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Learning Multiplication-free Linear Transformations
Cristian Rusu

Abstract—In this paper, we propose several dictionary learning
algorithms for sparse representations that also impose specific
structures on the learned dictionaries such that they are numeri-
cally efficient to use: reduced number of addition/multiplications
and even avoiding multiplications altogether. We base our work
on factorizations of the dictionary in highly structured basic
building blocks (binary orthonormal, scaling and shear transfor-
mations) for which we can write closed-form solutions to the opti-
mization problems that we consider. We show the effectiveness of
our methods on image data where we can compare against well-
known numerically efficient transforms such as the fast Fourier
and the fast discrete cosine transforms.

I. INTRODUCTION

In many situations, the success of theoretical concepts in

signal processing applications depends on there existing an

accompanying algorithmic implementation that is numerically

efficient, e.g., Fourier analysis and the fast Fourier transform

(FFT) or wavelet theory and the fast wavelet transform (FWT).

Unfortunately, in a machine learning scenario where linear

transformations are learned they do not exhibit in general

advantageous numerical properties, as do the examples just

mentioned, unless we explicitly search for such solutions.

In this paper, we propose solutions to the dictionary learning

problem [3] which construct linear transformations that have

a series of desirable numerical properties while still sparsely

representing the training data we supply. Our goal is to build

these dictionaries D such that matrix-vector multiplications

Dx have complexity O(n logn) or O(n) while we also focus

on investigating ways in which the number of multiplication

operations can be reduced or completely avoided.

There has been significant work in the literature to learn

structured dictionaries that have controllable numerical com-

plexity. One of the earlier attempts is to build a double sparse

model [4] where the components of the dictionary are sparse

linear combinations from a well-known transform that has

a numerically efficient implementation. A recent paper [2]

shows how to extend this model and also learn the numer-

ically efficient transformation together with the sparse linear

combinations. Other works focus on constructing dictionaries

based on Kronecker products [5], circulant (and union of

circulants) [6], [7] or convolutional [8] structures, or square

transformations that are factored by few Householder reflectors

[9], Givens rotations [10] and their generalization [1].
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To our knowledge, the dictionary learning community has

not investigated the possibility of constructing multiplication

free linear transformations. This task has been well studied by

the signal and image processing communities where integer-

to-integer transformations (also called integer mappings) per-

form only addition and bit shift operations and therefore are

essential for lossless compression. Fast multiplierless approxi-

mations of the discrete cosine transform based on a prototype

method [11], a lattice structure [12], the lifting scheme [13],

an integer [14] and an approximate multiplier-less [15] fast

Fourier transform were developed first. Then [16] introduced

a general framework to build integer mappings from any

linear transformation based on factorizations of (triangular

and row) elementary reversible matrices and then showcases

the framework on the discrete Fourier, cosine and wavelet

transformations. Another general framework based on the

general S transform is given in [17]. One image processing

application is for the design of an integer color transform [18].

In this paper, we will combine the benefits from both

worlds: in the style of dictionary learning, we will learn a

numerically efficient transformation from a training dataset

that directly has an imposed structure to reduce or eliminate

multiplication operations, in the fashion of integer mappings.

The paper is structured as follows: in Section II we discuss

ways to measure computational complexity, in Section III we

briefly describe the dictionary learning problem and our com-

putational design goals, then in Sections IV and V we develop

the proposed learning procedures and finally in Section VI we

show experimental results with image data where we compare

to the discrete cosine transform.

II. A NOTE ON COMPUTATIONAL COMPLEXITY

Given the number of computational platforms available

today and their sophistication, our purpose is not to provide

an exhaustive, detailed discussion of the subject but to give

arguments that multiplication-free algorithms are relevant.

In most scenarios the computational complexity accounts

for all the operations performed by the system, i.e., we

count together mathematical operations like additions, mul-

tiplications etc. When considering modern computing systems

this choice is a natural one: these mathematical operations

take approximately the same time sophisticated hardware.

For example, numerical simulation performed with an Intel

i7© processor shows that integer multiplication is on average

approximately only 10% slower than integer addition (running

Linux, using the gcc with the –O3 flag, the program performs

the operations on random integer operands in two arrays

and the results are stored in a third). Historically, this was

not the case. In the past, computer scientists have made

several efforts to reduce the number of multiplications in

http://arxiv.org/abs/1812.03412v2
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their algorithmic implementations in favor of performing more

addition operations. A classic example is the multiplication of

two complex numbers which can be done in two ways: the first

takes four multiplications and two additions while the second

one has three multiplications and five additions, i.e., it was

computationally convenient to replace one multiplication by

three addition operations. Even so, modern computing systems

still perform integer addition faster than integer multiplication

in general (one clock cycle versus three to ten clock cycles

depending on the particular processor)1.

From an algorithmic perspective, for numbers represented

using n bits, it is well understood that integer addition

has complexity O(n) while the best asymptotic bound

O(n log n log logn) for integer multiplication, given for re-

alistically reasonably large n, is achieved by the Schonhage-

Strassen algorithm [19]. Other, asymptotically less efficient

approaches, include Karatsuba’s algorithm [20] and, its gen-

eralization, the Toom-Cook algorithm [21, Section 9.5] –

both use techniques similar to the previously described trick

of replacing an intermediate multiplication operation with

several additions achieve complexity nlog 3 and O
(

n
log 5

log 3

)

,

respectively. In terms of hardware, the modern multiplier

architectures use the Baugh-Wooley algorithm [22] or Wallace

trees [23], for example. These methods reduce the performance

gap with binary addition (as previously observed experimen-

tally) at the cost of increasing the complexity of the circuitry.

Aside from the execution time, there are several other

important complexity measures, like power consumption and

circuitry size, especially when considering some custom or

embedded computational platforms where low size, weight,

power and cost (SWaP-C) solutions are preferred. An n bit

full-adder needs 5n logic gates: one OR, two AND and two

XOR gates per bit. In the case of binary multiplication, for

example, the relatively simple sequential n bit array multiplier

needs 31n gates: the n and 2n bit registers consist of 15n
gates, the ALU contains an adder and two multiplexers which

consist of 16n gates (5n gates for the adder, 4n gates for the

2× 1 mux and 7n gates for the 4× 1 mux).

Application-specific integrated circuits (ASICS) are circuits

that are designed to perform only one (or a small set) of tasks,

unlike CPUs. Field-programmable gate arrays (FPGAs) are a

computational platform that belongs to the ASICS class. Addi-

tion operations in FPGAs are generally performed using look-

up tables while for the multiplications some specialized extra

components are needed (like DSP slices). Here, a frequently

used performance indicator is the power-delay product (the

product between the energy consumption and the input-output

delay of a circuit). For a very popular FPGA computer-aided

design tools for arithmetic code generation, the Xilinx© IP

Core Generator, with 32-bit operands the addition operation

has a power-delay product of 0.67 nJ (see Table 4.1 of [24])

while the 15-bit multiplication operation has a power-delay

product of 2.21 nJ (see Table 4.3 of [24]).

