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Abstract

Compressive sensing (CS) has been widely used in wireless sensor networks
(WSNs). In WSNs, the sensors are battery-powered and hence their com-
munication and processing powers are limited. One of the dominant features
of the CS is its complex recovery phase. Thus, great care should be taken
into account when designing the CS recovery algorithm for WSNs. In this
paper, we propose a distributed and cooperative recovery algorithm for two
different cooperation modes of sensor networks including incremental and
diffusion. The theoretical performance analysis of the proposed algorithms
in both exact and noisy measurements is investigated. The obtained results
show the superiority of the proposed method in terms of convergence rate
and steady-state error compared with the non-cooperative scenario and the
well-known distributed least absolute shrinkage and selection operator (D-
LASSO) approach. Furthermore, the proposed structure requires much fewer
measurements for exact recovery.

Keywords: Compressive Sensing, Wireless sensor networks, Incremental
and diffusion strategy, Sparse signal.

1. Introduction

Compressive sensing (CS) has been emerged into signal processing and
received great attention. The CS approach, introduced by Candes, Romberg,
Tao [1], and Donoho [2], includes a very simple sensing phase and a complex
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recovery phase. In the simple compression phase, the desired signal with a
large number of entries is sensed or measured by an appropriate rectangular
matrix and results in a short length of probable noisy or inaccurate measure-
ment. In the sophisticated recovery phase, the desired signal is reconstructed
from the measured data. When the signal is sparse or equivalently most of
its components are zero, there are a lot of practical and efficient algorithms
for reconstruction of the signal. The CS approach is beneficial in many appli-
cations since many practical signals are compressible in the sense that they
can be approximated as a sparse signal by applying an appropriate transfor-
mation [3].

In practice, the availability of fast reconstruction algorithms is essential.
The reconstruction algorithms are usually based on convex optimization,
non-convex optimization, and greedy approaches. In convex optimization,
the number of measurements for signal reconstruction is small but the com-
putational complexity is relatively high. Basis pursuit [4], basis pursuit de-
noising (BPDN) [4], least absolute shrinkage and selection operator (LASSO)
[5], and least angle regression (LAR) [6] algorithms are based on convex opti-
mization. The non-convex optimizations, such as iterative re-weighted least
squares [7], sparse Bayesian learning algorithms [8], Monte-Carlo based al-
gorithms [9], and focal underdetermined system solver (FOCUSS) classes of
algorithms [10]-[14] are hard to exactly solve in a reasonable time. Alterna-
tive reconstruction approaches include greedy type methods that have fast
reconstruction rate, low complexity of mathematical framework, and simple
geometric interpretation. These types of algorithms iteratively solve the re-
construction problem step by step. The basic idea is to find the support (the
index set of its nonzero entries) of the unknown signal sequentially. Deter-
mining the correct support set, the non-zero signal coefficients are calculated
by applying the pseudo-inversion process [15]-[27].

One of the most important areas of CS applications is in wireless sensor
networks (WSNs) [28]. The WSNs are used in many applications such as
physiological monitoring, environmental monitoring, condition-based main-
tenance, smart spaces, military, precision agriculture, transportation, factory
instrumentation and inventory tracking [29].

All of the described algorithms in [1]-[27] can be used in WSNs with fu-
sion center (FC) where the central processor performs the CS reconstruction
tasks. In this scenario, the high aggregate data rates limit the bandwidth
availability and the battery-powered devices restrict the communication en-
ergy. So, distributed processing is often much desirable for such situations.
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In a distributed scenario, without requiring any FC, each sensor communi-
cates only with its closest neighbors and the processing tasks are carried out
locally at each sensor node [30]-[32]. Since most of the existing sparse opti-
mization algorithms are performed in a centralized scheme, these algorithms
could only provide effective performance for solving the sparse signal recov-
ery problem based on a single measurement vector, which is not suitable for
WSNs’ applications.

A most valuable joint distributed sparse optimization algorithm is given
in [33], where the above-mentioned issues are considered and three decen-
tralized methods are proposed. The first proposed algorithm of [33] is an
iterative method and aims to solve a quadratic program in each iteration.
So, the computational complexity of this algorithm is not suitable for WSNs.
To reduce the computational complexity, the authors proposed a distributed
coordinate descent LASSO (DCD-LASSO) algorithm. However, in each it-
eration, the update of each coordinate is related to the previous coordinate
and cannot be performed in parallel. So, this algorithm suffers from a slow
convergence rate. To overcome this issue, the authors in [33] developed D-
LASSO to update all coordinates in parallel. This leads potentially to fast
convergence rate, but this algorithm involves matrix inversion that may be
computationally demanding for sufficiently large matrices. Thus, all of the
proposed algorithms in [33] are based on convex optimization and are not
suitable for WSNs due to their high computational complexities and low
convergence rates.

A distributed form of the CS is also considered in [34]-[36]. In [34], each
sensor first performs a local computation in each iteration to derive an in-
termediate vector. The sensors then perform a global computation on their
intermediate vectors to derive the next step in the iteration. Because of
the global computation step, this method requires a spanning tree over the
network rooted at a special node. This special node also should have some
information about other nodes that must be trained using a distributed algo-
rithm. Therefore, the amount of computations and communications of this
method is extremely high and it is not proper for WSNs. A BP-based al-
gorithm is proposed in [35]. Each node solves an optimization problem in
each iteration. So, the computational complexity of this algorithm is also
high and not proper for WSNs. This algorithm requires an additional com-
putation for graph coloring. Another disadvantage of this algorithm is that
there is no convergence guarantee in a general network. In [36], an algo-
rithm based on concave penalization is introduced. The proposed method
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significantly reduces the data exchange by limiting communications to local
communications. The main drawback of the algorithm is its very low conver-
gence rate. This kind of convergence is not suitable for energy-constrained
WSNs, because, the speed of operations is crucial for some applications.

