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Abstract

This paper considers efficient sampling of simultaneously sparse and correlated (S&C) signals for automotive

radar application. We propose an implementable sampling architecture for the acquisition of S&C at a sub-Nyquist

rate. We prove a sampling theorem showing exact and stable reconstruction of the acquired signals even when

the sampling rate is smaller than the Nyquist rate by orders of magnitude. Quantitatively, our results state that an

ensemble M signals, composed of a-priori unknown latent R signals, each bandlimited to W/2 but only S-sparse

in the Fourier domain, can be reconstructed exactly from compressive sampling only at a rate RS logαW samples

per second. When R � M and S � W , this amounts to a significant reduction in sampling rate compared to

the Nyquist rate of MW samples per second. This is the first result that presents an implementable sampling

architecture and a sampling theorem for the compressive acquisition of S&C signals. We resort to a two-step

algorithm to recover sparse and low-rank (S&L) matrix from a near optimal number of measurements. This result

then translates into a signal reconstruction algorithm from a sub-Nyquist sampling rate.

I. INTRODUCTION

Automotive radar (AR) plays an indispensable role in the development of autonomous vehicles and advanced

driver assistance systems (ADASs) [1]. Digital computation is deeply ingrained in modern signal processing

algorithms behind ARs, and an efficient analog-to-digital conversion is of fundamental importance. This paper

proposes a novel sampling architecture for the acquisition of a simultaneously sparse and correlated (S&C) signal

ensemble at a sub-Nyquist rate. An S&C ensemble consists of multiple signals well-approximated by the linear

combinations of a few latent signals that are also sparse in some transform domain. Such ensembles arise in

various applications in array processing [2], [3], where it is easy to come across thousands of signals possibly

spanning wide bandwidths [4], [5], [6] but with a lot of latent redundancies that can be well-approximated using

S&C structure. Acquiring such an ensemble of large number of signals plainly at the Nyquist rate in some

applications including ADAS produces data on the order of several gigabits to terabits per second. Transferring
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Fig. 1: Sampling Architecture: M signals in the ensemble Xc(t) are mixed across channels using an analog-vector-matrix

multiplier (AVMM) and then modulated (multiplication by a random binary waveform), low-pass filtered (using an integrator),

and eventually sampled at a rate Ω in top M1 branches and at rate ∆ in the remaining bottom M2 branches (M1 +M2 = M ).

We show that when the total sampling rate M2∆ + M1Ω roughly exceeds RS logαW samples per second — a significant

improvement over the rate MW dictated by Shannon-Nyquist sampling theorem, enables stable signal reconstruction.

such a humongous amount of data off-chip becomes a significant challenge, especially, for prolonged monitoring.

In addition, the cost of an analog-to-digital converter (ADC) ramps up rapidly with increasing sampling rates, and

the precision (quantization levels) of the collected samples also decreases with faster sampling rates. Moreover,

for several on-chip applications, the power dissipation needs to be controlled, and a faster ADC always requires

more power and leads to a larger dissipation. An on-the-fly, sub-Nyquist rate acquisition of such a spatially

and temporally redundant signal ensemble is, therefore, of practical significance especially in modern ARs. It is

important to note that the sub-Nyquist sampling is a challenging proposition as the signal sparsity, and correlation

pattern among the signals is not known a priori, and hence cannot be leveraged to collect fewer, and strategically

placed non-redundant spatial and temporal samples to design a sub-Nyquist sampling scheme.

Using Shannon-Nyquist sampling theorem, an ensemble of M signals, each bandlimited to W/2 Hz can be

acquired at MW uniform samples per second. We show that if every signal in the ensemble is a superposition

of underlying fewer number R of signals (correlated) that have only S active frequency components (sparse)

then the ensemble can be acquired by sampling only at a much lower rate of roughly RS samples per second,

which is indeed a significant reduction of the sampling rate, especially when R�M , and S �W . We design a
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Fig. 2: Spectrally Sparse and Correlated (S&C) Signal Ensemble: Signal Ensemble Xc(t) is composed of M signals, each

bandlimited to W/2. Each of the signal in the ensemble is a superposition of underlying fewer R signals in the ensemble Sc(t).

The signals in the ensemble Sc(t) contain only S unique active frequency components.

sampling architecture; shown in Figure 1, using simple-and-easy-to-implement components such as switches, and

integrators for the preprocessing of analog signals. Each signal is then compressively sampled using a low-rate

ADC.

Compressive sampling of spectrally sparse signals has been a topic of interest in recent years [7], [8], [9].

The signal reconstruction from a few samples is framed as a sparse-recovery problem from a limited number of

measurements and is handled efficiently using an `1 minimization program. Similarly, compressive sampling of

correlated signals is studied in [3], [2], [10], [11], [12], [13]. In this case, the reconstruction of signal ensemble

from a few samples is recast as a low-rank matrix recovery problem from a limited number of measurements,

which is effectively solved using a nuclear-norm minimization program. In this paper, we show that compressive

sampling of a simultaneously sparse and correlated signal ensemble boils down to recovering a simultaneously

sparse and low-rank (S&L) matrix from a few linear measurements. A natural choice of solving an `1 plus

nuclear-norm minimization program, however, does not lead to S&L matrix recovery from an optimal number

of measurements [14]. This problem obstructs the acquisition of S&C signal using low-rate ADCs.

Our Contributions: In this paper, we overcome this problem with a new signal reconstruction algorithm

consisting of two steps: `1 minimization followed by a least-squares program, to recover the S&L matrix from

a near optimally few numbers of measurements. This result directly translates into S&C signal reconstruction

at a sub-Nyquist rate. Specifically, we design an implementable sampling architecture to acquire an S&C signal

ensemble at potentially well-below the Nyquist sampling rate, and a computationally efficient, and novel algorithm

to recover the signal ensemble from the acquired compressive samples. We rigorously prove that the proposed

algorithm can recover the S&C ensemble from an optimally fewer compressive samples, and give a formal

statement of this result as a sampling theorem.

Organization of the paper: We start by introducing the signal structure more precisely in Section II. We briefly
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Notation Description

Xc(t) A matrix with continuous-time correlated and sparse signals,

{x1(t), . . . ,xM (t)} as its rows

xm(t) mth row of Xc(t).

C[m,ω] DFT coefficient of xm(t) at frequency ω

C An M ×W matrix with C[m,ω] as the (m,ω)th entry.

