

. . .
. . .

. . .
...

cn cn−1 . . . c1 0
0 cn . . . c2 c1

0 0
. . . c3 c2

...
...

. . .
. . .

...

0 0 . . . 0 cn































x

=circ

([

c

0(m−1)×1

])[

x

0(n−1)×1

]

= Cconvxconv,

(3)

where toep(c) is a Toeplitz matrix of size p × m. Padding

with zeros such that all variables are of size p leads again to a

matrix-vector multiplication by a circulant matrix. An alterna-

tive, but ultimately equivalent, way to write the convolution in

terms of a circulant matrix is to notice that a Toeplitz matrix

can be embedded into an extended circulant matrix of twice

the size (see [15, Section 4]).

For our purposes, there is a fundamental difference between

C and Cconv: in the case of C it is exactly equivalent if we

choose to operate with c or σ while for Cconv we necessarily

have to work with cconv in order to impose its sparse structure.

As we will see, this means that in the convolutional case we

cannot exploit some simplifications that occur in the Fourier

domain (when working directly with σ).

C. Wavelet-like dictionaries

Multiples, powers, products, and sums of circulant matrices

are themselves circulant. Therefore, extending this class of

structures to include other dictionaries is not straightforward.

In order to represent a richer class of dictionaries, still based

on circulants, consider now the following structured matrix

C
(p)
k =

[

GkS HkS
]

∈ R
p×p, (4)

where Gk = circ(gk) and Hk = circ(hk) are both

p × p circulant matrices and S ∈ Rp× p

2 is a selection

matrix that keeps only every other column, i.e., GkS =
[

gk P2gk P4gk . . . Pn−2gk

]

∈ Rp× p

2 (downsam-

pling the columns by a factor of 2). In general we assume

that the filters gk and hk have compact support with length

denoted n ≤ p. As such, these transformations are related to

the convolutional dictionaries previously described. We call gk

and hk filters because (3) is equivalent to a filtering operation

of a signal x where the filter coefficients are stored in the

circulant matrix.

Now we define a new transformation that operates only on

the first p
2k−1 coordinates and keeps the other unchanged:

W
(p)
k =





C
(p

2k−1)
k 0 p

2k−1 ×(p− p

2k−1)
0(p− p

2k−1)×
p

2k−1
Ip− p

2k−1



∈Rp×p. (5)

Finally, we define a wavelet-like synthesis transformation

that is a cascade of the fundamental stages (5) as

W = W
(p)
1 · · ·W

(p)
m−1W

(p)
m . (6)

We call this transformation wavelet-like because Wx applies

convolutions to parts of the signal x at different scales (for

example, see [32] for a description of discrete wavelet trans-

formations from the perspective of matrix linear algebra).

III. THE PROPOSED DICTIONARY LEARNING ALGORITHMS

Dictionary learning [33] provides heuristics that approx-

imate solutions to the following problem: given a dataset

Y ∈ R
n×N , a sparsity level s and the size of the dictionary

S we want to create a dictionary D ∈ Rn×S and the sparse

representations X ∈ RS×N then solve

minimize
D, X

‖Y −DX‖2F subject to X is s–sparse. (7)

A classic approach to this problem, which we also use,

is the iterative alternating optimization algorithm: keep the

dictionary fixed and update the representations and vice-versa

in a loop until convergence.

In this paper, we constrain the dictionary D to the structures

previously discussed: circulant and convolutional (including

unions in both cases) and wavelet-like. Our goal is to propose

numerically efficient dictionary update rules for these struc-

tures. While for the general dictionary learning problem there

are several online algorithms that have been proposed [34],

[35], [36] which are computationally efficient, in this paper,

we consider only batch dictionary learning and we focus on

the computational complexity of the dictionary update step.

3

A. Circulant dictionary learning

Given a dataset Y ∈ Rn×N and a sparsity level s ≥ 1 for

the representations X ∈ Rn×N , the work in [15] introduces

an efficient way of learning a circulant dictionary C ∈ Rn×n

by approximately solving the optimization problem:

minimize
c, X

‖Y −CX‖2F
subject to ‖vec(X)‖0 ≤ sN, C = circ(c), ‖c‖2 = 1.

(8)

For fixed X, to update c we develop the objective function to

‖Y −CX‖2F = ‖FY −ΣFX‖2F = ‖Ỹ −ΣX̃‖2F , (9)

and in order to minimize it we set

σ1 =
x̃H
1 ỹ1

‖x̃1‖22
, σk =

x̃H
k ỹk

‖x̃k‖22
, σn−k+2 = σ∗

k, k = 2, . . . , n,

(10)

where ỹT
k and x̃T

k are the rows of Ỹ = FY and X̃ = FX.

Remark 1. Given Y ∈ Rn×N and X ∈ Rn×N the best

circulant dictionary C in terms of the Frobenius norm achieves

minimum
c

‖Y −CX‖2F =

n
∑

k=1

(

‖yk‖22 −
|x̃H

k ỹk|2
‖x̃k‖22

)

. (11)

Proof. Expand the objective of (8) using the optimal (10) as

‖Y −CX‖2F = ‖Y‖2F + ‖CX‖2F − 2tr(CXYH)

=‖Y‖2F + ‖FHΣFX‖2F − 2tr(FHΣFXYH)

=‖Y‖2F + ‖ΣX̃‖2F − 2tr(ΣX̃ỸH)

=‖Y‖2F +

n
∑

k=1

|x̃H
k ỹk|2
‖x̃k‖22

− 2

n
∑

k=1

|x̃H
k ỹk|2
‖x̃k‖22

=‖Y‖2F −
n
∑

k=1

|x̃H
k ỹk|2
‖x̃k‖22

=

n
∑

k=1

(

‖yk‖22 −
|x̃H

k ỹk|2
‖x̃k‖22

)

.

(12)

In the development of (12) we use the definition of the Frobe-

nius norm, the invariance of the Frobenius norm under unitary

transformations, i.e., ‖FX‖F = ‖FHX‖F = ‖X‖F , and the

cyclic permutation of the trace, i.e., tr(ABC) = tr(BCA).
By the Cauchy-Schwarz inequality we have that |x̃H

k ỹk|2 ≤
‖x̃k‖22‖ỹk‖22 which holds with equality if and only if the

rows x̃k and ỹk are multiples of each other. In this case,

the objective function (12) develops to ‖Y − CX‖2F =
∑n

k=1 ‖yk‖22 −
∑n

k=1 ‖ỹk‖22. This is the only case where the

circulant dictionary can reach zero representation error.

A necessary condition that the optimal circulant dictionary

C obeys is ‖σ‖22 =
∑n

k=1
|x̃H

k ỹk|2
‖x̃k‖4

2
= 1, i.e., the ℓ2 norm of

the optimal solution of (8) is one. �

In the context of dictionary learning, to obey the unit ℓ2
norm constraint on c we should normalize the optimal solution

σ ← ‖σ‖−1
2 σ. This is avoided because we can always group

this normalizing factor with the representations X instead of

the circulant dictionary, i.e., ‖σ‖−1
2 CX = C(‖σ|‖−1

2 X). This

grouping is correct because the Fourier transform preserves ℓ2
norms and we have that ‖σ‖2 = ‖c‖2, i.e., all the columns of

C are ℓ2 normalized after normalizing σ.

