
ar
X

iv
:2

20
7.

10
20

4v
1

 [
cs

.I
T

]
 2

0
Ju

l 2
02

2

Watermark-Based Code Construction for Finite-State Markov Channel with

Synchronisation Errors

Shamin Acharia, Ling Chenga,∗

aSchool of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, 2000, Gauteng, South Africa

Abstract

With advancements in telecommunications, data transmission over increasingly harsher channels that produce synchroni-
sation errors is inevitable. Coding schemes for such channels are available through techniques such as the Davey-MacKay
watermark coding; however, this is limited to memoryless channel estimates. Memory must be accounted for to ensure
a realistic channel approximation - similar to a Finite State Markov Chain or Fritchman Model. A novel code con-
struction and decoder are developed to correct synchronisation errors while considering the channel’s correlated memory
effects by incorporating ideas from the watermark scheme and memory modelling. Simulation results show that the
proposed code construction and decoder rival the first and second-order Davey-MacKay type watermark decoder and
even perform slightly better when the inner-channel capacity is higher than 0.9. The proposed system and decoder may
prove helpful in fields such as free-space optics and possibly molecular communication, where harsh channels are used
for communication.

Keywords: Finite-State Markov Channel, Insertion Deletion Correction, Synchronisation Channel Modelling,
Synchronisation Decoding.

1. Introduction

As communication systems and technology advance, we
inevitably begin to transmit data over increasingly harsher
channels, and the need for digital signal processing tech-
niques to improve the reliability of communications, as
always, plays a vital role. These harsh channels naturally
produce insertions and deletions (synchronisation errors)
in addition to the standard substitution error. This im-
pact is already witnessed in prevailing real-world commu-
nication systems that use visible light or free-space optics
where synchronisation between the receiver and transmit-
ter is not easily maintained and as a result, these systems
suffer from synchronisation errors [1, 2]. The concern of
synchronisation and its related errors are even found in un-
conventional fields such as DNA sequencing [3, 4] to even
more intricate specialisations such as molecular commu-
nications [5, 6]. The latter has gained popularity in re-
cent years as a potential for data communication in nano
and micro systems, where open problems in the field con-
template the effects of synchronisation and memory [5, 6].
Davey and MacKay developed a watermark coding scheme
in [7, 8] to deal with such insertion, deletion and substitu-
tion (IDS) errors. While this scheme proves useful in many
fields, the main shortfall is that the channel used is a mem-
oryless approximation, the Davey-MacKay (DM) channel

∗Corresponding Author: Ling Cheng
Email address: Ling.Cheng@wits.ac.za (Ling Cheng)
This work has been submitted to the Elsevier DSP for possible publication.

Copyright may be transferred without notice, after which this version may no longer

be accessible

model, and many practical scenarios are hardly ever mem-
oryless or independent and identically distributed (IID) in
nature [9]. A recent paper by Achari et al. describes the
modelling of an IDS channel that incorporates the effects
of memory [2]. Here the channel is based on a Finite-
State Markov Channel (FSMC), which allows the system
to transition between various states (transmission, substi-
tution, deletion and insertion) based on different proba-
bilities and the given current state. This provides a valu-
able method to model correlated synchronisation channels
and also provides a method to simulate various scenarios
without the need for actual transceivers. Again, while the
model and method presented are helpful, it is not without
drawbacks. As the model is a general method of simulat-
ing such channels, it lacks any steadfast rules and limi-
tations, which causes challenges in producing an effective
encoding/decoding algorithm to protect against and cor-
rect communication errors.

In this paper, the IDS memory model presented by
Achari et al. is adapted and integrated with the DM wa-
termark scheme to create a more encompassing channel
and code construction that is more indicative of realistic
communication channels while still being simple enough to
provide an effective error-correction and resynchronisation
scheme. The main contributions of this paper are three-
fold. Firstly, the new proposed channel model, which com-
bines ideas from the DM and FSMC models, is presented.
Secondly, the code construction and decoding, which are
based on the watermark codes, are described for the pro-
posed channel. Lastly, we provide the details of extending

Preprint submitted to Digital Signal Processing July 22, 2022

http://arxiv.org/abs/2207.10204v1

the first-order decoding for the DM watermark scheme to a
second-order system. While the last contribution has been
alluded to in [7, 8], to the authors’ knowledge, no explicit
formulation is found in the literature. This second-order
IID decoding will be used as one of the comparative bench-
marks to test the proposed model and decoding algorithm
against.

The rest of the paper is structured as follows. The
DM channel and watermark code construction and the IDS
FSMC are further detailed in Section 2. This is followed
by Section 3 where the novel adapted channel model is
described along with the new code construction. Section
4 then discusses the evaluation metrics and compares the
simulations’ various tests and results with relevant analy-
sis. Conclusions are finally drawn in Section 5.

2. Background and Literature Review

2.1. Synchronisation Channels and Coding

Synchronisation channels remain a relatively unstud-
ied and open topic in information theory and are gener-
ally more complex to analyse than their traditional substi-
tution channel counterparts [10]. Mitzenmacher provides
an early survey of these synchronisation channels in [11]
and appropriately draws comparisons in the analysis of
synchronisation channels to traditional channels by com-
paring them to constructs of Levenshtein Distance over
the more straightforward Hamming distance. With recent
advancements in DNA-type storage, a recent surge in re-
search regarding insertion and deletion channels has since
been prompted. More recently, [10] and [12] provide de-
tailed surveys of the progress made in the investigation of
synchronisation channels. Cheraghchi et al., in particular,
survey work regarding the capacity of such channels [10].

2.2. Davey-Mackay Synchronisation Channel and Water-
mark Code

The DM watermark code provides a way to ensure re-
liable communication across a channel that produces IDS
errors. A detailed description of the code construction
can be found in [7, 8] and readers are encouraged to sur-
vey these texts for an in-depth explanation and analysis.
What follows is the basic overview of watermark codes in
order to distinguish the novelty of the proposed channel
and code construction.

In the DM construction a message string, m, consist-
ing of q-ary symbols, are encoded using LDPC, which pro-
duces a corresponding binary sequence, d. This sequence
d is then processed through a sparsifier which seeks to
create a sparse sequence using a codebook or lookup ta-
ble entry for each input symbol (group of q bits). The
mean density of the sparse vectors is denoted by f , and
the output of the sparsifer is the sparse binary string, s.
Here s is defined as sparse if the hamming weight of the
sequence divided by the length is less than 0.5. This sparse

sequence is then modulo-two added with a watermark se-
quence, w, to produce t, which will be the sequence trans-
mitted over the channel. The watermark sequence is one
of the main components that allow the system to regain
synchronisation during the decoding process. It can essen-
tially be seen as a timing sequence as it is known to both
the receiver and transmitter. The watermark sequence is
generally run-length limited or random. [13] Provides a
method to create the watermark sequence based on a pro-
posed probability metric. For this paper, all watermark
sequences are considered random. The sequence t is then
queued to be sent over the DM IDS channel.

