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A Fast Iterative Algorithm to design phase

only sequences by minimizing the ISL metric

Surya Prakash Sankuru, Prabhu Babu

Abstract

Unimodular/Phase only sequence having impulse like aperiodic auto-correlation function plays a central role in

the applications of RADAR, SONAR, Cryptography, and Wireless (CDMA) Communication Systems. In this paper,

we propose a fast iterative algorithm to design phase only sequences of arbitrary lengths by minimizing the Integrated

Side-lobe Level (ISL) metric, which is very closely related to the auto-correlation property of a sequence. The ISL

minimization problem is solved iteratively by using the Majorization-Minimization (MM) technique, which ensures a

monotonic convergence to the stationary minimum point. To highlight the performance of a proposed algorithm, we

conduct the numerical experiments for different sequence lengths using different initializations and also compare them

with the existing algorithms. Numerical simulations show that irrespective of the sequence length and initialization,

the proposed algorithm is performing better than the state-of-the-art algorithms in terms of speed of convergence.

We also show a computationally efficient way to implement our proposed algorithm by using the FFT and IFFT

operations.

Index Terms– Majorization-Minimization, Integrated Side-lobe Level, Peak Side-lobe Level, Phase only sequence,

aperiodic auto-correlation, Cryptography, Communication Systems, RADAR, SONAR, MIMO RADAR, CDMA.

I.INTRODUCTION

The target detection capability of an active sensing system will solely depend on the accuracy of the esti-

mated underlying parameters. So, to increase the detection performance in applications like active sensing systems

(SONAR, RADAR) [1], [2], [3], [4], [5], Cryptography [6], CDMA communication systems [7], [8], [9], and

MIMO RADAR [10-17], finite-length transmit sequences with impulse like aperiodic auto-correlation function

is a necessity. However, in real life, along with good correlation property, the aforementioned applications also

pose different constraints on the transmit sequence like the power and spectral (range of operating frequencies)

constraints. The power constraint is mainly due to the limited budget of transmitter power available in the system.

Hence, the design of phase only sequences of arbitrary lengths having unit magnitude and impulse like aperiodic

auto-correlation function is always desired [18], [19], [7].

Earlier, design of phase only sequences is done mainly by algebraic approaches and some of the sequences

designed through algebraic approaches are Barker sequence [20], [21], Frank sequence [22], Golomb sequence

[23], Chu sequence [23], [3] and P4 sequence [24], [25]. But all the above-mentioned sequences exist only for

the shorter lengths and have limited degrees of freedom. Hence, algebraic approaches are not viable to generate

sequences of large lengths. To overcome this issue, recently, computational approaches [7], [26], [27], [28], came

into existence and enabled a way to design sequences of arbitrary lengths at a slighter computational cost. Some

http://arxiv.org/abs/2007.07873v1
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of the developed computational approaches are the stochastic search methods [29], exhaustive search methods [30],

which are heuristic in nature with no guarantee for convergence to a stationary point of ISL function. To overcome

all such issues, very recently several optimization methods [31], [8], [4], [32] came into the existence and some

of the approaches are CAN [33], MISL [34], ISL-NEW [35], MM-Corr [36], ADMM approach [37], MWISL,

MWISL-Diag, MM-PSL [38], and CPM [39]- a detailed review of some of the methods will follow shortly. The

following mathematical notations are used hereafter: boldface lowercase letters denote column vectors, boldface

uppercase letters denote matrices and italics denote scalars. The superscripts ()∗, ()T , ()H denote complex conjugate,

transpose, and conjugate transpose, respectively. Tr() denote the trace of a matrix. zm denote the mth element of

a vector z. Re(.) and Im(.) denote the real and imaginary parts, respectively. Ia denote the a× a identity matrix.

||.||2 denote the l2 norm. vec(S) is a column vector that consists of all the columns of a matrix-S stacked. |.|2

denote the absolute squared value. Diag(z) is a diagonal matrix formed with a vector z as its diagonal. R and C

represent the real and complex fields. λmax(R) denote the maximum eigenvalue of R. ∇g(.) denote the gradient

of a function g(.). b1:N represents the first N elements of a vector b.