The same power-delay product values for microprocessors

at 45nm are given in [25] to be: 0.1pJ and 3pJ for 32-bit integer

addition and multiplication, respectively, and 0.9pJ and 4pJ for

1Intel 64 and IA-32 Architectures Optimization Reference Manual

32-bit floating point addition and multiplication, respectively.

These numbers do not take into account memory access

latency and power consumption (which according to [25] are

also a major contributor to the overall power consumption).

III. PRELIMINARIES

In this section, we briefly describe the general dic-

tionary learning problem and then proceed to list some

computationally-desirable properties of the learned dictionary.

We also describe some basic matrix building blocks that we

will use in this paper to reach the desirable properties listed.

A. The dictionary learning problem

Given a N point dataset Y ∈ R
n×N and the average

sparsity s ∈ {1, . . . , n − 1}, the dictionary learning problem

can be stated in the optimization language as

minimize
D, X

‖Y −DX‖2F
subject to diag(DTD) = 1n×1,

‖vec(X)‖0 ≤ sN,

(1)

where D ∈ R
n×n, which always has unit ℓ2 columns, is

called the dictionary (in general D can be overcomplete, but in

this paper we consider square dictionaries which we also call

transforms [26]) and X ∈ R
n×N has the sparse representations

of all data points in the dictionary D. The ℓ0 pseudo-norm

constraint, which counts the number of non-zero in the matrix

X, ensures that on average each data point is represented using

s columns (also called atoms) from D. The dictionary learning

problem is hard in general, so most optimization techniques

lead to local minima points of (1) by a process of alternating

minimization: keep D fixed and create X and then vice-versa.

In this paper, we deploy the same alternating technique and we

focus on constructing the dictionary D such that it has some

specific computational properties. We do not focus on how to

construct the sparse representations X, i.e., we will use the

appropriate, well-established algorithms from the literature to

build X [27, Chapter 1].

For a recent, detailed description of the dictionary learning

problem and some of its solutions the reader is encouraged to

check [27, Chapters 2 and 3].

B. The basic building block

Based on the work in [1], we revise the n×n R-transform:

Rij =













Ii−1

a c

Ij−i−1

b d

In−j













, R̃ =

[

a c

b d

]

. (2)

These matrices can be viewed as perturbations of the identity

matrix: Rij has zero entries everywhere except for its diagonal

(with entries a and d in positions (i, i) and (j, j), respectively,

and the rest with value one) and the only two off-diagonal

entries c and b, on positions (i, j) and (j, i) respectively. The

subscripts of the R-transform define the rows on which the

non-trivial values are stored. As it is convenient in many
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Algorithm 1 – Representation in Rp.

Input: The real value x ∈ R and the precision p ∈ N
∗.

Output: The value y ∈ Rp and its representation, i.e., s ∈
{±1}p and v ∈ Z

p, closest to x in absolute value.

1. Initialize residual r = x and current estimate y = 0.

2. For i = 1, . . . , p :

• Set si = sign(r) and vi = argmin
k∈Z

||r| − 2k|.
• Update estimate y = y + si2

vi and residual r = x− y.

situations to reference the unique part of Rij separately we

denote it by R̃. Through this paper we will use the same

template for the transformations we propose: n × n identity

except for 2 coordinates where we will perform a carefully

chosen 2 × 2 calculation. We define transformations that are

products of m basic building blocks, like

R =

m
∏

k=1

Rikjk = Rimjm . . .Ri1j1 . (3)

Analogously to (2), we denote the unique 2 × 2 part of each

Rikjk by R̃k.

Given x ∈ R
n the matrix-vector multiplication Rikjkx takes

four multiplications and two addtions. To avoid these multi-

plications, similarly to fixed point number representations, we

use the sums of powers of two (SOPOT) set:

Rp =

{

x
∣

∣

∣
x =

p
∑

t=1

st2
vt ; st ∈ {±1}, vt ∈ Z

}

, (4)

where the parameter p establishes the precision of the entries.

By convention when p = ∞ we use the precision of the

working data type (double floating point in our case). For given

p, we provide in Algorithm 1 an iterative greedy procedure to

compute the representation of any real scalar input x in the

set Rp. We use this set to represent our transformations R̃

which we now denote R̃k,p ∈ R2×2
p , i.e., we approximately

represent each a, b, c, d in the set Rp, and we call the overall

Rikjk,p an Rp-transform.

Structures like these Rp-transforms are interesting numeri-

cally because matrix-vector multiplication takes 4p bit shifts

and 4p−2 additions (4p−4 to form the four products and 2 to

add the results for line i and j respectively). This is because

scalar multiplication with a ∈ Rp takes p bit shifts and

p− 1 additions. In terms of the coding complexity, assuming

8 bits are used to store each vt in (4), storing Rikjk,p takes

approximately 36p + 2 log2 n bits (2 log2 n bits to store the

indices i, j and 9p bits to store each entry in Rp).

In this paper, we propose to learn dictionaries which are

products of basic transformations like (2), while we also

impose some additional constraints, e.g., orthogonality or

some specific arithmetic structure for the non-zero entries.

C. The computational properties for the dictionary

In this section we define and present properties of the

basic building blocks we consider for numerically efficient

factorizations that will allow us to achieve our design goals.

Our goal is to construct a dictionary D ∈ R
n×n that display

properties such as:

P1. The computational complexity (the number of additions,

bit shifts and multiplications) of Dx and D−1x for any

given x ∈ R
n is controllable, preferably O(n log n);

P2. If x ∈ Rn
p then Dx ∈ Rn

p′, i.e., if x has a fixed

point representation then so does Dx; if Dx is calculated

exactly in Rn
p then D−1x can also be calculated exactly

in Rn
p′ with p′ 6= p, i.e., if D has a fixed representation

then so does the inverse D−1;

P3. D is exactly reversible, i.e., D−1D = I, when D has a

fixed point representation;

P4. Reduce, and ideally, eliminate multiplication operations

for Dx and D−1x;

In the following sections, we will distinguish between

orthonormal (Section IV) and general (Section V) dictionary

learning procedures and discuss how the transformations we

learn achieve some or all of these desirable properties.

IV. THE ORTHONORMAL CASE

In this section, we propose two orthonormal dictionary

learning algorithms: one with a reduced number of multipli-

cations and one that avoids completely such operations.