In this paper, we propose a greedy-based algorithm that has fast recon-
struction and low computational complexity. This algorithm is an extension
of hard thresholding pursuit (HTP) [26] assigned to use with a distributed
and cooperative scenario. We propose a distributed and cooperative algo-
rithm in two topology structures including incremental and diffusion. In an
incremental strategy, the information flows sequentially from one node to
the adjacent node. This mode of cooperation requires a cyclic pattern of co-
operation among the nodes and it requires fewer communications and power
sources [30]. When more communications and energy resources are available,
a diffusion cooperative scheme can be applied, where each node communi-
cates with all of their neighbors and no cyclic path is required. In this case,
the amount of communications is higher than the incremental scheme. But,
nodes can access to more data from their neighbors [31]-[32]. The proposed
greedy-based algorithm is intended to adapt for these two modes of coop-
eration. In the proceeding section, we present the theoretical performance
analysis of the proposed algorithms in two cooperative modes. Although
some of our analysis are similar to those of [26], we consider the distribu-
tive case that is challenging since nodes in each neighborhood interact with
each other. In such a scenario, a successful analysis should consider both
the temporal and spatial interconnectedness of the data. The suggested ap-
proach is quite different from the methods reported in [37]-[40]. The main
contribution of [37]-[40] is an adaptive estimation in a distributed scenario,
where the sparse property is considered to improve the performance of the
distributed adaptive estimation. In these works, there is also no limitation in
the number of measurements and they only impose a penalty in the intended
cost functions to increase the accuracy and speed of estimation for sparse
signals. On the contrary, we encounter an underdetermined system of linear
equations and exploit the sparsity of data to solve these equations.

The key contributions of this study are summarized as follows:

• A recovery algorithm based on the incremental and diffusion cooper-
ation modes of the sensor network is proposed. These cooperation
modes have lower steady-state error and higher convergence rate than
the non-cooperative methods.
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• We present the theoretical performance analysis of the proposed al-
gorithms. Compared with the non-distributed case, the theoretical
analysis of the proposed approach is challenging since nodes in each
neighborhood interact with each other and a successful analysis should
consider the temporal and spatial interconnectedness of the data.

• We show that the convergence rate of the proposed method is higher
than that of the non-cooperative case.

• Using some theorems, we show sufficient condition on the restricted
isometry property (RIP) for the linear system matrix that the proposed
incremental and diffusion algorithms converge. This condition is better
than the non-distributed counterpart.

• Under some theorems, we present the stability of the reconstruction
scheme regarding the sparsity defect for both incremental and diffusion
modes of cooperation.

• We show the robustness of the reconstruction scheme regarding the
measurement error.

Notation : For ease of reference, the main symbols used in this paper
are listed in Table 1:

2. Preliminaries

In CS algorithms, we find the sparse solution x ∈ CN of underdetermined
linear system y = AX+e, where A ∈ Cm×N (m < N) is the sensing matrix,
y ∈ Cm is a noisy measurment, and e ∈ Cm is an unknown noise vector. The
most common way to reconstruct the sparse signals is solving an optimization
problem as follows:

minimize
z∈CN

‖z‖0 subject to Az = y (1)

where ‖z‖0 is the support cardinality of z. Finding the solution of the
non-convex problem (1) is NP-hard and computationally intractable [41].
Several practical methods were presented in the CS area [1]-[33]. All of these
methods are successful when the measurement matrix A is properly selected.
One simple way to measure the suitability of the measurement matrix is to
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Table 1: The main symbols

Symbol Description

‖A‖F The Frobenius norm of a matrix A
‖A‖2→2 The spectral norm of a matrix A
‖x‖2 The `2-norm of a vector x
‖x‖0 The number of nonzero entries of a vector x
|x| The absolute value of a scalar x
tr(A) The trace (the sum of diagonal elements) of a matrix A
supp(x) The support of a vector x
card(S) The cardinality of a set S
〈u,v〉 The inner product between two vectors u and v
E{X} The expectation of a random variable X
A∗ The adjoint (or Hermitian transpose) of a matrix A
A
⊗

B The Kronecker product of two matrices A and B
I The identity matrix
S The complement of a set S
T∆S The symmetric difference of the sets T and S
S\T The difference of set T from set S
zS The vector equal to z on S and to zero on S
Ls(z) The index set of s largest absolute entries of a vector z
LJs (Z) An operator that divides the Z into J blocks

and returns the index set of s largest absolute
entries of each block

diag{.} The block diagonal matrix consisting
of the specified matrices

col{.} The column vector with the specified
entries stacked on top of each other
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use coherence [42]. Assuming ai is the ith column of A and all columns of
A are `2 normalized, the coherence of the matrix A is defined as

µ = max
1≤i 6=j≤N

|〈ai,aj〉| (2)

In general, the smaller coherence results in a better recovery algorithm’s
performance. The coherence of a matrix with `2-normalized columns satisfies
the following condition [43]

µ ≥

√
N −m

m (N − 1)
(3)

The lower bound on the coherence limits the performance of recovery
algorithms to the small sparsity levels. The sparsity level is the number
of non-zero entries of the signal. Another measure for the quality of the
measurement matrix is RIP [44]. The s’th restricted isometry constant δs for
a matrix A is the smallest δ ≥ 0 such that

(1− δ) ‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ) ‖x‖2
2 (4)

The above equation is valid for all s-sparse vectors x ∈ RN . The signal is
s-sparse when the maximum number of its nonzero entries is s. The matrix
A is said to satisfy the RIP condition if δs is small for reasonably large s.
Bounds as δκs < δ∗ for some integer κ and some specific value δ∗ guarantee the
recoverability of s-sparse vectors via different algorithms. Testing RIP condi-
tion for a matrix is NP-hard and computationally intractable [45]. However,
it has been established that certain classes of randomly generated matrices
satisfy the RIP with a high probability. It is well known that the random
matrices satisfy the condition δκs < δ∗ when the number of measurements
has the following condition

m ≥ C
κs

δ2
∗
Ln

(
N

s

)
(5)

for some constant C > 0

3. The proposed approach

In this section, the proposed algorithm is investigated. First, we explain
the incremental case and then the diffusion strategy is discussed.
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3.1. Incremental compressive sensing strategy

In this section, we propose a compressive sensing recovery method for
WSNs based on an incremental strategy. We extend the HTP algorithm for
a distributed framework where the information flows sequentially from one
node to the adjacent node. The proposed algorithm is called distributed
incremental hard thresholding pursuit (DIHTP) through the study. We es-
sentially focus on HTP for many reasons. First, it has a better performance
compared with the other algorithms. Second, it is computationally suitable
for WSNs, and third, the HTP is compatible with the cyclic patterns of co-
operative nodes. In the second part of this section, we analyze the recovery
performance of DIHTP in the noise-free scenario and then extend the analysis
to the case that the vectors are not exactly sparse and can not be measured
with perfect precision. Such an analysis for the incremental topology-based
networks is challenging because nodes in each neighborhood interact with
each other and consequently, a successful analysis should consider both the
temporal and spatial interconnectedness of the data.