Γm Support of non-zero frequencies in the Fourier spectrum of xm(t)

M Number of signals in the ensemble

S Upper bound on |Γ1 ∪ . . . ∪ ΓM |

R Rank of signal ensemble X − c(t)

B Maximum bandwidth (Hz) of the signals in the ensemble

X An M ×W matrix of samples of Xc(t),

where W = 2B + 1, and X = CF ∗

F W ×W normalized DFT matrix

A An M ×M random orthonormal mixing matrix

A1 Top M1 rows of A, M2 = M −M1

A2 Bottom M2 rows of A

Ω Sampling rate for top M1 signals in Xc(t)

∆ Sampling rate for the bottom M2 signals in Xc(t)

b(t) Random binary ±1 waveform

D Diagonal matrix diag(b[1], . . . , b[W ])

T W ×W diagonal matrix with entries T [ω, ω] = eι2πω/W−1
ι2πω

H Unknown M ×W matrix. H = CT

PΩ,W Ω×W matrix. PΩ,Wx returns length

Ω vector by summing consecutive W /Ω entries of x

P∆,W ∆×W matrix. P∆,Wx returns length

∆ vector by summing consecutive W /∆ entries of x

Q1 FΩ,WDF

Q2 P∆,WDF

Y1 A1CTQ∗
1 + E1 and E1 is the noise matrix, where ‖E1‖F ≤ δ1

Y2 A2HQ∗
2 + E2 and E2 is the noise matrix, where ‖E2‖F ≤ δ2

HR Best rank-R approximation of H

Ĥ Estimate of H

TABLE I: Summary of the notations used in the paper.

comment on the implementation aspect of the proposed sampling architecture in Section III. The samples collected

using the ADCs are expressed as a linear transformation of the input signal ensemble in Section IV. Section V

and VI present the signal reconstruction algorithm with numerical simulations in Section XI. A summary of the

notations used in this paper is presented in Table [1] for convenience.
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II. SIGNAL MODEL

We consider an ensembleXc(t) of M continuous-time correlated and sparse signals x1(t), x2(t), . . . , xM (t). By

correlated, we mean that every signal in the ensemble can be approximated by the linear combination of underlying

minimum number R of a priori unknown signals s1(t), s2(t), . . . , sR(t), that is, xm(t) ≈
∑R

r=1A[m, r]sr(t),

where A[m, r] are also unknown and are the entries of A ∈ RM×R. Denote the smaller ensemble of sr(t)’s to

be Sc(t). In the rest of the manuscript, we will think of Xc(t), and Sc(t) as matrices that contain the continuous

time signals xm(t)’s, and sr(t)’s as their rows, respectively. This gives us the relation

Xc(t) ≈ ASc(t). (1)

The correlation structure is illustrated in Figure 2. Every signal xm(t) is bandlimited1 to B, and its DFT is

xm(t) =
∑
ω∈W

C[m,ω]e−ι2πωt, where (2)

t ∈ [0, 1), and W := {−B, . . . , B},

where C[m,ω] is the ωth Fourier coefficient of the mth signal xm(t), and also C[m,−ω] = C∗[m,ω] as xm(t) are

real. Define a support set of the non-zero Fourier coefficients of every xm(t) as Γm := {ω ∈ W | C[m,ω] 6= 0}.

By sparse, we mean that the joint frequency band Γ := Γ1 ∪ · · · ∪ ΓM is sparsely occupied, and the number of

non-zero frequencies in the joint frequency band Γ ⊂ W are

|Γ| ≤ S. (3)

The signal ensemble Xc(t) is sparse in the sense of (3) and correlated in the sense of (1). Observe that by

definition, R can only be as big as S in the worst case. To see this, observe from (3) that every signal in Xc(t)

can be expressed as the linear combination of S complex Fourier exponentials in the set {e−ι2πωt/W | ω ∈ Γ}.

Since R is the minimum number of underlying signals spanning the signal space, we have R ≤ S without loss of

generality. In other words, the correlation structure (1) is only non-redundant when R is strictly smaller than S, as

in this case the underlying signals Sc(t) are not the conventional Fourier exponentials, and present an additional

structure not captured by (2) alone. We will see in Section X that in several applications in array processing

R is actually much smaller than S and imposing the additional correlation structure leads to a reduction in the

sampling rate that cannot be achieved by only imposing the spectral sparsity.

1To avoid clutter, we also take xm(t) to be periodic and, therefore, only need to consider recovery in a finite window of time (We

take this window to be t ∈ [0, 1) without loss of generality). However, the results can be extended to non-periodic signals using smooth

functions to avoid edge effects due to windowing; for details, see [3], [2].
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Every signal xm(t), bandlimited to B Hz, can be captured perfectly by taking a W = 2B + 1 equally spaced

samples per second (placed in the mth row of M ×W matrix X)— a total of MW samples per second for all

the signals in Xc(t). Let F be a W ×W normalized DFT matrix with entries

F [ω, n] = 1√
W

eι2πωn, ω ∈ W, and n ∈ {0, 1, 2, . . . ,W − 1}. (4)

We can write

X = CF ∗, (5)

where C[m,ω] in (2) are the entries of M ×W matrix C. Observe that C is only rank-R, and at most S-sparse

along the row vectors. The low-rank structure is inherited from the correlations in (1), and row sparsity is derived

from the sparsely occupied frequency band (3). Taking both of these structures into account means that C really

only carries RS degrees of freedom2, which is much smaller than the number MW of samples prescribed by

Shannon. This is especially true in the case of R � M , and S � W . Sparse and low-rank (S&L) matrix C is

all that is to be determined for the reconstruction Xc(t) in t ∈ [0, 1) from X using sinc interpolation.

III. SAMPLING ARCHITECTURE

The sub-Nyquist rate acquisition is accomplished by a careful preprocessing of the signals in analog prior

to sampling. The ensemble Xc(t) is first processed by an analog-vector-matrix multiplier (AVMM) that takes

the random linear combinations of M input signals to produce M outputs. This operation spreads signal energy

across channels. Each signal is then modulated, which amounts to a pointwise multiplication of the signal with a

random binary waveform, alternating at a rate W . Modulation disperses signal energy across frequency domain.