A. Numerically efficient orthogonal transforms: Bm–DLA

We define the two sets of orthonormal binary 2×2 matrices:

G1=
1√
2

{[

−1 1
1 1

]

,

[

1 1
−1 1

]

,

[

1 −1
1 1

]

,

[

1 1
1 −1

]

,

[

1 −1
−1 −1

]

,

[

−1 −1
1 −1

]

,

[

−1 1
−1 −1

]

,

[

−1 −1
−1 1

]}

,

(5)

and G2=
{[

0 1
−1 0

]

,

[

0 −1
1 0

]

,

[

1 0
0 −1

]

,

[

−1 0
0 1

]

,

[

0 −1
−1 0

]

,

[

−1 0
0 −1

]

,

[

0 1
1 0

]

,

[

1 0
0 1

]}

.

(6)

We define an orthogonal B-transform denoted Bij as a

constraint R-transform in (2) where we have the non-trivial,

non-zero 2 × 2 part positioned at indices i and j, which

we denote B̃ij , defined as one of the sixteen options, i.e.,

B̃ij ∈ {G1 ∪ G2}. Notice that given A,B ∈ G2 we have

that AB ∈ G2, BA ∈ G2 (and in fact G1 ∪ G2 has a group

structure) and given C ∈ G1 we have that AC ∈ G1 and

CA ∈ G1. The factor 2−
1
2 is there to keep the B-transforms

orthonormal (orthogonal and with columns normalized in ℓ2).

Structures like B-transforms are useful because matrix-

vector multiplication takes four operations: two additions and

two multiplications (both by 2−
1
2 ). The coding complexity of

storing Bij ∈ R
n×n is approximately 4+2 log2 n bits (the first

term encodes the choice in G1 ∪ G2 while the second encodes

the two indices i and j). We could avoid the multiplications

by approximating 2−
1
2 in Rp but we would lose orthogonality.

We are interested in solving optimization problems that

consider one B-transform as a dictionary:

‖Y −BijX‖2F = ‖Y‖2F + ‖X‖2F − 2tr(Z) + C
(t)
ij , (7)
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Algorithm 2 – Bm–DLA.

Input: The dataset Y ∈ R
n×N , the sparsity s and the number

of B-transforms m in the dictionary.

Output: The orthonormal transformation B (11) composed

of m B-transforms and the sparse representations X such that

‖Y −BX‖2F is reduced.

1. Initialize transform: set Bikjk = In×n for k = 1, . . . ,m.

2. Initialize sparse representations: compute the singular

value decomposition of the dataset Y = UΣVT and

compute the sparse representations X = Ts(UTY).
3. For 1, . . . ,K :

• Compute Z = YXT and all scores C
(t)
ij from (8) for

i = 1, . . . , n− 1, j = i+ 1, . . . , n and t = 1, . . . , 15.

• For k = 1, . . . ,m update all Bikjk , for each k:

– With all Biqjq , q 6= k, fixed, compute the new Bikjk

the minimizer of (12) by (10) with Zk = YkX
T
k .

– Update scores C
(t)
ijk

and C
(t)
ikj

for t = 1, . . . , 15.

• Compute new sparse representations X = Ts(BTY).

where we have used the definition of the Frobenius norm

‖A‖2F = tr(ATA) and the index t = 1, . . . , 15, runs through

the possible variants B̃ij in (5), (6). Therefore, we have for

the order of the transformations in (5), (6):

C
(1)
ij =c1Zii+c2Zjj−

√
2Zso, C

(2)
ij =c2Zsd−

√
2Zdo,

C
(3)
ij =c2Zsd+

√
2Zdo, C

(4)
ij =c2Zii+c1Zjj−

√
2Zso,

C
(5)
ij =c2Zii+c1Zjj+

√
2Zso, C

(6)
ij =c1Zsd+

√
2Zdo,

C
(7)
ij =c1Zsd−

√
2Zdo, C

(8)
ij =c1Zii+c2Zjj+

√
2Zso,

C
(9)
ij =2(Zsd − Zdo), C

(10)
ij = 2(Zsd + Zdo),

C
(11)
ij =4Zjj , C

(12)
ij = 4Zii, C

(13)
ij = 2(Zsd + Zso),

C
(14)
ij =4Zsd, C

(15)
ij = 2(Zsd − Zso), C

(16)
ij = 0,

(8)

with Zsd = Zii +Zjj , Zso = Zij +Zji, Zdo = Zij −Zji, the

constants c1 = 2 +
√
2, c2 = 2−

√
2 and we define:

Z = YXT with entries Zij = yT
i xj , (9)

where yT
i and xT

i are the ith rows of Y and X, respectively.

The Bij that minimizes (7) is given by

(i⋆, j⋆, t⋆) = argmin
t,i<j

C
(t)
ij , (10)

for the C
(t)
ij in (8) with t = 1, . . . , 15, and j = 1, . . . , n− 1.

The total computational complexity to find the minimizer of

(10) is: 2n2N operations to construct Z, which dominates the

computational complexity; O(n2) operations to compute all

the fifteen C
(t)
ij for all

n(n−1)
2 distinct pairs (i, j) with i < j

and solve (10); and 2n operations to compute 2tr(Z).
We propose a method to learn orthogonal dictionaries that

are factorized as a product of m B-transforms. Therefore we

propose the following structure for our learned dictionary:

B =

m
∏

k=1

Bikjk = Bimjm . . .Bi1j1 . (11)

With this choice, the dictionary learning objective function for

a single transformation indexed k is:

‖Y −BX‖2F = ‖Yk −BikjkXk‖2F , (12)

where Yk =
∏m

q=k+1 B
T
iqjqY and Xk =

∏k−1
q=1 BiqjqX.

In this development we have used the fact that orthonor-

mal transformations are invariant in the Frobenius norm,

i.e., ‖QY‖F = ‖QTY‖F = ‖Y‖F for any orthonormal

Q ∈ R
n×n. Notice that we have reduced the objective function

to the form in (7). Therefore, we propose an efficient iterative

process that updates a single Bikjk at a time while keeping

the others fixed until all components are optimized.

We describe the full learning procedure in Algorithm 2.

This algorithm updates iteratively each B-transform in the

composition of the dictionary B and then the sparse represen-

tations X. Since each step is solved exactly to optimality, the

algorithm monotonically converges overall to a local minimum

point or stops early in the maximum K iterative steps. In the

description of the algorithms, we have used Ts(), an operator

that given a matrix sets to zero, in each column separately, all

entries except the highest s in magnitude.