A. SIGNAL MODEL AND PROBLEM FORMULATION

Let {zn}Pn=1 be a phase only sequence of length ‘P ’ to be designed. The mth element of a sequence is denoted as

ejϕ(m), where ϕ(m) is an arbitrary phase angle that varies between 0 and 2π radians. The aperiodic auto-correlation

function of a sequence {zn}Pn=1 at any lag ‘l’ is defined as:

r(l) =

P−l
∑

n=1

zn+lz
∗
n = r∗(−l), l = 0, ...., P − 1. (1)

The Integrated Side-lobe Level (ISL) metric, which is a direct measure of the designed sequence is defined as:

ISL =
P−1
∑

l=1

|r(l)|2. (2)

The Peak Side-lobe Level (PSL) metric is defined as:

PSL = max {|r(l)|}P−1
l=1 (3)

So, the problem to design a phase only sequence that minimizes the ISL metric is formulated as:

minimize
z

ISL =

P−1
∑

l=1

|r(l)|2

subject to |zn| = 1, n = 1, ..., P.

(4)

where z = [z1z2....zP ]
T
1×P .

Apart from the unimodular constraint, there are interests in imposing constraints like binary constraint [28], [26],

[40], spectral constraint [41], [42], [43], similarity constraint [44], [45], Peak to Average Power Ratio (PAPR)

constraint [46] to name a few.
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In the next subsection, we will discuss the general framework of majorization-minimization, which would play

a central role in the development of our algorithm.

B. Majorization-Minimization Method

Majorization-Minimization (MM) is a two-step technique, which is used to solve the hard (non-convex or even

convex) problems very efficiently [47], [48]. The first step of the MM method is to construct a majorization (upper

bound) function u() to the original objective function g() at any point zk (z at kth iteration) and then second

step is to minimize the upper-bound function u() to generate a next update zk+1. So, at every newly generated

point, the above mentioned two steps will be applied repeatedly until it reaches the optimum minimum point of an

original function g(). For any given problem, the construction of a majorization function is not unique and for the

same problem, different types of majorization functions will exist. So, the performance will depend solely on the

chosen majorization function and the different ways to construct a majorization function are shown in [48], [31].

The majorization function u(z|zk), which is constructed in the first step of the MM method has to satisfy the

following properties:

u(zk|zk) = g(zk), ∀z ∈ Z. (5)

u(z|zk) ≥ g(z), ∀z ∈ Z. (6)

where Z is the set consists of all the possible values of z. As the MM technique is an iterative process, it will

generate the sequence of points {z} = z1, z2, z3, ....., zm according to the following update rule:

zk+1 , argmin
z∈Z

u(z|zk). (7)

The cost function value evaluated at every point generated by (7) will satisfy the descent property, i.e.

g(zk+1) ≤ u(zk+1|zk) ≤ u(zk|zk) = g(zk). (8)

C. Related work and our Contributions

The existing algorithms which are developed by solving the same ISL minimization problem (4) are CAN [33],

MISL [34] , ISL-NEW [35], MM-Corr [36], ADMM approach [37], MWISL, MWISL-Diag [38], CPM [39]. In

the following, we will discuss them briefly and highlight their potentials and drawbacks.

Stoica et.al proposed the CAN algorithm [33], which works on the principle of alternating minimization technique.

They solved the problem by transforming the objective function in (4) to the frequency domain as:

P−1
∑

l=1

| r(l) |2= 1

4P

2P
∑

a=1

[
∣

∣

∣

∣

∣

P
∑

n=1

zne
−jωan

∣

∣

∣

∣

∣

2

− P

]2

, (9)
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where ωa = 2π
2P a, a = 1, ..., 2P. are the Fourier grid frequencies. Then the problem (4) is converted into:

minimize
z

1

4P

2P
∑

a=1

[
∣

∣

∣

∣

∣

P
∑

n=1

zne
−jωan

∣

∣

∣

∣

∣

2

− P

]2

subject to |zn| = 1, n = 1, ..., P.

(10)

The cost function of the problem in (10) is quartic in z and it is very hard to solve further. So, instead of solving

(10) directly, they solved an approximate problem, which is quadratic in z as shown below:

minimize
z,φa

2P
∑

a=1

[∣

∣

∣

∣

∣

P
∑

n=1

zne
−jωan −

√
Pejφa

∣

∣

∣

∣

∣

2]

subject to |zn| = 1, n = 1, ..., P,

(11)

where φa, a = 1, 2, ..., 2P . are the auxiliary phase variables. The resulting problem can be rewritten more

compactly as follows:

minimize
z,y

∥

∥

∥

∥

∥

Ê
H
ẑ −
√
Py

∥

∥

∥

∥

∥

2

subject to |zn| = 1, n = 1, ..., P

(12)

where Ê , [e1, ...., e2P ] be a 2P×2P matrix with ea , [ejωa(1), ejωa(2), ..., ejωa(2P )]T , ẑ , [z1, z2, ....zP , 0, ..., 0]
T
1×2P

and y , [ejφ1 , ..., ejφ2P ]T . They solved the problem in (12) by alternatively minimizing between the variables z

and y. For a given z, minimization of (12) with respeect to y is given by:

y =
v

||v||2
, (13)

where v , Ê
H
ẑ (Ê

H
is a 2N × 2N FFT matrix ) and for a fixed y, minimizer over z would be:

z =
b

||b||2
, (14)

where b , Êy (Ê is a 2N × 2N IFFT matrix ). The pseudocode of the CAN algorithm is summarized in

Algorithm 1.