The resultant signals are low-pass filtered (LPF), and a subset (top few) M1 of M output signals are sampled at

a rate Ω < W , and the remaining M2 signals at a rate ∆ < W , where M = M1 +M2.

A word about the implementation aspect: The AVMM blocks with hundreds of inputs and outputs with a

bandwidth of tens to hundreds of megahertz have been built in the recent past [15], [16]. On the other hand

very fast-rate modulators can be implemented using switching circuits. Modulators have already been employed

in practically implementable architectures proposed for the compressive sampling of a different structured class

of signals; namely, spectrally sparse signals; detail can be found in [7], [17] along with the discussions on the

implementation aspects of the modulators. Low-pass filters can be easily implemented using integrators.

2The degrees of freedom in a rank-R matrix with S-sparse rows are exactly MR + RS − R2, which we will approximate by RS in

the manuscript; assuming a realistic case of S ≥M . Also note that MR+RS −R2 is the number of unknowns, assuming the support

of the non-zeros in the rows and a bases spanning the row, and column space of C were known in advance.
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IV. OBSERVATIONS IN MATRIX FORM

In this section, we present the discrete time formulation of the action of each of the architectural components

on the input ensemble Xc(t). We use these models to express the compressive samples acquired by the ADCs

as a linear transformation of the unknown S&L matrix C.

Analog-vector-matrix multiplier mixes the signals by taking random linear combinations of M input signals to

produce M outputs. Mathematically, the outputs of the AVMM are AXc(t), where we pick A to be an M ×M

random orthogonal matrix:

A∗A = I. (6)

We denote the signals in AXc(t) by x̃1(t), . . . , x̃M (t). Since mixing is a linear operation, the matrix of Fourier

coefficients of AXc(t) is

C̃ := AC, (7)

where C is defined in (5). Modulator simply takes the analog signals xm(t) and returns the pointwise multipli-

cation xm(t)b(t). We will take b(t) to be a random binary ±1 waveform that is constant b(t) = b[k] over a time

interval t ∈ [k−1
W , kW ), where b[k] = ±1 with equal probability. The sign changes of the binary waveforms in

each of these intervals occur randomly, and independently. In other words, a modulator only shifts signal polarity

from instant to instant. This will disperse the spectrum of the signals across the entire band W . Modulator in

every channel uses the same binary waveform. An Ω-LPF-ADC block operates by integrating a signal over an

interval t ∈ [ (n−1)
Ω , nΩ), n ∈ [Ω], where, in general, we define the notation [Ω] := {1, 2, 3, . . . ,Ω}. The resulting

piecewise constant signal is sampled at a rate Ω. In an exactly similar manner, we can also define ∆-LPF-ADC

block.

In the sampling architecture, M signals at the output of the modulators are split into M1 signals each of

which is sampled using rate Ω-LPF-ADC block, and each of the remaining M2 signals is sampled via a rate

∆-LPF-ADC block. Let A1, and A2 be the sub-matrices composed of the first M1, and remaining M2 rows of

A, respectively,

A =

A1

A2

 (8)

where M1 + M2 = M . Recall, we imagine Xc(t) as a matrix containing the continuous time signal {xm(t)}m
as its rows. Then A1Xc(t) := {x̃1(t), . . . , x̃M1

(t)} are the top M1 signals at the output of the AVMM. Each of

these signals is multiplied by a binary waveform and the result is integrated over an interval of length 1/Ω, and

the nth sample in the mth output signal is

Y1[m,n] =

∫ n/Ω

(n−1)/Ω
x̃m(t)b(t)dt,where m ∈ [M1], n ∈ [Ω].
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As b(t) is piecewise constant over intervals of length 1/W , we can write the above integration as a summation

Y1[m,n] =
∑
`∼Bn

b[`]

∫ `/W

(`−1)/W
x̃m(t)dt, m ∈ [M1] n ∈ [Ω], (9)

where3 Bn := {(n− 1)W/Ω + 1, (n− 1)W/Ω + 2, . . . , nW/Ω}, and ` ∼ Bn is a shorthand for ` taking all the

values in Bn. Define a matrix X̃ whose entries are

X̃[m, `] =

∫ `/W

(`−1)/W
x̃m(t)dt

=
∑
ω∈W

C̃[m,ω]
[
eι2πω/W−1

ι2πω

]
e−ι2πω`/W , (10)

where the second equality follows by using DFT expansion, and C̃ are DFT coefficients of x̃m(t) defined in (7).

Define an W ×W diagonal matrix T with entries T [ω, ω] =
[
(eι2πω/W − 1)/ι2πω

]
. Matrix T is invertible as

T [ω, ω] 6= 0 for every ω ∈ W . In matrix form, (10) becomes

X̃ = C̃TF ∗ = ACTF ∗. (11)

Define an (α, β)th entry of an Ω×W matrix PΩ,W as follows

PΩ,W [α, β] =

1 for every (α, β) ∈ (n,Bn) and n ∈ [Ω]

0 otherwise.
(12)

In words, PΩ,Wx returns a length Ω vector by summing W/Ω adjacent entries of x. In an exactly similar manner,

we can also define P∆,W , and P∆,Wx collapses x into a length ∆ vector by summing W/∆ adjacent entries.

Evidently, every entry of Y1 in (9) is the sum of the a few entries of a row of X̃ scaled by binary numbers b[`]’s.

In light of (11), equation (9) in matrix form is Y1 = A1CTF
∗D∗P ∗Ω,W , where D = diag(b[1], b[2], . . . , b[W ])

is a diagonal matrix.

