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Abstract

Coupled tensor decompositions have emerged as a promising approach to analyze large dimensional datasets in the

context of signal processing applications. In this paper, a general concept of doubly coupled decomposition (DCD)

for high-order tensors is first proposed, extending the idea of coupled decompositions to doubly coupled nested

structures which result from the contraction of two sets of tensors, each set depending on a specific mode. Two

new decompositions are defined, the so-called doubly coupled nested Tucker decomposition (DCNTD) and doubly

coupled nested PARAFAC decomposition (DCNPD). Uniqueness of these DCDs is analyzed. In a second part, we

show how these DCDs can be used to model multirelay multicarrier MIMO cooperative communication networks

with two different tensor codings at the source and relay nodes. Exploiting the multilinear structure of the received

signals and assuming the coding tensors are known at the destination, semi-blind closed-form receivers are developed

for jointly estimating the channels and transmitted symbols. The proposed receivers use Khatri-Rao and Kronecker

product factorization algorithms. Identifiability conditions for system parameter estimation and design of the tensor

codes are also addressed. Monte Carlo simulation results illustrate the performance improvement of the proposed

DCD-based systems over existing state-of-the-art ones.

Keywords: tensor decompositions, coupled decompositions, higher-order tensors, MIMO systems, multirelay

communication systems.

1. Introduction

During the last two decades, multiple-input multiple-output (MIMO) wireless communication systems have been

one of the main fields of application of tensor tools. This is due to the fact that tensors, also called multiway arrays,

are well suited for representing and analyzing multidimensional and multimodal signals [1, 2, 3, 4], as encountered in
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cooperative MIMO communication systems using multiple relays, whose objective is to achieve the optimal diversity-

multiplexing tradeoff. Exploiting the multilinear structure of the recived signals allows to derive semi-blind receivers

for jointly estimating the channels and information symbols, without use of pilot sequences.

High order tensors naturally offer the possibility of taking simultaneously into account several diversities like

space, time, frequency, polarization and code diversities, which induces the multilinear structure of the data. Tensors

can also be used for designing tensor codings like tensor space time (TST) and tensor space time frequency (TSTF)

codings, proposed in [5] and [6], respectively. Tensor decompositions are particularly useful for modeling MIMO

cooperative systems with relays, as it will be illustrated in the present paper..

The design of MIMO communication systems with tensor codings has given rise to several new tensor models

like the PARATUCK-(N1,N) [5], generalized PARATUCK [6, 7], nested PARAFAC [8, 9, 10], nested Tucker [11],

and generalized nested PARAFAC [12] models. A review of semi-blind receivers for point-to-point and cooperative

systems can be found in [13] and [14], respectively.

Nested models, originally proposed for fourth-order tensors, can be interpreted as structured tensor train decompo-

sitions (TTD) [15], whose wagons are second- or third-order tensors concatenated in forming two successive parallel

factors (PARAFAC) [16] or Tucker [17] decompositions which share a matrix factor.

It is worth noting that the number of modalities of a data tensor can be increased either by increasing its order or

by coupling it with tensor and/or matrix decompositions that share one or several modes. Such a coupling approach,

called data fusion, allows to improve detection, interpretation, recognition and classification tasks by a joint analysis

of several data sets.

Coupled models, like coupled matrix-matrix, matrix-tensor and tensor-tensor factorizations, denoted respectively

CMMF, CMTF and CTTF, have been initially used in the context of data fusion [18], with applications in various

areas, such as recommendation systems, data mining, bioinformatics, neuroimaging, and signal processing, among

many others.

Historically, joint analysis of a collection of measurement matrices led to CMMF models for solving data fusion

problems. With the use of data tensors, CMTF and CTTF models have emerged as powerful tools for modeling,

analyzing and fusing data in various fields of application.

CMTF model was introduced in [19] by coupling a PARAFAC, also called a canonical polyadic decomposition

(CPD), with a matrix factorization, and using the nonlinear conjugate gradient algorithm to estimate the parameters.

This type of model was used in [20] to merge electroencephalogram (EEG) and functional magnetic resonance imag-

ing (fMRI) data with the goal of analyzing brain activity. Such a CMTF model composed of an incomplete third-order

CPD coupled with a matrix factorization in one mode, was also considered in [21] for missing data recovery in the
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context of sensory data analysis and metabolomics, which aims to detect chemical substances in biological fluids.

Various algorithms have been proposed to efficiently estimate the parameters of coupled sparse MTF (CSMTF)

models of large-scale data. See for instance [22] and [23] for fast and parallel methods, called Turbo-SMT and

S 3CMTF, respectively.

CTTF models were presented in [24, 25] for coupled CPD and block term decomposition (BTD) models sharing

one factor matrix, with applications in array signal processing [26], and for multidimensional harmonic retrieval

(MHR) [27, 28]. Note that coupled models lead to more relaxed uniqueness conditions comparatively to the case of

separate decompositions [24, 25, 27, 28]. For coupled structured models, i.e. structured data fusion, two classes of

algorithms are proposed in [29], namely quasi-Newton and nonlinear least-squares methods. The case of partially

coupled models is also considered in [30, 31, 32]. In [33], the constrained Cramér-Rao bound (CRRB) is established

for evaluating the parameter estimation performance in the case of general partially coupled models.

A coupled sparse TTF (CSTTF) model was used for the imputation of missing data in a third-order data tensor,

represented by means of two Tucker models with a low-rank constraint under the form of nuclear norm, in the context

of high-resolution hyperspectral images [34].

The concept of double CTTF was introduced in [35] with CPD models, denoted DC-CPD, sharing only one factor

matrix assumed to be of full column rank. This work was generalized in [36, 37] to DC-CPD models sharing factor

matrices in the first two modes, for solving the joint blind source separation problem with second-order statistics, in

the underdetermined case.

In [38, 39, 40], the authors have extended the coupling concept to Tucker decompositions for representing multire-

lay MIMO communication systems with TST and STF codings, respectively. These works introduce coupled models

sharing common factors between various nested Tucker decompositions (NTD) [11]. Trains of coupled CP and Tucker

decompositions are also considered in [41].

In this paper, a novel and more general concept of doubly coupled decomposition (DCD) for high-order tensors

sharing common tensor factors via two distinct nested structures, is proposed. The term ”doubly coupled” is used

to denote that each individual tensor model shares factors in two distinct modes, some factors depending on one

index, while another set of factors depends on another index, and no factor is common to all the decompositions. The

proposed general framework can be extended to more complex coupling structures to provide DCD models from any

tensor decomposition. Unlike the doubly coupled models in [36, 37], the proposed DCDs are based on two distinct

nested structures obtained by contracting two sets of tensors, each set depending on a specific mode.

The new proposed decompositions generalize the concept of double coupling to sets of NTDs [11] and nested

PARAFAC decompositions (NPDs) [8] for sixth-order tensors sharing more than one common matrix factor. The
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corresponding DCDs are denoted by DCNTD and DCNPD, respectively. It is demonstrated that these DCD models

are unique up to scalar ambiguities if the core tensors of the individual NTDs and NPDs are a priori known, as it will

be the case of the application to MIMO communication systems addressed in this paper.

In a second part, it is shown that the new DCDs can be exploited to model multirelay multicarrier MIMO coop-

erative communication networks, using two different tensor codings at the source and relay nodes. In the first case,

tensor space-time-frequency (TSTF) [6] and tensor space-time (TST) [5] codings are used, which leads to a DCNTD

model for the received signals. In the second case, Khatri–Rao space-time-frequency (KRSTF) [8] and Khatri–Rao

space-time (KRST) [42] codings, which can be viewed as simpler versions of TST and TSTF codings, respectively, are

considered at the source and relays nodes. That leads to a DCNPD model for the received signals. These DCD models

are exploited to develop semi-blind closed-form receivers allowing to jointly estimate channel state information (CSI)

and transmitted symbols. The proposed receivers use Khatri-Rao and Kronecker product factorization algorithms.