Bits queued for transmission across the DM channel
may undergo one of three transitions. 1) With a probabil-
ity of Pi, a bit may randomly be inserted into the received
sequence. For m consecutive insertions the probability is
given as Pm

i . Following an insertion or multiple insertions,
a transmission or deletion must follow to proceed to the
next time step. Since, in theory, an unlimited number of
consecutive insertions may occur, a maximum number of
insertions, Im, is imposed on the system for simplification.
2) A bit may be deleted from the sequence and will not
appear in the received string with a probability Pd. 3)
A bit may be transmitted with a probability Pt, where
Pt = 1− Pi − Pd [7, 8, 14]. Note that when Im insertions
occur, a bit is transmitted with probability P̂t = 1 − Pd

[15]. If a bit is transmitted, it may undergo a substitution
with a probability Ps. The DM channel model is better
illustrated in Figure 1 [16] where τn and τn+1 indicates the
time at n and n+ 1 respectively.

τn τn+1

Transmission

Deletion

Insertion

Pt

1− Ps

Pi

Pd

Substitution
Ps

Figure 1: Davey-Mackay synchronisation channel model

The received sequence r is produced at the channel’s
output. Since the channel produces a mixture of insertions
and deletions, the length of r is not necessarily equal to
the length of t. The received sequence is then processed
through an inner decoder where the goal is to produce a
symbol-by-symbol likelihood function: Pn(a) = P (r|dn =
a, Pi, Pd, Ps, Pt, f,w) [15]. This involves making use of
the Forward-Backward (FB) algorithm to infer the hid-
den states, which in this case is the synchronisation drift
or the number of insertions minus the number of deletions
the channel has made from the beginning of the channel
use till time τn where the nth bit is queued to enter the
channel. This FB algorithm is run firstly at a bit level, and
a final forward pass is rerun at a symbol level. This pro-
duces a symbol-by-symbol likelihood which can be used as
the input into the LDPC decoder. The LDPC decoder is a
probabilistic iterative decoder that seeks to determine the

2

marginal posterior probabilities for the codeword symbols.
The DM code construction has been successfully used

in many applications ranging from the barcoding of DNA
in [3, 4] to speech watermarking in [15]. There has also
been much work on improving the code construction and
decoding, such as [17, 18, 19]. These references still, how-
ever, establish the core channel model on the memoryless
interpretation.

2.3. FSMC Synchronisation Channel
Achari et al. describe a method of creating a channel

model for an IDS channel that contains memory and thus
has correlations between errors [2]. This contrasts with
the DM synchronisation channel, which allows insertions,
deletions and substitution errors to occur in an IID (es-
sentially memoryless) manner. The model presented in [2]
is based on a FSMC where the states of the model are
Transmission (T), Substitution (S), Deletion (D) and In-
sertion (I). Here, one may move between any two states,
including self-transitions, with some probability defined in
a corresponding transition matrix. The model is better
illustrated in Figure 2. In [2] the receiver is assumed to
have full knowledge of the transmitted data. This allows
the use of the Levenshtein Distance (LD or edit distance)
algorithm to find the most likely series of events (trans-
mission, substitution, deletion or insertion) that occurred
to produce the final received string. Since this sequence
is essentially the hidden states of the channel, the sys-
tem is reduced to a Markov chain and the probabilities of
the transition matrix are determined by using the Baum-
Welch algorithm. The emission matrix, in this case, is
reduced to an identity matrix with the dimensions equiva-
lent to the number of states. The power of this modelling
methodology is then shown by utilising data from a real-
world visible light communication system and producing
the corresponding channel model. As stated previously,
this approach is extremely useful in creating the channel
model and parameters. However, providing an encoding
and decoding scheme to prevent such errors and resyn-
chronise the data proves somewhat complicated.

T DaTT

aTD

t

S aDDaSS

aIS

aTI

aIT

I aII

aSI

aSD

aDS

aDT

s d i t s d i t s d i t s d i

1 0 0 1 1 10 0 0 0 0 0 0 0 0 0

Figure 2: Four-state FSMC for IDS channel[2]

3. Proposed Memory Synchronisation System

3.1. Proposed Memory Synchronisation Channel
This paper draws inspiration significantly from DM wa-

termark codes [7, 8] and adapts the FSMC in [2] accord-
ingly. In fact, this new proposed model can be viewed

as an amalgamation of the DM model and the FSMC.
Firstly, since the main timing and resynchronisation capa-
bilities rely heavily on the watermark sequence, we need
to ensure that when the system transitions from time τn
to τn+1 that a bit queued on the transmitter end actually
enters the channel. This differs from the FSMC as time
progresses to the next time step even if no transmitted bit
is sent across the channel, e.g. insertion to another inser-
tion will cause a time increment for the FSMC. While the
new proposed model allows for multiple insertions, before
moving to the next time step, either a deletion of the ac-
tual transmitted bit or transmission must occur, which is
similar to the DM channel model. Another alteration from
the FSMC is that a substitution may only occur if a transi-
tion occurs. Again, this is similar to the DM channel, and
the probability of substitution is treated as IID. The new
model is adapted only to include the transmission, deletion
and insertion states and a corresponding memoryless prob-
ability of substitution. We can obtain this new three-state
FSMC from the original four-state FSMC. Firstly, the sta-
tionary distributions of the four-state transition matrix is
determined which provides the IID probabilities for Pt,
Ps, Pd and Pi. These probabilities are used to create a
corresponding DM code construction and watermark de-
coding for comparative purposes and benchmarking. The
value of Ps is used in both the DM construction and as
the corresponding memoryless substitution probability for
the new proposed model. After obtaining the stationary
distribution values, the columns and rows corresponding
to substitutions in the four-state transition matrix are re-
moved and normalised across the rows to obtain the three-
state transition matrix. To simplify the situation further,
a limit of Im maximum consecutive insertions is imposed
on the channel - as with the DM model. If the maximum
number of insertions is reached, the system must undergo
a transition or a deletion and move to the next time step.
This requires the value of insertion to insertion in the tran-
sition matrix to become zero (and normalise across the
row) for this step. In all further simulations within this
paper, the number of maximum insertions is capped to
1, which greatly simplifies the scenario. However, in the-
ory, this may be restricted to any number - restricting this
to zero produces a deletion channel. The proposed chan-
nel model is depicted in Figure 3 and the corresponding
transition matrix, A, is given in Equation 1. Accompany-
ing the transition matrix is the initial distribution vector,
Π = {π−xmax

, π−xmax+1
, ..., πxmax

}, which represents the
probabilities of starting in a particular state where xmax

is the maximum offset considered.