Samples collected in the bottom M2 branches can be expressed in matrix form using the same approach; the

only difference is that in place of a rate Ω-LPF-ADC block, we now have a rate ∆-LPF-ADC block. Samples

in the bottom M2 branches are collected in a M2 ×∆ matrix Y2 given by Y2 = A2CTF
∗D∗P ∗∆,W . To ease

the notation, we define

Q1 = PΩ,WDF , Q2 = P∆,WDF , and H = CT . (13)

Observe that H inherits rank-R, and S-sparse-rows structure from C. Our objective of recovering the unknown

H from a few linear measurements Y1 = A1HQ
∗
1, Y2 = A2HQ

∗
2 leads to an under-determined system of

3We are implicitly assuming here that ∆ ≥ Ω, the modification of the proof for ∆ ≤ Ω will be clear by the end. To reduce the clutter,

we assume Ω as a factor of W ; the argument can easily be modified when it is not the case.
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equations. Among multiple candidates of solution, in this case, we choose the one with S&L structure. To enforce

this, a natural way is to solve an `1-plus-nuclear-norm penalized semidefinite program. In the general case of

noisy measurements

Y1 = A1HQ
∗
1 +E1, Y2 = A2HQ

∗
2 +E2, (14)

where the additive matrices E1, and E2 account for the bounded (‖E1‖F ≤ δ1, and ‖E2‖F ≤ δ2) measurement

noise, the semidefinite program becomes

minimize
H

‖H‖∗ + λ‖H‖1,2 (15)

subject to ‖Y1 −A1HQ
∗
1‖F ≤ δ1

‖Y2 = A2HQ
∗
2‖F ≤ δ2,

where the `1,2, and nuclear-norm penalties favor the column sparse, and low-rank solutions, respectively, and

λ ≥ 0 is a free parameter. However, the optimization program in (15), or any other objective involving a

combination of both these norms does not yield an effective penalty for S&L matrices as it provably fails [14]

whenever

Total # of measurements . cmin(MS,RW ).

In other words, one needs at least a sampling rate O(MS,RW ) — which is much smaller than the Nyquist

rate MW but still potentially much larger than the optimal rate RS, derived from the underlying number RS of

unknowns in H — to have any possibility of signal recovery.

Moreover, the semidefinite program is computationally expensive, and it quickly becomes impractical to solve

this for medium scale values of M , and W . The main reason is the unknowns in (15) scale with MW , and

not with the actual number RS of unknowns. We, therefore, devise a different approach to recover H by first

cheaply finding the R basis vectors for each of the row (left), and column (right) space, and following it up with

a simple least squares program to recover the smaller R×R intermediate matrix.

V. COLUMN AND ROW SPACE MEASUREMENTS

Our strategy to solve for H relies on the observation that if the bases of the column and row space of H are

known then its recovery reduces to solving a simple least squares program [10], [18]. In this section, we extract

column and row space bases of H from the observed samples Y1, and Y2.
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Verify using the definition in (12) that4 PΩ,∆P∆,W = PΩ,W . The column measurements of H can be extracted

from Y1, and Y2 in (14) as follows

Yc = A∗

 Y1

Y2P
∗
Ω,∆

 = A∗AHQ∗1 +A∗

 E1

E2P
∗
Ω,∆


= HQ∗1 +Ec, (16)

where last equality follows from the fact that A∗A = I , and Ec := A∗

 E1

E2P
∗
Ω,∆

. Using the fact that ‖P∆,Ω‖ =√
∆/Ω, it is easy to see that

‖Ec‖F ≤ ‖E1‖F +

√
∆

Ω
‖E2‖F ≤ δ1 + δ2

√
∆

Ω
. (17)

The name column-space measurements for Yc comes from the fact that columns of the matrix HQ∗1 are random

linear combinations of the columns of H , and hence serve as samples of column space of H . Using a similar

reasoning, A2H are the row-space measurements of H . Unlike directly observing column measurements HQ∗1

in Yc, we do not observe the row-space measurements A2H directly but only a random projection Y2 = A2HQ
∗
2

of the row-space measurements through an under-determined random projection operator Q2.

VI. SIGNAL RECONSTRUCTION ALGORITHM

Recall that H has at most S-sparse rows with common support; please refer to the signal model in Section II.

This means A2H also has at most S-sparse rows, and to recover an estimate of row-space measurements A2H

from its under-determined set of linear observations Y2 in (14), we solve an `1 minimization program:

Yr := argmin
Z∈CM2×W

‖Z‖1 subject to ‖Y2 −ZQ∗2‖F ≤ δ2, (18)

where the estimate Yr is intended to be used as the row space measurements.

We now take the top R left singular vectors LR of Yc in (16) as the basis of the column space of H . The

estimate Ĥ of H is then formed as

Ĥ = LRS (19)

for an unknown R ×W matrix S, which is obtained by solving the following least-squares program using the

row-space samples Yr in (18) as follows

S := argmin
Z∈CR×W

‖Yr −A2LRZ‖2F. (20)

4To avoid deviating from the main point, and to reduce the clutter, we restrict ourselves to the case when Ω is a factor of ∆. Again

modification to the general case is easy.
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A closed-form solution of this program is simply

S = (A2LR)†Yr,

where † denotes the pseudo inverse.

Recall that H = CT . Given the estimate of H in (19), an estimate of the Nyquist rate samples X in (5)

is obtained using X̂ = ĤT−1F ∗. The signal ensemble Xc(t) can then be determined using the conventional

linear sinc interpolation.

VII. COHERENCE

Our results show that a sufficient compressive sampling rate to recover the signal ensemble also depends on the

dispersion of signals across time. Since the compressive sampling rate is potentially far fewer than the Nyquist

rate, the ADCs can end up sensing mostly zeros for a signal that is localized across time. Ideally, we want the

signals to be well-dispersed across time to recover them from as few compressive samples as possible. This

intuition is also supported by Theorem 1, which shows that the sufficient sampling rate scales with a coherence

parameter µ2
0, defined below.

Let H = UΣV ∗ be the SVD of H , and recall that the rows of H are the modified (low-pass filtered)

frequency spectrum of the signals in the ensemble, respectively. The best rank-R approximation of H is

HR = URΣRV
∗
R , (21)

where UR are the top R columns of U , and VR is defined similarly. ΣR is the R×R matrix of top R singular

values. Our theoretical results show that the sampling rate scales with a coherence parameter defined as

µ2
0 :=

W

R
‖FVR‖22→∞, (22)

where ‖FVR‖2→∞ norm returns the maximum of the `2-norms of the rows of FVR, and F is defined in (4).

The coherence can be best understood by relating µ2
0 to ‖HRF

∗‖2→∞ — the collective peak value of the signal

ensemble across time. For a fixed energy ensemble, the smaller value of this quantity means a more dispersed

across time and vice versa. It is easy to check that 1 ≤ µ2
0 ≤W/R. To see this, let f∗` be the `th row of F , we

can write ‖FVR‖22→∞ = max` ‖f∗` VR‖22. This implies that

Wµ2
0 ≥

W

R

W∑
`=1

‖f∗` VR‖22 =
W

R
‖FVR‖2F = W.