We would like to point out that, instead of solving the original problem (4), the CAN algorithm had solved

an approximately equivalent problem (11). So, there is no guarantee for an obtained minimum of (11) is also a

minimum of the original problem in (4).

To overcome this issue, Song et.al. proposed the MISL algorithm [34] by solving the original problem (4) directly

via the MM approach. So, from (10) we have,

minimize
z

1

4P

2P
∑

a=1

[∣

∣

∣

∣

∣

P
∑

n=1

zne
−jωan

∣

∣

∣

∣

∣

2

− P

]2

subject to |zn| = 1, n = 1, ..., P.
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Algorithm 1 :The CAN algorithm proposed in [33]

Require: sequence length ‘P ’

1: set k = 0, initialize z0

2: repeat

3: v = Ê
H
ẑk

4: y = v
||v||2

5: b = Êy

6: zk+1 = b1:P

||b1:P ||2

7: k←k + 1

8: until convergence

By expanding the cost function and ignoring the constant and multiplication terms, the above problem can be

rewritten more compactly as:

minimize
z

2P
∑

a=1

[

ea
HzzHea

]2

subject to |zn| = 1, n = 1, ..., P.

(15)

In terms of z, the problem in (15) is quartic and very hard to solve further. So, by defining Z = zzH and

Ca = eaea
H , problem in (15) can be rewritten as:

minimize
z,Z

vec(Z)HΦvec(Z)

subject to |zn| = 1, n = 1, ..., P,

Z = zzH ,

(16)

where Φ =
2P
∑

a=1
vec(Ca)vec(Ca)

H . The cost function in (16) is quadratic in Z. So, they constructed a majoriza-

tion function for it by using second-order Taylor series method [48], [31], and by neglecting the constant terms,

the surrogate problem can be rewritten more compactly as:

minimize
z

zH

[

ÊDiag(bk)Ê
H − 2P 2zk(zk)H

]

z

subject to |zn| = 1, n = 1, ..., P,

(17)

where bk =
∣

∣

∣
Ê

H
zk
∣

∣

∣
. The resultant problem in (17) is quadratic in z, and they have majorized the cost function

in the above problem once again as mentioned above, to obtain a simple closed-form solution. After majorizing for

the second time and by ignoring the constant terms, the final surrogate minimization problem becomes:

minimize
z

Re

(

zH

[

C̃ − 2P 2zk(zk)H

]

zk

)

subject to |zn| = 1, n = 1, ..., P,

(18)
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where C̃ = Ê

(

Diag(b2k) − bkmaxI

)

Ê
H

and bkmax = max
a

{

(bka)
2, a = 1, 2, ., 2P

}

. Problem in (18) can be

rewritten more compactly as:

minimize
z

‖ z − d ‖22

subject to |zn| = 1, n = 1, ..., P,

(19)

where d = −Ê
(

Diag(b2k)− bkmaxI −N2I

)

Ê
H
zk. The problem in (19) has a closed-form solution:

z =
d

||d||2
. (20)

The pseudocode of the MISL algorithm is summarized in Algorithm 2.

Algorithm 2 :The MISL algorithm proposed in [34]

Require: sequence length ‘P ’

1: set k = 0, initialize zk

2: repeat

3: b
k =

∣

∣

∣
Ê

H
zk
∣

∣

∣

4: bkmax = max
a

{

(bka)
2, a = 1, .., 2P

}

5: d = −Ê
(

Diag
(

b2k
)

− bkmaxI −N2I

)

Ê
H
zk

6: zk+1 = d1:P

||d1:P ||2

7: k←k + 1

8: until convergence

Compared to the CAN algorithm, the MISL algorithm solves the original problem in (4). So, there is an assurance

of obtaining an original optimum minimum point. But, the MISL algorithm faces a drawback of slower convergence

due to twice the majorization of the original objective function. To deal with the convergence issue, they have

proposed acceleration schemes to accelerate the MISL algorithm.