3.1.1. DIHTP algorithm

We consider J numbers of sensors are randomly distributed over a region.
LetNi denote a set of all sensors in the neighborhood of node i. The objective
is to collectively recover s-sparse vector x ∈ CN from their measurements

yi = Aix + ei ∈ Cm (6)

where Ai ∈ Cm×N is a known matrix and ei ∈ Cm is an unknown noise
vector with ‖ei‖ < σi, for some σi > 0 and some norm on Cm, usually the
`2-norm at node i.

A non-cooperative approach, to recover the s-sparse vector x from the
measurement yi, proposes running of the reconstruction algorithms for each
node separately [1]-[27]. But, such algorithms do not use the spatial corre-
lation between the nodes. If the spatial correlation is used, it increases the
speed of convergence. For this purpose, we modify the first stage of HTP
[26] as

Snj = Ls
(
xnj−1 + A∗j

(
yj −Ajx

n
j−1

))
(7)

where Ls(z) returns the index set of s largest absolute entries of z. xnj ∈ CN

and Snj are respectively the local estimation of x and its support set in the

n’th iteration of sensor j. The node j uses the estimation xn−1
j of its neighbor
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in order to update the local estimation of its support set Snj . The justification
is that the RIP ensures the matrix A∗jAj behaves as an identity matrix for

each node. Thus, the contributions of xn−1
j and A∗jAjx

n−1
j , despite the use

of local estimation of the previous node, is roughly xn−1
j −xn−1

j = 0 and the
term A∗jyj is equivalent to xj, because of A∗jAjxj = A∗jyj.

The suggested DIHTP algorithm can be written as follows:

For each time n ≥ 0, repeat
j = 1, . . . , J
xn0 = xn−1

Snj = Ls
(
xnj−1 + A∗j

(
yj −Ajx

n
j−1

))
xnj = argminz∈CN

{∥∥yj −Ajz
∥∥

2
, supp(z) ⊂ Snj

}
xn = xnJ

(8)

where “supp” is the abbreviation of support. The operation of the algorithm
(8) is as follows: At each time instant n, each node uses its local data and
matrix, {yj,Aj}, and the estimated vector xnj−1, received from its adjacent
node, to perform the following tasks:

1. Evaluate the local estimate xnj−1 + A∗j(yj −Ajx
n
j−1).

2. Choose the index set of s largest absolute entries of
xnj−1 + A∗j(yj −Ajx

n
j−1).

3. Update the estimated vector
xnj = argminz∈CN

{∥∥yj −Ajz
∥∥

2
, supp(z) ⊂ Snj

}
.

4. Pass the updated vector xnj to the neighbor node j + 1.

In the proceeding section, we show that the DIHTP approach has a better
convergence rate than HTP [26]. The HTP is a non-distributed implemen-
tation and it is separately performed in each node.

3.1.2. Convergence analysis of DIHTP in the noise-free case

Theorem 1: The DIHTP algorithm generates sequence xnj that satis-
fies the condition ‖xnj − x‖2 ≤ ρn‖x0

j − x‖2 given yi = Aix, where ρ =∏J
j=1

√
2(δj3s)

2

1−(δj2s)
2 ≤ 1.

Proof of Theorem 1: see Appendix A.
The main finding of this theory is that the sequence xnj converges towards

x in a geometric rate which is almost improved by the power of J compared
with the non-cooperative cases. Generally, this Theorem is interpreted from
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two points of views. First, if we assume, without loss of generality, that the
restricted isometry constants σj3s and σj2s are equal for all nodes and are cho-

sen such that

√
2(δj3s)

2

1−(δj2s)
2 < 1, then

∥∥xnj − x
∥∥

2
≤

(√
2(δj3s)

2

1−(δj2s)
2

)J∥∥xn−1
j − x

∥∥
2

is true (see (A.14) in Appendix A), consequently the convergence rate of
DIHTP is better than the conventional non-distributed HTP. Second, note
that if for a certain node in the network we choose the restricted isometry

constants such that
2(δj3s)

2

1−(δj2s)
2 < a holds and if for the restricted isometry con-

stants of another node k in the network
2(δk3s)

2

1−(δk2s)
2 <

1
a

holds then the products

of them will be
2(δj3s)

2

1−(δj2s)
2

2(δk3s)
2

1−(δk2s)
2 < 1, which satisfies the convergence condition.

On the other hand, since δj2s ≤ δj3s, these occur as soon as the inequalities

δj3s <
√

a
2+a

and δk3s <
√

1
1+2a

hold. If we choose a = 1, then the same con-

vergence condition of the single signal case (i.e., δj3s <
1√
3
) will be achieved.

But, for example when a = 2, we have δj3s <
1√
2

and δk3s <
1√
5
. The bound

δj3s <
1√
2

offers a substantial improvement over the single signal case in the
cost of the more stringent condition for the other node k. So, according
to equation (5), the node j requires fewer measurements than the node k.
In other words, deficiency of one node’s measurements is compensated by
another node.

3.1.3. Convergence analysis of DIHTP for approximately sparse vectors mea-
sured with some errors

Theorem 2: For any signal x ∈ CN that is not be exactly sparse with
the noisy measurements yj = Ajx + ej , the DIHTP algorithm generates

sequence xnj which satisfies
∥∥xnj − xS

∥∥
2
≤ (Πj,1)n

∥∥x0
j − xS

∥∥
2

+ (Πj,1)n−1Hj,
where S denotes the index set of s largest entries of x,
Πj,K = βjβj−1 . . . β1βJβJ−1 . . . .βj+K , and Hj = Πj,2Fj+1 + Πj,3Fj+2 + · · · +
Πj,J−1Fj−2 + Πj,JFj−1 + Fj with

βj =

√
2(δj3s)

2

1−(δj2s)
2 and Fj =

(√
2

1−δj2s
+

√
1+δjs

1−δj2s

)
‖AjxS + ej ‖2.

Proof of Theorem 2: see Appendix B.
This theorem has an important implication which indicates the robust-
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ness and stability of the algorithm. As it can be seen from theorem 2, the
reconstruction error is controlled by the desired signal distance to a s-sparse
vector. In the CS literature, it is usually referred to as the stability of the
reconstruction scheme to sparsity defect. On the other hand, the results of
this theorem state that the distance of the reconstructed signal to the orig-
inal signal is controlled by the measurement error. In the CS literature, it
is usually referred to as the robustness of the reconstruction scheme to the
measurement error. So, theorem 2 indicates the robustness and stability of
the algorithm ever in the distributed case. This theorem also shows that on
the contrary to the single signal case, in addition to the errors caused by the
node, the errors resulting from the inexact sparsity and imperfect precision
in the measuring of all other nodes are involved. In addition, in term of the

convergence, by restricting Πj,1 =
∏J

j=1

√
2(δj3s)

2

1−(δj2s)
2 < 1, we achieve the same

result as the exact case. Therefore, all the issues mentioned in theorem 1 are
also confirmed in this section.