Remark 1 (Working with limited precision). In or-

der to design exactly invertible orthogonal linear trans-

formations when using data with fixed bit representa-

tion, lifting schemes [28], [29] were introduced in the

past:

[

c −s
s c

]

=

[

1 c−1
s

0 1

] [

1 0
s 1

] [

1 c−1
s

0 1

]

,

[

c s

s −c

]

=
[

1 c−1
s

0 1

] [

1 0
s 1

] [

1 − c−1
s

0 −1

]

. The proposed B-transforms

can naturally be implemented with these schemes, as they are

particular 2× 2 orthonormal matrices. For the transformations

in G1 we have that c−1
s ∈ {±(1−

√
2),±(1 +

√
2)} and s ∈

{

±2− 1
2

}

while the transformations in G2 are multiplier-less

and therefore do not need the lifting scheme representations.

Still, note that matrix-vector multiplications with matrices

from G1 take two multiplications and two additions, while us-

ing lifting schemes representations needs three multiplications

and three additions. The elements c−1
s and s in the lifting

scheme can be represented in Rp to avoid multiplications

altogether, but at the cost of loosing orthogonality. �

Remark 2 (Avoiding the normalization factor). The nor-

malization by 2−
1
2 seems to cause complications from a

numerically efficiency stand point. Therefore, we could define

an O-transform Oij ∈ R
n×n which is achieved for (2) when

a, b, c, d ∈ {±1} such that R̃ij is orthogonal. These eight

transformations use
√
2B̃ij for the structure (5). Solving such

least squares problems leads to

‖Y −OijX‖2F = ‖Y‖2F + ‖X‖2F − 2tr(Z) +H
(t)
ij , (13)

where, for t = 1, . . . , 8, we have defined H
(t)
ij = Wii+Wjj−

2(a− 1)Zii − 2(d− 1)Zjj − 2bZij − 2cZji + 2(ab+ cd)Wij .

We have used the notation:

W = XXT with entries Wij = xT
i xj . (14)

where xT
i is the ith row of X.

Similarly to (11), based on these simple transformation we

can define O =
∏m

k=1 Oikjk = Oimjm . . .Oi1j1 . Because the
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normalization is entirely avoided, Oij is no longer orthogonal

and therefore O is not orthogonal. A drawback of this is the

fact that the transformations Oikjk cannot be rearranged as in

(12), making the update of an individual transformation while

keeping all others fixed more difficult.

But this structure has the advantage of completely avoiding

multiplication operations, i.e., matrix-vector multiplications

Oijx take 2 addition operations. Also, notice that O has

integer entries and that det(O) = ±2m since det(Oij) = ±2.

A sufficient condition for the local optimality of Oij is that

‖xj‖2− ‖yi − xi‖2 ≥ 0, ∀ i 6= j, i.e., the energy of any row

error is less than the energy of all other rows of X.

Proof. Given any rows of Y and X there is no O-transform

that improves the objective function if ‖yi − xi‖22 ≤ ‖yi −
(xi±xj)‖22, ∀ i 6= j. Developing this leads to ‖xj‖22−|C| ≥
0, C = 2xT

i xj − 2yT
i xj . By the Cauchy-Schwartz inequality

we have that −|C| ≥ −‖xj‖2‖yi−xi‖2 and therefore ‖xj‖22−
|C| ≥ ‖xj‖22 − ‖xj‖2‖yi − xi‖2 ≥ 0. �

The matrix-vector multiplication operation with the whole

B transformation takes 2m additions and 2m multiplications

with the same constant value 2−
1
2 .

Related to our previously stated desired computational prop-

erties we have that: P1 is achieved by taking the number

of B-transforms in B to be m ∼ O(n log n) and since

B−1 = BT we have that the inverse transformation enjoys

the same computational complexity (the inverse of any B-

transforms is itself a B-transform); P2 can be achieved by

using the lifting schemes and representing c−1
s and s in Rp

but notice that with the fixed point representations we no

longer have an orthogonal transformation, we denote Bp the

transformation B in the lifting scheme with elements in Rp;

using the representation explained for P2 we also cover the

requirement P3; regarding P4, notice that multiplication with

each B-transform takes two multiplications as compared to

three in the general lifting scheme.

B. Multiplication-free orthogonal transforms: Mq–DLA

B-transforms are numerically efficient structures, although

they do involve multiplication operations. In this section we

explore ways to reduce the numerical complexity even further.

Consider the following structure:

M =

q
∏

ℓ=1

M̄ℓ, M̄ℓ =

n/2
∏

k=1

B
(ℓ)
ikjk

, (15)

with
⋃n/2

k=1(ik, jk) = {1, . . . , n} and
⋂n/2

k=1(ik, jk) = ∅. This

transformation is made up of q stages. At each stage there

are n
2 B-transforms that are chosen such that the coordinates

(ik, jk) are a partition of {1, . . . , n}. Consider now the objec-

tive function for a single block M̄1

‖Y−M̄1X‖2F = ‖Y‖2F + ‖X‖2F − 2tr(Z)+

n/2
∑

k=1

C
(tk)
ikjk

, (16)

such that the indices (ik, jk) obey the constraints in (15).

Optimizing the expression in (16), i.e., minimizing the sum-

mation term by finding the best parings of the indices, is

equivalent to the weighted maximum matching algorithm

Algorithm 3 – Mq–DLA.

Input: The dataset Y ∈ R
n×N , the sparsity s and the number

of stages q in the dictionary.

Output: The orthonormal transformation M (15) composed

of q stages of n
2 B-transforms and the sparse representations

X such that ‖Y −MX‖2F is reduced.

1. Initialize transform to the identity matrix, set M = I by

Mℓ = I for ℓ = 1, . . . , q.

2. Initialize sparse representations: compute the singular

value decomposition of the dataset Y = UΣVT and

compute the sparse representations X = Ts(UTY).
3. For ℓ = 1, . . . , q :

• Compute Zℓ = 2−
ℓ−1
2 Y(Mℓ−1 · · ·M1X)T .

• Using Zℓ, compute all scores C
(t)
ij from (8) for i =

1, . . . , n− 1, j = i+ 1, . . . , n and t = 1, . . . , 8.

• Compute C
(0)
ikjk

and update all B
(ℓ)
ikjk

by the weighted

maximum matching algorithm.

4. Compute the new sparse representations X =
Ts(2−

q

2 (Mq · · ·M1)
TY).

[30] (of maximum-cardinality matchings) on the graph with

n nodes and with edges C
(0)
ikjk

= min
tk=1,...,8

− C
(tk)
ikjk

(the

minus sign is set because we want to minimize the quantity).

Because all M̄ℓ are orthonormal, the manipulations in (12)

hold and therefore each M̄ℓ can be updated while the others

are fixed. We have found in our experimental settings that

these iterative steps do not significantly improve the solution

reached and therefore the algorithm builds the dictionary M

in a single iteration, i.e., we set K = 1. This also highlights

the importance of the initialization for X, which is done again

by the singular value decomposition.