A =





aTT aTD aTI

aDT aDD aDI

aIT aID aII



 (1)

3.2. Proposed Code Construction

The code construction for this system model once again
draws substantially from DM watermark codes construc-

3

T IaTT

aTD

DaDD

aTI

aIT

aII

aDT

aDI

aID

0 0

1 1

1− Ps

1− Ps

Ps

Figure 3: Proposed three-state Markov model for synchronisation
channel

tion. In the proposed system, the main idea of the wa-
termark scheme is used to regain synchronisation - the
primary differences occur at the FSCM channel and Inner
Decoder blocks in Figure 4 which illustrates the block di-
agram of the systems code construction. For this paper,
the scope remains entirely on the inner decoder at a bit
level to regain synchronisation. This is an added benefit of
the proposed methodology and construction as the system
is entirely independent of the outer encoder and decoder.
As such, any substitution error correction code may be
used as the outer code in conjunction with the presented
inner code construction, and the system will not be re-
stricted to using LDPC as in the original DM watermark
scheme. Here the bitstream block represents the data in
binary or the message, d. This data sequence is then pro-
cessed through a sparsifier. As in the DM code construc-
tion, the sparsifier provides the decoder with its capabili-
ties as only information bits and errors will likely produce
a 1 in the resulting received sequence. For simulations
in this paper, a 4-to-5 sparsifier is used where the output
code bits correspond to the sparsest permutations possi-
ble. The density of this output codebook and consequently
the mean density of the output sequence of the sparsifier
is again denoted by f . This sparse string, s, of length Γ
is then modulo two added to a watermark vector, w, (also
of length Γ) to produce an encoded bitstream, t, ready
to be sent over the channel. The channel’s output is the
received sequence, t̂. This received sequence then passes
through the (inner) decoder, which seeks to resynchronise
the bitstream and remove any insertion or deletion errors
from t̂. The process and workings of the inner decoder are
further detailed in Section 3.3. The resynchronised string,
denoted by r, then has the watermark sequence removed
from it to produce ŝ which is the sparse decoded sequence.
The sparse decoded sequence is then fed into a desparsifier
which reverses the operations of the sparsifer to produce
d̂, which is the received data bitstream. It is worth noting
that the resynchronisation process ultimately introduces
additional substitution errors into the sequence that were
not caused by the channel. Such a system will undoubt-
edly benefit from an (outer) encoder and decoder.

Bitstream Sparsifier

Inner

Decoder

+

+

FSMC IDS

Channel

Watermark

Sequence

d s

w

t

t̂rŝ

w

Desparsifierd̂

Figure 4: Block diagram for system code construction

3.3. Inner Decoder

The purpose of the inner decoder is to regain synchro-
nisation by accounting for the errors caused by insertions
and deletions. A probabilistic approach is used to deter-
mine the most likely hidden states the channel traversed to
produce the given received string. This decoding is based
on Hidden Markov Model (HMM) decoding, and in par-
ticular, we use the FB algorithm on a bit level. For more
information regarding standard HMMs and their respec-
tive decoding, readers are encouraged to review [20, 21].
What we present is not an HMM in the traditional sense,
and as indicated in [7, 8], there are some subtle variations.
Firstly the hidden states of the HMM are not the same as
the states of the transition matrix. Here the hidden state
is defined as the synchronisation offset or synchronisation
drift (number of insertions minus number of deletions) at
a given time instance. As in the DM code construction, we
also restrict the maximum offset to xmax to simplify the
calculations as our number of states ranges from −xmax to
xmax. In our case, xmax is equal to five times the absolute
final offset. For example, if 600 bits were transmitted and
only 595 bits were received, the final offset, Ψ, at the fi-
nal time, Γ, would be −5 and the range of possible hidden
states would be −25 to 25. The exception is when Ψ is zero
(equal number of insertions and deletions occurring during
data transmission), then xmax is set to 5. Increasing this
range allows for a truer representation of the channel and
could potentially increase accuracy, but this comes with
a trade-off of increasing the number of calculations. The
second alteration is that the transition matrix may not be
used directly in the FB calculations, and the transitions
are instead based on channel events. To better illustrate
the transition between each time step, we use the num-
ber of bits output by the channel at a given time interval.
Since two time intervals (three time steps) are used, we
indicate the offset at times τn−2, τn−1 and τn as ψn−2 = i,
ψn−1 = j and ψn = k respectively. At each time interval
(τn−2 to τn−1 or τn−1 to τn) the channel may output from
zero to Im + 1 bits depending on the events of the chan-
nel. This bit output and corresponding channel events are
better illustrated in Table 1.

From the number of bits output by the channel, and
consequently the events that produced such an output,
various transition probabilities that are based on the three-
state transition matrix can be derived. Table 2 illustrates
the probabilities used for the various bit emissions over
two-time intervals. It is worth noting that values in this

4

Table 1: Bits Output by Channel and Corresponding Channel
Event(s)

Bits Output by Channel Channel Event

0 Deletion

1
Transmission

OR
(Insertion and Deletion)

2
(Insertion and Transmission)

OR
(Two Insertions and Deletion)

3
(Two Insertions and Transmission)

OR
(Three Insertions and Deletion)

...
...

Im + 1 (Im Insertions and Transmission)

Table 2: Bits Output by Channel and Corresponding Probabilities

Bits Output
(τn−2 to τn−1)

Bits Output
(τn−1 to τn)

Probability
(Pijk)

0 0 aDD

0 1 aDT + aDI
aID

2
0 2 aDI

aIT

2
1 0 aTD + aIDaDD

1 1 aTT + aTI
aID

2 + aIDaDT + aIDaDI
aID

2
1 2 aTI

aIT

2 + aIDaDI
aIT

2
2 0 aITaTD

2 1 aITaTT + aITaTI
aID

2
2 2 aITaTI

aIT

2

table correspond to Im = 1 and the table will differ de-
pending on this parameter. The number of possibilities
also increases as Im increases as more potential events are
now possible. Additionally, when the final event contains
an insertion we scale the value over all possible bits i.e 2m

where m once again corresponds to m consecutive inser-
tions. Note that the above notation is for the forward pass
of the FB algorithm and the corresponding notation for the
backward pass describes ψn = k, ψn+1 = j and ψn+2 = i

as the synchronisation offset at τn, τn+1 and τn+2 respec-
tively. Additionally, the time interval from τn−2 to τn−1 in
Table 2 corresponds to time interval from τn+1 to τn+2 for
the backward pass and similarly time interval from τn−1 to
τn will correspond to time interval from τn to τn+1. Like-
wise Pijk in Table 2 corresponds to Pkji for the backward
pass.

The final alteration is that there is no emission ma-
trix for an observation given a current state. Rather, we
use the watermark sequence and compare corresponding
received bits to determine if a transmission or substitu-
tion has occurred. Again this shows the importance of
the watermark sequence and the density of the sparse se-
quence. An altered FB algorithm is used to determine the
likely states that the channel transitioned through. The
forward probabilities at time n and state k is defined as
Fn(k) = P (t̂1, t̂2, ..., t̂n−1+k, ψn = k|A,Ps, w,Π) [15]. Sim-
ilarly, the backward probabilities at time n for state k is de-
fined as Bn(k) = P (t̂n+k, t̂n+k+1, ..., t̂Γ, ψn = k|A,Ps, w)

[15]. As mentioned previously, an efficient method to cal-
culate these probabilities is with the recursive FB algo-
rithm. The equations for the forward pass are shown in
Equations (2) to (4) and the backward pass formulae are
shown in Equations (5) to (7). Additionally, Equation (2)
is used for the initialisation step and Equation (3) is used
for the recursion in the first-order memoryless DM decod-
ing. Similarly, Equation (5) is used for the initialisation
step and Equation (6) is used for the recursion in the back-
ward pass for the first-order memoryless DM decoder. To
better illustrate the processes described, the algorithm for
the FB passes for the proposed decoding scheme is out-
lined in Algorithm 2 in Appendix B. The probability of
being in a given state at a given time, or the posterior
state probabilities, is equal to the product of the forward
and backward values at the same corresponding state and
time. From these posterior state probabilities, the most
likely channel path sequence is determined by finding the
state with the maximum probability for each time index
constrained within a range of sp − 1 to sp + Im where sp
is the most likely state at the previous time index.