This gives µ2
0 ≥ 1. In addition, ‖f∗` VR‖22 ≤ ‖VR‖2‖f`‖22 ≤ 1, where ‖ · ‖ is the operator norm. This gives µ2

0 ≤

W/R. Smallest, and largest values correspond to perfectly flat, and very spiky signals across time, respectively.

Additional preprocessing using random filters to force signal diffusion across time can be added in the sampling

architecture [2]. This leads to sampling rates that are independent of the coherence parameter µ2
0.
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VIII. SAMPLING THEOREM

Let HR be the best rank-R approximation of H as in (21), and (A2H)S be the best S-row-sparse (all the

rows are at most S-sparse) approximation of A2H in the conventional Frobenius norm. We now state a sampling

theorem showing that the signal ensemble Xc(t) can be recovered exactly in the noiseless case and stably in the

noisy case via the proposed reconstruction algorithm in Section VI.

Theorem 1: Given the samples Y1, and Y2 of the unknown matrix H , as defined in (13) that are contaminated

with δ1, δ2 bounded noise, as constructed in (14). Let A be a random orthogonal matrix as in (6) and (8). The

estimate Ĥ in (19), obtained by solving `1-program in (18) followed by a least-squares in (20) obeys

‖Ĥ −H‖F ≤ c
√
M

M2

[√
W

Ω
‖H −HR‖F+

δ1 +

√
∆

Ω
δ2 +

1√
M2S

‖A2H − (A2H)S‖1

]
(23)

with probability at least 1−O(W−β) whenever ∆ ≥ CβS log6W , M2 ≥ C(R+β logW ), M ≥ C(M2+β logW ),

Ω ≥ Cβµ2
0R log2W , and ∆ ≥ Ω.

Proof: We defer the proof of Theorem 1 to Section XIII.

A. Discussion on Theorem 1

In the sampling architecture shown in Figure 1, the ADCs in the top M1 channels (M = M1 + M2) operate

at a rate Ω, and the remaining M2 channels operate at a rate ∆. Theorem 1 implies that it suffices to set the

cumulative-sampling rate (CSR) for signal reconstruction5 at

CSR = ΩM1 + ∆M2 &MR log2W +RS log6W

assuming that M1 & β logW , R & β logW , M2 = O(R), and signals are well dispersed across time (µ2
0 ≈ 1).

In practical applications, the effective signal bandwidth S is much more than the number M . In this case, the

net sampling rate roughly simplifies to more readable form:

ΩM1 + ∆M2 & RS log6W.

Compare this rate to the Nyquist rate of MW samples per second. Evidently, this results in significant reduction

in sampling rates when signals are correlated R�M , and spectrally sparse S �W .

Finally, exact recovery result follows from Theorem 1 in the noise less case δ1 = 0, and δ2 = 0, the ensemble

is exactly S-row sparse giving A2H = (A2H)S , and is also exactly rank-R giving H = HR. Plugging these

in (23) shows that Ĥ = H in this case.

5The notation A & B means that A ≥ cB for an absolute constant c.
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B. Choosing M1 and M2

Our choice of feasible number M1 of channels in which ADCs operate at a rate Ω, and feasible number M2 of

bottom channels in which ADCs operate at a rate ∆ must conform to M = M1 +M2, and M2 & R+ logW , as

required by Theorem 1. What is a good choice of the decomposition M = M1 +M2 to minimize the cumulative

sampling rate M1Ω +M2∆? Since ∆ ≥ Ω, we must choose M2 to be a smallest feasible number.

The choice of ∆ and Ω is in turn dictated by S and R as stated in Theorem 1.

IX. RELATED WORK

Exploiting inherent signal structures such as spectral sparsity and correlation to achieve gains in sampling rate

has been actively studied [7], [19], [2] after the advent of compressive sensing [20]. New sampling theorems

proving the sub-Nyquist acquisition of spectrally-sparse signals have been rigorously established using the tools

and ideas developed in the vast literature of sparse signal processing [21]. The central idea is to diffuse the

analog signals with preprocessing before sampling at a lower rate. The analog preprocessing is handled in real

time using implementable sampling architectures. In [7], authors propose a sampling architecture that modulates

a signal of bandwidth W/2 but with only S active frequency components, where S � W . This smears the

information content across the entire bandwidth and enables a following ADC to operate at a sub-Nyquist rate of

only S logαW , where α is a known small constant. A digital post-processing using an `1-minimization program

provably reconstructs the original signal from the acquired compressive samples. Multiple spectrally sparse signals

can also be mixed and acquired using a single low-rate ADC. From this information individual signals can be

untangled and recovered using sparse digital post-processing. Similar ideas are extended, and actual sampling

architectures are implemented on chip for multiband signals; see, for example, [22], [17], [23].

Correlation structure in an ensemble of signals has also been effectively used to lower the sufficient sampling

rate potentially way below the Nyquist rate. In a nutshell, the proposed sampling schemes in [11], [12], [13],

[3], [2], [10] can acquire the signal ensemble Xc(t) above at a rate of RW logαW , which is potentially much

smaller than the Nyquist rate MW when R�M . The signal reconstruction problem in this case can be framed

as a recovery of an M×W matrix of rank R from an under-determined set of linear measurements, which can be

effectively solved using a nuclear-norm penalized semidefinite program. Nuclear-norm penalty enforce low-rank

structure on the unknown matrix, which effectively exploits the correlation in the signal ensemble. Implementable

sampling architectures for individual, and multiplexed signals are presented in detail in [11], [13], [2], and [12],

[3] along with a rigorous development of the related sampling theorems.

The prior art on signal reconstruction from sub-Nyquist rate samples mostly considers either sparse or correlated

signal structure on the signal ensemble. We consider signal ensembles that are simultaneously sparse and
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correlated. We frame the signal reconstruction as a sparse-and-low-rank matrix recovery problem from an under-

determined set of linear measurements. A naive extension of simply using the combination `1 and nuclear norm

penalties is not effective in this case as shown in [14]. A more detailed comparison with [14] was already discussed

in Section IV. We develop a novel two-step recovery algorithm that solves an `1 minimization program followed

by a simple least squares program to recover a stable estimate of the ground truth from an optimal (within log

factors) sampling rate of RS logαW . Using earlier works [7], [3], [2] that can only take advantage of either sparse

or correlation structure in the signal ensemble, one requires a sub-optimal sample rate min(RW,MS) logαW

to reconstruct the S&C ensemble Xc(t), whereas in comparison we only require a potentially much smaller rate

RS logαW as S � W , and R � M . Moreover, we reconstruct the signal with a computationally much less

expensive algorithm compared to the semidefinite program above.