In [35], Y. Li et.al proposed an algorithm named ISL-NEW using the MM method to design sequence-set.

By particularizing it for single sequence, we observe that the only difference between the MISL and ISL-NEW

algorithms is in the way they arrive at their majorizing functions. After majorizing the objective function in (16)

and removing the constant terms, the final surrogate problem they solve is given by:

minimize
z

zH

[

ÊDiag(bk)Ê
H − P 2zk(zk)H

]

z

subject to |zn| = 1, n = 1, ..., P.

(21)

The resultant problem in (21) is quadratic in z. So, they majorized the cost function in (21) once again and

arrive at the following problem:
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minimize
z

Re

(

zH

[

C̄ − P 2zk(zk)H

]

zk

)

subject to |zn| = 1, n = 1, ..., P,

(22)

where C̄ = Ê

(

Diag(b2k)− 0.5bkmaxI

)

Ê
H

. The problem in (22) can be rewritten as:

minimize
z

‖ z − d̂ ‖22

subject to |zn| = 1, n = 1, ..., P,

(23)

where d̂ = −Ê
(

Diag(b2k)− 0.5bkmaxI − 0.5N2I

)

Ê
H
zk. The problem in (23) has a closed-form solution

z =
d̂

||d̂||2
. (24)

The pseudocode of the ISL-NEW algorithm is summarized in Algorithm 3.

Algorithm 3 :The ISL-NEW algorithm proposed in [35]

Require: sequence length ‘P ’

1: set k = 0, initialize zk

2: repeat

3: bk =
∣

∣

∣
Ê

H
zk
∣

∣

∣

4: bkmax = max
a

{

(bka)
2 : a = 1, .., 2P

}

5: d̂ = −Ê
(

Diag
(

b2k
)

− 0.5bkmaxI − 0.5N2I

)

Ê
H
zk

6: zk+1 = d̂1:P

||d̂1:P ||2

7: k←k + 1

8: until convergence

Y. Li et.al has also solved the problem (4) directly and concluded it as a fast algorithm in terms of the convergence.

However, due to similarity in the update step of ISL-NEW and MISL (with very little difference), ISL-NEW also

suffers from slow convergence and they have also proposed acceleration schemes to accelerate the ISL-NEW

algorithm. The above mentioned three algorithms CAN, MISL and ISL-NEW can be implemented via FFT and

IFFT operations. Hence, they are computationally efficient for generating sequences of large lengths.

In [36], J. Song et.al proposed an algorithm named as MM-Corr to design the sequence set using the MM method.

In [37], J.Liang et.al proposed a new algorithm by solving the approximately equivalent problem to problem (4)

(i.e, same as CAN algorithm) by using the ADMM method and they concluded that its performance is worse than

the MISL algorithm in terms of the PSL metric value in its aperiodic autocorrelation function. In [38], J.song

et.al proposed three different algorithms named MWISL, MWISL-Diag, and MM-PSL by using the MM method.

We observe that out of three algorithms MWISL and MWISL-Diag are variants of the MISL algorithm [34] and

MM-PSL algorithm is derived by solving the lp-norm, 2 < p < ∞, which is different from the ISL metric. In
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[39], Mohammad et.al has proposed an algorithm named as CPM based on the coordinate descent framework and

concluded that CPM performs well only in the case of binary and finite discrete phase constraints. Some more

algorithms, which are derived based on different metrics like PSL [42], [38], [49], ambiguity function shaping [50],

[51], [52], [53], SINR [54], beam pattern synthesis [55], [12], are used to design sequences.

So, the summary of the related literature is as follows:

• CAN algorithm has solved the approximate problem in (11) and there is no guarantee for an obtained minimum

to be also the minimum of the original problem in (4).

• Even though the MISL and ISL-NEW algorithms has solved the original problem in (4), they face a drawback

of slower convergence due to two times the majorization of the original objective function.

• In comparison to the CAN and MISL algorithms, the authors in [35] claimed that the ISL-NEW algorithm is

fast but it is only a marginal improvement.

• ADMM algorithm solves the approximate problem (same as CAN algorithm) and it is a non-monotonic and

does not minimize the ISL function.

• The CPM algorithm is derived based on the coordinate descent method, as the length of the sequence increases

its computational complexity will also increase and convergence to a minimizer will also get slower.

As all the above mentioned state-of-the-art algorithms have either slower convergence or do not solve the original

ISL minimization problem. This motivated us to solve the original ISL minimization problem (4) with a faster

algorithm and we named our algorithm as FISL (Faster ISL minimization algorithm).