The full procedure is shown in Algorithm 3. The main

difference with the previously introduced Bm–DLA is that at

each step we update n
2 B-transforms simultaneously, not just

one and none of these transforms use the same coordinates. In

this fashion, the constant 2−
1
2 factors out while keeping the

M transformation orthonormal.

The transformation in (15) can be equivalently written as

M = 2−
q

2

∏q
ℓ=1 Mℓ, where all Mℓ ∈ R

n×n are orthogonal

sparse matrices with elements in {0,±1}, the diagonal only

in {±1} and two non-zero entries per each row and column.

Therefore, matrix-vector multiplication with one Mℓ takes n

additions and one multiplication and as such, matrix-vector

multiplication with the whole M-transform takes nq additions

and n multiplications (or bit shifts if q is even). From this

description of M it is easy to see that the coding complexity

is approximately q
ln 2 (n lnn−n+1) bits: the cost of encoding

q partitions of the indices, i.e., q
∑n

i=1 log2 i = q log2 n! ≈
q

ln 2 (n lnn−n+1) by Stirling’s approximation. The constant

q is encoded implicitly as the number of partitions.

The significant benefit of transforms like (15) is that they

avoid multiplications altogether. Furthermore, notice that each

stage can be completely parallelized (since operations are

done on distinct indices). The disadvantage, especially when

compared to Bm–DLA, is that we force the transform to use all

available indices and this constraint is sub-optimal in general
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and inferior to the choice (10) made in Bm–DLA. Therefore,

we expect Mq–DLA to perform worse than Bm–DLA in terms

of the objective function value for the same number of basic

transformations, i.e., m = nq
2 .

The computational complexity of Mq–DLA is dominated by

the computation of Z which takes O(n2N) operations and by

the overall iterative process which takes a total of O(qn3) (q

times we have to perform the partitioning of the indices by

the maximum matching algorithm).

Remark 3 (On the computational complexity of finding the

best partition of indices). The weighted maximum matching

algorithm has complexity O(n3) which might be prohibitively

large in some learning situations – especially as compared

to Bm–DLA which has a O(n2) complexity per iteration.

An alternative is to use a sub-optimal, greedy, approach to

build the indices partition. Consider a procedure that builds

the partition in two iterative steps: compute the B
(ℓ)
ikjk

by

(ik, jk, tk) = argmin
t,i<j; i,j /∈S

−2tr(Zℓ)+C
(t)
ij and then update the

set S ← S ∪ (ik, jk) for k = 1, . . . , n
2 starting from S = ∅. �

Remark 4 (Another strategy for avoiding multiplication

operations). Notice that the matrices in (5) are permutations

with sign flips of the 2 × 2 Hadamard matrix 1√
2

[

1 1
1 −1

]

.

We can extend these structures by using the 4× 4 Hadamard

matrix 1
2

([

1 1
1 −1

]

⊗
[

1 1
1 −1

])

, whose scaling factor is

now simple, i.e., a power of two, and avoids multiplication

operations. Unfortunately, operating on more than two coor-

dinates increases the numerical complexity of the learning

procedure, i.e., for each pair of four indices, instead of 8

options in (5) we now have 768 options, equivalent to all

possible permutations of the four rows and columns and sign

changes (2 × 24 × 4!) and there are
(

n
4

)

≈ n4

24 such pairs of

indices, instead of
n(n−1)

2 as for Bm–DLA. The total overall

cost of one training iteration would therefore be dominated

by the computation of the approximately 32n4 quantities

C
(tk)
ikjkrkpk

from which the minimum has to be found. Operating

on even more coordinates simultaneously seems unreasonable

from a computational perspective (in the learning phase).

Still, the benefit is that the matrix-vector multiplication with

a single such structure takes 12 addition and 4 bit shift oper-

ations. Therefore, an algorithm that uses these fundamental

building blocks produces a transformation that completely

avoids the multiplication operations. Finally, note that there

are 5378 possibilities when considering all 3× 3 orthonormal

matrices (with different scaling factors
√
2,
√
3 and 2) with

entries in {0,±1}, i.e., if we also allow zero entries – these

structure include (5) and (6). Therefore, this structure can

be used only in scenarios where the learning time is not

fundamentally constrained by time or power considerations.

The advantage is that, as with the other algorithms described

in this paper, parallelization is trivial. Furthermore, this ap-

proach would combine two of the major benefits of Bm–DLA

and Mq–DLA: no calculations of partitions are necessary, i.e.,

we are not forced to repeatedly use coordinates that do not

lead to significant reductions in the objective function, and

there are no multiplication operations.

We call this approach B⊗
m–DLA, and it follows the same

steps as Bm–DLA but for only K = 1 number of iterations.

For brevity we omit the full description of the algorithm. �

Related to our previously stated desired computational prop-

erties we have that: P1 is achieved by taking q ∼ O(log n) and

since M−1 = MT we have the same computational benefits

for the inverse transformation; P2, P3, and P4 are trivially

achieved when q is fixed to be even and therefore the algorithm

avoids completely any multiplication operations.

V. THE GENERAL CASE

In this section, we propose an algorithm to learn general

dictionaries which have controllable complexity, including a

variant which completely avoids multiplication operations.

We begin by discussing the properties of scaling and shear

transformations and then propose the learning procedure.

A. Shear transformations

Consider the set of shear 2× 2 matrices

G3 =

{[

1 0
b 1

]

,

[

1 c

0 1

]}

, b, c ∈ R, (17)

and define a shear transformation Sij ∈ R
n×n which is

achieved for (2) when R̃ij ∈ G3, i.e., a = 1 and d = 1 fixed

while b and c are free parameters or set to zero, alternatively.

The objective function of our learning problem when the

dictionary is a single Sij now leads to

min ‖Y−SijX‖2F = ‖Y‖2F + ‖X‖2F − 2tr(Z)+D
(t)
ij , (18)

for t ∈ {1, 2}, where D
(1)
ij = b2Wii + 2b(Wij − Zji) and

D
(2)
ij = c2Wjj +2c(Wji−Zij). The minima, for i = 1, . . . , n

and j = i+ 1, . . . , n, are

D
(1)
ij =−(Zji−Wij)

2W−1
ii , D

(2)
ij =−(Zij−Wji)

2W−1
jj , (19)

and are achieved for the optimum choices

b⋆ = (Zji −Wij)W
−1
ii and c⋆ = (Zij −Wji)W

−1
jj , (20)

respectively. Starting with all transformations Sikjk set to

the identity matrix, each one of the transformations Sikjk is

initialized sequentially in this fashion for k = 1, . . . ,m.