It is worth noting that, unlike the MIMO relay systems in [14, 43, 44], the channel estimation is performed without

using a training sequence. Moreover, the design of the tensor codes is also addressed. In particular, a set of tensor

codes based on the discrete Fourier transform (DFT) is presented to avoid noise amplification. Monte Carlo simulation

results show the better performance of the proposed DCD-based systems over existing state-of-the-art ones.

The main contributions of the present work can be summarized with the following propositions: (i) a generic

framework for defining DCDs; (ii) two new doubly coupled decompositions, namely the DCNTD and DCNPD

models; (iii) an uniqueness analysis of these DCDs; (iv) the development of two cooperative MIMO OFDM multirelay

systems using two different tensor codings which induce DCNTD and DCNPD models for the received signals; (v)

semi-blind closed-form receivers for the proposed communication systems; (vi) a comparison of tensor codes; and

(vii) Monte Carlo simulation results to illustrate the effectiveness of the proposed receivers.

The rest of the paper is organized as follows. In Section 2, a brief overview of nested tensor decompositions is

first given. Then, we introduce a new formalism for DCDs, with the DCNTD and DCNPD models as particular cases.

Uniqueness of these DCD models is addressed. In Section 3, these new tensor decompositions are used to model two

cooperative MIMO multirelay multicarrier systems based on two different tensor codings. In Section 4, semi-blind

closed-form receivers are presented, and identifiability conditions are derived for system parameter estimation. The

design of the tensor codes is also considered. In Section 5, Monte Carlo simulation results are provided to illustrate

the effectiveness of the proposed cooperative systems. Section 6 concludes the paper.

Notation. In Table 1, the notations used in the manuscript are presented. LetA ∈ CI1×I2×···×IN be an Nth-order tensor.

The third-order tensorAJ1···JN−2×JN−1×JN is a contracted form ofA obtained by combining the first (N−2) modes along

the first dimension of the tensor, where {J1, · · · , JN} represents a permutation of {I1, · · · , IN}. Moreover, the matrix
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Table 1: Notations
Symbols Description
a ∈ C Scalar
a ∈ CI Column vector
A ∈ CI×J Matrix
A ∈ CI1×I2×···×IN N-order tensor (array of order higher than two)
ai1,i2,··· ,iN or [A]i1,i2,··· ,iN (i1, i2, · · · , iN)-th element of the tensorA
AT , AH , A†, and rA Transpose, Hermitian transpose, Moore-Penrose pseudo-inverse and rank of A
AI1···IN−1×IN or [A]I1···IN−1×IN Mode-N tall unfolding of A (matrix representation of A obtained by combining

the first (N − 1) modes
x· jk, xi·k, and xi j· Vector slices (row, column, and tube) of X ∈ CI×J×K

Xi··, X· j·, and X··k Matrix slices of X ∈ CI×J×K of dimensions J × K, I × K and I × J, respectively
A(in) orA···in··· Tensor slice of order (N − 1) obtained by fixing the n-th mode
vec(·) Vectorization operator
diag(·) Diagonal matrix built from the elements of the argument vector
diagn(·) Diagonal matrix built from the elements of the n-th row of the argument matrix
bdiag(·) Block-diagonal operator (bdiag(Ak) ≜ bdiag(A1, ...,AK))
◦ Outer product
⊗ Kronecker product
▷◁ Block-Kronecker product
⋄ Khatri-Rao product
×n Mode-n product
∗n

m Contraction operation

AI1···IN−1×IN is the tall unfolding of A whose entries are ai1,··· ,iN =
[
AI1···IN−1×IN

]
ī, iN

, with ī = (i1 − 1)I2 · · · IN−1 + · · · +

(iN−2 − 1)IN−1 + iN−1. The mode-n tall unfolding ofA, denoted by AI1···In−1In+1···IN×In , with 1 ≤ n ≤ N, can be similarly

defined.

The mode-n product of A ∈ CI1×···×IN by U∈ CPn×In , denoted by X = A ×n U ∈ CI1×···×In−1×Pn×In+1×···×IN , yields

an Nth-order tensor defined as xi1,··· ,in−1,pn,in+1,··· ,iN =
∑In

in=1 ai1,··· ,in,··· ,iN upn,in . Let B ∈ CJ1×···×JM be an Mth-order ten-

sor such that In = Jm = K. The contraction of A and B over their common mode, denoted by Y = A ∗m
n B ∈

CI1×···×In−1×J1×···×Jm−1×Jm+1×···×JM×In+1×···×IN , yields the following (N+M−2)th-order tensor [45]: yi1,··· ,in−1, j1,··· , jm−1, jm+1,··· , jM ,in+1,··· ,iN =∑K
k=1 ai1,··· ,k,··· ,iN b j1,··· ,k,··· , jM . The block-Kronecker product is a Kronecker product of partitioned matrices. In the case

of equally partitioned matrices, the block-Kronecker product is said to be balanced [46]. Let A = [Ak] ∈ CI×KJ and

B = [Bk] ∈ CM×KN be partitioned matrices composed of K block-columns Ak ∈ CI×J and Bk ∈ CM×N , respectively.

The balanced block-Kronecker product is defined as A ▷◁ B = [A1 ⊗ B1 A2 ⊗ B2 · · · AK ⊗ BK] ∈ CIM×KJN .
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Figure 1: Block-diagram of nested tensor decompositions: (a) NTD; (b) NPD.

The following properties will be used (matrices are assumed to be with compatible dimensions):

vec(ABCT ) = (C ⊗ A) vec(B), (1)

vec(Adiagn(B)CT ) = (C ⋄ A) BT
n·. (2)

2. Tensor models

In this section, nested decompositions are first revisited and then coupled decompositions are briefly reviewed.

At the end of this section, we present general doubly coupled tensor decompositions and propose two DCD models

based on nested Tucker and nested PARAFAC decompositions.

2.1. Nested decompositions

The NTD and NPD, introduced respectively in [11] and [8], are recalled hereafter. Both models were originally

introduced for a fourth-order tensor X ∈ CI1×I2×I3×I4 , as summarized in Table 2. Such nested models can be viewed as

a cascade of two third-order Tucker or PARAFAC decompositions, which share the common matrix factor B. They

can also be written as the contraction (5) between two third-order tensors T (1) and T (2).

It is worth mentioning that the NPD can be viewed as a special case of the NTD when R1 = R2 and R3 = R4,

and the core tensors U and V are respectively replaced by IR1 ×2 U and IR2 ×2 V, where IR1 ∈ CR1×R1×R1 and

IR2 ∈ CR2×R2×R2 are third-order identity tensors, i.e. diagonal tensors with ones on the main diagonal and zeros

elsewhere. Equivalently, the NPD is obtained when the matrix slices U·i2· and V·i3· of the NTD are diagonal. The

nested decompositions recalled in this subsection are depicted by block-diagrams in Fig. 1.