The algorithm called C–DLA, first introduced in [15],

has low computational complexity that is dominated by the

O(nN logn) computation of Ỹ (once) and that of X̃ (at each

Algorithm 1 – UCirc–DLA–SU.

Input: The dataset Y ∈ Rn×N , the number of circulant atoms

L and the sparsity s ≤ n.

Output: The union of L circulant dictionaries D ∈ Rn×nL

as in (13) and the sparse representations X ∈ RnL×N such

that ‖Y −DX‖2F is reduced.

1. Initialization: compute the singular value decomposition

of the dataset Y = UΣVT , set c(ℓ) = uℓ for ℓ ≤ n, set c(ℓ)

to random ℓ2 normalized vectors of size n for L ≥ ℓ > n

and compute the representations X = OMP(D,Y, s).
2. Compute Fourier transform Ỹ, set its first row to zero.

3. For 1, . . . ,K :

• Update dictionary:

– Compute all the L Fourier transforms X̃(ℓ).

– Construct each optimal {σ(ℓ)}Lℓ=1 from (15)

separately: {σ(ℓ)
1 }Lℓ=1 = 0 and compute

{σ(ℓ)
k }Lℓ=1, {σ

(ℓ)
n−k+2}Lℓ=1 = {(σ(ℓ)

k)∗}Lℓ=1, k =
2, . . . ,

⌈

n
2

⌉

+ 1, by (10) and then normalize the L

circulants σ(ℓ) ← ‖σ(ℓ)‖−1
2 σ(ℓ).

• Update sparse representations X = OMP(D,Y, s).

iteration). The calculations in (10) take approximately 2nN
operations: there are n

2 components in σ to be computed while

‖x̃k‖22 and x̃H ỹk take 2N operations each.

We can limit which and how many of all the possible n

shifts of c are allowed. We achieve this by ensuring that rows

of X corresponding to unwanted shifts are zero.

Remark 2 (Approximating linear operators by circulant

matrices). Given Y ∈ Rn×n, let us consider the special

case of (8) when N = n and we fix X = I. Now we

calculate the closest, in Frobenius norm, circulant matrix

to a given linear transformation Y. Because the Frobenius

norm is elementwise the optimal solution is directly ck =
1
n

∑

(i−j) modn=(k−1) yij , k = 1, . . . , n. Unfortunately, in

general, circulant matrices do not approximate all linear trans-

formations with high accuracy. The result is intuitive since

matrices have n2 degrees of freedom while circulants have

only n. Furthermore, if we add other constraints, such as

orthogonality for example, the situation is even worse: [37]

shows that the set of orthonormal circulants is finite and

constructs it. Therefore, researchers proposed approximating

a linear transformation by a product of O(n) circulant, or

Toeplitz, and diagonal matrices [9], [38]. �

B. Union of circulant dictionary learning

Let us now consider overcomplete dictionaries (matrices

that have, significantly, more columns than rows) that are

unions of circulant matrices. In particular, take a dictionary

which is the union of L circulants:

D =
[

C(1) C(2) . . . C(L)
]

∈ R
n×nL, (13)

where each C(ℓ) = circ(c(ℓ)) = FHΣ(ℓ)F, Σ(ℓ) =
diag(σ(ℓ)), σ(ℓ) = Fc(ℓ), is a circulant matrix. Given training

data Y ∈ Rn×N , with this structure, the dictionary learning

4

problem has the objective:

‖Y −DX‖2F =‖Y −
[

C(1) C(2) . . . C(L)
]

X‖2F
=‖Y −

[

FHΣ(1)F . . . FHΣ(L)F
]

X‖2F
=‖Y − FH

[

Σ(1)F . . . Σ(L)F
]

X‖2F

=

∥

∥

∥

∥

∥

FY −
L
∑

ℓ=1

Σ(ℓ)FX(ℓ)

∥

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

Ỹ −
L
∑

ℓ=1

Σ(ℓ)X̃(ℓ)

∥

∥

∥

∥

∥

2

F

,

(14)

where the tilde matrices indicate the Fourier transforms (taken

columnwise) and the representations X ∈ R
nL×N are sepa-

rated row-wise into L continuous non-overlapping blocks of

size n denoted X(ℓ) ∈ Rn×N . A way to update all circulant

components using the Fourier transforms Ỹ and X̃ presents

itself. Denote by ỹT
k the kth row of Ỹ and by (x̃

(ℓ)
k)T the kth

row of X̃(ℓ). The objective function of the dictionary learning

problem separates into k = 1, . . . ,
⌈

n
2

⌉

+ 1 (given real valued

training data Y) distinct least squares problems like:

minimize
σ
(1)
k

,...,σ
(L)
k

∥

∥

∥

∥

∥

ỹT
k −

L
∑

ℓ=1

σ
(ℓ)
k (x̃

(ℓ)
k)T

∥

∥

∥

∥

∥

2

F

. (15)

Therefore, for a fixed k, the diagonal entries (k, k) of all

Σ(ℓ) (which are denoted σ
(ℓ)
k) are updated simultaneously by

solving the least squares problems (15). Given real-valued

data, mirror relations σ
(ℓ)
n−k+2 = (σ

(ℓ)
k)∗, k = 2, . . . , n, hold

analogously to (10) for all ℓ = 1, . . . , L. Notice that this

formulation is just a natural extension of the one dimensional

least squares problems in (10). To compute all the components

of all σ(L) we solve this least squares problem n
2 times – the

computational complexity is O(nL2N).

In comparison, the union of circulants dictionary learning

method presented in [15], UC–DLA, updates each circulant

block C(ℓ) sequentially and separately (this can be seen as a

block coordinate descent approach). The new proposed learn-

ing method, called Union of Circulant Dictionary Learning

Algorithm with Simultaneous Updates (UCirc–DLA–SU), is

described in Algorithm 1.

Remark 3 (Updating an unused circulant component).

Assuming that X(ℓ) = 0n×N , i.e., the ℓth circulant matrix

is never used in the representations, then we use the update

c(ℓ) = argmax
z; ‖z‖2

2=1

∥

∥

∥

(

Y −∑L
i=1,i6=ℓ C

(i)X(i)
)

z

∥

∥

∥

2

2
.This is

the block update method use in UC–DLA [15]. Furthermore,

similarly to [39], this update could be used also when atoms

of block ℓ have a lower contribution to the reconstruction than

atoms from other blocks, i.e., ‖X(ℓ)‖2F ≪ ‖X(i)‖2F , ∀ i 6= ℓ.�

C. Union of convolutional dictionary learning

Analogously to (13), we define the dictionary which is a

union of L convolutional matrices as

Dconv =
[

C
(1)
conv C

(2)
conv . . . C

(L)
conv

]

∈ R
p×pL, (16)

and the objective function to minimize with respect to this

union dictionary given the fixed representations Xconv ∈
RpL×N (separated into L continuous non-overlapping blocks

denoted X
(ℓ)
conv =

[

X(ℓ)

0(n−1)×N

]

∈ Rp×N) is developed as

‖Y−DconvXconv‖2F =

∥

∥

∥

∥

∥

vec(Ỹ)−
L
∑

ℓ=1

vec(Σ(ℓ)
convX̃

(ℓ)
conv)