Remark 5 (Optimality condition). A necessary and sufficient

condition for local optimality is that D
(1)
ij = D

(2)
ij = 0 and

therefore xT
j (yi − xi) = 0, ∀ i 6= j, i.e., in the spirit of the

least squares solution applied row-wise, we have that any error

row ǫi = yi − xi is orthogonal to all rows xT
i of X. �

Now, after the initialization process, each Sikjk is updated

again while all other S-transforms are kept fixed. The objective

function develops now to

‖Y−AkSikjkXk‖2F =‖y−(XT
k ⊗Ak)vec(Sikjk)‖2F

=‖y− (XT
k ⊗Ak)vec(I)− (XT

k ⊗Ak)vec(Likjk)‖2F
=‖fk − (XT

k ⊗Ak)vec(Likjk)‖2F ,
(21)

where y = vec(Y), Bk = XT
k ⊙ Ak ∈ R

nN×n, ⊙ is the

Khatri-Rao product, fk = y −Bk1n×1, Ak =
∏m

q=k+1 Siqjq ,

Xk =
∏k−1

q=1 SiqjqX, Likjk ∈ {bkejkeTik , ckeikeTjk} and
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{ei}ni=1 are the standard basis vectors of R
n. We have

used that vec(ABC) = (CT ⊗ A)vec(B). Notice that

(XT
k ⊗Ak)vec(ejke

T
ik
) selects the (jk +(ik − 1)n)th column,

i.e., xik ⊗ ajk , while (XT
k ⊗ Ak)vec(eike

T
jk
) selects the

(ik + (jk − 1)n)th column, i.e., xjk ⊗ aik .

To minimize the quantity in (21) the optimal choices are

b⋆k =
fTk (xik ⊗ ajk)

‖xik‖22‖ajk‖22
and c⋆k =

fTk (xjk ⊗ aik )

‖xjk‖22‖aik‖22
, (22)

respectively, and the minimum objective function values are

min ‖Y −AkSikjkXk‖2F = ‖fk‖22 − E
(t)
ij , with (23)

E
(1)
ij =

(fTk (xik ⊗ ajk ))
2

‖xik‖22‖ajk‖22
, E

(2)
ij =

(fTk (xjk ⊗ aik))
2

‖xjk‖22‖aik‖22
, (24)

for all i = 1, . . . , n and j = i+ 1, . . . , n.

As with the previously introduced structures, shear trans-

formations have good numerical properties, i.e., matrix-vector

multiplication Sikjkx takes one addition and one multiplica-

tion operation. If the coefficients b or c are represented in Rp

then Sikjk,px takes p bit shifts and p additions. Furthermore,

inverses S−1
ikjk

shears themselves and easy to compute because
[

1 0
b 1

]−1

=

[

1 0
−b 1

]

and

[

1 c

0 1

]−1

=

[

1 −c
0 1

]

and

they have the same numerical properties as the direct shear

transformations. There is no scaling factor for these inverses

since det(Sikjk) = 1 always.

To encode one shear transformation we need approximately

1 + C + 2 log2 n bits (one bit to encode the choice between

the two shears in (17), the constant C is the cost of encoding

of b or c, say C = 64 for a double float, while the second

term encodes the indices i and j).

B. Scaling transformations

Consider the R-transform in (2) constrained to b = 0, c = 0,

d = 1 and we drop the index j which is now unnecessary to

obtain a scaling matrix along a single coordinate

Si = diag(
[

1(i−1)×1 a 1(n−i)×1

]

), a ∈ R. (25)

Similarly to (18), with this scaling as the dictionary, the

objective function of our learning problem is now

min ‖Y − SiX‖2F = ‖Y‖2F + ‖X‖2F − 2tr(Z) + Fi, (26)

where we have denoted Fi = −2Zii(a
⋆ − 1) +Wii((a

⋆)2 −
1) and used the scalar least squares solution a⋆ = ZiiW

−1
ii

that minimizes ‖yi − a⋆xi‖2F . Our goal is to find α such that

|αa⋆| = 2δ, δ ∈ Z, and ‖yi − αa⋆xi‖2F is minimized. It

is necessary to verify that the further scaling α is such that

‖yi − xi‖2F − ‖yi − αa⋆xi‖2F ≥ 0, which is obeyed when

−
∣

∣

∣

1−a⋆

a⋆

∣

∣

∣
≤ α−1 ≤

∣

∣

∣

1−a⋆

a⋆

∣

∣

∣
, i.e., our scaling does not increase

the objective function as compared to doing nothing along the

ith coordinate. The left-hand side of the previous inequality is

maximized when α = 2δ|a⋆|−1 is closest to one and therefore

α⋆ = 2[log2 |a⋆|]|a⋆|−1 for a⋆ = ZiiW
−1
ii . (27)

As such, the minimizer of (26) that is constrained to be a

power of two and therefore its objective function value is

Fi = −2Zii(α
⋆a⋆ − 1) +Wii((α

⋆a⋆)2 − 1). (28)

Consider now a scenario where each scaling transform was

initialized and each Sik is updated again to further reduce the

objective function while all others are kept fixed. Similarly to

(21), the objective function develops now to

‖Y −AkSikXk‖2F =‖vec(Y)−(XT
k ⊗Ak)vec(Sik)‖2F

=‖y −Bk1n×1 − (ak − 1)Bkeik‖2F
=‖fk − (ak − 1)Bkeik‖2F ,

(29)

where Ak =
∏m

q=k+1 Siq , Xk =
∏k−1

q=1 SiqX and the

structure of Sik = In×n + (ak − 1)diag(eik). For the other

variables we have used here the same notation as in (21). Since

we want to minimize the quantity in (29), then we have

min ‖Y −AkSikXk‖2F = ‖fk‖22 −Gi, (30)

and using the minimizer of this expression

a⋆k =
fTk bik

‖bik‖22
+ 1 =

fTk (xik ⊗ aik)

‖xik‖22‖aik‖22
+ 1, (31)

it follows that for i = 1, . . . , n we have

Gi =
(fTk bik)

2

‖bik‖22
=

(fTk (xik ⊗ aik ))
2

‖xik‖22‖aik‖22
, (32)

where bik = xik ⊗ aik is the ith
k column of Bk and xT

ik
is the

ith
k row of Xk and aik is the ith

k column of Ak. We have used

the fact that the squared ℓ2 norm of a Kronecker product is the

product of the squared ℓ2 norms of the two vectors involved.

Due to their simplicity, the scaling transformations Si are

numerically efficient, i.e., matrix-vector multiplication Six

takes only one bit shift or one multiplication operation (if

we set α⋆ = 1 and just solve a general unconstrained least

squares problem on the ith coordinate). The inverse S−1
i is

also a scaling transformation (with a−1 on position i) with

the same numerical properties as the direct transformation.