2.2. Coupled decompositions

Coupled tensor decompositions have emerged as important tools for analyzing multiple datasets in signal process-

ing and statistics. A set of tensor decompositions is said to be “coupled” when at least one of the involved factors is
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Table 2: Nested decompositions for X ∈ CI1×I2×I3×I4

NTD NPD
Scalar writing:

xi1,i2,i3,i4 =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

ai1,r1 ur1,i2,r2 br2,r3 vr3,i3,r4 ci4,r4 (3) xi1,i2,i3,i4 =

R1∑
r1=1

R2∑
r2=1

ai1,r1 ui2,r1 br1,r2 vi3,r2 ci4,r2 (4)

Matrix and tensor factors:
U ∈ CR1×I2×R2 ,V ∈ CR3×I3×R4 , U ∈ CI2×R1 , V ∈ CI3×R2 ,

A ∈ CI1×R1 , B ∈ CR2×R3 , C ∈ CI4×R4 A ∈ CI1×R1 , B ∈ CR1×R2 , C ∈ CI4×R2

Writing as a tensor contraction:

X = T (1) ∗1
3 T

(2)(5)
Tensors T (1) and T (2):

t(1)
i1,i2,r3

=

R1∑
r1=1

R2∑
r2=1

ai1,r1 ur1,i2,r2 br2,r3 (6) t(1)
i1,i2,r2

=

R1∑
r1=1

ai1,r1 ui2,r1 br1,r2 (7)

t(2)
r3,i3,i4

=

R4∑
r4=1

vr3,i3,r4 ci4,r4 (8) t(2)
r2,i3,i4

= vi3,r2 ci4,r2 (9)

common to all the decompositions. The concept of coupled tensor decompositions was first applied to CPD mod-

els [35]. Recently, an extension of the coupling concept to Tucker decompositions was proposed in [38]. We now

introduce two new coupled structures based on nested Tucker models.

The coupled nested Tucker decomposition (CNTD) can be viewed as a coupling of multiple NTDs that share a

common factor [38]. Let X(k) ∈ CI1×I2×I3×I4 , for k = 1, ...,K and K ≥ 2, be a tensor that satisfies a fourth-order NTD,

as defined in (5), with the factor T (1) depending on the index k, that is:

X(k) = T
(1)
(k) ∗

1
3 T

(2), (10)

where T (1)
(k) is obtained by rewriting (6) as follows:

T
(1)
(k) = U(k) ×1 A(k) ×3 BT

(k) ∈ C
I1×I2×R3 . (11)

The CNTD model represents a fifth-order tensor X ∈ CI1×I2×I3×I4×K composed of the tensors X(k) that share the

tensor T (2), independent of the index k and common to all K decompositions. In a scalar notation, the CNTD of X(k)

is given by

xi1,i2,i3,i4,k =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

ai1,r1,kur1,i2,r2,kbr2,r3,kvr3,i3,r4 ci4,r4 . (12)

An alternative CNTD model was proposed in [39] by assuming a structure symmetric to the one presented in

(10)-(12). From (5), let X( f ) ∈ CI1×I2×I3×I4 , for f = 1, ..., F and F ≥ 2, be a tensor that satisfies a fourth-order NTD,

7



𝒱 𝐂

𝐁∙∙1𝐀∙∙1 𝒰 1

𝐁∙∙𝑘𝐀∙∙𝑘 𝒰 𝑘

𝐁∙∙𝐾𝐀∙∙𝐾 𝒰 𝐾

⋮ ⋮⋮

⋮ ⋮⋮

𝐾

𝒳(𝑘)

𝒳(𝐾)

𝒳(1)

=

𝒯 2𝒯 1

∗3
1

⋮

⋮

(a)

𝒯 2

𝐂∙∙𝐹

𝐂∙∙𝑓

𝐂∙∙1

𝐁𝐀 𝒰

𝒯 1

𝒳(𝐹)

𝒳(𝑓)

𝒳(1)

=
𝒱 𝐹

𝒱 𝑓

𝒱 1

∗3
1

(b)

Figure 2: Block-diagram of coupled nested Tucker decompositions: (a) Eqs. (10)-(11); (b) Eqs. (13)-(14).

with the factor T (2) depending on the index f and T (1) independent of f and common to all F decompositions. The

CNTD (10) then becomes

X( f ) = T
(1) ∗1

3 T
(2)
( f ) , (13)

with

T
(2)
( f ) = V( f ) ×3 C( f ) ∈ CR3×I3×I4 . (14)

Figure 2 shows the block-diagram of these CNTDs, where the branches in each figure represent the collections

of tensors {X(1), · · · ,X(K)} and {X(1), · · · ,X(F)} that form coupled NTDs sharing the common tensors T (2) and T (1),

respectively. In this paper, the idea of coupled decompositions is extended to higher-order tensors, with doubly

coupling, which can be viewed as a combination of the structures presented in (10) and (13).

2.3. Doubly coupled tensor decompositions (DCDs)

Following the coupled structures revisited in Subsection 2.2 and illustrated in Fig. 2, the main idea of a DCD is

that some coupled factors depend on one index, while another set of coupled factors depends on another index, with

no factor being common to all the decompositions.

For clarifying the general idea of DCD, let X be a tensor satisfying a decomposition with the tensor factors A(p)
(k)

and B(q)
( f ), for p = 1, ..., P and q = 1, ...,Q, the set of factors {A(1)

(k) , · · · ,A
(P)
(k) } varying with the index k = 1, ...,K and

{B
(1)
( f ), · · · ,B

(Q)
( f ) } depending on the index f = 1, ..., F.

Thus, the tensor X depends on the indices ( f , k), performing a double coupling. Indeed, if k is fixed, the tensor

slice X(k) follows a standard coupled decomposition, as well as the tensor slice X( f ), for some f fixed. If both k and f

are fixed, the tensor slice X( f ,k) satisfies a non-coupled decomposition with {A(1)
(k) , · · · ,A

(P)
(k) ,B

(1)
( f ), · · · ,B

(Q)
( f ) } as factors.

In what follows, DCD is detailed for the particular cases of NTDs and NPDs.
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A. Proposed DCNTD and DCNPD

The proposed DCDs are based on the contraction operation between two tensors, similarly to the NTD and NPD

expressed by means of Eq. (5). However, in the doubly coupled models, it is assumed that the tensorX is characterized

by two indices ( f , k), each one being associated with one coupling. The general structure of the proposed DCNTD

and DCNPD for a sixth-order tensor is given by

X( f ,k) = T
(1)
(k) ∗

1
3 T

(2)
( f ) ∈ C

I1×I2×I3×I4 , (15)

where T (1)
(k) ∈ CI1×I2×R3 represents the tensor factor that depends on k, while T (2)

( f ) ∈ CR3×I3×I4 is the tensor factor

depending on f . The DCNTD and DCNPD models represent a sixth-order tensor X ∈ CI1×I2×I3×I4×F×K constructed by

stacking the fourth-order tensor slices X( f ,k) for f = 1, ..., F and k = 1, ...,K, such as

X = T (1) ∗1
3 T

(2), (16)

where T (1) ∈ CI1×I2×R3×K and T (2) ∈ CR3×I3×I4×F are the fourth-order tensors built from T (1)
(k) and T (2)

( f ) , respectively.

The difference between the DCNTD and DCNPD relies on the structure of the tensor factors T (1)
(k) and T (2)

( f ) . For

the DCNTD, these tensors have the structure defined by (6) and (8), as follows:

t(1)
i1,i2,r3,k

=

R1∑
r1=1

R2∑
r2=1

ai1,r1,kur1,i2,r2,kbr2,r3,k, t(2)
r3,i3,i4, f

=

R4∑
r4=1

vr3,i3,r4, f ci4,r4, f , (17)

which, for fixed k and f , correspond to Tucker-(2,3) and Tucker-(1,3) decompositions, respectively. For the DCNPD,

the tensor factors T (1)
(k) and T (2)

( f ) have the structure defined by (7) and (9), given by

t(1)
i1,i2,r2,k

=

R1∑
r1=1

ai1,r1,kui2,r1,kbr1,r2,k, t(2)
r2,i3,i4, f

= vi3,r2, f ci4,r2, f . (18)

The proposed DCNTD and DCNPD can be respectively written in scalar form as follows:

xi1,i2,i3,i4, f ,k =

R1∑
r1=1

R2∑
r2=1

R3∑
r3=1

R4∑
r4=1

ai1,r1,kur1,i2,r2,kbr2,r3,kvr3,i3,r4, f ci4,r4, f , (19)

xi1,i2,i3,i4, f ,k =

R1∑
r1=1

R2∑
r2=1

ai1,r1,kui2,r1,kbr1,r2,kvi3,r2, f ci4,r2, f . (20)

These DCDs are useful to globally represent sets of NTDs and NPDs that share some common factors, by means
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of a single higher-order tensor. Indeed, they allow a global processing of data sets, by exploiting the relationships

between different groups of tensors. As it will be illustrated with simulation results for wireless communication

networks, this approach allows an efficient and unified modeling of several communication systems, with a great

flexibility on the choice of the system parameters.