X. APPLICATIONS

One application area in which sparse and correlated signals play a central role is array processing. High-density

arrays with hundreds to thousands of array elements are increasingly being employed in phased-array automotive

radars [24], [25], [4], [5], [26]. Signals recorded by such massive numbers of sensors/array elements often have a

lot of spatial and temporal redundancies that are well modeled by an S&C ensemble, which can then be exploited

to obtain potentially significant reductions in the required sampling rate using the proposed sampling scheme.

This leads to a reduction in the huge volume of data generated in the automotive radar application, less power

dissipation, and comparatively cheaper, and more precise analog-to-digital converters.

The central theme is that multiple signals are emitted from different locations. Each signal sparsely occupies

a bandwidth W , and is modulated up to a carrier frequency ωc. A single tone signal eι2πωt arrives at multiple

array elements record signals with different time shifts, determined by the spacing between array elements as

illustrated in Figure 3. As an illustration, the signal arriving at the mth array element of an M -element array in

the simple case of a single emitter is

xm(t) =

∫ ωc+W/2

ωc−W/2
e−ι2πωdm sin θ/cαm,ωeι2πωtdω, (24)

where αm,ωe−ι2πωdm sin θ/c := am(θ, ω) is referred to as steering gain at the mth array element, where e−ι2πωdm sin θ/c

is the phase shift caused in the ω frequency tone due to the arrival delay τm = dm sin θ/c, and αm,ω is the gain or

strength of ω tone at mth array element. The integral simply aggregate the contributions of frequency components

present in the entire bandwidth W . The signal ensemble Xc(t) is the stack of xm(t), 1 ≤ m ≤M as its rows6.

6The elements of the rows are the samples xm(t`) in a given window of time.
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Fig. 3: (a) A plane wave impinges on a linear array in free space. When the wave is a pure tone in time, then the responses at

each element will simply be phase shifts of one another. (b) Eigenvalues for Raa, on a log10 scale and normalized so that the

largest eigenvalue is 1, defined in (25) for an electromagnetic signal with a bandwidth of 100 MHz and a carrier frequency of

5 GHz; the array elements are spaced half a carrier-wavelength apart. Even when the signal has an appreciable bandwidth, the

signals at each of the array elements are heavily correlated — the effective dimension, in this case, is R = 3 or 4.

This gives

Xc(t) =

∫ ωc+W/2

ωc−W/2
a(θ, ω)eι2πωtdω,

where the length M column a(θ, ω) is the steering vector. Evidently, a(θ, ω)eι2πωt is a rank-one ensemble,

where we think of the signal eι2πωt as a row vector obtained after eventual sampling across time t. The ensemble

Xc(t) is obtained by integrating the rank-one ensembles over the narrow-band W . The conceptual approach is

exactly the same even in the case of multiple emitters as the steering vector a(θ, ω) is now a function of multiple

incident angles, stacked in a vector θ, due to wavefronts from different emitters. However, even in this case the

quantity is a(θ, ω)eι2πωt is still a rank-one ensemble.

The only question that remains to be determined is how the integration over the bandwidth W increases the

rank. The answer to this question depends on the density of the array elements compared to the bandwidth W .

We will show that for narrow-band signals, and high-density arrays, the rank of Xc(t) remains low. Having

an array with a large number of appropriately spaced elements can be very advantageous even when there are

only a relatively small number of emitters present. Observing multiple delayed versions of a signal allows us

to perform spatial processing, we can beamform to enhance or null out emitters at certain angles, and separate

signals coming from different emitters. The resolution to which we can perform this spatial processing depends

on the number of elements in the array (and their spacing). For high-density antenna arrays or narrow-band
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signals, the spatial sampling rate 1/τm is much larger than the bandwidth W . This gives rise to very correlated

steering vectors a(θ, ω). In the standard scenario, where the array elements are uniformly spaced c/(2ωc) along a

line, we can make this statement more precise using classical results on spectral concentration [27], [28]. In this

case, the steering vectors a(θ, ω) for ω ∈ [ωc±W/2] are equivalent to integer spaced samples of a signal whose

(continuous-time) Fourier transform is bandlimited to frequencies in (1 ±W/(2ωc))(sin θ)/2, for a bandwidth

less than W/(2ωc). Thus the dimension of the subspace spanned by {a(θ, ω), ω ∈ [ωc ±W/2]} is, to within a

very good approximation, ≈MWτm + 1 = MW/ωc + 1.

Figure 3(b) illustrates a particular example. The plot shows the (normalized) eigenvalues of the matrix

Raa =

∫ ωc+W/2

ωc−W/2
a(θ, ω)a(θ, ω)∗ dω, (25)

for the fixed values of ωc = 5 GHz, W = 100 MHz, c equals the speed of light, M = 101, and θ = π/4. We

have MW/ωc + 1 = 3.02, and only 3 of the eigenvalues are within a factor of 104 of the largest one.

The correlated signal structure established on the input ensemble is well-known, and many spatial processing

tasks, for instance, standard subspace methods [29], [30] for estimating the direction of arrival involve forming

the spatial correlation matrix by averaging in time,

Rxx =
1

L

L∑
`=1

X(t`)X(t`)
∗.

As the column space of Rxx should be a(θ, ω), we can correlate the steering vector for every direction to see

which one comes closest to matching the principal eigenvector of Rxx.

The main results of this paper do not give any guarantees about how well these spatial processing tasks can

be performed. Rather, they say that the same correlation structure that makes these tasks possible can be used to

lower the net sampling rate over time. The entire signal ensemble can be reconstructed from this reduced set of

samples, and spatial processing can follow.

On the other hand, the spectral sparsity of the ensemble Xc(t) is controlled by the active frequencies in the

bandwidth W , or, more precisely, the joint frequency band occupation of the emitters. It’s easy to imagine several

scenarios in practice in automotive radars [31] where the frequency spectrum of the emitters is only sparsely

occupied with a priori unknown support. Sparse frequency occupation can also be introduced, for example, when

emitters transmit in disjoint frequency bands, and only a subset of the emitters are active at a given time.