To encode one scaling transformation we need C + log2 n
bits (the constant is the cost of encoding of a, say C = 64
for a double float, while the second term encodes the index

i). Notice that we could represent a in Rp, for a given p, but

then a−1 does not have, in general, a representation in Rp′

for any finite p′. It is for this reason that when it comes to the

scaling transformation and its scaling factor a we allow only

two possibilities: either we take a⋆ the optimum least squares

choice if we are working with arbitrary precision, i.e., p =∞,

or we take α⋆a⋆ to ensure the scaling is a bit shift and therefore

ensure the consistency of the inverse scaling transformation.

C. Numerically efficient general transforms: Sm,p–DLA

Similarly to the other transformations described in this

paper, we consider now the following dictionary structure

S =

m
∏

k=1

Sikjk = Simjm . . .Si1j1 , (33)
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Algorithm 4 – Sm,p–DLA.

Input: The dataset Y ∈ R
n×N , the sparsity s, the precision

p, the number of scalings and shears m in the dictionary.

Output: The general transformation S (33) composed of m

scalings and shears, and the sparse representations X such that

‖Y − SX‖2F is reduced.

1. Initialize transform: set Sikjk = In×n for k = 1, . . . ,m.

2. Initialize sparse representations: compute the singular

value decomposition of the dataset Y = UΣVT and

compute the sparse representations X = Ts(UTY).
3. Initialization of transformations:

• Compute Z and W by (9) and (14), respectively.

• Use (28) and (19) compute all the scores D
(t)
ij and Fi,

t ∈ {1, 2}, i = 1, . . . , n and j = i+ 1, . . . , n.

• For k = 1, . . . ,m :

– Initialize Sikjk by searching for the minimum

{D(t)
ij , Fi} across all indices and compute the optimal

transformation values: α⋆a⋆ with (27) if p 6= ∞ or

α⋆ = 1 and a⋆ by (27) otherwise, and by representing

b⋆ or c⋆ (20) in the set Rp.

– Update scores: D
(t)
ijk

, D
(t)
jkj

, D
(t)
ikj

, D
(t)
iik

for i =
1, . . . , n and j = i+1, . . . , n, Fik and Fjk , t ∈ {1, 2}.

• Compute sparse representations X = OMP(Y,S, s).

4. For 1, . . . ,K:

• Update each transformation in the factorization:

– Compute all the scores E
(t)
ij and Gi, t ∈ {1, 2}, i =

1, . . . , n and j = i+ 1, . . . , n.

– With all Siqjq , q 6= k, fixed, compute the new Sikjk

the minimizer of (32) or (24) by searching for the

minimum {E(t)
ij , Gi} across all indices and compute

the optimal transformation values: α⋆γ⋆ with (27) and

(31) if p 6= ∞ or α⋆ = 1 and a⋆ by (31) otherwise,

and by representing b⋆ or c⋆ (22) in the set Rp.

• Compute sparse representations X = OMP(Y,S, s).

where each Sikjk is either a scaling or a shear transformation.

For convenience, we denote m1 and m2 the number of scalings

and shears, respectively – we have m1 +m2 = m.

The complete learning method is described in Algorithm

4. This procedure has two main components: the initialization

phase and the iterative process that improves the factorization.

In the initialization phase, we use again the singular value

decomposition, assume that our initial dictionary is U and then

proceed to compute the first sparse representations X. Then we

proceed to initialize each Sikjk iteratively. The computational

cost of this step is dominated by the calculation of all the

scores which takes O(n3N): there are n2 scores and we need

O(nN) to compute each one (it is the computational cost

of performing the dot product between fk and the Kronecker

product). Then, because we are dealing with a general dictio-

nary, we use the batch Orthogonal Matching Pursuit (OMP)

algorithm [31], [32] to build X.

The iterative process now tries to improve the accuracy of

the factorization by updating each individual transformation

while all others are kept fixed. When we update a transforma-

tion we calculate the indices (ik, jk) and the coefficients of the

transformation a, b or c. For this reason, this iterative step is

computationally expensive at takes O(n3mNK): there are K

iterations which update each of the m transformations and for

each we need to compute n2 scores where the computing load

for a single one is dominated a dot product between fk and a

Kronecker product which takes O(nN). Luckily, in practice

we observer that a low number of iterations will usually

suffice to reach a very low representation error ‖Y − SX‖2F .

After all the transformations are updated, we also update the

representations X again by the OMP algorithm.

We allow an input parameter p to set the precision of

the transformations we compute. In the case of the shear

transforms, we will represent the coefficients b and c in the

set Rp while for the scaling transformations we allow two

options: either use the full precision a computed for p =∞ or

approximate it by the nearest power of two whenever p 6=∞.

We treat the scaling transformation in this binary fashion in

order to keep consistent the inverse scaling operation (see the

discussion in Section V-B).

Iteratively, we update each Sikjk component of S and the

sparse representations X via the OMP algorithm. Although

the optimization steps to update the dictionary components

are solved exactly and therefore always reduce the objective

function, the OMP step cannot be guaranteed to reach opti-

mal representations in general and therefore the algorithm is

generally not guaranteed to converge monotonically to a local

minimum point. As such, we track the best solution obtained

so far in the iterative process and return it.

Transforms built by Sm,∞–DLA will perform m multipli-

cations and m2 additions and those built by Sm,p–DLA will

perform m1+pm2 bit shifts and pm2 additions when p 6=∞.

Therefore, the computational complexity of these transforms

is not predetermined only by the choice of m but also by

the actual factorization which is constructed. Related to our

previously stated desired computational properties we have

that: P1 is achieved by taking m ∼ O(log n) and since inverses

of scalings and shears are themselves scalings and shears (this

covers also P3) we have the same computational benefits for

the inverse transformation; for P2 and P4 we need the scalings

to perform shift operations and the shears to have p <∞.

Remark 6 (Completeness of scalings and shears). Every

invertible S can be represented as a product of n2 − n shear

and n scaling transformations (note that this was not the case

for the binary orthogonal building blocks, see Remark 2). The

proof of this fact is constructive: perform Gaussian elimination

on S to diagonalize it using n2 − n shears and then represent

the resulting diagonal with n scalings (permutations are also

allowed if elimination is done with pivoting). Of course, in

our approach we are trying to build S such that m ≪ n2,

otherwise there is no computational benefit. �

D. A note on the general overcomplete case

Throughout this paper we have considered learning square

linear transformations. Many of the successful applications

of dictionary learning involves overcomplete transformations,

i.e., learning an n×d transformation with d > n. All building
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Figure 1. A comparison between Gm–DLA [1] and the proposed Bm–DLA
using the representation error (34) for various sparsity levels s.
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Figure 2. Representation errors (34) achieved by Mq–DLA and a variant
called Mq–DLA-greedy which has lower training complexity (see Remark 3).

blocks that we have introduced are naturally square, e.g., the

factorization (33), but they can be made overcomplete by pre-

multiplication with a mask matrix M =
[

In×n 0n×(d−n)

]

.