B. Uniqueness

A tensor decomposition characterized by a contraction operation is generally not essentially unique. In [38], the

authors showed that there are alternative solutions T
(1)

and T
(2)

that lead to the same contraction as T (1) and T (2),

i.e. T
(1)
∗1

3 T
(2)
= T (1) ∗1

3 T
(2). Hence, it is not possible to uniquely find the components T (1) and T (2) of a tensor

defined by X = T (1) ∗1
3 T

(2). The proof of [38] is made for fifth-order tensors. However, it can be easily generalized

to sixth-order tensors, as the DCDs considered in the present work.

Nevertheless, it was demonstrated in [38] that the contraction operation introduces scalar ambiguities only in the

contracted modes. Indeed, it was shown that T
(2)

is characterized by an ambiguity matrix on the first mode, which

corresponds to T
(2)
= T (2) ×1 ∆

−1. However, one can note from (17) and (18) that T (2) contains only a mode-3 factor.

Hence, it can be concluded that the mode-1 factor of T (2) is equal to the identity matrix IR3 ∈ CR3×R3 , which leads to

∆ = δIR3 , with δ being a scalar ambiguity. The same result can be derived for the ambiguity of T (1). This means that

the tensors T (1) and T (2) are unique up to scalar ambiguities.

The issue that needs to be addressed now is whether the tensor factors A ∈ CI1×R1×K and B ∈ CR2×R3×K can be

estimated from T (1), as well as C ∈ CI4×R4×F from T (2), when the core tensors U and V are assumed to be known,

as it will be the case of the cooperative communication system considered in the next section. As is well known, the

factor matrices of a Tucker decomposition are unique up to scalar ambiguities if the core tensor is known [11]. Hence,

as the tensor factors T (1)
(k) and T (2)

( f ) in a DCNTD model satisfy Tucker decompositions, the factors A, B, and C are

unique up to scalar ambiguities whenU andV are known.

Similarly, the essential uniqueness of the PARAFAC decomposition has been established under certain conditions

[51, 53]. When one of the factor matrices is known, the other factors of a PARAFAC decomposition are unique up to

scalar ambiguities in the columns of each matrix factor. Hence, as the factors T (1)
(k) and T (2)

( f ) in a DCNPD model satisfy

PARAFAC decompositions, A ∈ CI1×R1×K , B ∈ CR1×R2×K , and C ∈ CI4×R2×F are unique up to scalar ambiguities in

their columns, when U and V are assumed to be known.

3. MIMO OFDM cooperative communication system

In this section, a new cooperative two-hop MIMO OFDM multirelay system based on DCD modeling is described.

In Subsection 3.1.A, TSTF and TST codings are used at the source and relay nodes, respectively, leading to a DCNTD
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Figure 3: Cooperative two-hop MIMO OFDM multi-relay system.

model for the signals received at destination. In Subsection 3.1.B, KRSTF and KRST codings are considered at

the source and relay nodes, respectively, which induces a DCNPD for the tensor of received signals. In Section 4,

this DCD modeling is exploited to derive semi-blind closed-form receivers for jointly estimating the channels and

information symbols.

3.1. System model

Let us consider the multicarrier two-hop MIMO multirelay system illustrated in Fig. 3, composed of one source

(S ), K relays (R1, . . . ,RK), and one destination (D). Different colored arrows represent the multiple subcarriers. The

channels are assumed to be quasi-static frequency-flat fading, i.e. independent of the carrier frequency and invariant

during the transmission. All the nodes of the system employ multiple antennas and the relays operate in half-duplex

mode, with the amplify-and-forward (AF) protocol, meaning that the signals received at the relays are amplified and

then forwarded to the destination node. In addition, the direct link between the source and destination node is assumed

to be unavailable, corresponding to a link with deep fading.

It is also assumed that the relays are synchronized at symbol level, transmitting in orthogonal channels in different

time slots. The global transmission is composed of K + 1 steps, the first step corresponding to the transmission from

the source to the relays and the remaining K steps corresponding to the sequential transmission from the K relays to

the destination. When a relay is transmitting to the destination, the other relays remain silent. Regarding the use of

multiple relays operating in orthogonal channels, also known as parallel relaying, several works have used the same

approach [43, 47, 14].

Table 3 gives the definitions and the dimensions of the tensors used for modeling the proposed system. The

parameters that define the tensor dimensions are presented throughout the following subsections.
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Table 3: System tensors and dimensions
DCNTD-based system DCNPD-based system

Definitions Tensors Dimensions Tensors Dimensions
Symbols tensor S N × R × F S N × MS × F
Source coding tensor C(S ) MS × P × R × F C̃(S ) P × MS × F
Relay coding tensor C(R) MT × J × MR × K C̃(R) J × MT × K
SR channel tensor H (S R) MR × MS × K H (S R) MT × MS × K
RD channel tensor H (RD) MD × MT × K H (RD) MD × MT × K
Received signals tensor X(D) MD × J × P × N × F × K X(D) MD × J × P × N × F × K

A. DCNTD modeling

Let us assume that the source encodes the information signals to be transmitted, by means of a tensor space-time-

frequency (TSTF) coding [6], while the relays use a tensor space-time (TST) coding [5]. The considered communi-

cation system can be viewed as a generalization of previous systems [11, 38, 39] by considering multiple relays and

multiple carriers to send independent data. Combining multiple relays, multiple antennas and multiple carriers allows

the exploitation of space and cooperative diversities, with multiplexing of transmitted symbols in space, time, and

frequency domains.

In the sequel, for the sake of simplicity, the noiseless case is considered for describing the system model. The

source node transmits the following TSTF coded data:

x(S )
mS ,p,n, f

=

R∑
r=1

c(S )
mS ,p,r, f

sn,r, f , (21)

where x(S )
mS ,p,n, f

is the transmitted signal, c(S )
mS ,p,r, f

is the TSTF code used by the source and sn,r, f is a data symbol, with

X(S ) ∈ CMS×P×N×F , C(S ) ∈ CMS×P×R×F and S ∈ CN×R×F , MS being the number of transmit antennas at the source node,

P the time spreading length of the TSTF code, N the number of symbols per data stream, F the number of subcarriers

used for transmission and R the number of data streams transmitted during each symbol period. Equation (21) shows

that, for each subcarrier f , transmission block p, and symbol period n, the source transmits a linear combination of R

data streams using the transmit antenna ms. Note that each carrier sends independent data, which means that the data

is multiplexed in the space, time, and frequency domains.

The signals are transmitted to K relays through the channels H(S R)
··k ∈ CMR×MS between the source and the relay

k, for k = 1, ...,K, where MR is the number of receive antennas at each relay. The subcarriers used by the source

are assumed to be close enough so that the channel coefficients are invariant across the subcarriers. Due to this

assumption, the number F of subcarriers cannot be very high. The signals received by the antenna mR of relay k can
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be expressed as

x(R)
mR,p,n, f ,k

=

MS∑
mS=1

h(S R)
mR,mS ,k

x(S )
mS ,p,n, f

=

MS∑
mS=1

R∑
r=1

h(S R)
mR,mS ,k

c(S )
mS ,p,r, f

sn,r, f , (22)

where H (S R) ∈ CMR×MS×K is the channel tensor that contains all the source-relay channel matrices. Each relay re-

encodes the received signals using a TST coding before transmitting the re-encoded signals to the destination. The

signals transmitted by antenna mT of relay k are given by

x(T )
mT , j,p,n, f ,k

=

MR∑
mR=1

c(R)
mT , j,mR,k

x(R)
mR,p,n, f ,k

=

MR∑
mR=1

MS∑
mS=1

R∑
r=1

c(R)
mT , j,mR,k

h(S R)
mR,mS ,k

c(S )
mS ,p,r, f

sn,r, f , (23)

where C(R) ∈ CMT×J×MR×K is the code tensor used at the relays, and J is the time spreading length of the TST code.