∥

∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

∥

ỹ −
L
∑

ℓ=1

A(ℓ)F:,1:nc
(ℓ)

∥

∥

∥

∥

∥

2

F

= ‖ỹ −Bc‖2F ,

(17)

where B =
[

A(1)F:,1:n . . . A(L)F:,1:n

]

∈ RpN×nL,

A(ℓ) =
[

x̃
(ℓ)
1 ⊗ e1 . . . x̃

(ℓ)
p ⊗ ep

]

∈ CpN×p, with the

rows of X̃
(ℓ)
conv, c =

[

c(1) c(2) . . . c(L)
]T ∈ R

nL and

F:,1:n ∈ Cp×n is the p× p Fourier matrix restricted to its first

n columns. The solution here is given by the least squares

c = (BHB)\BH ỹ, (18)

where BHB ∈ RnL×nL is a positive definite block symmetric

matrix, where each n × n block is a Toeplitz matrix like

Tℓ1ℓ2 = FH
:,1:n(A

(ℓ1))HA(ℓ2)F:,1:n for the (ℓ1, ℓ2)
th block –

the diagonal blocks are symmetric positive definite Toeplitz.

Therefore, BHB is determined by nL + (2n − 1)L(L−1)
2

parameters – the first term covers the parameters of the L

symmetric Toeplitz diagonal blocks and the second terms

covers the parameters of all
L(L−1)

2 non-diagonal Toeplitz

blocks. The computational burden is highest in order to

calculate the diagonals W(ℓ1,ℓ2) = (A(ℓ1))HA(ℓ2) with en-

tries w
(ℓ1,ℓ2)
k = (x̃

(ℓ1)
k)H x̃

(ℓ2)
k , i.e., the inner product of the

corresponding rows from X̃
(ℓ1)
conv and X̃

(ℓ2)
conv respectively. These

calculations take O(pL2N) operations. The inverse Fourier

transforms of W(ℓ1,ℓ2) to recover the entries of Tℓ1ℓ2 take

only O(p log2 p) operations.

The inverse problem in (18) can be solved exactly in

O(n3L3) via block Cholesky factorization [40, Chapter 4.2].

When nL is large, an alternative approach is to use some iter-

ative procedure like the Conjugate Gradient approach (already

used in convolutional problems [41]) where the computational

burden falls on computing matrix-vector products with the

matrix BHB which take only O(pL2) operations. The vector

v = BH ỹ has the structure v =
[

v(1) . . . v(L)
]T

where v(ℓ) = FH
:,1:nz

(ℓ) ∈ Rn and z(ℓ) ∈ Cp with entries

z
(ℓ)
j = (x̃

(ℓ)
j)H ỹj , i.e., the j th entry of the ℓth component is

the inner product of the corresponding rows from X̃
(ℓ)
conv and Ỹ

respectively. The cost of computing v ∈ RnL is O(pLN) since

the inverse Fourier transforms are only O(p log2 p). Also, we

need to compute once the Fourier transform of the dataset

(Ỹ) and at each iteration all the L Fourier transforms of

the sparse representations X̃
(ℓ)
conv which take O(Np log2 p) and

O(LNp log2 p) overall operations respectively.

The new proposed learning method, called Union of Con-

volutional Dictionary Learning Algorithm with Simultaneous

Updates (UConv–DLA–SU), is described in Algorithm 2.

The theoretical and algorithmic importance of dictionaries

that are unions of convolutional matrices where the first

columns have different (and potentially overlapping) supports

has been highlighted in [13] (see in particular the clear pre-

sentation of the convolutional sparse model in [13, Figure 1]):

5

Algorithm 2 – UConv–DLA–SU.

Input: The dataset Y ∈ Rp×N , the number of convolutional

atoms L, the length of c denoted n, the length of the

input signals m ≥ n (both n and m are chosen such that

p = n+m− 1) and the sparsity s ≤ m.

Output: The union of L convolutional dictionaries Dconv ∈
Rp×pL as in (16) and the sparse representations Xconv ∈
RpL×N such that ‖Y −DconvXconv‖2F is reduced.

1. Initialization: set c(ℓ) for ℓ = 1, . . . , L, to random ℓ2
normalized vectors of size p with non-zeros only in the first

n entries and compute X = OMP(Dconv,Y, s).
2. Compute Fourier transform Ỹ, set its first row to zero.

3. For 1, . . . ,K :

• Update dictionary:

– Compute all the L Fourier transforms X̃
(ℓ)
conv.

– Efficiently compute (18):

→ Construct v =
[

v(1) . . . v(L)
]

: for ℓ =

1, . . . , L set z
(ℓ)
1 = 0 and compute z

(ℓ)
k =

(x̃
(ℓ)
k)H ỹk, z

(ℓ)
p−k+2 = (z

(ℓ)
k)∗, k = 2, . . . ,

⌈

p
2

⌉

+ 1

and compute the inverse Fourier transform of z(ℓ)

and keep only its first n entries: v(ℓ) = FH
:,1:nz

(ℓ).

→ Explicitly construct BHB: for ℓ1 = 1, . . . , L and

ℓ2 = ℓ1, . . . , L compute first column and row of the

block Tℓ1ℓ2 (Tℓ2ℓ1 = TT
ℓ1ℓ2

) by the inverse Fourier

transform of w
(ℓ1,ℓ2)
k = (x̃

(ℓ1)
k)H x̃

(ℓ2)
k , w

(ℓ1,ℓ2)
p−k+2 =

(w
(ℓ1,ℓ2)
k)∗, k = 1, . . . ,

⌈

p
2

⌉

+ 1.

→ Get c, solve (18) by the Cholesky decomposition and

normalize the L convolutions c(ℓ) ← ‖c(ℓ)‖−1
2 c(ℓ).

• Update sparse representations X=OMP(Dconv,Y, s).

group together the first columns of each C
(ℓ)
conv into the local

dictionary D(1) of size p × L, do the same with the second

columns into the local dictionary D(2) and so on until D(p).

These dictionaries are called local because they are localized

to the reconstruction of only a few (depending on the size of

the support n) grouped entries from a signal, as compared to

a global signal model.

Notice that (17) makes use of the matrix F:,1:n due to the

sparsity pattern in cconv, i.e., only the first n entries are non-

zero. This can be generalized so that if the support of cconv is

denoted by S(cconv) then the least squares problem (17) can

be solved only on this support my making use of F:,S(cconv) ∈
Cp×|S(cconv)|, i.e., the Fourier matrix of size p× p restricted to

the columns indexed in S(cconv). Alternatively, if we do not

want to (or cannot) decide the support a priori, we can add an

ℓ1 penalty to (17) to promote sparse solutions.

Without the sparsity constraints in cconv, UConv–DLA–

SU essentially reduces to Ucirc–DLA–SU but with a major

numerical disadvantage: the decoupling that allows for (15)

is no longer valid and therefore the least squares problem

(18) is significantly larger and harder to solve. This extra

computational effort seems unavoidable if we want to impose

the sparsity in cconv. This motivates us to discuss the possibility

of updating each convolutional dictionary sequentially, just

like [15] does for circulant dictionaries.