3.2. Diffusion compressive sensing strategy

In this section, we propose a CS recovery method for WSNs based on
the diffusion mode of cooperation. Then, we analyze the performance of the
proposed DDHTP recovery algorithm in the noise-free case and the case with
inexact sparsity and imperfect precision setting.

3.2.1. DDHTP algorithm

We assume a network with more communications and available energy
resources. In the considered network, each node communicates with all of
its neighbors and uses the linear combination of its neighborhood estimates
rather than using only the estimation of one node. This process could be
expressed as follows:

ϕn−1
j =

∑
`∈Nj

cj,`x
n−1
` (9)

where the neighborhood parameter Nj is defined as the set of node j and
all its linked nodes. The constant cj,` is combination coefficient and it is
the element of combination matrix C = [cj,` ]. The matrix C carries the
information about the network topology: a nonzero entry cj,` means that
nodes j and ` are connected. We restrict the combining coefficients to be∑

`∈Nj
cj,` = 1. The proposed diffusion strategy is described as
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ϕn−1
j =

∑
`∈Nj

cj,`x
n−1
`

Snj = Ls
(
ϕn−1
j + A∗j

(
yj −Ajϕ

n−1
j

))
xnj = argminz∈CN

{∥∥yj −Ajz
∥∥

2
, supp (z) ⊂ Snj

} (10)

each node uses the linear combination of its neighborhood estimates to ac-
celerate the convergence rate of the algorithm.

3.2.2. Convergence analysis of DDHTP in the noise-free scenario

For the convergence analysis, we first introduce the following quantities:

Xn = col {xn1 , . . . ,xnJ} A = diag {A1, . . . ,AJ}
Y = col {y1, . . . ,yJ} Sn = col {Sn1 , . . . , SnJ}
X# = col {x, . . . ,x} Φn = col {ϕn

1 , . . . ,ϕ
n
J}

(11)

considering the above-definitions, the equation (10) is rewritten as

Φn−1 = GXn−1

Sn = LJs (Φn−1 +A∗ (Y −AΦn−1))
Xn = argminz∈CNJ {‖Y −AZ‖2, supp (Z) ⊂ Sn}

(12)

where G = C
⊗

IN and the operator
⊗

denots the Kronecker product. The
notation LJs (Z) is an operator that divides the Z into J blocks and returns
the index set of s largest absolute entries of each block.

Theorem 3: The DDHTP algorithm generates convergence sequence as∥∥Xn−X#
∥∥

2
≤ρn

∥∥X0−X#
∥∥

2
given yj=Ajx, for all j.

where ρ=
√

2(δ3s)2

1−(δ2s)2
‖G‖2→2≤1. Here, δκs=maxj {δjκs} with κ= 2, 3 and ‖G‖2→2

is the spectral norm of matrix G.
Proof of theorem 3: see Appendix C.

Note that, the convergence is achieved when 2(δ3s)2

1−(δ2s)2
‖G‖2

2→2 ≤ 1 and is

guaranteed if (δ3s)
2 ≤ 1

1+2‖G‖22→2

. The combination coefficients cj,` can be set

such that the spectral norm ‖G‖2→2 to be unit. So, replacing Xn, X# and X0

by xnj , x and x0
j , respectively, the same non-cooperative result is achieved.

On the other hand, regarding the relation
∥∥Xn −X#

∥∥
2
≤
∑J

j=1

∥∥xnj − x
∥∥

2
,

it is clear that the convergence rate of this diffusion method is better than
that of non-cooperative case.
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3.2.3. Convergence analysis of DDHTP for approximately sparse vectors mea-
sured with some errors

In addition to quantities that are introduced in (11), we define the fol-
lowing quantity:

E = col {e1, . . . , eJ} (13)

so, the equation (6) is rewritten as

Y = AX# + E (14)

Theorem 4: For any possible inexact sparse signal x ∈ CN with the noisy
measurements yj = Ajx + ej , the DDHTP algorithm generates sequence
xnj which satisfies the following relation∥∥∥Xn−X#

S

∥∥∥
2
≤
√

2(δ3s)2

1−(δ2s)2
‖G‖2→2

∥∥∥Xn−1−X#
S

∥∥∥
2
+
(√

2
1−δ2s +

√
1+δs

1−δ2s

)∥∥∥Ê∥∥∥
2

where S denotes the index set of Js largest entries of X# , Ê = AX#

S + E,

and δκs=maxj {δjκs} with κ= 1, 2, 3 and ‖G‖2→2 denotes the spectral norm
of the matrix G.
Proof of Theorem 4: see Appendix D.

Similar to the theorem 2, it is clear that the reconstruction error is con-
trolled by the desired signal distance to a s-sparse vector and by the mea-
surement error. In other words, again the robustness and stability of the
algorithm are stored in this mode of cooperation.

4. Simulation Results

In this section, the proposed methods are evaluated using MATLAB soft-
ware and the results are obtained through Monte-Carlo simulations over 100
trials. We focus on the signal recovery performance and convergence rates of
the proposed algorithms. The proposed approaches are compared with the
D-LASSO [33], DJ-IST [36], and a non-cooperative mode. For presenting
the algorithms of [33] and [36], we set the simulation parameters according
to the specifications provided by the authors to achieve the best results. A
network with J = 20 sensors is considered in both incremental and diffusion
topologies. For the diffusion type of cooperation, we consider a topology as
shown in Fig. 1.