Finally, after transmission through the channel H(RD)
··k ∈ CMD×MT , for k = 1, ...,K, between the relay k and the

destination, the signals received at destination are given by

x(D)
mD, j,p,n, f ,k

=

MT∑
mT=1

h(RD)
mD,mT ,k

x(T )
mT , j,p,n, f ,k

=

MT∑
mT=1

MR∑
mR=1

MS∑
mS=1

R∑
r=1

h(RD)
mD,mT ,k

c(R)
mT , j,mR,k

h(S R)
mR,mS ,k

c(S )
mS ,p,r, f

sn,r, f , (24)

where X(D) ∈ CMD×J×P×N×F×K , and H (RD) ∈ CMD×MT×K is the tensor that contains all the relay-destination channel

matrices. Equation (24) corresponds to the DCNTD given by (19), with the following correspondences:

(X(D),H (RD),C(R),H (S R),C(S ),S) ←→ (X,A,U,B,V,C) (25)

(MD, J, P,N, F,K,MT ,MR,MS ,R) ←→ (I1, I2, I3, I4, F,K,R1,R2,R3,R4). (26)

Equation (24) can be rewritten as

x(D)
mD, j,p,n, f ,k

=

MS∑
mS=1

h(S RD)
mD, j,mS ,k

x(S )
mS ,p,n, f

, (27)

where x(S )
mS ,p,n, f

is defined in (21), and the effective channel tensor between the source and the destination is defined as

h(S RD)
mD, j,mS ,k

=

MT∑
mT=1

MR∑
mR=1

h(RD)
mD,mT ,k

c(R)
mT , j,mR,k

h(S R)
mR,mS ,k

. (28)

Equation (27) can be expressed as the following contraction between the effective channel tensor and the tensor of
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coded signals transmitted by the source:

X(D) = H (S RD) ∗1
3 X

(S ), (29)

with

X(S ) = C(S ) ×3 S ∈ CMS×P×N×F , (30)

H (S RD) = C(R) ×1 H
(RD) ×3 H

(S R)
′

∈ CMD×J×MS×K , (31)

where the tensor H (S R)
′

∈ CMS×MR×K is built by permuting the first two modes of H (S R) ∈ CMR×MS×K . From (29)-

(31), we can conclude that the tensor X(D) of received signals satisfies a DCNTD model (16), with X(S ) and H (S RD)

satisfying generalized Tucker-(1, 4) and Tucker-(2, 4) decompositions, respectively.

The double-coupling is associated with the indices f and k in (24) which represent the numbers of subcarriers

and relays, respectively. In this case, the received signals tensor for fixed ( f , k), satisfies a fourth-order NTD given

by X(D)
( f ,k) = H

(S RD)
(k) ∗1

3 X
(S )
( f ) ∈ CMD×J×P×N , where the factor H (S RD)

(k) depends on the relay index k, common to all the

subcarriers f , while the factor X(S )
( f ) depends on the subcarrier f and is common to all the relays k, inducing the double

coupling due to the use of multiple relays and multiple subcarriers.

Alternatively, by fixing only the index f , the received signals tensor satisfies a fifth-order CNTD:X(D)
( f ) = H

(S RD)∗1
3

X
(S )
( f ) ∈ CMD×J×P×N×K . Similarly, if only the index k is fixed, we get the following CNTD: X(D)

(k) = H
(S RD)
(k) ∗1

3 X
(S ) ∈

CMD×J×P×N×F . The tensors X(D)
( f ) and X(D)

(k) represent couplings of K and F NTDs, respectively. Note that, for each

subcarrier f , the tensor X(S )
( f ) is common to all relays and, for each relay k, the tensor H (S RD)

(k) is common to all

subcarriers. The double coupling exploits a global processing of the data in order to improve the estimation of

unknown parameters, allowing performance gains in channel and symbol estimation simultaneously.

B. DCNPD modeling

A simpler model can be obtained by considering that each matrix slice of the tensor codes is diagonal, i.e. C(S )
(p, f ) ∈

CMS×R and C(R)
( j,k) ∈ CMT×MR are diagonal matrices, for 1 ≤ p ≤ P, 1 ≤ f ≤ F, 1 ≤ j ≤ J, and 1 ≤ k ≤ K.

Note that these assumptions imply MS = R and MT = MR, respectively. These tensor codes are called KRSTF and

KRST coding, respectively [8, 42]. The coding tensors are then defined as third-order tensors, in the following way:

c̃(S )
p,mS , f

= c(S )
mS ,p,mS , f

and c̃(R)
j,mT ,k

= c(R)
mT , j,mT ,k

, with C̃(S ) ∈ CP×MS×F and C̃(R) ∈ CJ×MT×K . The resulting communication

network can be viewed as a generalization of the system in [8], which also uses a KRSTF coding, by considering

multiple relays with different time spreadings at the source and the relay.
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In this case, equation (24) of the signals received at the destination becomes

x(D)
mD, j,p,n, f ,k

=

MT∑
mT=1

MS∑
mS=1

h(RD)
mD,mT ,k

c̃(R)
j,mT ,k

h(S R)
mT ,mS ,k

c̃(S )
p,mS , f

sn,mS , f , (32)

which corresponds to the DCNPD model (20) with the following correspondences:

(X(D),H (RD), C̃(R),H (S R), C̃(S ),S) ←→ (X,A,U,B,V,C) (33)

(MD, J, P,N, F,K,MT ,MS ) ←→ (I1, I2, I3, I4, F,K,R1,R2). (34)

Equation (32) can be rewritten in scalar form as

x(D)
mD, j,p,n, f ,k

=

MS∑
mS=1

h(S RD)
mD, j,mS ,k

x(S )
mS ,p,n, f

, (35)

with

x(S )
mS ,p,n, f

= c̃(S )
p,mS , f

sn,mS , f , (36)

h(S RD)
mD, j,mS ,k

=

MT∑
mT=1

h(RD)
mD,mT ,k

c̃(R)
j,mT ,k

h(S R)
mT ,mS ,k

. (37)

The tensor X(D) can also be expressed using a contraction operation as in (29).

The double-coupling in (32) results from the indices f and k. In this case, the received signals form a fourth-order

NPD given by X(D)
( f ,k) = H

(S RD)
(k) ∗1

3 X
(S )
( f ) ∈ C

MD×J×P×N . As well as for the DCNTD, the factor H (S RD)
(k) is common to all

the subcarriers f , while the factor X(S )
( f ) is common to all the relays k. The spectral efficiency of the proposed multirelay

system is proportional to R/P(JK + 1), for both tensor codings.

4. Semi-blind receivers

Exploiting the DCD modeling of the received signals tensor allows to derive semi-blind closed-form receivers

for jointly estimating the channels (H (RD) and H (S R)) and symbol (S) tensors, assuming that the coding tensors C(R)

and C(S ) are known at the destination, which ensures the uniqueness of the decompositions. For the DCNTD model,

low-rank approximations based on the Kronecker product factorization (KPF) [48] and the block-Kronecker product

factorization (BKPF) [49] are used, while for the DCNPD model a low-rank approximation based on the Khatri-

Rao product factorization (KRPF) [50] is used. These low-rank approximations are based on rearrangements of the
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Kronecker, block-Kronecker, and Khatri-Rao products into rank-one matrices, whose factors are estimated by means

of the SVD algorithm.