Remark 4 (The special case of L = 1 – the computational

simplifications of constructing a single convolutional dic-

tionary). Following a similar development as [15, Remark 2],

consider again the objective function of (8) and develop

‖Y −CconvXconv‖2F = ‖ỹ −AF:,1:nc‖2F , (19)

where we have defined A =
[

x̃1 ⊗ e1 . . . x̃p ⊗ ep
]

∈
CpN×p, with {ek}pk=1 the standard basis for Rp, i.e., A is

composed of columns from (X̃T
conv ⊗ I) corresponding to the

non-zero diagonal entries of Σconv (see also the Khatri-Rao

product [31]).

By the construction in (3) only the first n entries of cconv

are non-zero and therefore the optimal minimizer of (19) is

c = (AF:,1:n)\ỹ. (20)

The large matrix AF:,1:n is never explicitly constructed in

the computation of c = (FH
:,1:nA

HAF:,1:n)
−1FH

:,1:nA
H ỹ =

(FH
:,1:nWF:,1:n)

−1v, where we have defined

W = diag(
[

‖x̃1‖22 . . . ‖x̃p‖22
]

), v = FH
:,1:nA

H ỹ. (21)

Observe that T = FH
:,1:nWF:,1:n is a real-valued symmetric

positive definite Toeplitz matrix – it is the upper left (the

leading principal) submatrix of the p × p circulant matrix

FHWF. The matrix T is never explicitly computed, but

its first column is contained in the n entries of the vector

FHdiag(W). Also, notice that AH ỹ is a vector whose j th

entry is the inner product of the corresponding rows from X̃

and Ỹ respectively, i.e., x̃H
j ỹj .

The computation of W and v take approximately O(pN)
operations each – because X is real-valued, the Fourier trans-

forms exhibit symmetries and only half the ℓ2 norms in W and

of the entries in AH ỹ need to be computed. These calculations

dominate the computational complexity since they depend on

the size of the dataset N ≫ p – together with the computations

of the Fourier transforms X̃conv (at each iteration) and Ỹ (only

once) which take O(LNp log2 p) and O(Np log2 p) operations

respectively. The least squares problem (20) is solved via

the Levinson-Durbin algorithm [40, Section 4.7.3], whose

complexity is 4n2 instead of the regular O(n3) computational

complexity for unstructured inverse problems.

Also, observe that this least squares solution when

applied to minimizing (9) leads to the same optimal

solution from (10): c = (FHAHAF)−1FHAH ỹ =
FHW−1FFHAH ỹ = FHW−1AH ỹ = FHσ, with W =
diag(

[

‖x̃1‖22 . . . ‖x̃n‖22
]

). The approach in (10) is pre-

ferred to (20) since in the Fourier domain the overall problem

is decoupled into a series of smaller size independent subprob-

lems that can be efficiently solved in parallel.

Therefore, each single convolutional dictionary can be up-

dated efficiently and an algorithm in the style of UC–DLA

[15] can be proposed whenever running time is of concern

or the dataset is large. In this case, because the convolutional

components would not be updated simultaneously, we would

expect worse results on average. �

There are several places where structures related to unions

of circulant and convolutional dictionaries appear. We briefly

discuss next Gabor frames and then, in the following section,

wavelet-like dictionaries.

6

Remark 5 (A special case of time-frequency synthesis

dictionary). Union of circulant matrices also show up when

studying discrete time-frequency analysis/synthesis matrices

[42]. Consider the Gabor synthesis matrix given by

G =
[

D(1)C D(2)C . . . D(m)C
]

∈ C
m×m2

, (22)

where C = circ(g) for g ∈ Cm which is called the Gabor

window function, i.e., the matrix G contains circular shifts

and modulations of g. The matrices D(ℓ), ℓ = 1, . . . ,m, are

diagonal with entries d
(ℓ)
kk = ω(ℓ−1)(k−1) and ω = e2πi/m.

In the context of compressed sensing with structured ran-

dom matrices, Gabor measurement matrices have been used

for sparse signal recovery [43]: the Gabor function of length

m is chosen with random entries independently and uniformly

distributed on the torus {z ∈ C | |z| = 1} [43, Theorem 2.3].

Here, our goal is to learn the Gabor function g from a given

dataset Y such that the dictionary G allows good sparse

representations. Now the objective function develops to:

‖Y −GX‖2F = ‖Y −D(I⊗C)X‖2F
=‖y − (((I⊗ F)X)T ⊗D(I⊗ FH))vec(I⊗Σ)‖2F

=

∥

∥

∥

∥

y −
[

m
∑

ℓ=1

x̃
(ℓ)
1 ⊗ d̃

(ℓ)
1 . . .

m
∑

ℓ=1

x̃
(ℓ)
m ⊗ d̃

(ℓ)
m

]

σ

∥

∥

∥

∥

2

F

=‖y −Aσ‖2F = ‖y−AFg‖2F ,

(23)

where we have A ∈ CmN×m and we have denoted y =
vec(Y), D =

[

D(1) . . . D(m)
]

, (x̃
(ℓ)
k)T is the kth row of

X̃(ℓ) and d̃
(ℓ)
k is the kth column of D(ℓ)FH . Similarly to the

convolutional dictionary learning case, Gabor atoms typically

have compact support and we can add the sparse structure to g

(the support of size n ≤ m) and find the minimizer by solving

the least squares problem which this time is unstructured (there

is no Toeplitz structure). �

D. Wavelet-like dictionary learning

Starting from (6), in the spirit of dictionary learning, our

goal is to learn a transformation from given data such that it

has sparse representations. The strategy we use is to update

each W
(p)
k (actually, the C

(p)
k component) while keeping

all the other transformations fixed. Therefore, for the kth

component we want to minimize

‖Y −WX‖2F = ‖Y −WAW
(p)
k WBX‖2F

=

∥

∥

∥

∥

∥

Y −
[

WA,1 WA,2

]

[

C
(p

2k−1)
k 0

0 I

]

[

X̄1

X̄2

]

∥

∥

∥

∥

∥

2

F

=‖Ȳ −WA,1C
(p

2k−1)
k X̄1‖2F

=‖Ȳ −WA,1

[

GkS HkS
]

X̄1‖2F
=‖Ȳ −WA,1F

H
[

Σgk
Σhk

]

(I2 ⊗ FS)X̄1‖2F
=‖ȳ−(((I2⊗FS)X̄1)

T⊗WA,1F
H)vec(

[

Σgk
Σhk

]

)‖2F

=

∥

∥

∥

∥

ȳ −A

[

Fgk

Fhk

]
∥

∥

∥

∥

2

F

=

∥

∥

∥

∥

ȳ −A(I2 ⊗ F)

[

gk

hk

]
∥

∥

∥

∥

2

F

,

(24)

where F is the Fourier matrix of size p
2k−1 , we denoted WA =

W
(p)
1 · · ·W

(p)
k−1, WB = W

(p)
k+1 · · ·W

(p)
m and X̄ = WBX,

Ȳ = Y −WA,2X̄2, ȳ = vec(Ȳ), WA,1 are the first p
2k−1

columns of WA, X̄1 are the first p
2k−1 rows of X̄. We have

also denote Σgk
= diag(Fgk) and similarly for Σgk

. The

matrix A ∈ C
pN× 2p

2k−1 is made up of a subset of the columns

from ((I2 ⊗FS)X̄1)
T ⊗WA,1F

H corresponding to the non-

zero entries from vec(
[

Σgk
Σhk

]

). Minimizing the quantity

in (24) leads to a least squares problem where both gk and

hk have a fixed non-zero support of known size n. It obeys

n ≤ p
2m−1 such that the circulants for C

(p)
m can be constructed.