A different realization of the sensing matrices Ai, the solution signal x,
and the noise vectors ei is used. In each trial, we construct the sensing
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Figure 1: Network Topology

matrices Ai with independent Gaussian distributed entries N (0, 1
m

). More-
over, we generate a s-sparse vector x whose support is generated from a
uniform random distribution. The Gaussian sparse signal is considered for
x, i.e. the non-zero components of x are independently produced from a
standard Gaussian distribution. The total average normalized mean-squared
error (TAN-MSE) between the original and estimated signals is used as a
performance measure which is defined as:

TAN −MSE = E

{∥∥X# −Xn
∥∥2

F∥∥X#
∥∥2

F

}
(15)

where ‖X ‖F is the Frobenius norm of matrix X defined as

‖X ‖F =
√
tr (XX∗) =

√
tr (X∗X) (16)

where tr (B) is the trace (the sum of diagonal elements) of matrix B.
The parameters used in the simulations are N = 1000, m = 200, and

s = 50, unless otherwise stated. First, we consider the noise-free scenario
and exact sparse case. Fig. 2 shows TAN-MSE versus iterations for DDHTP,
DIHTP, D-LASSO, and DJ-IST. The non-cooperative case is also provided
in this figure for comparison. As shown in Fig. 2, for DDHTP, DIHTP,
D-LASSO, and DJ-IST, the total numbers of iterations for convergence are
respectively 7, 2, 62, and 7077. The steady-state errors are -293 dB, -293
dB, -33 dB, and -56.35 dB, respectively. So, one can easily observe that
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Figure 2: TAN-MSE versus iterations for different algorithms in noise-free scenario

the proposed DDHTP and DIHTP algorithms not only have a lower steady-
state error but they also have a fast convergence rate that these issues verify
the theoretical analysis. For the non-cooperative case, the total number
of iterations for convergence and the steady-state error are respectively 18
and -24.33 dB. The results show the effectiveness of the proposed methods
compared with non-cooperative counterparts.

Fig. 3 shows the TAN-MSE versus iterations for DDHTP, DIHTP, and
DJ-IST in the noisy case for SNR=30 dB. For each sensor node in each trial,
the noise is assumed to be a white Gaussian N (0, σ2I) where σ2 is deter-

mined according to the desired SNR as σ2 = s
m
× 10(−SNR

10 ). As displayed
in Fig. 3, for DDHTP, DIHTP, and DJ-IST the total number of iterations
for convergence are respectively 7, 2, and 7796. The steady-state errors are
obtained as -33.21 dB, -33.31 dB, and -30.4 dB, respectively. By comparing
the obtained results in figures 2 and 3, it is easily seen that the steady-state
error of the proposed methods is strongly sensitive to the noise level. On
the contrary, the convergence rate, according to the theoretical analysis, is
not sensitive to the noise level. For DJ-IST, both the convergence rate and

15



0 1000 2000 3000 4000 5000 6000 7000 8000

Number of Iterations

-35

-30

-25

-20

-15

-10

-5

0

5

T
A

N
-M

S
E

 (
d
B

)

0 20 40 60 80 100

-33.2

-33

-32.8

DJ-IST

DIHTP
DDHTP

Figure 3: TAN-MSE versus iterations for DDHTP, DIHTP and DJ-IST (SNR=30dB)

steady-state error are sensitive to the noise level. The obtained simulation
results showed that the non-cooperative modes and D-LASSO are not signifi-
cantly sensitive to the noise level, and hence the simulations of these methods
are ignored in this figure.

The steady-state TAN-MSE performance of each recovery method as a
function of the SNR is presented in Fig. 4. As depicted in Fig. 4, the steady-
state performance of the proposed methods is sensitive to the noise level and
can be better for the higher SNRs. But, in the case of non-cooperative and
D-LASSO methods, almost after 28 number of iterations, the increasing of
the SNR can not improve the steady-state performance. Fig. 4 also shows
that the performances of non-cooperative and D-LASSO methods are very
close to each other.

We also compare the proposed methods with a centralized scenario where
each node in the network sends its data to the FC using multi-hop relays.
The simulations show that the results of the comparisons depend on the cor-
responding values of s, m, N , and J . For the given settings in figures 2-4, the
TAN-MSE of the centralized strategy is almost the same as the result of the
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Figure 5: TAN-MSE versus iterations for DDHTP, DIHTP and centralized algorithms
(SNR=30dB, s=105)

DDHTP algorithm. By increasing the value of s (or accordingly by decreas-
ing the value of m) for the given N and J , the performances of the proposed
and centralized schemes are different. To show this issue, we consider the
network topology of Fig. 1 with an FC in the neighborhood of sensor 20.
The obtained results of TAN-MSE in SNR=30dB for s=105 and 150 are re-
spectively shown in figures 5 and 6. As shown in Fig. 5, the convergence
rate and steady-state of the centralized method are close to the DDHTP but
significantly different from the DIHTP. This is due to access to more data
resources in both DDHTP and centralized scenarios compared with DIHTP.
By increasing s to 150, as shown in Fig. 6, the difference between DDHTP
and centralized becomes even greater. In this case, the DIHTP algorithm
diverges. For both Figs 5 and 6 settings, the non-cooperative method also
diverges. It is easily seen for the signals with small sparsity rate the proposed
algorithms can perform close to the centralized method while they save a part
of the required energy for data communications.

The next measure for evaluation of the proposed algorithm is the prob-
ability of successful reconstruction. We record a successful recovery when
TAN − MSE ≤ 10−5. For each algorithm, the probability of successful

18



5 10 15 20 25 30

Number of Iterations

-30

-25

-20

-15

-10

-5

0

5

T
A

N
-M

S
E

 (
d

B
)

Centralized

DDHTP

Figure 6: TAN-MSE versus iterations for DDHTP and centralized algorithms (SNR=30dB,
s=150)

recovery as a function of the sparsity level (the number of non-zero entries
of the signal) is shown in Fig. 7. A very surprising result is that, in the
distributed and cooperative case, the numbers of required measurements are
less than that of the non-cooperative mode (common CS). Besides, in the
diffusion scheme, the numbers of required measurements are less than the
incremental mode of cooperation. This result does not depend on the type
of the algorithm since in the case of D-LASSO we also observed a similar re-
sult. Rather it arises from the spatial correlation between sensor nodes. More
clearly, the correlation between nodes results in redundancy in the number
of measurements.

Although for the centralized scenario, the numbers of required measure-
ments are less than all methods, it results in a significant cost of energy
consumption. In other words, the non-cooperative method provides a lower
bound and the centralized method provides an upper bound on the per-
formance of the proposed methods. More clearly, in the non-cooperative
scenario, no energy is consumed to communicate between nodes. On the
contrary, in the centralized method, communication power consumption is
significantly higher than the proposed methods. As one can see that there is
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Figure 7: Probability of successful recoveries as a function of sparsity level

a tradeoff between performance and power consumption for these methods.