It is fair, then, to say that the rank of the signal ensemble is a small constant time the number of narrow

band emitters, and each array element can be easily imagined to be recording a very sparsely occupied signal

spectrum.
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XI. NUMERICAL EXPERIMENTS

In this section, we numerically simulate the reconstruction of S&L matrix H from the given measurements Y1,

and Y2 in (14) using our proposed algorithm in Section VI. We form a synthetic S&L matrix H by multiplying a

tall M ×R dense, and a fat R×W sparse random matrix. The entries of these random matrices are independent

Gaussian.

We numerically evaluate the reconstruction algorithm by computing the relative error between the estimate Ĥ

in (19), and the ground H as follows

relative error :=
‖Ĥ −H‖F
‖H‖F

. (26)

In general, we declare a recovery Ĥ as successful whenever its relative error from the ground truth is less than

10−3.

To facilitate the discussion, we also introduce the measures of sampling efficiency η, and compression factor

γ as follows

η :=
R(M + S −R)

M1Ω +M2∆
and γ :=

M1Ω +M2∆

MW
.

The sampling efficiency η is a ratio of the actual number of degrees of freedom in the unknown S&L matrix H ,

and the cumulative number T = M1Ω + M2∆ of linear measurements in Y1 and Y2; see (14). In other words,

sampling efficiency is the ratio between the minimum number of unknown parameters required to completely

specify Xc(t) in t ∈ [0, 1) and the cumulative sampling rate of the proposed scheme. On the other hand,

compression factor γ is a ratio of the cumulative sampling rate and the Nyquist rate. Since η, and γ are functions

of multiple parameters; namely, R, M , S, M1, M2, Ω, ∆, and W . In our experiments, we will often vary η by

changing only one of these parameters such as ∆, and fixing others, and use the notation η(∆) to signify that

η is parametrized by ∆ only while keeping others fixed to known values. Similarly, we will also use γ(∆) or

γ(Ω), etc.

The first set of experiments in Figure 4 shows that successful reconstruction of S&C signal ensemble can be

numerically achieved using a rate much smaller than the Nyquist rate. For specific detail, please refer to the

image caption.

The second set of experiments in Figure 5 show that the sampling efficiency η(∆) vs. S settles to 1/8 after

an initial small transition period. Similarly, the sampling efficiency η(Ω) vs. R generally can be expected settles

to as high as 1/4 after an initial transition period. For more specific details on the experimental setup, please

refer to the caption of the figure.

The third set of experiments in Figure 6 show phase transitions between compression factor γ(Ω) and sampling

efficiency η(R); and between compression factor γ(∆) and sampling efficiency η(S). The shade shows the
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probability of failure; black is the failure probability of 1. We see that in both phase transitions that as the

sampling efficiency increases, the compression factor decreases for successful reconstruction. For more specific

details on the experimental setup, please refer to the caption of the figure.

The fourth experiment concerns reconstruction in the presence of noise. Figure 7 plots SNR (dB) versus relative

error (dB). The relative error of the reconstructed ensemble degrades gracefully with reducing SNR.

XII. CONCLUSION

In this paper, we propose a novel and implementable sampling architecture for the acquisition of a simultane-

ously sparse and correlated signal ensemble at a sub-Nyquist rate. The sampling architecture has applications in

automotive radars. We prove a sampling theorem showing exact and stable reconstruction of the acquired signals

even when the sampling rate is smaller than the Nyquist rate by orders of magnitude. The result of the sampling

theorem has been validated via numerical simulations.

XIII. PROOF OF THEOREM 1

Recall that LR in (19) are the top-R left singular vectors of Yc, and let VR as in (21) be the top-R right

singular vectors of H . The proof relies on the upper, and lower bounds on the maximum, and minimum singular

values, σmax and σmin, respectively, of the matrices Q1VR, and A2LR. Lemma 1 in [10] proves that for a fixed

β ≥ 1 √
1

2
≤ σmin(Q1VR) ≤ σmax(Q1VR) ≤

√
3

2
(27)

with probability at least 1 − O(W−β) whenever Ω ≥ cβµ2
0R log2W . As for A2LR, recall that A in (8) was

assumed to be a random orthogonal matrix in (6). The orthogonality of A has already been used in (16). Since

A2 is a fat random matrix with orthogonal rows, we can write

A2 = (GG∗)−1/2G,

where G is a standard Gaussian matrix; each entry is iid Normal(0, 1). The matrix A2LR = (GG∗)−1/2GLR,

and GLR ∼ G′, where G′ is an M2 ×R standard Gaussian matrix. This simply means that

σmax(A2LR) ≤ σmax(G′)σ−1
min(G),

and

σmin(A2LR) ≥ σmin(G′)σ−1
max(G).

Using standard result in random matrix theory; see, for example, Corollary 5.35 in [32], the singular values of

an M2 ×R Gaussian matrix G′ obey√
M2/2 ≈ σmin(G′) ≤ σmax(G′) ≤

√
2M2
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with probability at least 1−O(W−β) whenever M2 ≥ c(R+β logW ) for sufficiently large constant c. Similarly,

we have that √
M/2 ≈ σmin(G) ≤ σmax(G) ≤

√
2M

with probability at least 1 − O(W−β) whenever M ≥ c(M2 + β logW ). This directly implies that under the

same conditions

0.5

√
M2

M
≤ σmin(A2LR) ≤ σmax(A2LR) ≤ 2

√
M2

M
. (28)

Equation (27), and (28) directly imply that pseudo inverses (Q1VR)†, and (A2LR)† are well defined, where

(Q1VR)† =
(
(Q1VR)∗(Q1VR)

)−1
(Q1VR)∗, (29)

and similarly for (A2LR)†.

It is known that Q2 obeys restricted isometry property (RIP) [33], [7] over the set of sparse vectors. RIP then

implies the exact and stable recovery of sparse rows of A2H using `1-minimization program in (18). Formally,

Theorem 2 in [7] says that for a fixed β ≥ 1 choose ∆ ≥ cβS log6W then with probability at least 1−O(W−β),

the minimizer Yr of the optimization program in (18) obeys

‖Yr −A2H‖F ≤ c′
1√
M2S

‖A2H − (A2H)S‖1 + cδ2, (30)

where (A2H)S denotes the best approximation of the matrix A2H using S-sparse rows, and c, c′ are fixed

constants. Given Yr, the minimizer S of the least squares program is simply S = (A2LR)†Yr.