Similarly to the union of circulants cases described before,

some computational benefits arise when minimizing (24),

i.e., computing (I2 ⊗ FH)AHA(I2 ⊗ F)\(I2 ⊗ FH)AH ȳ.

For convenience we will denote Q = (((I2 ⊗ FS)X̄1)
T

and R = WA,1F
H , such that A = Q ⊙ R. Notice that

AHA = p
2k−1

[

D(1) D(2)∗

D(2) D(3)

]

, where the blocks are diagonal

with entries d
(1)
ii = ‖qi‖22‖ri‖22, d

(3)
ii = ‖q p

2k−1 +i‖22‖ri‖22
and d

(2)
ii = qH

p

2k−1 +iqi‖ri‖22 where qi and ri are columns

of Q and R, respectively, i = 1, . . . , p
2k−1 . Therefore,

(I2⊗FH)AHA(I2⊗F) is a 2×2 block matrix whose blocks

are real-valued circulant matrices (and the diagonal blocks are

also symmetric). Also, because AHA is symmetric positive

definite it allows for a Cholesky factorization LLT where

the matrix L has only the main diagonal and the secondary

lower diagonal of size
p

2k−1 of non-zero values. A further

computational benefit comes from when n≪ p and we solve a

least squared problem in 2n variables, as compared to 2p, i.e.,

A(I2 ⊗ F)

[

gk

hk

]

= A(I2 ⊗ F:,1:n)

[

ḡk

h̄k

]

, with both ḡk, h̄k ∈
Rn. Finally, notice that (I2 ⊗ FH

:,1:n)A
HA(I2 ⊗ F:,1:n) has

Toeplitz blocks, like in the case of UConv–DLA–SU.

The linear transformation (6) has two major advantages: i)

the computational complexity of matrix-vector multiplications

Wx with a fixed x ∈ Rp is controlled by the number of

stages m and the length of the filters n, instead of the fixed

matrix-vector multiplication complexity which is O(p2) and

ii) it allows for learning atoms that capture features from the

data at different scales, i.e., atoms of different sparsity levels.

The new proposed procedure, called Wavelet-like Dictionary

Learning Algorithm (W–DLA), is described in Algorithm 3.

Remark 6 (Extending and constraining the wavelet-like

structure). Unlike wavelets that use the same filters g and h

(known as the low and high pass filters, respectively) at each

stage k of the transformation, we learn different filters gk

and hk. Also, the support of the filters (and their size) can be

decided dynamically at every stage and the downsampling can

be replaced with a general column selection matrix S. Note

that if we allow full support then the least squares problem

can be solved in the Fourier domain with the complex-valued

unknowns g̃k = Fgk and h̃k = Fhk. Furthermore, each stage

in (5) applies only to the decomposition of the left-most (so-

called low-frequency) components from the previous stage. In

the spirit of optimal sub-band tree structuring (also known as

wavelet packet decompositions) [44], we can propose a trans-

formation W = C
(p)
1 · · ·C

(p)
m−1C

(p)
m factored into m stages

all of the form (4) (where again each stage has its own filters

gk and hk which now can have support n ≤ p) and use the

same optimization procedure. Lastly, we could also propose

7

Algorithm 3 – W–DLA.

Input: The dataset Y ∈ Rp×N such that 2m divides p exactly,

the number of stages m ≤ log2 p, the size of the support of

the filters denoted n ≤ p
2m−1 and the sparsity s ≤ p.

Output: The wavelet-like dictionary W ∈ Rp×p as in (6),

the diagonal D ∈ Rp×p such that WD has unit ℓ2 norm

columns and the sparse representations X ∈ Rp×N such that

‖Y −WDX‖2F is reduced.

1. Initialization: set all stages C
(n)
k = I, k = 1, . . . ,m;

compute the singular value decomposition of the dataset

Y = UΣVT and compute the sparse representations X =
Ts(UTY), i.e., project and keep the s largest entries in

magnitude for each element (column) in the dataset Y.

2. For 1, . . . ,K :

• Update dictionary: with all other components fixed,

update only the kth non-trivial component of W de-

noted C
(p

2k−1)
k (by computing both gk and hk on the

support of size n) for each k = 1, . . . ,m, at a time by

minimizing the least squares problem (24).

• Update D such that WD has unit ℓ2 norm columns and

update sparse representations X = OMP(WD,Y, s).

a structured transformation similar to (4) but based on more

than two filters, e.g., C
(p)
k =

[

GkS HkS JkS
]

∈ Rp×p,

for a new selection (downsampling by 3) matrix S ∈ Rp× p

3 .

Heuristics to choose m, n (maybe at each stage m, i.e., having

nk), the location of the n non-zero entries in each filter,

the structure and sizes of Ck and S may be proposed to

further improve the accuracy of the algorithm (or the trade-

off between numerical efficiency and accuracy in terms of the

representation error).

Orthonormal wavelets, i.e., in our case meaning that W and

all C
(p)
k are orthonormal, are also extensively used in many

application. With these orthogonality constraints the objective

function develops into a simpler form than (24) as

‖Y −WAW
(p)
k WBX‖2F =‖WT

AY−W
(p)
k WBX‖2F

=‖WT
AY − X̄2 −W(p

2k−1)X̄1‖2F
=‖WT

AY − X̄2 − FH
[

Σgk
Σhk

]

(I2 ⊗ F)X̄1‖2F
=‖F(WT

AY − X̄2)−
[

Σgk
Σhk

]

(I2 ⊗ FS)X̄1‖2F
=‖ȳ − (((I2 ⊗ FS)X̄1)

T ⊗ In)vec(
[

Σgk
Σhk

]

)‖2F ,

(25)

where we have now denoted ȳ = vec(F(WT
AY − X̄2))

and of course the Kronecker products are never explicitly

built. We minimize this quadratic objective with the ad-

ditional orthogonality constraint gT
k hk = 0 (in order to

keep C
(p)
k orthogonal). Minimizing quadratic functions under

quadratic equality constraints has been studied in the past

and numerical procedures are available [45]. This constraint

ensures orthogonality between the columns of GS and HS.

To ensure orthogonality among the columns of GS (and HS,

respectively) we can explicitly add symmetry constraints to

the filter coefficients, e.g., if gk has a non-zero support of size

four we have gk3 = gk1 and gk4 = −gk2. Alternatively, both

orthogonality constraints can be added leading to a quadratic

 10 20 30 No noise

10

20

30

40

50

60

70

80

90

SNR (dB)

D
et

ec
tio

n
ra

te
 (

%
)

UCirc−DLA−SU
UC−DLA
M−DLA
SI−ILS−DLA
SI−K−SVD
K−SVD

Fig. 1. Average kernel recovery rate as a function of noise level for different
shift invariant dictionary learning methods. We compare against SI–K–SVD
[20], SI–ILS–DLA [22], M–DLA [25], UC–DLA [15]. The K–SVD approach
serves as a baseline performance indicator since it is not explicitly developed
to recover shift-invariant structures.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

5

30

Shifts of kernel

F
re

qu
en

cy
 o

f u
til

iz
at

io
n

UC−DLA
UCirc−DLA−SU

Fig. 2. Average frequency of utilization for n = 20 atoms of the L = 45
circulants Cℓ. With perfect recovery the q = 3 peaks should be Ns

Lq
≈ 44.

optimization problem with two quadratic constraints [46]. �

IV. EXPERIMENTAL RESULTS

We now discuss numerical results that show how well the

proposed methods extract shift-invariant structures from data.