5. Conclusions

In this paper, we proposed a compressive sensing (CS) recovery algo-
rithm in incremental and diffusion schemes of cooperation in wireless sensor
networks (WSNs). We analyzed the performance recovery of the proposed
distributed incremental and diffusion hard thresholding pursuit (HTP) algo-
rithms in the noise-free scenario and the case that vectors are not exactly
sparse and they can not be measured with perfect precision (i.e. the noisy
case). Such a study is challenging since nodes with one-hop distance from
each other interact and therefore a successful analysis should take into ac-
count the temporal and spatial interconnectedness of the data. These make
the analysis more complicated. In our analysis, we derived a closed-form ex-
pression for the mean squared deviation between the original and recovered
coefficients to evaluate the convergence performance of each sensor node. The
results show that, in conflict with the non-cooperative and other methods,
the convergence rate of the proposed algorithms is very high. Furthermore,
the sensitivity of the suggested methods for the noise of measurements and
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inexact sparse cases is very high.

Appendix A. Proof of Theorem 1

The proof of theorem 1 is presented by the following lemma :
Lemma 1 (see e.g. [26]): Given the vectors u,v ∈ CN , it is obtained that
|〈u, (I −A∗A)v〉| ≤ δt‖u‖2‖v‖2 if card (supp (u) ∪ supp (v)) ≤ t and we
have ‖((I −A∗A)v)S‖2 ≤ δt‖v‖2 if card (S ∪ supp (v)) ≤ t.
Proof of Theorem 1: Since the vector Ajx

n
j is the projection of yj on the

space
{
Ajz, supp(z) ⊂ Snj

}
, it is expected that for all z with supp(z) ⊂ Snj

we have
〈
Ajx

n
j − yj ,Ajz

〉
= 0. In the other words, using the equality yj =

Ajx, we have
〈
xnj − x,A∗jAjz

〉
= 0 when supp (z) ⊂ Snj . The vector in CN

that coincides with z on the entries in S and zero on the entries outside S is
denoted by zS. Then, we have

∥∥∥(xnj − x
)
Sn
j

∥∥∥2

2
=
〈
xnj − x,

(
xnj − x

)
Sn
j

〉
=
〈
xnj − x,

(
xnj − x

)
Sn
j

〉
−
〈
xnj − x,A∗jAj

(
xnj − x

)
Sn
j

〉
=
〈
xnj − x,

(
I −A∗jAj

) (
xnj − x

)
Sn
j

〉 (A.1)

using Lemma 1, the following equation is achieved:∥∥∥(xnj − x
)
Sn
j

∥∥∥2

2
≤ δj2s

∥∥xnj − x
∥∥

2

∥∥∥(xnj − x
)
Sn
j

∥∥∥
2

(A.2)

dividing the both sides to
∥∥∥(xnj − x

)
Sn
j

∥∥∥
2
, we have∥∥∥(xnj − x

)
Sn
j

∥∥∥
2
≤ δj2s

∥∥xnj − x
∥∥

2
(A.3)

definition of the vector norm, one can easily get that∥∥xnj − x
∥∥2

2
=
∥∥∥(xnj − x

)
Sn
j

∥∥∥2

2
+
∥∥∥(xnj − x

)
Sn
j

∥∥∥2

2
(A.4)

where Snj is the complement of Snj . Substituting (A.3) in (A.4):∥∥xnj − x
∥∥2

2
≤
∥∥∥(xnj − x

)
Sn
j

∥∥∥2

2
+
(
δj2s
)2∥∥xnj − x

∥∥2

2
(A.5)

the above-equation can be rewritten as
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∥∥xnj − x
∥∥2

2
≤ 1

1−(δj2s)
2

∥∥∥(xnj − x
)
Sn
j

∥∥∥2

2
(A.6)

assuming S = supp(x), we have:

∥∥∥(xnj−1 + A∗j
(
yj −Ajx

n
j−1

))
S

∥∥∥2

2
≤∥∥∥(xnj−1 + A∗j

(
yj −Ajx

n
j−1

))
Sn
j

∥∥∥2

2

(A.7)

removing the contribution related to Snj ∩ S from both sides of (A.7), the
following equation is obtained

∥∥∥(xnj−1 + A∗j
(
yj −Ajx

n
j−1

))
S\Sn

j

∥∥∥
2
≤∥∥∥(xnj−1 + A∗j

(
yj −Ajx

n
j−1

))
Sn
j \S

∥∥∥
2

(A.8)

the right hand side of (A.8) can be arranged as∥∥∥(xnj−1 + A∗j
(
yj −Ajx

n
j−1

))
Sn
j \S

∥∥∥
2

=
∥∥∥(xnj−1 − x + A∗jAj

(
x− xnj−1

))
Sn
j \S

∥∥∥
2

=
∥∥∥((I −A∗jAj

) (
xnj−1 − x

))
Sn
j \S

∥∥∥
2

(A.9)

similarly, for the left hand side of (A.8), we have

∥∥∥(xnj−1 + A∗j
(
yj −Ajx

n
j−1

))
S\Sn

j

∥∥∥
2

=

∥∥∥∥∥(x− x−
(
xnj
)
Sn
j

+ xnj−1 + A∗jAj

(
x− xnj−1

))
S\Sn

j

∥∥∥∥∥
2

=
∥∥∥(x− xnj

)
Sn
j

+
((
I −A∗jAj

) (
xnj−1 − x

))
S\Sn

j

∥∥∥
2

(A.10)

using the triangle inequality, it is agreed that∥∥∥(xnj−1 + A∗j
(
yj −Ajx

n
j−1

))
S\Sn

j

∥∥∥
2
≥∥∥∥(x− xnj

)
Sn
j

∥∥∥
2
−
∥∥∥((I −A∗jAj

) (
xnj−1 − x

))
S\Sn

j

∥∥∥
2

(A.11)
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substituting (A.9) and (A.11) into (A.8), we get that∥∥∥(x− xnj
)
Sn
j

∥∥∥
2
≤
∥∥∥((I −A∗jAj

) (
xnj−1 − x

))
S\Sn

j

∥∥∥
2

+
∥∥∥((I −A∗jAj

) (
xnj−1 − x

))
Sn
j \S

∥∥∥
2
≤

√
2
∥∥∥((I −A∗jAj

) (
xnj−1 − x

))
Sn
j ∆S

∥∥∥
2

(A.12)

exploiting Lemma 1, the equation (A.12) is summarized as∥∥∥(x− xnj
)
Sn
j

∥∥∥
2
≤ √2δj3s

∥∥xnj−1 − x
∥∥

2
(A.13)

substituting (A.6) in (A.13), yields the following equation:

∥∥xnj − x
∥∥

2
≤

√
2(δj3s)