The major contributions of this paper are as follows:

• An algorithm based on the MM framework is proposed, to design phase only sequences of arbitrary length P

by minimizing the ISL metric.

• To obtain faster convergence speed, we constructed a majorization function that acts like a tighter global upper

bound to the original ISL function.

• Through MATLAB simulations we compare different ways of constructing a majorization function and pick

out the best approach to implement our algorithm.

• By using FFT and IFFT operations, we show a computationally efficient way of implementing our proposed

algorithm.

• We prove that the proposed algorithm converges to a stationary point of a problem in (4).

• Numerical experiments were conducted to prove that our proposed algorithm performs better than the state-

of-the-art algorithms in terms of the speed of convergence.

The rest of the paper is organized as follows. In section II, we propose our algorithm and discuss its convergence

analysis, computational & space complexities. Section III consists of numerical experiments and finally, section IV

concludes the paper.

II.FISL-FASTER ISL MINIMIZATION ALGORITHM

A. ISL minimization via MM method

From (4), we have
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minimize
z

ISL =

P−1
∑

l=1

|r(l)|2.

subject to |zn| = 1, n = 1, ..., P.

During the problem formulation, we considered only the positive lags, but now we will reframe it to make the

problem of interest consists of both the positive and negative lags along with the zeroth lag (due to the unimodular

property always equal to the length of a sequence P , which is a constant value).

So, the problem of interest becomes as:

minimize
z

g(z) =
P−1
∑

l=−(P−1)

|r(l)|2

subject to |zn| = 1, n = 1, ..., P.

(25)

We can write r(l) = zHW lz, where W l is a Toeplitz matrix of dimension P × P , with entries given by:

W l =











1 ; j − i = l

0 ; else

(26)

i, j denote the row and column indexes of W l respectively.

So, the objective function of a problem in (25) can be rewritten as g(z) = zHR(z)z, where

R(z) =

P−1
∑

l=1

r∗(l)W l +

P−1
∑

l=1

r(l)WH
l +Diag(rc). (27)

where rc = [r(0), r(0), ...., r(0)]T1×P . So,

R(z) =





























r(0) r∗(1) . . r∗(P − 2) r∗(P − 1)

r(1) r(0) r∗(1) . . r∗(P − 2)

. r(1) r(0) r∗(1) . .

. . r(1) . . .

r(P − 2) . . . . r∗(1)

r(P − 1) r(P − 2) . . r(1) r(0)





























(28)

is a Hermitian Toeplitz matrix and to implement it, one can find autocorrelation of z using FFT and IFFT

operations as:

r = Ê | ÊH
z |2 . (29)

Here | . |2 is element wise operation. Then the problem of interest (25) becomes as:

minimize
z

g(z) = zHR(z)z

subject to |zn| = 1, n = 1, ..., P.

(30)
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In the following, we will introduce a lemma which will be useful in deriving a majorizing function for the

objective in (30).

Lemma-1: Let f : CN → R be a continuously twice differentiable function and if f(x) has a bounded curvature,

then there exists a matrix M � ∇2f(x), such that by using the second-order Taylor series expansion, at any fixed

point xk, f(x) can be upper bounded (majorized) as,

f(x) = f(xk) +∇f(xk)H(x− xk) +
1

2
(x− xk)H∇2f(xk)(x− xk) (31)

f(x) ≤ f(xk) +∇f(xk)H(x− xk) +
1

2
(x− xk)HM (x− xk) (32)

Proof: The proof can be found in [48] �

So, according to the lemma-1, by using the second-order Taylor series expansion, at any fixed point zk, the

objective function of the problem in (30) can be majorized as,

zHR(z)z = (zk)HR(zk)zk + Re((4R(zk)zk)H(z − zk)) +
1

2
(z − zk)H(8R(zk))(z − zk)

zHR(z)z ≤ (zk)HR(zk)zk + Re((4R(zk)zk)H(z − zk)) +
1

2
(z − zk)H(M )(z − zk) (33)

There are more than one way to construct a matrix M , such that (33) holds, some simple ways would be to

choose:

M = Tr(8R(zk))IP = 8P 2IP . (34)

or

M = λmax(8R(zk))IP . (35)

But in practice, for large dimension sequences, calculating the maximum eigenvalue is a computationally de-

manding procedure. So, in the following we try to explore the tighter upper bounds on maximum eigenvalue of the

Hessian matrix.