From an optimization perspective we are therefore in the

situation of the quantities (21) and (29) where we replace

Ak by MAk. The approach to improve each building block

is essentially the same with the notable exception that many

scores are null.

VI. EXPERIMENTAL RESULTS

In this section we test the proposed learning algorithms on

image data, where we have well-known numerically efficient

transformations against which to compare. The training data

we consider is built from popular test images from the image

processing literature (lena, peppers, boat etc.). The dataset

Y ∈ R
64×12288 consists of 8 × 8 non-overlapping image

patches with their means removed. To evaluate the learning

algorithms, we take the relative representation error of the

dataset Y in the dictionary D with the representations X as

ǫ = ‖Y −DX‖2F‖Y‖−2
F (%). (34)

The dictionary learning problem constraints require that the

transformation we learn have ℓ2 normalized columns. This

constraint is trivially obeyed for the orthonormal transforms

designed via Bm–DLA and Mq–DLA but not in the case

of those built by Sm,p–DLA. One solution is to introduce a

diagonal matrix D ∈ R
n×n and update (15) via S← SD such
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Figure 3. Representation errors achieved by B⊗
m–DLA (see Remark 4) for

various sparsity levels s. For reference we show the DCT. B⊗
m–DLA reaches

the computational complexity of the DCT for m = 1

8
n log2 n = 48.
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Figure 4. Representation errors achieved by Sm,p–DLA for various number
of transformations m, sparsity levels s and precision p.

that columns are ℓ2 normalized. Once the representations are

computed, S is restored to (33) and X← DX.

We compare against the FFT or the discrete cosine trans-

form (DCT) which, for real-valued inputs, has complexity

2n log2 n: 3
2n log2 n additions and 1

2n log2 n multiplications.

We also compare against transforms built by Gm–DLA, which

have complexity 6m, even additions and multiplications.

In Figure 1 we show the representation errors achieved by

Bm–DLA and compare them against Gm–DLA [1]. We always

expect Gm–DLA to perform better, as shown in the figure,

especially for large m. Since up to m = 64 we have that

Bm–DLA closely tracks Gm–DLA, this introduces the idea

of a potential hybrid algorithm: use binary transformations

in the beginning and then proceed with Gm–DLA when the

decrease in the error slows or plateaus. The advantage of

Bm–DLA transforms is that they are 33% faster than Gm–

DLA transforms. Similar results are shown in Figure 2 for

Mq–DLA. The same plateau of the error is observed for

m ≥ 128 for all sparsity levels s. Because this approach

is computationally expensive in the training phase, we also

show a cheaper method called Mq–DLA (see Remark 3) that

performs similarly. We complete the orthonormal learning

experiments with Figure 3 where we show B⊗
m–DLA (see

Remark 4) for s ∈ {4, 8, 12}. Notice that the representation

error drops faster than that of Bm–DLA and it plateaus for

higher m. As explained, the disadvantage of B⊗
m–DLA is the
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Figure 5. A comparative study of the transforms created by the proposed
methods. We also show, for reference, the DCT and Gm–DLA [1]. We set s =

4. Number of operations counts everything for matrix-vector multiplication.

increased training time: on a modern computer, calculating

all scores C
(tk)
ikjkrkpk

takes over three hours and updating the

scores with each iteration is done only for a random subset to

keep the running time for one iteration to only a few minutes.

In Figure 4 we show the representation errors achieved

by Sm,p–DLA. The effect of the precision parameter p is

interesting. For any sparsity level s, when the number of

transformations m is low (≤ 64) the parameter p does not

play an important role and therefore p = 1, which has

the lowest computational complexity, is preferred. For other

m, there are slight differences (mostly within 5%) in the

error and, as expected, p = ∞ works best. For s = 4 the

proportion of scalings and shears in the transforms designed

is approximately 10% to 90%.

Remark 7 (Sub-optimal transform learning). All proposed

algorithms choose indices i, j on which the linear transforma-

tion operate greedily (maximally reduce the current objective

function). In some situations, it might be convenient to make

sub-optimal choices that take into account other goals.

For example, from a computational perspective, we might

consider a highly local computational model, i.e., our algo-

rithms perform operations, in place, on memory locations that

are close such that they can exploit benefits of hierarchically

memory structures (cache-oblivious algorithms [33]). In our

case this might translate in constraints as |ik − jk| ≤ ǫ, i.e.,

for a particular transformation control the distance between the

operands, and |ik− ik+1| ≤ ǫ (and similarly for jk, jk+1), i.e.,

consecutive transformations operate on neighboring regions of

memory. Another example is bounding the dynamic range [14,

Section IV] of the intermediate stages of our transforms. For

example, in the case of Bm–DLA, given an input x such that

|xi| ≤ C the output y = Bx is such that |yi| ≤ 2
m
2 C (equality

happens if the same operation takes places for the same indices

i, j, e.g., xi ← 2−
1
2 (xi + xj) happens m times. Therefore,

imposing some index diversity and/or making sure we do not

have repetitive operations for the same indices will reduce the

maximum possible output magnitude. �

Finally, in Figures 5 and 6 we show a comparative study of

the proposed transforms for fixed s = 4. The point is to have

a Pareto curve to show the computational-representation error

trade-off: in the first plot we show the overall computational
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Figure 6. Similar to Figure 5 but we define a cost C = A+ γM , where A
is the number of additions and bit shifts, M is the number of multiplications
and γ = 6 is an extra penalty factor.

complexity and then, in the second plot, we apply an extra

penalty γ = 6 to multiplication operations. Unsurprisingly,

the non-orthonormal transforms built by Sm,p–DLA are the

most effective (for p =∞ in Figure 5 and p = 1 in Figure 6).

The orthonormal transforms behave as expected as well: Mq–

DLA performs very well in terms of computational complexity

but worse in terms of representation errors (and plateaus

quickly), Bm–DLA makes better progress and achieves better

representation errors (although it also slows down progress

with increased m) while B⊗
m–DLA combines the benefits of

the two approaches with the drawback is that training took

overnight. Note that, for the same complexity, Bm–DLA and

B⊗
m–DLA are very close to the DCT while with the extra

penalty γ for multiplications B⊗
m–DLA outperforms the DCT,

i.e., when addition and bit shift operations are cheap enough

we can afford a large enough number of these operations to

surmount the constraint of avoiding multiplications.

VII. CONCLUSIONS

In this paper we have proposed several dictionary learning

algorithms that produce linear transformation which exhibit

low computational complexity in general and reduce (or com-

pletely eliminate) multiplications in particular. We show that

these transforms perform very well on image data where we

compare against the DCT. We show that multiplications can

be avoided and representation errors of image data can be

kept low by replacing multiplication operations with a larger

number of addition and bit shift operations.
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