2

1−(δj2s)
2

∥∥xnj−1 − x
∥∥

2
(A.14)

replacing the term xn−1
j instead of xnj−1, in the right-hand side of (A.14), it

gives the same result for the single signal case [26]. But, in each iteration,
the error of node j, xnj −x , depends on the previous node’s error. To write
the error of node j in terms of its previous iteration error, we exploit the
incremental topology structure. So, we have

∥∥xnj − x
∥∥

2
≤

√
2(δj3s)

2

1−(δj2s)
2

√
2(δj−1

3s )
2

1−(δj−1
2s )

2

∥∥xnj−2 − x
∥∥

2
≤

∏j
k=2

√
2(δk3s)

2

1−(δk2s)
2 ‖xn1 − x‖2

(A.15)

continuing this procedure, one can easily verify that

∥∥xnj − x
∥∥

2
≤(∏j

k=2

√
2(δk3s)

2

1−(δk2s)
2

)(∏J
k=j+1

√
2(δk3s)

2

1−(δk2s)
2

)√
2(δ13s)

2

1−(δ12s)
2

∥∥xn−1
j − x

∥∥
2

(A.16)

which is summarized as the following equation

∥∥xnj − x
∥∥

2
≤
∏J

j=1

√
2(δj3s)

2

1−(δj2s)
2

∥∥xn−1
j − x

∥∥
2

(A.17)
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Appendix B. Proof of Theorem 2

To prove the theorem 2, we use the following lemma:
Lemma 2 (see [26]): For the given e ∈ CNand S ⊂ {1, 2, . . . , N} with
Card (S) ≤ s, we have

‖(A∗e)S‖2 ≤
√

1 + δs‖e‖2

Proof of Theorem 2: Since the vector Ajx
n
j is the projection of yj on to

the space
{
Ajz, supp(z) ⊂ Snj

}
, it is expected that for all z with supp(z) ⊂

Snj we have
〈
Ajx

n
j − yj,Ajz

〉
= 0 or equivalently

(
A∗j
(
yj −Ajx

n
j

))
Sn
j

= 0.

So, using equation (A.12), we will have∥∥xnj − xS
∥∥2

2
=
∥∥∥(xnj − xS

)
Sn
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∥∥∥2

2
+
∥∥∥(xnj − xS

)
Sn
j

∥∥∥2

2
≤∥∥∥(xnj − xS + A∗j

(
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n
j

))
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j

∥∥∥2

2

+2
∥∥∥(xnj−1 − xS + A∗j

(
yj −Ajx

n
j−1

))
Sn
j ∆S

∥∥∥2

2

(B.1)

using the fact that yj = Ajx + ej = AjxS + AjxS + ej = AjxS + êj
where êj = AjxS + ej , we have

∥∥xnj − xS
∥∥2

2
≤
∥∥∥(xnj − xS + A∗jAj

(
xS − xnj

)
+ A∗j êj

)
Sn
j

∥∥∥2
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2
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(B.2)

exploiting the Lemmas 1 and 2, we will get∥∥xnj − xS
∥∥2

2
≤
(
δj2s
∥∥xnj − xS

∥∥
2

+
√

1 + δjs‖êj ‖2

)2

+2

(
δj3s
∥∥xnj−1 − xS

∥∥
2

+
√

1 + δj2s‖êj ‖2

)2 (B.3)

factoring the difference of two squares, we have
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by manipulation of (B.4), the following equation is achieved(
1−

(
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)2
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(B.5)

considering

[∥∥xnj − xS
∥∥

2
−
√

1+δjs

1−δj2s
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the equation (B.5) is rewritten as√
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dividing the both sides of (B.6) to

√
1−

(
δj2s
)2

and some manipulations, we
get ∥∥xnj − xS
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≤√
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defining βj =

√
2(δj3s)

2

1−(δj2s)
2 and Fj =

(√
2

1−δj2s
+

√
1+δjs

1−δj2s

)
‖AjxS + ej ‖2, the

equation (B.7) can be written as
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∥∥xnj − xS
∥∥

2
≤ βj

∥∥xnj−1 − xS
∥∥

2
+ Fj (B.8)

It is observed that the (B.8) is a coupled equation. It involves
∥∥xnj − xS

∥∥
2

and
∥∥xnj−1 − xS

∥∥
2
, i.e., information from two spatial locations. To simplify

the above equation, we use the advantage of the ring topology (i.e., the
availability of the cyclic pattern for cooperation between the nodes) that is
inherent in the incremental strategy. Thus, by iterating (B.8), we have∥∥xnj − xS
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∥∥xnj−1 − xS

∥∥
2
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according to (B.9),
∥∥xnj − xS

∥∥
2

can be expressed in terms of
∥∥xnj−3 − xS

∥∥
2

as ∥∥xnj − xS
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(B.10)

iterating in the same manner, the following equation is obtained
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2
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k=2 βkF1 +
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k=3 βkF2 + · · ·+ βjβj−1Fj−2 + βjFj−1 + Fj
(B.11)

we define a set of J quantities for each node j as

Πj,` , βjβj−1 . . . β1βJβJ−1 . . . βj+`, ` = 1, . . . , J (B.12)

Hj = Πj,2Fj+1 + Πj,3Fj+2 + · · ·+ Πj,J−1Fj−2 + Πj,JFj−1 + Fj (B.13)

from the equations (B.11)-(B.13), we have∥∥xnj − xS
∥∥

2
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∥∥xn−1
j − xS

∥∥
2

+Hj (B.14)

using the mathematical induction, we conclude that∥∥xnj − xS
∥∥

2
≤ (Πj,1)n

∥∥x0
j − xS

∥∥
2

+ (Πj,1)n−1Hj (B.15)
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Appendix C. Proof of Theorem 3

Similar to proof of theorem 1, we conclude that
〈
Xn −X#,A∗AZ

〉
= 0

when supp (Z) ⊂ Sn. So, we have

∥∥(Xn −X#
)
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∥∥2

2
=
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Xn −X#, (I −A∗A)