for n = 1

F1(k) = πk (2)

for n = 2

F2(k) =
k+1
∑

j=k−I

F1(j)
(

αjk + βjkζ
1
k

)

(3)

for 3 ≤ n ≤ Γ

Fn(k) =

j+1
∑

i=j−I

k+1
∑

j=k−I

Fn−1(j)Pijkξ
n−1
k (4)

for n = Γ

BΓ(k) =

{

1 k = ρ

0 otherwise
(5)

for n = Γ− 1

BΓ−1(k) =
k+I
∑

j=k−1

BΓ(j)
(

αkj + βkjζ
Γ−1
k

)

(6)

for Γ− 2 ≥ n ≥ 1

Bn(k) =

j+I
∑

i=j−1

k+I
∑

j=k−1

Bn+1(j)Pkjiξ
n
k (7)

Here αjk, βjk and ζnk are further elaborated in Equa-
tions (8),(9) and (10) respectively [15]. ξnk in Equations (4)
and (7) are equivalent to ζnk in Equation (10), however, it
only affects the probability in question if the second time
interval ends in a Transmission. For example, the calcu-
lation for ψn−2 = 1, ψn−1 = 0 and ψn = 0, the channel

5

emits 0 bits for the time interval τn−2 to τn−1 and 1 bit for
τn−1 to τn. This means that the overall Pijkξ

n−1
k for this

case would be aDT ξ
n
0 + aDI

aID

2 . In other words the value

of ξn−1
k , which checks if the received bit matches the cor-

responding watermark bit, is only used if there was in fact
a transmission event as the final respective occurrence.

αjk =

{

P
k−j+1
i

Pd

2k−j+1 −1 ≤ k − j < I

0 k − j < −1, k − j ≥ I
(8)

βjk =











P
k−j

i
Pt

2k−j 0 ≤ k − j < I
P I

i P̂t

2k−j k − j = I

0 k − j ≤ −1, k − j > I

(9)

ζnk =

{

1− Pf t̂n+k = wn

Pf t̂n+k = wn ⊕ 1
(10)

4. Simulations and Results

As previously mentioned, all simulation results from
the proposed model and code construction are benchmarked
against the first and second-order memoryless DM decod-
ing. Algorithm 1 in Appendix B shows the pseudo-code
for the first-order DM FB algorithm. We expand the first-
order decoder to a second-order, providing a more objec-
tive comparison to the proposed scheme as two-time inter-
vals are now used to evaluate the forward and backward
values. Equation (11) provides the memoryless second-
order recursive forward pass while Equation (12) describes
the memoryless second-order recursive backwards pass. The
initialisation steps follow the same process as the pro-
posed FSMC decoder. The second-order DM FB algo-
rithm pseudo-code is given in Algorithm 3 in Appendix B.

Fn(k) =

j+1
∑

i=j−I

k+1
∑

j=k−I

Fn−1(j) (αij + βij)
(

αjk + βjkζ
n−1
k

)

(11)

Bn(k) =

j+I
∑

i=j−1

k+I
∑

j=k−1

Bn+1(j) (αji + βji) (αkj + βkjζ
n
k)

(12)

4.1. Analysis Metrics

Three evaluation metrics are used in the analysis of the
simulation results. The first is the commonly used BER
values for a given system entropy. While this provides a
good insight into the system’s performance, there are some
minor drawbacks. The BER is calculated at the final out-
put of the system; in other words, d̂ is compared against d
to determine the equivalent BER. This requires a complete
resynchronisation of the received sequence. Consequently,

if a deletion is detected during the inner decoding pro-
cess, a bit is inserted into the received sequence at the
corresponding time index to rectify this influence. In real
applications, the rectified bit is random and may some-
times produce the correct bit that was deleted. Other
times this may be the incorrect bit, which will alter the
BER values and thus produce varying results for the dif-
ferent algorithms. For the analysis in this paper, the bit
inserted to undo a possible deletion is always a ’0’ to en-
sure a fair comparison of the BER analysis for the different
decoders. The bias caused is still, however, noted in this
resynchronisation step which ultimately biases the algo-
rithms BER performance. The second evaluation metric
used is the number of positions that the derived hidden
states disagree with the actual states that the channel tra-
versed - we call this the NIIS or Number of Incorrectly
Identified States. This indicates how well the respective
FB algorithms could accurately deduce the correct hidden
states. However, it suffers from the fact that the correct
transitions between states may be correct, but the actual
state (offset) is incorrect. Here a lower number indicates
a more accurate representation of what truly transpired
in the channel. For the results presented in this paper,
the NIIS is normalised over the length of the transmit-
ted sequence in order to provide a more general metric.
Finally, an evaluation metric known as the Sum of Ab-
solute Offset (SAO), which builds onto the idea of NIIS,
is introduced. This metric is derived again at the inner
decoder and looks at how the likely hidden state path pro-
duced from the algorithms differs from the actual path
the channel traversed. Instead of looking at the number
of individual states where the algorithm path matches the
actual path (binary classification), we look at the differ-
ence between the actual path and algorithm-derived path
at corresponding time indexes. This gives a more general
overview and a value that better shows the performance
of the associated algorithm where, again, the lower the
SAO, the more aligned to the actual channel path. The
SAO is calculated by Equation (13) where PActual(τ) and
PAlg(τ) are the actual state path produced by the chan-
nel and the derived state path inferred from the decoding
algorithms respectively. In this paper, the results for the
SAO plots are kept as absolute values as they closely cor-
relate to what is observed in the NIIS, and this allows us
to have a different perspective when viewing the results.
It is noted that the SAO can, however, still be normalised
across all possible offsets and the length of the transmitted
sequence if needed.

SAO =

Γ
∑

n=1

|PActual(n)− PAlg(n)| (13)

These evaluation metrics are plotted against a range of
entropy values in the results. Entropy is used as a measure
of how uncertain the communication channel is. In other
words, we use entropy to quantify the harshness of the
channel as it is a good indicator of channel capacity [9].

6

The average entropy is calculated by Equation (14) where
the entropy of state i is Hi and is calculated by Equa-
tion (15) [22, 2]. The value of ρi in Equation 14 is the
stationary distribution of been in that specific state. As
different combinations of Pt, Ps, Pd, Pi and Amay produce
similar entropies, the justification of using entropy in this
regard is to limit the number of these varying parameters
in the analysis, which seeks to simplify a rather complex
phenomena. As can be seen in the overall results, having
varying parameters within certain ranges reliably repro-
duces relatively constant entropies. In this paper, three
error ranges are used for the generation of the transition
matrix entries, and this, in turn, corresponds to three dif-
ferent entropy ranges. These ranges are shown in Table
A.1 in Appendix A along with the outline and method
for creating the transition matrices. We, however, reiter-
ate that the objective of this paper is to give a comparison
of the decoding algorithms. While this matter is briefly
discussed, the manner in which the different parameters
contribute to the entropy is beyond the scope of this pa-
per.