Theorem-1 [Theorem 2.1 [56]]: Let A be a P × P matrix with complex entries having real eigenvalues and let

m =
1

P
Tr(A), s2 = (

1

P
Tr(A2))−m2 (36)

Then

m− s(P − 1)1/2 ≤ λmin(A) ≤ m− s

(P − 1)1/2
(37)

m+
s

(P − 1)1/2
≤ λmax(A) ≤ m+ s(P − 1)1/2 (38)
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So, by using the result from Theorem-1 one can find an upper bound on the maximum eigenvalue of 8R(zk)

and form M as:

M = (m+ s(P − 1)1/2)IP (39)

where m = 8
P Tr(R(zk)), s2 = (64P Tr(R(zk)2))−m2. Here on, we name the three approaches of obtaining M

as TR (using TRace), EI (using EIgen value), BEI (using Bound on the EIgen value). In the following we will

explore another approach to arrive at M .

Lemma-2 [Lemma-3 and Lemma-4 [38]]: Let A be an P × P Hermitian Toeplitz matrix defined as follows

A =





























a(0) a∗(1) . . a∗(P − 2) a∗(P − 1)

a(1) a(0) a∗(1) . . a∗(P − 2)

. a(1) a(0) a∗(1) . .

. . a(1) . . .

a(P − 2) . . . . a∗(1)

a(P − 1) a(P − 2) . . a(1) a(0)





























and Ê
H

be a 2P×2P FFT matrix with Ê(m,n) = ej
2Π
2P

mn, 0 ≤ m,n ≤ 2P. Let d = [a0, a1, ..., aP−1, 0, a
∗
P−1, ..., a

∗
1]

T

and s = Ê
H
d be the discrete fourier transform of d.

(a) Then the maximum eigenvalue of the Hermitian Toeplitz matrix A can be bounded as

λmax(A) ≤ 1

2

(

max
1≤i≤P

s2i + max
1≤i≤P

s2i−1

)

(40)

(b) The Hermitian Toeplitz matrix A can be decomposed as

A =
1

2P
Ê:,1:PDiag(d)Ê

H

:,1:P (41)

Proof: The proof can be find in [38] �

Using Lemma-2, one can also find the bound on maximum eigenvalue of a Hermitian Toeplitz matrix 8R(zk)

using FFT and IFFT operations as:

M = 4

(

max
1≤i≤P

s2i + max
1≤i≤P

s2i−1

)

IP . (42)

where d = [r(0), r(1), ..., r(P − 1), 0, r(P − 1)∗, ..., r(1)∗]T and s = Ê
H
d.

We will name this approach as BEFFT (Bound on Eigenvalue using FFT).

So, from (33) we have the upper bound (majorization) function of the original objective function g(z) at any

fixed point zk as:

u(z|zk) = zH(0.5M)z + 4Re((zk)H(R(zk)− 0.25M)z) + (zk)H(0.5M − 3R(zk))zk (43)
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As the M (obtained by all four approaches described above) is a constant times diagonal matrix and zHz being

a constant, the first and last terms in the (43) are constants. So, after ignoring the constant terms, the surrogate

minimization problem can be rewritten as:

minimize
z

u(z|zk) = 4Re((zk)H(R(zk)− 0.25M)z)

subject to |zn| = 1, n = 1, ..., P.

(44)

The problem in (44) can be rewritten more compactly as:

minimize
z

u(z|zk) = ||z − ã||22

subject to |zn| = 1, n = 1, ..., P,

(45)

where ã = −(R(zk)− 0.25M)zk, which involves computing Hermitian Toeplitz matrix-vector multiplication.

By using decomposition of a Toeplitz matrix (41), one can easily implement it using FFT and IFFT operations.

The problem in (45) has a closed-form solution of

zk+1 =
ã

||ã||2
. (46)

The pseudocode of the proposed algorithm-FISL is given below

Algorithm 4 :FISL -Faster ISL minimization

Require: sequence length ‘P ’

1:set k = 0, initialize z0

2: repeat

3: compute R(zk) using (28)

4: compute M using (42)

5: ã = −(R(zk)− 0.25M)zk

6: zk+1 = ã
||ã||2

7: k ←− k + 1

8: until convergence

B. Convergence analysis

The proposed algorithm (FISL) is derived based on the MM technique. The working principle of the MM

technique is explained in the section I-B. From (8), we have

g(zk+1) ≤ u(zk+1|zk) ≤ u(zk|zk) = g(zk)

So, MM technique is ensuring that the cost function value evaluated at every point {zk} generated by the FISL

algorithm will be monotonically decreasing and by the nature of the cost function of the problem in (25), one can
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observe that it is always bounded below by zero. So, the sequence of cost function values is guaranteed to converge

to a finite value.