Since we are dealing with the dictionary learning problem our

goal is to build good representations of the datasets we con-

sider. In our proposed algorithms, in the sparse recovery phase,

we use the orthogonal matching pursuit (OMP) algorithm [47],

but any other sparse approximation method could be chosen.

Also, because the sparse approximation steps are numerically

expensive (at least quadratic complexity in general and applied

for all N ≫ n data points) and repetitive operations (done at

each iterative step of the alternating optimization algorithms),

OMP is chosen from practical considerations, as numerically

efficient implementations are available (for example [48]).

Notice from the description of all the proposed algorithms

that each dictionary update step necessarily decrease the

objective function but, unfortunately, the overall algorithms

may not be monotonically convergent to a local minimum

since OMP is not guaranteed in general to always reduce the

objective function. As such, in this section, we also provide

some experimental results where we empirically observe the

converge of the proposed methods.

For datasets with a strong DC component the learned

circulant dictionary might be C ≈ 1√
n
1n×n. Therefore,

preprocessing the dataset Y by removing the mean component

is necessary and we have σ1 = 0 in (10) since ỹ1 = 0N×1.

This operation is assumed performed before the application of

any algorithm developed in this paper.

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

20

40

60

80

100

120

140

Number of bases L

Le
ar

ni
ng

 ti
m

e
(s

ec
on

ds
)

UC−DLA, s=4
UCirc−DLA−SU, s=4
UC−DLA, s=8
UCirc−DLA−SU, s=8
UC−DLA, s=12
UCirc−DLA−SU, s=12

Fig. 3. Average learning times for UC–DLA [15] and the proposed UCirc–
DLA–SU over 100 random realizations. For the same parameters, the running
time of UConv–DLA–SU is several times higher and therefore not shown in
this plot – this highlights the importance of solving the learning problem in
the Fourier domain, when possible.

A. Synthetic experiments

We create a synthetic dataset generated from a fixed number

of atoms and their shifts and the proceed to measure how well

we recover them from the dictionary learning perspective. The

experimental setup follows: generate N = 2000 signals of

length n = 20, that are linear combinations (with sparsity

s = 4) of L = 45 randomly generated kernel columns which

are allowed to have only q = 3 circular shifts (out of the

possible n = 20), i.e., Y ∈ R
n×N where each columns is yi =

∑L
ℓ=1 αiℓP

qiℓcℓ + ni for i = 1, . . . , N with fixed ‖cℓ‖2 = 1,

‖αi‖0 = s where αiℓ ∈ [−10, 10] and qiℓ ∈ {0, . . . , q−1} are

randomly uniformly distributed and ni is a random Gaussian

vector representing noise.

First, using the synthetic dataset, we show in Figure 1

how the UCirc–DLA–SU outperforms previously proposed

methods in the task of recovering the atoms used in creating

the dataset. This shows the benefit (as compared to UC–DLA)

of updating all the circulant components simultaneously with

each step of the algorithm. We observe that UCirc–DLA–

SU achieves lower error approximately 75% of the time. The

typical counter-example is one where UC–DLA converges

slower (in more iterations) to a slightly lower representation

error, i.e., sub-optimal block calculations ultimately lead to

a better final result. This observation is not surprising since

both heuristic methods only approximately solve the overall

original dictionary learning problem (with unknowns both C

and X). To show this, with the same synthetic dataset for noise

level SNR = 30dB in Figure 2 we calculate how many times

on average each atom in all circulant components (from all

the L = 45) is used in the sparse representations. On average,

UCirc–DLA–SU recovers the correct supports (in effect, the

indices of the shifts used) more often than UC–DLA.

Figure 3 shows the learning times for the union of circulants

algorithms, with blocks and with simultaneous updates, for a

fixed number of K = 100 iterations. For this test, we created

a synthetic dataset Y of size n = 64 with N = 8192 data

points and we vary the sparsity level s and the number of bases

in the union L. For s ∈ {8, 12}, in our experiments, UCirc–

DLA–SU is always faster than UC–DLA [15] and the speedup

0 200 400 600 800 1000
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (samples)

C
en

te
re

d
E

C
G

 s
ig

na
l (

m
V

)

Original
Reconstructed

Fig. 4. Original ECG sample and reconstruction by UConv–DLA–SU with
support n = 12, sparsity s = 4 and L = 2 circulants. With these parameters,
the approximation error (26) for the whole training dataset is 7.5%, showing
that such data can be indeed well represented in a simple (in terms of small
L) shift-invariant dictionary.

is on average 20% while for s = 4 the average speedup is

only 10% and for large L there are cases where UCirc–DLA–

SU is slower than UC–DLA. In principle, UCirc–DLA–SU

should always be faster but in practice, the algorithm involves

memory manipulations in order to build all the matrices for

all the subproblems (15). This is the reason why the running

time difference is not larger. Furthermore, for small s the

blocks used by UC–DLA are calculated rapidly (calculations

are similar to the matrix operations in Remark 5) because X

is very sparse and the overall running time is, therefore, lower.

B. Experiments on ECG data

Electrocardiography (ECG) signals [49] have many repeti-

tive sub-structures that could be recovered by shift-invariant

dictionary learning. Therefore, in this section, we use the

proposed UConv–DLA–SU to find in ECG signals short

(compact support) features that are repeated. We use the MIT-

BIH arrhythmia database1 from which we extract a normal

sinus rhythm signal composed of equality length samples from

five different patients, all sampled at 128 Hz. This signal is

reshaped into a matrix of centered, non-overlapping sections of

length p = 64, leading to the training dataset Y ∈ R64×101000.

Because we are searching for sub-signals with limited

support, we use the UConv–DLA–SU with parameters n = 12,

s = 2 and L = 2 to recover the shift-invariant structure. In

Figure 4 we show the original ECG signal and its reconstruc-

tion in the union of convolutional dictionaries. Of course, the

reconstruction is not perfect but it is able to accurately capture

the spikes in the data and remove some of the high-frequency

features, i.e., the signal looks filtered (denoised). The second

plot, Figure 5, shows the L = 2 learned atoms from the data

which capture the spiky nature of the training signal.

C. Experiments on image data

The training data Y that we consider are taken from popular

test images from the image processing literature (pirate, pep-

pers, boat, etc.). The test dataset Y ∈ Rp×N consists of 8× 8

1https://www.physionet.org/physiobank/database/mitdb/

9

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

Time (samples)

C
en

te
re

d
E

C
G

 s
ig

na
l (

m
V

)

Fig. 5. The L = 2 kernel atoms of length p = 64 learned by UConv–DLA–
SU with support n = 12 and sparsity s = 4.