H =

N
∑

i=1

ρiHi bits/symbol (14)

Hi = −

N
∑

j=1

aij log2(aij) bits/symbol (15)

4.2. Overall Results

The following results are obtained to show the general
trends in performance of the three decoding algorithms
across various entropy values. To ensure the generality
and demonstrate the practicality of the decoders, for these
tests, multiple iterations are run on varying transition ma-
trices that produce an entropy within 0.001 from the de-
sired entropy value. For example, if the desired entropy is
0.01, transition matrices that produce entropies between
0.009 to 0.011 are considered. Twenty different transition
matrices are generated for each entropy value from 0.01 to
0.3, according to the method outlined in Appendix A. For
each of these matrices, communication across the channel
is simulated 100 times with varying message data, and
from this, the decoding performances are computed. The
results are then averaged across all iterations to produce
the following graphs and outcomes.

As shown in Figure 5, all the evaluation metrics fol-
low similar trends for the three decoding algorithms. As
the entropy values increases so too does the BER, NIIS
and SAO which is shown in Figures 5a, 5b and 5c re-
spectively. This is an expected outcome as an increase
in entropy increases the uncertainty of what is occurring
within the communication channel, and as a result, more
errors are produced. These results agree with the notion
of memory decreasing entropy and uncertainty and, con-
sequently, increasing channel capacity [9]. At lower en-
tropy values, the memory FSMC outperforms its memory-

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Entropy

0

0.05

0.1

0.15

0.2

0.25

B
E

R

Original DM
FSMC
2nd Order DM

(a) BER performance for decoding algorithms

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Entropy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
N

or
m

al
is

ed
 N

IIS

Original DM
FSMC
2nd Order DM

(b) NIIS performance for decoding algorithms

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Entropy

0

50

100

150

200

250

300

350

S
A

O

Original DM
FSMC
2nd Order DM

(c) SAO performance for decoding algorithms

Figure 5: BER, NIIS and SAO performance for the DM, FSMC and
second-order DM decoding algorithms across various entropy values
using varying transition matrices for each of the entropy values

7

less counterpart. As the entropy increases, the memoryless
algorithms perform slightly better. For almost all the sim-
ulations, the first- and second-order memoryless DM algo-
rithms perform identically, but the second-order decoder
performance is slightly better at the much higher entropies.
What is advantageous from these results is that we see
entropy is indeed a good indicator of the channel’s per-
formance. Even though different transition matrices that
produce a given entropy are used, the results obtained are
generally independent of the individual entries of A and
the stationary distribution values. This is welcomed to
demonstrate the real-world application of such a system
as the results are not constrained to specific entries of A
but can rather be overviewed by an encompassing metric
like entropy. We also note jumps in the trajectory of the
plots in Figure 5a occurring at entropy values of 0.1 and
0.2. These discontinuities are attributed to the different
error ranges outlined in Table A.1 in Appendix A. We
propose that using a smaller resolution of changing error
values will decrease this discontinuity, but this is left as a
future exercise.

0 0.05 0.1 0.15 0.2 0.25 0.3

Entropy

0

0.05

0.1

0.15

0.2

0.25

0.3

B
E

R

Original DM
FSMC
2nd Order DM

(a) BER performance for decoding algorithms

0 0.05 0.1 0.15 0.2 0.25 0.3

Entropy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N
or

m
al

is
ed

 N
IIS

Original DM
FSMC
2nd Order DM

(b) NIIS performance for decoding algorithms

Figure 6: BER, NIIS and SAO performance for the DM, FSMC and
second-order DM decoding algorithms across various entropy values

0 0.05 0.1 0.15 0.2 0.25 0.3

Entropy

0

50

100

150

200

250

300

350

S
A

O

Original DM
FSMC
2nd Order DM

(c) SAO performance for decoding algorithms

Figure 6: BER, NIIS and SAO performance for the DM, FSMC and
second-order DM decoding algorithms across various entropy values
(cont.)

4.3. Constant Entropy Results

The following results are obtained by running the three
decoding algorithms on data passed through the channel
for specific entropy values. Here a constant transition ma-
trix and consequently constant entropy value within the
desired range is used. This reduces the number of chang-
ing parameters, allowing a more thorough analysis of Ps,
Pd and Pi values. For each entropy value, there are 5000
iterations of the channel use with random data bits for
each run (all three algorithms are run using the same data
and channel output for a true representation for the given
iteration). For all entropies and iterations, the same wa-
termark string is used to reduce the number of varying
parameters. Figure 6a, Figure 6b and Figure 6c show the
results of these tests for the BER, NNA and SAO respec-
tively. The results obtained using set transition matrices
for a given entropy range are in direct comparison to those
obtained previously, where the transition matrix was var-
ied for an entropy range. Additionally, it is noted that the
results from the BER, NIIS and SAO are highly corre-
lated and in agreement with one another and as such, the
focus can remain on the NIIS plots for further analysis.
Figure 7 shows specific zoomed-in areas of the NIIS plots
to illustrate further the results obtained. From Figure 7
it can be seen that using an entropy range from 0 to 0.1,
the FSMC memory decoding appears to have slightly bet-
ter performance than both the DM and second-order DM
decoding. From an entropy range of 0.11 to 0.2, it is evi-
dent that all of the decoders have similar performance and
achieve almost identical results. Lastly, for entropies rang-
ing from 0.2 to 0.3, it is seen that both the DM decoders
perform better than the FSMC in most cases. We also see
the second-order DM decoding slightly outperforming the
first-order DM algorithm at these higher entropy values.
It is also worth noting that while the proposed model and
scheme perform only slightly better, within lower entropy

8

ranges, than the memoryless counterparts, there is almost
no increase in the algorithm’s complexity. Additionally,
using the more sophisticated FSMC memory model allows
for more realistic channels to be simulated and coded for.
The emphasis is once again placed on providing an effec-
tive model and code construction to correct and protect
against synchronisation errors in a channel that contains
memory. It is easily seen that when the proposed scheme
does not perform better than the existing approximations,
it is at the very least comparable to them.

0 0.05 0.1 0.15 0.2 0.25 0.3

Entropy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

N
or

m
al

is
ed

 N
IIS

Original DM
FSMC
2nd Order DM

0.02 0.03 0.04 0.05
0.01

0.02

0.03

0.04 0.12 0.14 0.16
0.11

0.12

0.13

0.14

0.27 0.28 0.29 0.3

0.3

0.32

0.34

Figure 7: NIIS performance for decoding algorithms with zoomed
areas

4.4. Error Probability Level Results

We can further our analysis of the decoding algorithms
by taking a closer look at the parameters that contribute
to the entropy values and thus affect decoder performance.
For the following results, we use the constant entropy data
to keep the relevant stationary distributions for a given
transition matrix constant. Figure 8 shows the stationary
distribution values in yellow against the actual respective
frequencies of Pd , Pi and Ps for given entropies. Note
that the stationary distribution error probability is scaled
to match the maximum frequency of the DM or FSCM
plots but has no actual frequency per se. We limit the
analysis to certain selected entropy values (H = 0.014,
0.074, 0.182, 0.292) to illustrate the points. This analysis,
however, can be extended to any of the entropy values dis-
cussed. From these results, we identify general themes and
trends on how the Pd, Pi and Ps values affect the decoder
performance but note that this is a high-level analysis,
and further investigation is required to better identify the
prevailing effects of the parameters. In each of the sub-
plots shown in Figure 8, graphs of the number of times
the first-order DM algorithm performs better (blue), the
FSCM decoding performs better (red), and the times both
the first-order DM and FSCM decoding have identical de-
coding performance (purple) are plotted. This analysis is