Now, we will discuss the convergence of points {zk} generated by the FISL algorithm to a stationary point. So,

starting with the definition of a stationary point.

Proposition 1: Let f : Rn → R be any smooth function and let x∗ be a local minimum of f over a subset χ

of Rn [57]. Then

∇f(x∗)y ≥ 0, ∀y ∈ Tχ(x
∗) (47)

where Tχ(x
∗) denotes the tangent cone of χ at x∗. Such any point x∗, which satisfies (47) is called as a

stationary point.

Now, the convergence property of the FISL algorithm is explained as follows.

Theorem 2: Let
{

zk
}

be the sequence of points generated by the FISL algorithm. Then every point
{

zk
}

is a

stationary point of the problem in (25).

Proof: Assume that there exists a converging subsequence zlj → z∗, then from the theory of MM technique, we

have

u(z(lj+1)|z(lj+1)) = g(z(lj+1)) ≤ g(z(lj+1)) ≤ u(z(lj+1)|z(lj)) ≤ u(z|z(lj))

u(z(lj+1)|z(lj+1)) ≤ u(z|z(lj))

Letting j → +∞, we obtain

u(z∞|z∞) ≤ u(z|z∞) (48)

Replacing z∞ with z∗, we have

u(z∗|z∗) ≤ u(z|z∗) (49)

So, (49) conveys that z∗ is a stationary point and also a global minimizer of u(.) i.e.,

∇u(z∗)d ≥ 0, ∀d ∈ TZ(z
∗) (50)

From the majorization step, we know that the first-order behavior of majorized function u(z|zk) is equal to the

original cost function g(z). So, we can show

u(z∗|z∗) ≤ u(z|z∗)⇔ g(z∗) ≤ g(z) (51)

and it leads to
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∇g(z∗)y ≥ 0, ∀y ∈ TZ(z
∗) (52)

So, the set of points generated by the FISL algorithm are stationary points and z∗ is the minimizer of g(z). This

concludes the proof. �

C. Computational & Space Complexity

The per iteration computational complexity of the proposed algorithm (FISL) is dominated in forming a Hermitian

Toeplitz matrix R(zk), Diagonal matrix M and Hermitian Toeplitz matrix-vector multiplication to form ã. But by

using the Lemma-2, we replaced all of them using FFT and IFFT operations, and to implement our algorithm we re-

quire only 3-FFT and 2-IFFT operations and the computational complexity would be O(P log P ). In each iteration of

our algorithm, the space complexity is dominated by the three different vectors of sizes P×1, (2P−1)×1 , 2P×1, re-

spectively and the space complexity would be O(P ). The computational & space complexity of state-of-the-art algo-

rithms are given as: CAN-O(P log P ), O(P ), MISL-O(P log P ), O(P ), ISL-NEW-O(P log P ), O(P 2), ADMM-

O(P 3), O(P 2), CPM-O(K log P ), O(P 2) where K ∈ number of iterations in the bisection method. Hence, our

proposed algorithm has either same or better computational & space complexity than the state-of-the-art algorithms.

III.NUMERICAL EXPERIMENTS

In this section, we will show the potential of our proposed algorithm Faster ISL minimization (FISL) through

some numerical simulations. All simulations were performed in MATLAB on a laptop with a 2.50GHz i7 processor.

Experiments has been conducted for different sequence lengths of P = 100, 225, 400, 625, 900, 1225 using different

initializations like Golomb sequence [23], Frank sequence [22], random sequence, and to stop all the algorithms,

we use the following convergence criterion:

∣

∣

∣

∣

∣

(ISL(k + 1)− ISL(k))

max(1, ISL(k))

∣

∣

∣

∣

∣

≤ 10−5, (53)

where ISL(k) is the ISL metric value at kth iteration. In the case of random initialization, for every length each

experiment is repeated for 30 Monte Carlo trials and for each trial different random initial sequence is used i.e.,

z0 is chosen as
{

ej2πθi
}P

i=1
, where

{

θi
}

are drawn randomly from the uniform distribution [0, 1].

In each experiment, the performance of the designed sequence such as ISL metric value, auto-correlation side-

lobe levels and algorithm performance in terms of convergence speed to reach the stationary point is observed and

compared with the state-of-the-art algorithms like CAN [33], MISL [34], ISL-NEW [35], ADMM approach [37],

and CPM [39]. First, we will show the comparison of different approaches to construct the matrix M , which plays

a major role in the majorization step of our algorithm.