4.1. DCNTD receiver

Let X(D) ∈ CMD×J×P×N×F×K be the sixth-order tensor that satisfies a DCNTD, as defined in (24). Fixing the indices

(p, f ) and combining the first, second, and sixth modes give the following matrix unfolding of the tensor slice X(D)
··p· f ·

of X(D), deduced from (27) and (21):

[
X(D)
··p· f ·

]
JKMD×N

= H(S RD)
JKMD×MS

X(S )
·p· f

= H(S RD)
JKMD×MS

C(S )
·p· f ST

·· f , (38)

where C(S )
·p· f ∈ CMS×R, S·· f ∈ CN×R, and H(S RD)

JKMD×MS
is a tall mode-3 unfolding of H (S RD). Applying property (1) to

(38), we obtain the vectorized form
[
X(D)
··p· f ·

]
NJKMD

= vec
([

X(D)
··p· f ·

]
JKMD×N

)
as follows:

[
X(D)
··p· f ·

]
NJKMD

=
(
S·· f ⊗H(S RD)

JKMD×MS

)
vec
(
C(S )
·p· f

)
. (39)

Thus, the following tall matrix unfolding of X(D) can be deduced:

X(D)
NJKMD×FP =

(
SN×FR ⊗H(S RD)

JKMD×MS

)
C(S )

FRMS×FP, (40)

where C(S )
FRMS×FP = bdiag

[
vec
(
C(S )
·1· f

)
· · · vec

(
C(S )
·P· f

)]
. The Kronecker productΩ ≜ SN×FR⊗H(S RD)

JKMD×MS
∈ CNJKMD×FRMS

can be estimated from (40) using the least squares (LS) method as

Ω̂ = X(D)
NJKMD×FP

(
C(S )

FRMS×FP

)†
. (41)

Then, SN×FR and H(S RD)
JKMD×MS

are estimated from the KPF estimate Ω̂ by applying the SVD-based low-rank approxi-

mation algorithm.

Once Ĥ(S RD)
JKMD×MS

estimated, the channelsH (RD) andH (S R) are estimated from the following reshaping Ĥ(S RD)
MD MS×KJ

of Ĥ(S RD)
JKMD×MS

:

Ĥ(S RD)
MD MS×KJ =

(
H(RD)

MD×KMT
▷◁ H(S R)

MS×KMR

)
C(R)

KMT MR×KJ , (42)

where C(R)
KMT MR×KJ = bdiag

[
vec
(
C(R)
·1·k

)
· · · vec

(
C(R)
·J·k

)]
. The block-Kronecker product Ψ ≜ H(RD)

MD×KMT
▷◁ H(S R)

MS×KMR
∈
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Algorithm 1 KPF/BKPF-based receiver for the DCNTD model
1. Build the unfolded matrix X(D)

NJKMD×FP.
2. Calculate the LS estimate Ω̂ using (41).
3. Estimate ŜN×FR and Ĥ(S RD)

JKMD×MS
from Ω̂ using the SVD-based low-rank approximation for KPF.

4. Eliminate the ambiguities using (51).
5. Build Ĥ(S RD)

MD MS ×KJ by reshaping Ĥ(S RD)
JKMD×MS

.
6. Calculate the LS estimate Ψ̂ using (43).
7. Estimate Ĥ(RD)

MD×KMT
and Ĥ(S R)

MS ×KMR
from Ψ̂ using the SVD-based low-rank approximation for BKPF.

8. Eliminate the ambiguities using (52).

CMD MS×KMT MR is estimated from (42) using the LS method as follows:

Ψ̂ = Ĥ(S RD)
MD MS×KJ

(
C(R)

KMT MR×KJ

)†
. (43)

Finally, by applying the low-rank approximation algorithm for BKPF, H(RD)
MD×KMT

and H(S R)
MS×KMR

are estimated from Ψ̂.

The proposed DCNTD receiver is summarized in Algorithm 1.

4.2. DCNPD receiver

Let X(D) ∈ CMD×J×P×N×F×K be the sixth-order received signals tensor that satisfies a DCNPD, defined in (32). By

fixing the indices p and f , the following matrix representation of X(D) can be derived:

[
X(D)
··p· f ·

]
JKMD×N

= H(S RD)
JKMD×MS

X(S )
·p· f

= H(S RD)
JKMD×MS

diagp

(
C̃(S )
·· f

)
ST
·· f , (44)

where H(S RD)
JKMD×MS

is a tall mode-3 unfolding of H (S RD) ∈ CMD×J×MS×K . Applying property (2) to (44) gives the

following vectorized form
[
X(D)
··p· f ·

]
NJKMD

= vec
([

X(D)
··p· f ·

]
JKMD×N

)
:

[
X(D)
··p· f ·

]
NJKMD

=
(
S·· f ⋄H(S RD)

JKMD×MS

)
C̃(S )

p· f . (45)

By stacking these FP vectors
[
X(D)
··p· f ·

]
NJKMD

, for p = 1, ..., P and f = 1, ..., F, as block-columns, we obtain the

following matrix unfolding of X(D):

X(D)
NJKMD×FP =

(
SN×FMS ⋄Φ

)
C̃(S )

FMS×FP, (46)

where C̃(S )
FMS×FP = bdiag

[
C̃(S )

1· f · · · C̃(S )
P· f

]
and Φ = (1T

F ⊗ H(S RD)
JKMD×MS

) ∈ CJKMD×FMS , with 1F ∈ RF being a column

vector composed of ones. The Khatri-Rao product Ω ≜ SN×FMS ⋄ Φ ∈ CNJKMD×FMS can be estimated using the LS
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Algorithm 2 KRPF-based receiver for the DCNPD model
1. Build the unfolded matrix X(D)

NJKMD×FP.
2. Calculate the LS estimate Ω̂ using (47).
3. Estimate ŜN×FMS and Φ from Ω̂ using the SVD-based low-rank approximation for KRPF.
4. Estimate Ĥ(S RD)

JKMD×MS
from Φ̂ using the SVD-based low-rank approximation for KRPF.

5. Eliminate the ambiguities using (53).
6. Build Ĥ(S RD)

MD MS ×KJ by reshaping Ĥ(S RD)
JKMD×MS

.
7. Calculate the LS estimate Ψ̂ using (49).
8. Estimate Ĥ(RD)

MD×KMT
and Ĥ(S R)

MS ×KMT
from Ψ̂ using the SVD-based low-rank approximation for KRPF.

9. Eliminate the ambiguities using (53).

method as:

Ω̂ = X(D)
NJKMD×FP

(
C̃(S )

FMS×FP

)†
, (47)

and then, estimates of SN×FMS andΦ are obtained from Ω̂ by applying the SVD-based low-rank approximation KRPF

algorithm. Noting that Φ is composed of F repetitions of H(S RD)
JKMD×MS

, we can estimate H(S RD)
JKMD×MS

by averaging the

F blocks estimated from Φ̂. An alternative method to estimate H(S RD)
JKMD×MS

consists in rewriting Φ as the Khatri-Rao

productΦT = 1F×JKMD ⋄ (H(S RD)
JKMD×MS

)T , where 1F×JKMD ∈ RF×JKMD is a matrix composed of ones, and then applying

the KRPF algorithm to Φ̂T . As the averaging method gives less good results, we omit this possibility in the following.

Once Ĥ(S RD)
JKMD×MS

estimated, the factors Ĥ (RD) and Ĥ (S R) are estimated from the following reshaped unfolding

Ĥ(S RD)
MD MS×KJ:

Ĥ(S RD)
MD MS×KJ =

(
H(RD)

MD×KMT
⋄H(S R)

MS×KMT

)
C̃(R)

KMT×KJ , (48)

where C̃(R)
KMT×KJ = bdiag

[
C̃(R)

1·k · · · C̃(R)
J·k

]
. The Khatri-Rao product Ψ ≜ H(RD)

MD×KMT
⋄ H(S R)

MS×KMT
∈ CMD MS×KMT is

estimated using the LS method as:

Ψ̂ = Ĥ(S RD)
MD MS×KJ

(
C̃(R)

KMT×KJ

)†
, (49)

and then, once again Ĥ(RD)
MD×KMS

and Ĥ(S R)
MS×KMT

are obtained by applying the low-rank approximation algorithm for

KRPF. The proposed DCNPD receiver is detailed in Algorithm 2.