based in terms of the NIIS performance metric. From Fig-
ure 8a, it can be seen that for the majority of cases in the
simulated channel use, no errors - be it deletion, insertion
or substitution - are witnessed, and it is shown that both
the DM and FSCM perform equally for the majority of the
simulation runs. There are cases where the DM decoder
outperforms the FSCM as it is better equipped to handle
no error situations. This is because the FSCM model ac-
counts for memory in the channel and almost always allows
for some transition to an error state and consequently has
higher probabilities of detecting an error even if none are
present. It is worth noting that this does not imply the
FSCM is a bad decoder but rather suggests its usefulness
is better suited to cases where errors are, in fact, present.
In contrast, the DM decoder should be used if the channel
is relatively stable and causes little to no synchronisation
errors. It can also be argued that a backwards error correc-
tion technique such as automatic repeat request would be
better suited in these low-error cases than trying to correct
these minimal errors. Figure 8a shows the outperformance
frequency plots at an entropy of H = 0.074. It is evident
that most error probabilities produced by the channel are
scattered around the relevant stationary distribution val-
ues. When the respective channel error is less than the
stationary distribution, it is observed that the DM de-
coder tends to outperform the FSCM decoder. However,
as the probability of the error in question surpasses its
corresponding stationary distribution, we notice that the
FSCM starts to have a larger number of occurrences where
it performs better than the DM decoder. Similar trends
are noticed at entropies of 0.182 and 0.292, especially con-
cerning the insertion probability graphs. The plots for the
entropies of 0.182 and 0.292 are shown in Figure 8c and 8d
respectively. It is also noticed that at these higher entropy
values, the probability of deletion and substitution caused
by the channel spans a larger range of values. In contrast,
the range of the insertion probabilities remains relatively
constant. Also noted at the higher entropy values is that
the decoders are very seldom in agreement with one an-
other, and one decoding algorithm generally outperforms
the other at these points. It is still observed that a fair
majority of the error probabilities produced by the chan-
nel are generally centred around the relevant stationary
distribution error probability. For these results and analy-
sis, the second-order DM decoding has been omitted as it
closely follows the performance of the first-order decoding
for the cases in question.

4.5. Effects of Ps on simulations

As outlined in the proposed system, the entropy values
calculated are based on the converted 3-state FSMC and
not the original 4-state. In other words, the substitution
state is omitted from this calculation as it is converted to
a memoryless error value for the discussed system. The
following test provides a way to determine the effect the
value of Ps has on the system. In these tests, the same

9

0 2 4 6
Deletion

Probability
10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

is
ed

 F
re

qu
en

cy

0 2 4 6
Insertion

Probability
10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

N
or

m
al

is
ed

 F
re

qu
en

cy

0 0.005 0.01
Substitution
Probability

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
or

m
al

is
ed

 F
re

qu
en

cy

DM Wins FSMC Wins Stationary Probability Equal Performance

(a) H = 0.014

0 0.01 0.02
Deletion

Probability

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

N
or

m
al

is
ed

 F
re

qu
en

cy

0 0.005 0.01
Insertion

Probability

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

N
or

m
al

is
ed

 F
re

qu
en

cy

0 2.5 5
Subs

Probability
10-3

0

0.05

0.1

0.15

0.2

0.25

0.3

N
or

m
al

is
ed

 F
re

qu
en

cy

DM Wins FSMC Wins Stationary Probability Equal Performance

(b) H = 0.074

0 0.025 0.05
Deletion

Probability

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

N
or

m
al

is
ed

 F
re

qu
en

cy

0 0.005 0.01
Insertion

Probability

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

N
or

m
al

is
ed

 F
re

qu
en

cy

0 0.025 0.05
Substitution
Probability

0

0.005

0.01

0.015

0.02

0.025

0.03

N
or

m
al

is
ed

 F
re

qu
en

cy

DM Wins FSMC Wins Stationary Probability Equal Performance

(c) H = 0.182

0 0.02 0.04 0.06
Deletion

Probability

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

N
or

m
al

is
ed

 F
re

qu
en

cy

0 0.01 0.02
Insertion

Probability

0

0.02

0.04

0.06

0.08

0.1

0.12

N
or

m
al

is
ed

 F
re

qu
en

cy

0 0.02 0.04 0.06
Substitution
Probability

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

N
or

m
al

is
ed

 F
re

qu
en

cy
DM Wins FSMC Wins Stationary Probability Equal Performance

(d) H = 0.292

Figure 8: Frequency decoders outperform each other at various channel error probabilities

transition matrix is used for a given entropy value; how-
ever, the value of Ps is varied, and the NIIS values are
recorded. The tests show results in an entropy range from
0.01 to 0.1 using Ps values of 0.0017, 0.0033, 0.005 and
0.0067 which corresponds to 1, 2, 3 or 4 substitution er-
rors in the given system. It is worth noting that this is a
general excerpt of the results, and higher entropy values
will tend to see higher Ps values. Additionally, for given
parameters, a certain Ps value may occur more often than
others in actual channel usage, as is shown in Figure 8.
As such, the results for this set of tests may contain slight
biases. However, these values are normalised according to
the number of times a certain Ps value occurred as this
tries to minimise the bias. Figure 9 shows that the value
of Ps has a rather random effect on the NIIS, with the
system performing better for different cases of Ps and en-
tropy values. However, the normalised NIIS will generally
be in a similar region with slight differences for varying
Ps values at a set entropy. There are, of course, outliers

which are evident at an entropy of 0.0737 where the NIIS
associated with the higher Ps value of 0.005 has a better
performance. However, this is due to the aforementioned
bias in the number of occurrences of that specific Ps value.
In this case there are 10 counts of Ps = 0.005, 3693 counts
of Ps = 0, 1135 counts of Ps = 0.0017 and 162 counts of
Ps = 0.0033.

5. Conclusion

The DM synchronisation coding and decoding scheme
are discussed along with the FSMC synchronisation chan-
nel, which can model an IDS channel while incorporating
memory aspects of the channel. By integrating ideas from
both schemes and channels, a novel memory synchronisa-
tion system is developed and introduced, which is capable
of correcting insertion and deletion errors. Various tests
and simulations are done using a variety of evaluation met-
rics, and it is shown that the new proposed decoder per-
forms similar to that of the original first-order and second-

10

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Entropy

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

N
or

m
al

is
ed

 N
IIS

Ps = 0
Ps = 0.0017
Ps = 0.0033
Ps = 0.005

0.04 0.045 0.05
0.025

0.03

0.035
0.08 0.085 0.09

0.066

0.068

0.07

Figure 9: Effect of Ps on NIIS

order DM decoder. It is even shown that for specific en-
tropy values (0.01 to 0.1), the proposed decoder performs
slightly better than the DM counterparts. A further anal-
ysis that delves into the individual error probabilities and
their effect on decoder performance is conducted, which re-
veals a generally better performance from the FSMC pro-
posed decoding when error values exceed that of the cor-
responding stationary distribution error values. While the
coding gain may be insubstantial, the proposed channel is
more indicative of real-world communication channels, es-
pecially in harsher environments, as errors are more likely
to be correlated. Thus the code construction and decoding
will likely prove useful for such applications.

