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1 abstract

A new optimization design is proposed for matrix completion by weighting the measurements and
deriving the corresponding error bound. Accordingly, the Haplotype reconstruction using nuclear
norm minimization with Weighted Constraint (HapWeC) is devised for haplotype estimation. Com-
puter simulations show the outperformance of the HapWeC compared to some recent algorithms in
terms of the normalized reconstruction error and reconstruction rate.

2 Introduction

Matrix completion has already been applied to collaborative filtering, system identification, global
positioning, and remote sensing problems. A model defined for matrix completion is [1]

Yij = Mij + Zij ∀(i, j) ∈ Ω (1)

where Yij,Mij, and Zij are the entries of Y , M , and Z, respectively showing the measurement,
desired low-rank, and noise matrices, all with N × l dimensions. Also, Ω represents the measure-
ment set and, without loss of generality, we assume that N < l. To estimate M , the following
minimization has been proposed [1].

min
X
‖X‖∗ s.t. ‖PΩ(X − Y )‖F ≤ δ (2)

in which [PΩ(A)]ij = Aij for (i, j) ∈ Ω and zero, otherwise. Also, ‖ · ‖F and ‖ · ‖∗ denote the
Frobenius and the nuclear norms, respectively.

Here, we consider the haplotype reconstruction problem, a.k.a haplotype assembly problem
[3, 5] in which the quality of each measurement is defined by Qij. Then, the error probability of
the (i, j)th measurement; which is exploited to estimate the haplotypes more accurately, is given by
Pij = 10−Qij/10 [4].

Here, we first propose a new weighted optimization scheme in which each measurement is uti-
lized based on its Qij and the corresponding error bound is derived. Accordingly, the weights are
optimized using Qij’s. At last, an algorithm is developed to estimate haplotypes.
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3 Proposed optimization

In order to cope with diverse quality of data, we introduce the following optimization problem called
the Nuclear norm minimization with a Weighted Constraint (NuWeC):

min
X
‖X‖∗ s.t. ‖W � PΩ(X − Y )‖F ≤ δ, (3)

where � is the Hadamard product and W is the weight matrix which will be introduced in the
next sections. The geometric interpretation of proposed optimization in (3) is illustrated in Fig. 1
in which the ellipsoid is the feasible set intersecting the smallest nuclear norm ball at M̂ showing
the optimal point. The error bound of the NuWeC is derived in Theorem 1.

Nuclear ball

Frobenius norm
Constrain

Optimal point

Figure 1: Geometric interpretation of the proposed nuclear norm minimization with weighted con-
straint.

Theorem 1. Consider M̂ as the optimal point of the optimization problem (3). Then, we
obtain

‖M̂ −M‖F ≤ 2δ

√
p+ 2

p

N

(1− α)2
+ 1

{∑
ij

1

W 2
ij

}1/2

(4)

in which p = |Ω|
Nl

is the sampling rate and 0 < α < 1 is a numerical constant.

Proof: By denoting H , M̂ −M , we intend to bound ‖H‖2
F = ‖HΩ‖2

F + ‖HΩc‖2
F , where

HΩ = PΩ(H), HΩc = PΩc(H), and PΩc is the complement operator of PΩ. One can easily see that
the following inequality holds,

‖HΩ‖F ≤ ‖PΩ(M̂ − Y )‖F + ‖PΩ(M − Y )‖F . (5)

To bound the term ‖PΩ(M̂ − Y )‖F , we first note that for a give matrix A, using the Holder
inequality and ‖a‖2 ≤ ‖a‖1, we can derive

‖A‖F ≤

{∑
ij

1

W 2
ij

}1/2 {∑
ij

W 2
ijA

4
ij

}1/2

≤

{∑
ij

1

W 2
ij

}1/2 ∑
ij

WijA
2
ij. (6)
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Then, for the feasibile point M̂ in (3) which satisfies the constraint ‖W � PΩ(M̂ −Y )‖F ≤ δ and
defining A = PΩ(M̂ − Y ) , we obtain from (6)

‖PΩ(M̂ − Y )‖F ≤

 ∑
(i,j)∈Ω

1

W 2
ij


1/2

δ. (7)

Now, we show the feasibility of M in (3) to conclude that (7) also holds for M similar to M̂ . To
do so, we can write

‖W � PΩ(M − Y )‖2
F =

∑
(i,j)∈Ω

W 2
ij(Mij − Yij)2

=
∑

(i,j)∈Ω

W 2
ijZ

2
ij ≤ ‖W ‖2

∞‖Z‖2
F < δ2, (8)

where ‖W ‖∞ = maxW ij. This result shows that M is feasible for δ > ‖W ‖∞‖Z‖F and thus the
last term of (5) is bounded. Using these results in (5) leads to

‖HΩ‖F ≤ 2δ

 ∑
(i,j)∈Ω

1

W 2
ij


1/2

. (9)

On the other hand, based on [1], with a high probability, HΩc obeys

‖HΩc‖2
F ≤ (1 +

2

p
)

N

(1− α)2
‖HΩ‖2

F , (10)

in which 0 < α < 1 can be taken equal to 1
2
. From (9) and (10), the bound given by (4) in Theorem

1 is proved.