4.3. Identifiability conditions and ambiguity removal

In this subsection, the identifiability conditions of the presented estimation algorithms are derived. Both algo-

rithms use the SVD-based low-rank matrix approximation and LS estimation. The identifiability conditions result

from the computation of the pseudo-inverses needed to estimate Ω̂ and Ψ̂. This means that the unfoldings C(S )
FRMS×FP,

C(R)
KMT MR×KJ , C̃(S )

FMS×FP and C̃(R)
KMT×KJ in (41), (43), (47) and (49), respectively, must be full row rank. That induces the

following necessary conditions: P ≥ MS R and J ≥ MT MR for DCNTD, and P ≥ MS and J ≥ MT for DCNPD. Note

that the proposed receiver for the DCNPD model has weaker constraints than the one for DCNTD.
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The matrices estimated by the considered SVD-based low-rank approximation algorithms for KPF, BKPF, and

KRPF are affected by scaling ambiguities, as discussed in Subsection 2.3.B, in the following way:

Â ⊗ B̂←− (Aδ) ⊗
(
Bδ−1
)
, Â ▷◁ B̂←−

[
A1δ1 ⊗ B1δ

−1
1 · · · AKδK ⊗ BKδ

−1
K

]
, Â ⋄ B̂←− (A∆) ⋄

(
B∆−1

)
, (50)

where δ and δk, with k = 1, . . . ,K, are scalar ambiguities and ∆ is a diagonal ambiguity matrix. These ambiguities

are eliminated by applying the following relations:

Â←− δ−1 Â and B̂←− δ B̂, (51)

Âk ←− δ
−1
k Âk and B̂k ←− δk B̂k, (52)

Â←− Â ∆−1 and B̂←− B̂ ∆. (53)

To estimate the scalars δ and δk and the diagonal elements of the matrix ∆, some a priori knowledge in the matrices

A or B is needed. This knowledge depends on the considered application. For the case addressed in this paper, one

transmitted symbol (s1,1,1) is assumed to be known, as well as one channel coefficient of each relay-destination link

(h(RD)
1,1,k ), for k = 1, ...,K. In practice, this a priori information can be obtained simply by using one pilot-symbol sent

from each relay to the destination. A similar procedure was adopted in other works [11, 47, 52, 53] in the context of

relaying systems. For the DCNTD system, the ambiguity removal is implemented after Steps 3 and 7 of Algorithm 1,

while for the DCNPD system, the ambiguity removal is carried out after Steps 3, 4, and 8 of Algorithm 2. The scalar

ambiguity associated with Step 4 of Algorithm 2 can be estimated by exploiting the fact that one of the factors of this

KPF is a matrix composed of ones.

4.4. Design of the coding tensors

To prevent noise amplification, we choose the tensor codes such that the following matrix unfoldings are DFT

matrices: C(S )
FRMS×FP, C(R)

KMT MR×KJ , C̃(S )
FMR×FP, and C̃(R)

KMT×KJ . That allows to simplify the computation of their pseudo-

inverse in (41), (43), (47), and (49), respectively.

As these matrices have a block-diagonal structure, the blocks that form these matrices are chosen as truncated

DFT matrices. Indeed, a block-diagonal matrix composed of unitary blocks is also a unitary matrix. For instance, we

define the matrix C(S )
FRMS×FP composed of F truncated DFT matrices of dimension RMS ×P, each one being composed

of the first RMS rows of a DFT matrix of dimension P × P, while C(R)
KMT MR×KJ is constructed from K truncated DFT

matrices of dimension MT MR × J, composed of the first MT MR rows of a DFT matrix of dimension J × J. Similarly

for C̃(S )
FMR×FP and C̃(R)

KMT×KJ .
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Table 4: Basic configuration used in the simulations
Description Parameter Value
Number of symbols per data stream N 10
Number of data streams R 2
Time-spreading length of the source coding P 4
Time-spreading length of the relay coding J 4
Number of subcarriers F 4
Number of relays K 2
Number of antennas at the source MS 2
Number of receiving antennas at the relay MR 2
Number of transmitting antennas at the relay MT 2
Number of antennas at the destination MD 2

With this proposed DFT-based coding, the pseudo-inverses in (41), (43), (47) and (49) can be replaced by Hermi-

tian transposes. In the simulations, we compare this DFT-based coding with random tensor codes, whose elements

have unit magnitude and phase randomly drawn from a uniform distribution between 0 and 2π. This coding will be

called random coding.

In both kinds of tensor coding, the tensors are multiplied by scalar gains so that, in the noise-free case, all the nodes

have the same transmission power and the total transmission power is kept constant and equal to 1, regardless of the

number of relays and antennas. The tensors C(S ), C(R), C̃(S ) and C̃(R) are respectively multiplied by
√

PN / (MS R),√
PN / (MR MT (PN σ

2
HS R
+ N0)),

√
PN /MS and

√
PN / ( MT ( PN σ

2
HS R
+ N0)), where σ2

HS R
is the mean power of SR

channels and PN = PT /(K + 1) is the transmission power of each transmission node.

5. Simulation results

In this section, the performance of the proposed DCD-based communication systems and their respective receivers

is evaluated by means of Monte Carlo simulations, considering the two-hop OFDM MIMO multirelay system intro-

duced in Section 3. The transmitted data symbols are independent identically distributed (i.i.d.) random variables

drawn from a 4-QAM constellation. The channel tensors H (S R) and H (RD) are composed of i.i.d. entries, following

a quasi-static Rayleigh fading, with an exponential path loss corresponding to an attenuation given by 1/d4, where

d = D/2 is the distance of each hop, and D is the distance between the source and destination arbitrarily chosen equal

to 1. The code tensors are generated as described in Subsection 4.4 and all the receive antennas are corrupted by

additive white Gaussian noise (AWGN). Moreover, when not stated otherwise, the parameters shown in Table 4 are

used.

The figures of merit used to evaluate the proposed receivers are the symbol error rate (SER) and the normalized

mean square error (NMSE) of the SR and RD channels, averaged over 2 × 104 Monte Carlo runs and plotted as a

function of the total transmission power PT divided by the noise spectral density N0, with PT defined as the sum of
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the transmission powers of all the transmitting antennas of the source and relays. The noise spectral density at the

relays and the destination is assumed to be equal and, at each run, PT is fixed and N0 is calculated according to the

desired PT /N0 value. The NMSE of the estimated channels is computed as follows:

NMSE = 10 log10

 1
MC

MC∑
mc=1

∥Hmc − Ĥmc∥
2
F

∥Hmc∥
2
F

 , (54)

with MC denoting the number of Monte Carlo runs. Hmc and Ĥmc represent respectively the simulated and estimated

channel tensors at the mc-th Monte Carlo run.

5.1. Impact of tensor coding design and comparison with ZF receivers

The first simulations have the objective of evaluating the impact of the design of the coding tensors, by comparing

the performance obtained with the DFT-based coding and the random coding, introduced in Subsection 4.4. Figure

4(a) shows the SER versus PT /N0 for the proposed DCNTD and DCNPD receivers, using these two tensor codings.

It can be viewed from this figure that the DFT-based coding provides much smaller SERs than the random coding. As

earlier explained, this is due to the fact that the DFT-based coding avoids the noise amplification that occurs when the

random coding is used. For more details, see the discussion in Section 5 of [38].

Moreover, in order to have an upper bound for the performance of the proposed receivers, Fig. 4(a) also shows the

SER obtained with the corresponding zero-forcing (ZF) receivers that assume perfect knowledge of all the channels.