CRediT authorship contribution statement

Shamin Achari: Conceptualisation, Methodology, Soft-
ware, Formal analysis, Investigation andWriting - Original
Draft. Ling Cheng: Supervision, Conceptualisation and
Validation.

Declaration of Competing Interest

The authors declare that they have no known compet-
ing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgements

This work is based on the research supported in part by
the National Research Foundation of South Africa (Grant
Numbers: 148765, 132651 & 129311).

Appendix A. Generation of Transition Matrices

This appendix outlines the procedure to generate vari-
ous transition matrices which correspond to different ranges

of entropy values. The stationary distributions of the four-
state matrix, as well as the actual transition matrix en-
tries, affect the channel entropy. The matrix created is
the four-state version which is then converted to a corre-
sponding three-state matrix using the procedure outlined
in the main document. In order to create the four-state
matrix, different transition probabilities are set up. This
is broken into two large groups, firstly a range of proba-
bilities corresponding to a transition from a Transmission
to an Error where an error constitutes either substitution,
insertion or deletion states. The second range of prob-
abilities is that of Error to Error. Table A.1 shows the
different error ranges used to generate the matrix entries
and the related range of entropy values it produces. Each
entry in the matrix is randomly generated within these
predefined error ranges and finally, for each row, the entry
corresponding to a final Transmission state is calculated
by taking 1 minus the other entries in the row. This is
done to ensure all possible transitions in a given row equal
unity. Once the matrix is created, its equivalent 3-state
form is determined and the entropy of the 3-state model
is calculated and used in accordance with the various sim-
ulations and tests. As is evident from the values in Table
A.1, the higher the probability of staying in a transmis-
sion state (lower Transmission to Error and lower Error
to Error probability), the lower the entropy. This again
intuitively makes sense as the lower the entropy, the less
uncertainty is found in the channel. As the entries in the
transition matrix become more alike to each other, the en-
tropy increases and it becomes more difficult to determine
the correct state as the uncertainty of the channel state is
much higher.

Table A.1: Entropy Ranges and Corresponding Transition Matrix
Entries

Entropy Range
Transmission

to Error
Probabilty

Error
to Error

Probabilty

0.01 - 0.1 0.0001 - 0.005 0.001 - 0.05
0.1 - 0.2 0.001 - 0.05 0.01 - 0.05
0.2 - 0.3 0.01 - 0.05 0.001 - 0.05

Appendix B. Pseudocode for Decoders Forward-

Backward Algorithms

This appendix outlines the various forward-backward
algorithms used in the testing of the decoders. This allows
us to easily illustrate and compare the similarities, and
consequently, differences, between the various algorithms
used. Algorithm 1 describes the forward-backward process
for the bit level first-order Davey-MacKay decoder. Algo-
rithm 2 shows the pseudo-code the forward-backward func-
tion for the finite state Markov channel decoder. Lastly,
Algorithm 3 illustrates the forward-backward process for
the bit level second-order Davey-MacKay decoder.

11

Algorithm 1 : First-Order DM Forward-Backward Algo-
rithm

1: function ForwardBackwardDM(maximum offset
xmax, maximum consecutive insertions I)

nStates = [−xmax, ..., xmax]
2: F [nStates,Γ],
3: B[nStates,Γ],
4: FB[nStates,Γ]
5: for all states s ∈ nStates do
6: F [s, 1]← π[s] ⊲ Forward Initialisation
7: end for

8: for all time τ ∈ [2, ...,Γ] do ⊲ Forward Recursion
9: for each current state j ∈ nStates do

10: for each previous state i from j − I to j+1
do

11: if i ∈ nStates then

12: F [j, τ]←
∑

F [i, τ−1](αij+βijζ
τ−1
j)

13: end if

14: end for

15: end for

16: Normalise F across all rows at current τ
17: end for

18: B[ρ,Γ]← 1 ⊲ Backward Initialisation
19: for all time τ ∈ [Γ− 1, ..., 1] do ⊲ Back Recursion
20: for all current states j ∈ nStstates do

21: for each next state i ∈ [j − 1, j + I] do
22: if i ∈ nStates then

23: B[j, τ]←
∑

B[i, τ + 1](αji + βjiζ
τ
j)

24: end if

25: end for

26: end for

27: Normalise B across all rows at current τ
28: end for

29: for all s, τ ∈ nStates do ⊲ FB Calculations
30: FB[s, τ]← F [s, τ] ∗B[s, τ]
31: end for

32: Normalise FB across all rows at given τ
33: return FB
34: end function

References

[1] S. Achari, A. Y. Yang, J. Goodhead, B. Swanepoel, L. Cheng,
Self-Synchronising On-Off-Keying Visible Light Communica-
tion System for Intra and Inter-Vehicle Data Transmission,
arXiv preprint arXiv:2101.05126 (2021).

[2] S. Achari, D. G. Holmes, L. Cheng, Symbol-Level Synchroni-
sation Channel Modelling With Real-World Application: From
Davey-Mackay, Fritchman to Markov, IEEE Access (2021).

[3] D. Kracht, S. Schober, Using the Davey-Mackay code construc-
tion for barcodes in DNA sequencing, in: 2014 8th International
Symposium on Turbo Codes and Iterative Information Process-
ing (ISTC), IEEE, 2014, pp. 142–146.

[4] D. Kracht, S. Schober, Insertion and deletion correcting DNA
barcodes based on watermarks, BMC bioinformatics 16 (1)
(2015) 1–14.

[5] M. C. Gursoy, M. Nasiri-Kenari, U. Mitra, Towards high data-
rate diffusive molecular communications: A review on perfor-
mance enhancement strategies, Digital Signal Processing (2021)
103161.

[6] J. T. Gómez, K. Pitke, L. Stratmann, F. Dressler, Age of in-
formation in molecular communication channels, Digital Signal
Processing 124 (2022) 103108.

[7] M. C. Davey, Error-correction using low-density parity-check
codes, Ph.D. thesis, University of Cambridge (2000).

[8] M. C. Davey, D. J. MacKay, Reliable communication over chan-
nels with insertions, deletions, and substitutions, IEEE Trans-
actions on Information Theory 47 (2) (2001) 687–698.

[9] L. N. Kanal, A. Sastry, Models for channels with memory and
their applications to error control, Proceedings of the IEEE
66 (7) (1978) 724–744.

[10] M. Cheraghchi, J. Ribeiro, An overview of capacity results for
synchronization channels, IEEE Transactions on Information
Theory 67 (6) (2020) 3207–3232.

[11] M. Mitzenmacher, A survey of results for deletion channels and
related synchronization channels, Probability Surveys 6 (2009)
1–33.

[12] B. Haeupler, A. Shahrasbi, Synchronization strings and codes
for insertions and deletions–a survey, IEEE Transactions on In-
formation Theory (2021).

[13] P.-M. Nguyen, M. A. Armand, T. Wu, On the watermark string
in the Davey-Mackay construction, IEEE communications let-
ters 17 (9) (2013) 1830–1833.