We want to bound the distance of the estimate Ĥ in (19) from the true H . Using triangle inequality, we have

‖Ĥ −H‖F ≤ ‖(I −LR(A2LR)†A2)H‖F

+ ‖LR(A2LR)†(Yr −A2H)‖F. (31)

For brevity, we denote B = KA2 where K = LR(A2LR)†. We start by finding an upper bound on the first

term on r.h.s. above. To this end, using triangle inequality

‖(I −B)H‖F ≤ ‖(I −B)(H −HR)‖F + ‖(I −B)HR‖F. (32)

Using the definition in (29), it is easy to verify that HR = HRQ
∗
1

(
(Q1VR)†

)∗
V ∗R . Recall from (19) that LR are

the top-R left singular vectors of Yc meaning that ∃ Z such that the best rank-R approximation Yc,R of Yc is

Yc,R = LRZ. Its easy to check that BYc,R = Yc,R. Using both these facts, an upper bound on the first, and the

second term on the r.h.s. in (32) are

‖(I −B)(H −HR)‖F ≤ ‖I −B‖‖H −HR‖F

≤ 3

√
M

M2
‖H −HR‖F, (33)
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and ∥∥(I −B)HR

∥∥
F

=
∥∥(I −B)(HRQ

∗
1 − Yc,R)

(
(Q1VR)†

)∗∥∥
F

≤ ‖
(
I −B

)
‖‖(HRQ

∗
1 − Yc,R)‖F‖

(
(Q1VR)†

)∗‖,
≤ 3
√

2

√
M

M2
‖(HRQ

∗
1 − Yc,R)‖F, (34)

respectively, where we have used the facts that (27), ‖
(
(Q1VR)†

)∗‖ ≤ √2, and ‖(I −B)‖ ≤ 1 + ‖(A2LR)†‖ ≤

3
√
M/M2 — using ‖A2‖ = 1, and ‖LR‖ = 1. Moreover, an application of triangle inequality yields

‖(HRQ
∗
1 − Yc,R)‖F ≤ ‖Yc − Yc,R‖F + ‖Yc −HRQ

∗
1‖F

≤ 2‖Yc −HRQ
∗
1‖

≤ 2
(
‖Yc −HQ∗1‖F + ‖(H −HR)Q∗1‖F

)
≤ 2
(
‖Ec‖F + ‖Q1‖‖H −HR‖F

)
≤ 2

(
δ1 +

√
∆

Ω
δ2 +

√
W

Ω
‖H −HR‖F

)
, (35)

where the last inequality follows from the fact that ‖Q1‖ ≤
√
W/Ω, and using (17).

Combining (33), (34), and (35) with (32), we obtain

‖(I −B)H‖F ≤ 6
√

2

√
M

M2

(
δ1 +

√
∆

Ω
δ2 +

√
W

Ω
‖H −HR‖F

)
. (36)

As for the second term in (31), the upper bound is

‖K(Yr −A2H)‖F ≤ ‖K‖‖Yr −A2H‖F,

≤ c
√
M

M2

(
1√
M2S

‖A2H − (A2H)S‖1 + δ2

)
, (37)

where the second inequality is obtained by using the fact that ‖B‖ ≤ 2
√
M/M2, and (30).

Combining (36), and (37) with (31) completes the proof of Theorem 1.
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Fig. 4: Illustrative plots between two parameters of interest from M , W , S, R, M1, Ω, and ∆ while keeping

the remaining fixed. (a) W and M are set to increase linearly with α. We plot α against minimum required

cumulative sampling rate (CSR) for successful recovery of the signal ensemble using Nyquist criterion (blue),

using reconstruction criterion of [2] (yellow), and using our proposed reconstruction criterion (orange). Nyquist

rate quadratically increases with α, the required sampling rate using the criterion of [2] only scales linearly with

α as it only takes into account the correlated structure in the ensemble, and the sampling rate using our approach

only scales very weakly (logarithmically) with α as it takes both sparse and correlated structure in the ensemble.

(b) Spectral sparsity S versus the minimum (required for the successful recovery of the ensemble) sampling rate

∆. As expected the sampling rate ∆ (of an individual ADC in the bottom M2 channels) scales linearly with

S and is much smaller than W . (c) Rank R versus the minimum (required for the successful recovery of the

ensemble) sampling rate Ω. As expected the sampling rate Ω (of an individual ADC in the top M1 channels)

scales linearly with R and is much smaller than M . The discs in each case correspond to the minimum-sampling

rate for signal reconstruction with an empirical success rate of a 99%.



24

10 15 20 25 30 35 40 45 50 55 60
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

(a)

10 15 20 25 30 35 40 45 50
3

4

5

6

7

8

9

10

11

12

(b)

Fig. 5: (a) S versus 1/η(∆). The sampling efficiency η(∆) (a function of only one variable ∆ keeping all

other parameters fixed) somewhat decreases with increasing S but eventually settles down. (b) R versus 1/η(Ω).

The sampling efficiency η(Ω) (a function of only one variable Ω keeping all other parameters fixed) somewhat

increases with increasing R and eventually settles down. The discs in left plot correspond to the minimum value

of 1/η(∆) as a function of the only parameter ∆ that gives signal reconstruction with a 99% empirical success

rate. Similar interpretation holds for discs in the right plot with respect to 1/η(Ω) and Ω.
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Fig. 6: Phase transitions between compression factor γ, and sampling efficiency η. Shade represents the probability

of failure. (a) Phase Transitions between sampling efficiency η(R) and γ(∆) while keeping other parameters at

fixed values, shown on the top; for example, ∆ = 215 is chosen in light of sparsity S = 60 to avoid reconstruction

failure. We then vary R, and Ω to obtain all the grid values of η(R) and γ(Ω), and report the corresponding

probability of failure at each grid point. Expectedly, increasing the sampling efficiency reduces the compression

factor in the successful (white) region. (b) A similar phase transition between sampling efficiency η(S) and γ(∆).
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Fig. 7: SNR (dB) vs. Relative error (dB). We choose M = 100, W/2 = 512Hz, S = 10, and R = 10. Recovery

using the proposed algorithm is stable in noise.
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