5 10 15 20 25 30 35 40
20

22

24

26

28

30

32

34

36

38

40

Iteration

R
ep

re
se

nt
at

io
n

er
ro

r
(ε

 %
)

W−DLA
W−DLA, Haar initialization

Fig. 6. A typical convergence of the proposed W–DLA algorithm with the
number of iterations. Since n = 2, m = log

2
p we also have the opportunity

to initialize the filters with the Haar values.

non-overlapping image patches with their means removed. We

consider N = 12288 and we have p = 64. To evaluate the

learning algorithms, in this section we consider the relative

representation error of the dataset Y in the dictionary D given

the sparse representations X as

ǫ = ‖Y −DX‖2F‖Y‖−2
F (%). (26)

We consider image data because there are well-known

wavelet transforms that efficiently encode such data. We

will use the filters of the Haar and Daubechies D4 wavelet

transforms, i.e., with n = 2, m = log2 p, h̄k =
[

1√
2
− 1√

2

]

, ḡk =
[

1√
2

1√
2

]

and n = 4, m = −1 +

log2 p, h̄k =
[

1−
√
3

4
√
2
− 3−

√
3

4
√
2

3+
√
3

4
√
2
− 1+

√
3

4
√
2

]

, ḡk =
[

1+
√
3

4
√
2

3+
√
3

4
√
2

3−
√
3

4
√
2

1−
√
3

4
√
2

]

, respectively, for all k. The

filters are chosen such that the resulting W is orthonormal.

First, we show in Figure 6 the experimental convergence of

the proposed W–DLA. If we also impose an orthogonality

constraint on W then we can avoid OMP for the sparse

representations and just a projection operation guarantees

optimal sparse representations. The figure shows that, when

available, it is convenient to initialize the W–DLA with well-

known wavelet filters since the algorithm converges faster and

to slightly lower representation errors. Still, the differences are

not significant and wavelets do not exist for every n,m.

Then, in Figure 7 we show how the representation error

varies with the sparsity level s. We also run W–DLA initialized

with the well-known wavelet filter coefficients Haar and D4,

respectively. W–DLA is always able to improve the repre-

sentation performance, even when starting with the wavelet

coefficients. In the Haar case the improvement is small due

4 6 8 10 12
10

20

30

40

50

Haar
W−DLA, Haar initialization
W−DLA

4 6 8 10 12
10

20

30

40

50

Sparsity level (s)

D4
W−DLA, D4 initialization
W−DLA

R
ep

re
se

nt
at

io
n

er
ro

r
(ε

 %
)

Fig. 7. Representation errors as a function of the sparsity level for wavelet
and W–DLA transformations. The top figure has parameters n = 2, m =
log

2
p and therefore allows a Haar initialization while the bottom figure has

parameters n = 4, m = −1 + log
2
p and allows a D4 initialization.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
10

15

20

25

30

35

Size of filter (n)

R
ep

re
se

nt
at

io
n

er
ro

r
(ε

 %
)

W−DLA, maximum m
W−DLA, m = 1
Circ−DLA

Fig. 8. Representation error for W–DLA as a function of the size of the filter
support n. For reference we show C–DLA [15] while W–DLA runs twice:
once with fixed m = 1 and with largest m such that n ≤

p

2m−1 is obeyed.

to the small number of free filter parameters to learn, i.e.,

only 24: m = log2 p = 6 stages each with 2 filters and each

with 2 coefficients. In the D4 case, the representation error is

improved significantly. Both figures show that, when available,

wavelet coefficients provide an excellent initialization even

slightly better than the proposed W–DLA (also confirmed in

Figure 6). Since these wavelets are not available for all choices

n,m the purpose of this plot is to show that the proposed

initialization provides very good results in general.

Finally, in Figure 8 we show the effect that parameters n

and m have on the representation error. For reference, we

show the representation error of C–DLA which has p = 64
free parameters to learn. The performance of this dictionary

is approximately matched by W–DLA with n = 4 and

m = −1 + log2 p which has 40 free parameters to learn:

m = 5 stages each with 2 filters of support 4 each. Notice

that the representation error plateaus after n = 8. In general,

dictionaries built with W–DLA have 2nm degrees of freedom.

We also show a version of W–DLA where we keep m = 1
and vary only m in which case, of course, the representation

error decreases. Note that in this case each run of W–DLA

is initialized with a random set of coefficients. To show

monotonic convergence it would help to initialize the filters

of size n with those previously computed of support n− 1.

10

V. CONCLUSIONS

In this paper, we propose several algorithms that learn,

under different constraints, shift-invariant structures from data.

Our work is based on using circulant matrices and finding

numerically efficient closed-form solutions to the dictionary

update steps, by least-squares. We analyze the behavior of the

algorithms on various data sources, we compare and show we

outperform previously proposed algorithms from the literature.

REFERENCES

[1] R. M. Gray, “Toeplitz and circulant matrices: a review,” Found. Trends

Commun. Inf. Theory, vol. 2, no. 3, pp. 155–239, 2006.
[2] A. Hero, H. Messer, J. Goldberg, D. Thomson, M. Amin, G. Giannakis,

A. Swami, J. Tugnait, A. Nehorai, A. Swindlehurst, J.-F. Cardoso,
L. Tong, and J. Krolik, “Highlights of statistical signal and array
processing,” IEEE Signal Processing Magazine, vol. 15, no. 5, pp. 21–
64, 1998.

[3] H. Hassanieh, F. Adib, D. Katabi, and P. Indyk, “Faster GPS via
the sparse Fourier transform,” in Proc. ACM 8th Annual International

Conference on Mobile Computing and Networking (Mobicom), 2012,
pp. 353–364.

[4] G. C. Carter, “Coherence and time delay estimation,” Proceedings of the

IEEE, vol. 75, no. 2, pp. 236–255, 1987.
[5] H. Ohlsson, Y. C. Eldar, A. Y. Yang, and S. S. Sastry, “Compressive

shift retrieval,” IEEE Trans. Sig. Proc., vol. 62, no. 16, pp. 4105–4113,
2014.

[6] B. Lucas and T. Kanade, “An iterative image registration technique with
an application in stereo vision,” in Int. J. Conf. Artificial Intelligence,
1981, pp. 674–679.

[7] S. Jain and J. Haupt, “Convolutional approximations to linear dimen-
sionality reduction operators,” in Proc. IEEE Int. Conf. Acoust. Speech

Signal Process. (ICASSP), 2017, pp. 5885–5889.
[8] O. Chabiron, F. Malgouyres, H. Wendt, and J.-Y. Tourneret,

“Optimization of a fast transform structured as a convolutional
tree,” working paper or preprint, 2016. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01258514

[9] K. Ye and L.-H. Lim, “Every matrix is a product of Toeplitz matrices,”
Found. of Comp. Math., vol. 16, no. 3, pp. 577–598, 2016.

[10] H. Bristow, A. Eriksson, and S. Lucey, “Fast convolutional sparse
coding,” in Proc. IEEE Conf. Comp. Vis. Pat. Recog. (CVPR), 2013,
pp. 391–398.

[11] B. Kong and C. C. Fowlkes, “Fast convolutional sparse coding (FCSC),”
Tech. Rep., University of California, Irvine, 2014.

[12] C. Garcia-Cardona and B. Wohlberg, “Convolutional dictionary learning:
A comparative review and new algorithms,” IEEE Trans. on Comp.

Imag., vol. 4, no. 3, pp. 366–381, 2018.
[13] V. Papyan, J. Sulam, and M. Elad, “Working locally thinking globally:

Theoretical guarantees for convolutional sparse coding,” IEEE Trans.