[14] D. Leigh, Capacity of Insertion and Deletion channels, Project
Report, available at http://www. inference. phy. cam. ac.
uk/is/papers (2001).

[15] D. J. Coumou, G. Sharma, Insertion, deletion codes with
feature-based embedding: a new paradigm for watermark syn-
chronization with applications to speech watermarking, IEEE
Transactions on Information Forensics and Security 3 (2) (2008)
153–165.

[16] F. Wang, Coding for Insertion/Deletion Channels, Ph.D. thesis,
Arizona State University (2012).

[17] J. A. Briffa, H. G. Schaathun, S. Wesemeyer, An improved de-
coding algorithm for the Davey-Mackay construction, in: 2010
IEEE International Conference on Communications, IEEE,
2010, pp. 1–5.

[18] X. Jiao, M. A. Armand, Interleaved LDPC codes, reduced-
complexity inner decoder and an iterative decoder for the
Davey-Mackay construction, in: 2011 IEEE International Sym-
posium on Information Theory Proceedings, IEEE, 2011, pp.
742–746.

[19] X. Jiao, M. A. Armand, Soft-input inner decoder for the Davey-
Mackay construction, IEEE communications letters 16 (5)
(2012) 722–725.

[20] L. Rabiner, B. Juang, An introduction to hidden Markov mod-
els, ieee assp magazine 3 (1) (1986) 4–16.

[21] D. Jurafsky, J. H. Martin, Speech and language processing,
Vol. 3, Pearson London, 2014.

[22] K. Shanmugam, Digital and analog communication systems,
New York: Wiley, 1979.

12

Algorithm 2 : FSMC Forward-Backward Algorithm

1: function ForwardBackwardFSMC(maximum offset xmax,
maximum consecutive insertions I)

nStates = [−xmax, ..., xmax]
2: F [nStates,Γ],
3: B[nStates,Γ],
4: FB[nStates,Γ]
5: for all states s ∈ nStates do

6: F [s,1]← π[s] ⊲ Forward Initialisation
7: end for

8: for each current state j ∈ nStates do

9: for each previous state i from j − I to j + 1 do

10: if i ∈ nStates then

11: F [j,2]←
∑

F [i, 1](αij + βijζ
1

j)
12: end if

13: end for

14: end for

15: Normalise F across all rows at current τ = 2
16: for all time τ ∈ [3, ...,Γ] do ⊲ Forward Recursion
17: for each current state k ∈ nStates do

18: for each τ − 1 state j from k − I to k + 1 do

19: for each τ − 2 state i from j − I to j + 1 do

20: if i & j ∈ nStates then

21: F [k, τ]←
∑

F [j, τ − 1](Prob(i, j, k)) ⊲

Here Prob() is the relevant probabilities from Table 2
22: end if

23: end for

24: end for

25: end for

26: Normalise F across all rows at current τ

27: end for

28: B[Ψ,Γ]← 1 ⊲ Backward Initialisation
29: for all current states j ∈ nStstates do

30: for each next state i ∈ [j − 1, j + I] do
31: if i ∈ nStates then

32: B[j,Γ− 1]←
∑

B[i,Γ](αji + βjiζ
Γ−1

j)
33: end if

34: end for

35: end for

36: Normalise B across all rows at current τ

37: for all time τ ∈ [Γ− 2, ..., 1] do ⊲ Back Recursion
38: for all current states k ∈ nStstates do

39: for each τ + 1 state j ∈ [k − 1, k + I] do
40: for each τ + 2 state i ∈ [j − 1, j + I] do
41: if i & j ∈ nStates then

42: B[k, τ]←
∑

B[j, τ + 1](Prob(k, j, i)) ⊲

Here Prob() is the relevant probabilities from Table 2
43: end if

44: end for

45: end for

46: end for

47: Normalise B across all rows at current τ

48: end for

49: for all s, τ ∈ nStates do ⊲ FB Calculations
50: FB[s, τ]← F [s, τ] ∗B[s, τ]
51: end for

52: Normalise FB across all rows at given τ

53: return FB
54: end function

Algorithm 3 : Second-Order DM Forward-Backward Algorithm

1: function 2ndOrderForwardBackwardDM(maximum offset

xmax, maximum consecutive insertions I)
nStates = [−xmax, ..., xmax]

2: F [nStates,Γ],
3: B[nStates,Γ],
4: FB[nStates,Γ]
5: for all states s ∈ nStates do

6: F [s,1]← π[s] ⊲ Forward Initialisation
7: end for

8: for each current state j ∈ nStates do

9: for each previous state i from j − I to j + 1 do

10: if i ∈ nStates then

11: F [j,2]←
∑

F [i, 1](αij + βijζ
1

j)
12: end if

13: end for

14: end for

15: Normalise F across all rows at current τ

16: for all time τ ∈ [3, ...,Γ] do ⊲ Forward Recursion
17: for each current state k ∈ nStates do

18: for each τ − 1 state j from k − I to k + 1 do

19: for each τ − 2 state i from j − I to j + 1 do

20: if i & j ∈ nStates then

21: F [k, τ] ←
∑

F [j, τ − 1]((αij + βij) ∗ αjk +

βjkζ
τ−1

k
)

22: end if

23: end for

24: end for

25: end for

26: Normalise F across all rows at current τ

27: end for

28: B[Ψ,Γ]← 1 ⊲ Backward Initialisation
29: for each current state j ∈ nStates do

30: for each next state i from j − 1 to j + I do

31: if i ∈ nStates then

32: B[j,Γ− 1]←
∑

[j,Γ](αji + βjiζ
Γ−1

j)
33: end if

34: end for

35: end for

36: Normalise B across all rows at current τ

37: for all time τ ∈ [Γ− 2, ..., 1] do ⊲ Back Recursion
38: for all current states k ∈ nStstates do

39: for each τ + 1 state j ∈ [k − 1, k + I] do
40: for each τ + 2 state i ∈ [j − 1, j + I] do
41: if i & j ∈ nStates then

42: B[k, τ]←
∑

B[j, τ + 1]((αji + βji) ∗ αkj +
βkjζ

τ
k
)

43: end if

44: end for

45: end for

46: end for

47: Normalise B across all rows at current τ

48: end for

49: for all s, τ ∈ nStates do ⊲ FB Calculations
50: FB[s, τ]← F [s, τ] ∗B[s, τ]
51: end for

52: Normalise FB across all rows at given τ

53: return FB
54: end function

13

	1 Introduction
	2 Background and Literature Review
	2.1 Synchronisation Channels and Coding
	2.2 Davey-Mackay Synchronisation Channel and Watermark Code
	2.3 FSMC Synchronisation Channel

	3 Proposed Memory Synchronisation System
	3.1 Proposed Memory Synchronisation Channel
	3.2 Proposed Code Construction
	3.3 Inner Decoder

	4 Simulations and Results
	4.1 Analysis Metrics
	4.2 Overall Results
	4.3 Constant Entropy Results
	4.4 Error Probability Level Results
	4.5 Effects of Ps on simulations

	5 Conclusion
	Appendix A Generation of Transition Matrices
	Appendix B Pseudocode for Decoders Forward-Backward Algorithms