(
Xn −X#

)
Sn
〉

(C.1)

using the fact that ‖I −A∗A‖2→2 = maxj

{∥∥I −A∗jAj

∥∥
2→2

}
and exploit-

ing Lemma 1, we conclude∥∥(Xn −X#
)
Sn
∥∥

2
≤ maxj

{
δj2s
} ∥∥Xn −X#

∥∥
2

(C.2)

and ∥∥Xn −X#
∥∥2

2
=
∥∥(Xn −X#

)
Sn
∥∥2

2
+
∥∥(Xn −X#

)
Sn
∥∥2

2
(C.3)

by substituting (C.2) into (C.3), we get∥∥Xn −X#
∥∥2

2
≤ 1

1− (δ2s)
2

∥∥(Xn −X#
)
Sn
∥∥2

2
(C.4)

where δ2s = maxj
{
δj2s
}

. We rewrite the first two terms of (10) in a compact
form such as

Sn = LJs
(
GXn−1 +A∗

(
Y −AGXn−1

))
(C.5)

assuming S = supp(X), we will have∥∥∥(GXn−1 +A∗ (Y −AGXn−1))S\Sn

∥∥∥
2
≤∥∥∥(GXn−1 +A∗ (Y −AGXn−1))Sn\S

∥∥∥
2

(C.6)

considering the right hand side of (C.6), we get∥∥∥(GXn−1 +A∗ (Y −AGXn−1))Sn\S

∥∥∥
2

=
∥∥∥(GXn−1 −X# +A∗A (X −GXn−1)

)
Sn\S

∥∥∥
2

=
∥∥∥((I −A∗A)

(
GXn−1 −X#

))
Sn\S

∥∥∥
2

(C.7)

for the left hand side of (C.6), we have
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∥∥∥(GXn−1 +A∗ (Y −AGXn−1))S\Sn

∥∥∥
2

=
∥∥∥(X# −X# − (Xn)Sn +GXn−1 +A∗A

(
X# −GXn−1

))
S\Sn

∥∥∥
2
≥∥∥(X# −Xn

)
Sn
∥∥

2
−
∥∥∥((I −A∗A)

(
GXn−1 −X#

))
S\Sn

∥∥∥
2

(C.8)
with regard to (C.6)-(C.8), we get

∥∥(X# −Xn
)
Sn
∥∥

2
≤
∥∥∥((I −A∗A)

(
GXn−1 −X#

))
S\Sn

∥∥∥
2

+
∥∥∥((I −A∗A)

(
GXn−1 −X#

))
Sn\S

∥∥∥
2
≤

√
2
∥∥((I −A∗A)

(
GXn−1 −X#

))
S∆Sn

∥∥
2

(C.9)

considering ‖I −A∗A‖2→2 = maxj

{∥∥I −A∗jAj

∥∥
2→2

}
and Lemma 1, we

take ∥∥(X# −Xn
)
Sn
∥∥

2
≤ √2max

j

{
δj3s
} ∥∥GXn−1 −X#

∥∥
2

(C.10)

By denoting δ3s = maxj
{
δj3s
}

and substituting (C.10) in (C.4), we get

∥∥Xn −X#
∥∥

2
≤

√
2(δ3s)

2

1− (δ2s)
2

∥∥GXn−1 −X#
∥∥

2
(C.11)

finally, rewriting (C.11) as∥∥Xn −X#
∥∥

2
≤
√

2(δ3s)2

1−(δ2s)2
‖G‖2→2

∥∥Xn−1 −X#
∥∥

2
(C.12)

completes the proof.
It should be noted that in (C.12), we used the fact that GX# = X# due

to
∑

`∈Nj
cj,` = 1.

Appendix D. Proof of Theorem 4

According to the proof of theorem 2, we conclude (A∗ (Y −AXn))Sn = 0
when supp (Z) ⊂ Sn. So, using the equation (C.9), we have
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∥∥∥Xn −X#
S

∥∥∥2

2
=
∥∥∥(Xn −X#

S

)
Sn

∥∥∥2

2
+

∥∥∥∥(Xn −X#
S

)
S\Sn

∥∥∥∥2

2

≤∥∥∥(Xn −X#
S +A∗ (Y −AXn)

)
Sn

∥∥∥2

2
+

2
∥∥∥(GXn−1 −X#

S +A∗ (Y −AGXn−1)
)
S∆Sn

∥∥∥2

2

(D.1)

regarding Y = AX# + E = AX#
S + AX#

S + E = AX#
S + Ê where Ê =

AX#

S + E, we get

∥∥∥Xn −X#
S

∥∥∥2

2
≤
∥∥∥(Xn −X#
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X#
S −Xn
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+A∗Ê

)
S∆Sn
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2
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(
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S
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2
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2

)2

+

2
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(
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S
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S∆Sn

∥∥∥
2

+
∥∥∥(A∗Ê)

S∆Sn

∥∥∥
2

)2

(D.2)

considering two Lemmas 1 and 2 and using the fact that ‖I −A∗A‖2→2 =

maxj

{∥∥I −A∗jAj

∥∥
2→2

}
, the following equation is achieved

∥∥∥Xn −X#
S

∥∥∥2

2
≤
(

maxj
{
δj2s
} ∥∥∥Xn −X#

S

∥∥∥
2
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√

1 + δjs

∥∥∥Ê∥∥∥
2

)2

+2

(
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{
δj3s
} ∥∥∥GXn−1 −X#

S

∥∥∥
2
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√
1 + δj2s

∥∥∥Ê∥∥∥
2

)2

(D.3)
Note that, in order to apply Lemma 2, for obtaining (D.3) from (D.2), we

modify it as ‖(A∗E)Sn‖
2
2 =

∑J
j=1

∥∥∥(A∗jej)Sn
j

∥∥∥2

2
≤
∑J

j=1 (1 + δjs) ‖ej‖
2
2 ≤∑J

k=1 maxj (1 + δjs) ‖ek‖
2
2 = maxj (1 + δjs) ‖E‖

2
2. Considering δκs = maxj {δjκs}

(κ = 1, 2, 3 ), we can rewrite (D.3) as

[∥∥∥Xn −X#
S

∥∥∥
2
−
(
δ2s

∥∥∥Xn −X#
S

∥∥∥
2

+
(√

1 + δs
) ∥∥∥Ê∥∥∥

2
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S
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2
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(
δ2s
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S
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2

+
(√
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2
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≤
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(
δ3s
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S
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+
√

1 + δ2s
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2
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(D.4)
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the equation (D.4) is rearranged as√
1− (δ2s)

2
[∥∥∥Xn −X#

S

∥∥∥
2
−
√

1+δs
1−δ2s
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2
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√
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2

+
√

1 + δ2s

∥∥∥Ê∥∥∥
2

) (D.5)

dividing both sides of (D.5) to
√

1− (δ2s)
2 and performing some calculations,

we have ∥∥∥Xn −X#
S

∥∥∥
2
≤
√

2(δ3s)2
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(D.6)

using GX# = X#, the above equation is rewritten as∥∥∥Xn −X#
S

∥∥∥
2
≤
√

2(δ3s)2

1−(δ2s)2
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