4 Optimization of weights

We now consider the bound derived in Theorem 1 as an objective function to optimize W as follows:

min
W

2δ

√
p+ 2

p

N

(1− α)2
+ 1

{∑
ij

1

W 2
ij

}1/2

s.t. ‖PΩ(W )‖∞ = 1. (11)

Furthermore, in order to exploit the error probabilities, we suggest the following relationship:

Wij = a log2 (
1

Pij

) + b (i, j) ∈ Ω, (12)

in which an entry with a lower error probability will be more effective on the penalty term of (3),
i.e.,

∑
W 2

ij(Mij − Yij)2. Making use of the logarithmic function enables us to incorporate all the
measurements while restricting the large variation of error values. Then, by substituting (12) in
(11), we get the following optimization problem:

min
a,b

∑ 1

(a log2 ( 1
Pij

) + b)2
s.t. max{a log2 (

1

Pij

) + b} = 1. (13)

Using b = 1+a log2 Pmin in (13), the corresponding unconstrained non-convex optimization problem
may be solved by a grid search.
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5 Proposed algorithm for haplotype reconstruction

For the haplotype reconstruction problem, Y ∈ {0,±1}N×l, M ∈ {±1}N×l, and Z ∈ {0,±2}N×l
described by (1) are the read, haplotype, and the noise matrices, respectively [3]. For diploids, M
consists of two different rows h1 and h2 and thus its rank is 2. The goal of haplotype reconstruction
is to estimate two rows of M using the read matrix. By exploiting the NuWec optimization
problem given by (3), we develop the ”Haplotype reconstruction using nuclear norm minimization
with Weighted Constraint (HapWeC)” algorithm as below.

Algorithm 1: Haplotype reconstruction using nuclear norm minimization with Weighted
Constraint (HapWeC)

Input : N reads and quality scores Qij

Output: Haplotypes
1 Construct the read matrix M (N × l).
2 Calculate the error probability using Pij = 10−Qij/10.
3 Find the weights based on (13).

4 Find M̂ using convex optimization problem (3).

5 Compute the SVD of M̂ =
∑r

i=1 σixiy
T
i .

6 Truncate the SVD by setting all singular values to zero except the two largest ones:

T2(M̂ ) =
∑2

i=1 σixiy
T
i .

7 Obtain haplotypes ĥ1 and ĥ2 by extracting the independent rows of T2(M̂).

8 Round the haplotypes ĥ1 and ĥ2 to ±1.

It can be shown that by truncating the Singular Values Decomposition (SVD) of M̂ , the error

bound is changed by a factor of k = 1 +

√
rank(M̂) + 1, i.e., ‖T2(M̂ )−M‖2

F ≤ k‖M̂ −M‖2
F .

6 Simulation results

First, we evaluate the NuWeC using a synthetic dataset. To do so, a rank-two random matrix
M ∈ {±1}40×40 is generated whose 10% of entries are contaminated with noise. We consider both
nuclear minimization problem and the NuWeC defined by (2) and (3), respectively. The Normalized
Reconstruction Error (NRE) is defined as

NRE =
1

n

n∑
i=1

‖M̂
(i)
−M‖F

‖M‖F
, (14)

where M̂
(i)

shows the estimated desired matrix in the ith experiment and n = 20 is the number
of independent Monte Carlo experiments. The NREs are shown as a function of the sampling
percentage in Fig. 2. As seen, the NREs of NuWeC decreases about 2dB which is effectively due
to incorporation of the quality scores.

In the second scenario, we consider the read database of [2]. The number of reads and the
haplotype length are selected as N = 86 and l = 100, respectively. Also, the sampling percentage is
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Figure 2: NREs of NuWeC and nuclear minimization problems vs. the sampling percentage for the
synthetic data.

p = 7% and the coverage per column is 6. The results in Fig. 3 show the superiority of the NuWeC
compared to the nuclear minimization by reducing the NREs. Now, we compare the proposed
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Figure 3: NREs vs. the percentage of noisy entries for the NuWeC and nuclear minimization
problems based on the dataset addressed in [2].

HapWeC with the nuclear minimization, NuWeC, and alternating minimization algorithm [6] for
haplotype reconstruction. To inspect the estimated and actual haplotypes, the reconstruction rate
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(rr) is defined as [2]

rr = 1− 1

4nl

n∑
i=1

‖ĥ
(i)

1 − h1‖1 + ‖ĥ
(i)

2 − h2‖1, (15)

where ĥ
(i)

2 and ĥ
(i)

1 are the estimated haplotypes of the ith experiment. Decrease of the reconstruction
rates shown in Fig. 4 reveal the outperformance of the developed HapWeC.
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Figure 4: Comparison of reconstruction rate vs. the percentage of noisy entries for different algo-
rithms based on the dataset addressed in [2].

7 Conclusion

The NuWec, a new weighted optimization algorithm was developed for matrix completion by ex-
ploiting the quality of measurements and the corresponding error bound was derived. Computer
simulations showed about 2dB reduction in the resulting estimation error compared to that of the
nuclear norm minimization technique. The NuWeC was then used to design the new HapWeC
algorithm for haplotype estimation. This algorithm increased the reconstruction rate about 10% in
camparison to some recent methods.
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