Sig. Process., vol. 65, no. 21, pp. 5687–5701, 2017.
[14] G. Pope, C. Aubel, and C. Studer, “Learning phase-invariant dictionar-

ies,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2013, pp.
5979–5983.

[15] C. Rusu, B. Dumitrescu, and S. A. Tsaftaris, “Explicit shift-invariant
dictionary learning,” IEEE Sig. Proc. Let., vol. 21, no. 1, pp. 6–9, 2014.

[16] C. Rusu, R. Morisi, D. Boschetto, R. Dharmakumar, and S. A. Tsaftaris,
“Synthetic generation of myocardial blood-oxygen-level-dependent MRI
time series via structural sparse decomposition modeling,” IEEE Trans.

Med. Imaging, vol. 33, no. 7, pp. 1422–1433, 2014.
[17] B. Mailhe, S. Lesage, R. Gribonval, F. Bimbot, and P. Vandergheynst,

“Shift-invariant dictionary learning for sparse representations: extending
K-SVD,” in European Signal Processing Conference, 2008.

[18] T. Blumensath and M. Davies, “Sparse and shift-invariant representations
of music,” IEEE Trans. Audio Speech Lang. Process., vol. 14, no. 1, pp.
50–57, 2006.

[19] B. Wohlberg, “Efficient algorithms for convolutional sparse representa-
tions,” IEEE Trans. Image Process., vol. 25, no. 1, pp. 301–315, 2016.

[20] M. Aharon, “Overcomplete dictionaries for sparse representation of
signals,” Ph.D. thesis, Technion - Israel Institute of Technology, 2006.

[21] J. J. Thiagarajan, K. N. Ramamurthy, and A. Spanias, “Shift-invariant
sparse representation of images using learned dictionaries,” in IEEE

Machine Learning for Signal Processing, 2008.
[22] K. Skretting, J. Husoy, and S. Aase, “General design algorithm for sparse

frame expansions,” Signal Process., vol. 86, pp. 117–126, 2006.

[23] P. Jost, P. Vandergheynst, S. Lesage, and R. Gribonval, “MoTIF: An
efficient algorithm for learning translation invariant dictionaries,” in
Proc. IEEE Int. Conf. Acoust. Speech Signal Process., 2006.

[24] G. Zheng, Y. Yang, and J. Carbonell, “Efficient shift-invariant dictionary
learning,” in Proceedings of the 22Nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ser. KDD ’16.
New York, NY, USA: ACM, 2016, pp. 2095–2104.

[25] Q. Barthelemy, A. Larue, A. Mayoue, D. Mercier, and J. I. Mars, “Shift
& 2D rotation invariant sparse coding for multivariate signals,” IEEE

Trans. Sig. Process., vol. 60, no. 4, pp. 1597–1611, 2012.
[26] F. Barzideh, K. Skretting, and K. Engan, “Imposing shift-invariance

using flexible structure dictionary learning (FSDL),” Digital Signal

Processing, vol. 69, pp. 162–173, 2017.
[27] R. Grosse, R. Raina, H. Kwong, and A. Y. Ng, “Shift-invariant sparse

coding for audio classification,” in Uncertainty in Artificial Intelligence,
2007, pp. 149–158.

[28] F. Heide, W. Heidrich, and G. Wetzstein, “Fast and flexible convolutional
sparse coding,” in IEEE Computer Vision and Pattern Recognition, 2015,
pp. 5135–5143.

[29] H. Bristow and S. Lucey, “Optimization methods for convolutional
sparse coding,” Technical Report, 2014.

[30] P. Vardan, Y. Romano, and M. Elad, “Convolutional neural networks
analyzed via convolutional sparse coding,” arXiv:1607.08194, 2016.

[31] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[32] G. Strang and T. Nguyen, Wavelets and filter banks. Wellesley, MA :
Wellesley-Cambridge Press, 1997.

[33] B. Dumitrescu and P. Irofti, Dictionary Learning Algorithms and Appli-

cations. Springer, 2018.
[34] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning

for sparse coding,” in Proceedings of the 26th Annual International

Conference on Machine Learning. ACM, 2009, pp. 689–696.
[35] Y. Naderahmadian, S. Beheshti, and M. A. Tinati, “Correlation based

online dictionary learning algorithm,” IEEE Transactions on Signal

Processing, vol. 64, no. 3, pp. 592–602, 2016.
[36] F. Giovanneschi, K. V. Mishra, M. A. González-Huici, Y. C. Eldar,

and J. H. G. Ender, “Dictionary learning for adaptive GPR target
classification,” CoRR, vol. abs/1806.04599, 2018.

[37] A. Bottcher, “Orthogonal symmetric Toeplitz matrices,” Complex Anal-

ysis and Operator Theory, vol. 2, no. 2, pp. 285–298, 2008.
[38] M. Huhtanen and A. Perämäki, “Factoring matrices into the product of

circulant and diagonal matrices,” J. of Fourier Anal. and App., vol. 21,
no. 5, pp. 1018–1033, 2015.

[39] C. Rusu and B. Dumitrescu, “Stagewise K-SVD to design efficient
dictionaries for sparse representations,” IEEE Signal Processing Letters,
vol. 19, no. 10, pp. 631–634, 2012.

[40] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins
University Press, 1996.

[41] B. Wohlberg, “Efficient algorithms for convolutional sparse representa-
tions,” IEEE Trans. Image Process., vol. 25, no. 1, pp. 301–315, 2016.

[42] H. G. Feichtinger and T. Strohmer, Advances in Gabor Analysis.
Birkhauser, 2003.

[43] G. Pfander and H. Rauhut, “Sparsity in time-frequency representations,”
J. Fourier Anal. Appl., vol. 16, pp. 233–260, 2010.

[44] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for
best basis selection,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 713–
718, 1992.

[45] H. Hmam, “Quadratic optimisation with one quadratic equality con-
straint,” Electronic Warfare and Radar Division DSTO Defence Science

and Technology Organisation, Australia, Report DSTO-TR2416, 2010.
[46] S. M. Guu and Y. C. Liou, “On a quadratic optimization problem with

equality constraints,” Journal of Optimization Theory and Applications,
vol. 98, no. 3, pp. 733–741, 1998.

[47] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching
pursuit: recursive function approximation with application to wavelet
decomposition,” in Asilomar Conf. on Signals, Systems and Comput.,
1993, pp. 40–44.

[48] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation
of the K-SVD algorithm using batch orthogonal matching pursuit,” CS

Technion, 2008.
[49] G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhythmia

database,” IEEE Eng. in Med. and Biol., vol. 20, no. 3, pp. 45–50, 2001.

https://hal.archives-ouvertes.fr/hal-01258514

	I Introduction
	II The proposed structured dictionaries
	II-A Circulant dictionaries
	II-B Convolutional dictionaries
	II-C Wavelet-like dictionaries

	III The proposed dictionary learning algorithms
	III-A Circulant dictionary learning
	III-B Union of circulant dictionary learning
	III-C Union of convolutional dictionary learning
	III-D Wavelet-like dictionary learning

	IV Experimental results
	IV-A Synthetic experiments
	IV-B Experiments on ECG data
	IV-C Experiments on image data

	V Conclusions
	References