Figures. 1, 2 shows the normal and zoomed version (where ever it is necessary) plots of ISL value vs time,

auto-correlation value vs lag for different sequence lengths P = 100, 1225 using three different initializations,

respectively. From the simulation plots, we observe that, for all the initializations, all the approaches to construct

a matrix M will give the same auto-correlation function but their convergence times to reach minimum ISL value
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Figure 1: ISL with respect to time for sequence lengths P = 100, 1225. (a) and (b) are for initialization via Random

sequence. (c) and (d) are for initialization via Golomb sequence. (e) and (f) are for initialization via Frank sequence.
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Figure 2: Auto-correlation value with respect to lag for sequence lengths P = 100, 1225. (a) and (b) are for

initialization via Random sequence. (c) and (d) are for initialization via Golomb sequence. (e) and (f) are for

initialization via Frank sequence.
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are different. In plots, we have shown results of four different ways to construct M namely TR (i.e, by using an

approach of TRace of a matrix), EI (i.e, by using maximum EIgenvalue), BEI (i.e, by using Bound on the maximum

EIgen value), and BEFFT (i.e, by using Bound on the maximum Eigenvalue using FFT operations). Among the

four approaches, irrespective of length and initialization, the BEFFT approach seems to have faster convergence.

From figure-1(b), one can observe that the BEFFT approach is faster than TR, EI, BEI approaches by 38, 13, 8

times respectively. So, in the following, we have used only the BEFFT approach in the update steps of our FISL

algorithm.

Now, we will compare the performance of our FISL algorithm with the state-of-the-art algorithms in terms

of the ISL metric value, convergence time, and auto-correlation side-lobe levels. For better comparison, for each

experiment, all the algorithms are initialized with the same sequence and stopped using the same convergence

criterion.

Figures. 3, 4 shows the normal and zoomed versions of the comparison plots of ISL value vs time, ISL value vs the

number of iterations for different lengths and different initializations, respectively. We have considered the squared

iterative method (SQUAREM) [34] accelerating scheme to implement the accelerated MISL (ACC-MISL) and

accelerated ISL-NEW (ACC-ISL-NEW) algorithms. From simulation plots, one can observe that all the algorithms

are starting at the same objective value, except the CAN and ADMM method all the methods are converging to

the same minimum value but with different converging rates. From figures-3(b) and 4(b), for a sequence length of

P = 1225, FISL algorithm is faster than the MISL, ACC-MISL, ISL-NEW, ACC-ISL-NEW and CPM algorithms

by 125, 34, 42, 20, 43 times (with respect to the convergence time), 123, 14, 119, 10, 9 times (with respect to the

number of iterations) respectively.

Now in Figure. 5, we are comparing all the algorithms in terms of auto-correlation side-lobe levels vs different

lags, for different sequence lengths and different initializations. From simulation plots, we observe that except the

ADMM approach, all the other algorithms are performing well in terms of the PSL metric value.

Figure. 6 consists of the comparison plots of average running time vs different sequence lengths for two different

initializations. From simulation plots, one can observe that, irrespective of the sequence length and initialization,

FISL algorithm is always taking less time when compared to the state-of-the-art algorithms. From figure-6(a), one

can observe that the FISL algorithm is better than the MISL, ACC-MISL, ISL-NEW, ACC-ISL-NEW, and CPM

algorithms by 126, 34, 42, 16, 46 times respectively.

IV.CONCLUSION

In this paper, we address the problem, design of phase only sequences of arbitrary lengths by directly minimizing

the ISL metric. We proposed a fast iterative algorithm by using the Majorization-Minimization method. Numerical

simulations of the proposed algorithm were conducted for different sequence lengths using different initializations

that confirm our algorithm performs better than the state-of-the-art algorithms in terms of the speed of convergence.
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Figure 3: ISL with respect to time for a sequence length P = 100, 1225. (a) and (b) are for initialization via

Random sequence. (c) and (d) are for initialization via Golomb sequence. (e) and (f) are for initialization via Frank

sequence.
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Figure 4: ISL with respect to iteration for a sequence length P = 100, 1225. (a) and (b) are for initialization via

Random sequence. (c) and (d) are for initialization via Golomb sequence. (e) and (f) are for initialization via Frank

sequence.
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Figure 5: Auto-correlation value with respect to lag for a sequence length P = 100, 1225. (a) and (b) are for

initialization via Random sequence. (c) and (d) are for initialization via Golomb sequence. (e) and (f) are for

initialization via Frank sequence.
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