The ZF receivers for the DCNTD and for the DCNPD can be deduced from (40) and (46) respectively as:

SFR×N =
[(

IFP ⊗H(S RD)
JKMD×MS

)
C(S )

FPMS×FR

]†
X(D)

FPJKMD×N , (55)

SFMS×N =
[(

IFP ⊗H(S RD)
JKMD×MS

)
C̃(S )

FPMS×FMS

]†
X(D)

FPJKMD×N . (56)

These receivers are respectively denoted by DCNTD/ZF and DCNPD/ZF. The SER of the ZF receivers shown in Fig.

4(a) is obtained with the DFT-based coding. As expected, the DCNTD/ZF and DCNPD/ZF receivers provide smaller

SERs than the respective DCNTD and DCNPD. The gap between the curves of the DCNTD and DCNTD/ZF, as well

as the difference between the curves of the DCNPD and DCNPD/ZF, is approximately equal to 2.5 dB.

Moreover, this figure shows that the DCNTD outperforms the DCNPD, as well as the DCNTD/ZF performs better

than the DCNPD/ZF, when the DFT-based coding is used. This is due to the fact that, with the DCNPD, the matrix

slices of the tensor codes are diagonal, while in the DCNTD these matrix slices are full matrices, which makes the

DCNTD more efficient in exploring more spatial diversity than the DCNPD.

However, when the random coding is used, the DCNPD performs better than the DCNTD, due to the noise ampli-
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Figure 4: Comparison of the DCNTD, DCNPD, DCNTD/ZF and DCNPD/ZF performance, using two tensor codings: (a) SER versus PT /N0; (b)
NMSE versus PT /N0.

fication carried out by the random coding. In this case, the noise amplification is weaker with the DCNPD, due to the

fact that the diagonal slices of the coding tensor to be inverted in (41), (43), (47), and (49) are better conditioned than

in the case of the DCNTD.

Figure 4(b) shows the NMSE of the RD link versus PT /N0 for the proposed DCNTD and DCNPD receivers, using

the two types of tensor codes. This figure also shows the NMSE of the SR link obtained by the DCNTD. From this

figure, it can be concluded that, as expected, the DFT-based coding provides better NMSEs than the random coding,

due to the noise amplification with random coding. Moreover, similarly as in Fig. 4(a), the DCNTD provides slightly

better results than the DCNPD when the DFT-based coding is used, but worst results with random coding, due to the

reasons above explained.

Besides, comparing the NMSEs of the SR and RD links obtained with the DCNTD, it can be concluded that the

RD channels are better estimated than the SR channels. This is due to the fact that, as explained in Subsection 4.3, it

is assumed that one channel coefficient of the RD link is known, while this assumption is not made for the SR link.

5.2. Influence of the number of relays, subcarriers, and antennas

The next figures evaluate the impact of the numbers (K, F,M) of relays, subcarriers, and antennas on the system

performance. Due to the better performance of the DFT-based coding with respect to the random coding, from now

on, all the simulation results are provided for the DFT-based coding. Figure 5(a) shows the SER versus PT /N0 for

the proposed DCNTD and DCNPD receivers, for K = 1 relay and K = 2 relays. In these simulations, the length J of

the time spreading at the relay, was adjusted so that the two tested cases have the same transmission rate, as indicated

in the legend of Fig. 5(a). From this figure, it can be concluded that the use of 2 relays provides smaller SERs than
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Figure 5: Performance of the DCNTD and DCNPD for K = 2, J = 4 and K = 1, J = 8: (a) SER versus PT /N0; (b) NMSE versus PT /N0.

the case with a single relay. This is due to the cooperative diversity provided by the use of multiple relays. Moreover,

as in Fig. 4(a), the DCNTD provides better SERs than the DCNTD, for the same reasons.

Fig. 5(b) shows the NMSE of the RD and SR links versus PT /N0 for the proposed DCNTD and DCNPD receivers,

with the same configurations as Fig. 5(a), i.e. K = 2, J = 4 and K = 1, J = 8. From this figure, it can be viewed

that the case K = 1, J = 8 provides smaller NMSEs than the case K = 2, J = 4. The reason is that the configuration

K = 2, J = 4 has more channel coefficients to be estimated than the case K = 1, J = 8, for the same number of

received signals. However, as expected, this worst behavior of the multirelay case with respect to the single-relay

case, is due to the cooperative diversity which improves the symbol estimation, as viewed in Fig. 5(a), but degrades

channel estimation.

Moreover, from Fig. 5(b), it can be drawn two conclusions that are similar to the ones for Fig. 4(b). The first

conclusion is that the NMSE of the RD channels is smaller than the one of the SR channels. Besides, as in the previous

results, the DCNTD provides slightly better channel estimations than the DCNPD.

Figures 6(a) and 6(b) show, respectively, the SER and NMSE of the RD link versus PT /N0 for several values of

the number F of subcarriers, obtained with the proposed DCD receivers. The curves corresponding to the NMSE of

the SR channels are similar to those of the RD channels and are omitted to alleviate the presentation. Moreover, the

NMSE curves of the DCNPD are also omitted because they are very close to the ones of the DCNTD.

From Fig. 6(a), it can be viewed that, for both receivers, the SER does not change when the number of subcarriers

is varied. That means, the proposed systems allow to increase the number of information symbols without degrading

the SER performance due to a simultaneous increase of the number of received signals. Moreover, as in the previous

SER results using the DFT-based coding, the DCNTD provides better SERs than the DCNPD. However, it can be
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Figure 6: Performance of the DCNTD and DCNPD for several values of F: (a) SER versus PT /N0; (b) NMSE of RD link versus PT /N0.

noted in Fig. 6(b) that the accuracy of the NMSE estimation is improved when the value of F is increased. These

results show that exploiting more subcarriers in the DCD tensor model leads to a better channel estimation, without

changing the SER and spectral efficiency.

Next figure evaluates the behavior of the symbol estimation when the number of antennas in all the nodes is varied.

Figure 7 shows the SER versus PT /N0 with the DCNTD receiver, for several configurations of MS , MR, MT and MD.

For all configurations, the values of MS , MR, MT and MD are equal to 2, except for one dimension equal to 4. It can be

viewed from this figure that the best results are obtained when the number of receive antennas at the relay is increased

(MR = 4), while the other configurations provide roughly similar results. The reason for this behavior is twofold.

The first one is that the spatial diversity at the receiver generally provides a higher array gain than the transmit spatial

diversity. The second reason is that, when the number MR of receive antennas at the relay is increased, the spatial

diversity is induced in all the relays, leading to a more significant gain than increasing the number of antennas at the

destination.

5.3. Comparison with state-of-the-art communication systems

In this subsection, we present simulation results that compare the proposed DCD-based systems with the following

state-of-the-art tensor-based ones: (i) the single-carrier single-relaying MIMO system using TST coding proposed in

[11], modeled as a NTD; (ii) the non-cooperative MIMO OFDM system using TSTF coding proposed in [39], modeled

as a NTD; (iii) the single-carrier multirelay MIMO system using TST coding proposed in [38], modeled as a CNTD;

(iv) the single-carrier single-relaying MIMO system using KRSTF coding proposed in [8], modeled as a NPD. These

systems will be denoted respectively by NTD, NTD2, CNTD, and NPD.

The objective of these simulations is not to compare the efficiency of different estimation algorithms, but the
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performance of different communication systems. Due to this, with all considered systems, we used receivers similar

to those proposed in Section 4, with minor modifications in each case. Moreover, the parameters were set so that

all the systems have the same spectral efficiency, using the following configurations: (i) for DCNTD and DCNPD -

F = 4,K = 2, J = 4, P = 4; (ii) for NTD - F = 1,K = 1, J = 8, P = 4; (iii) for NTD2 - F = 4,K = 1, J = 8, P = 4;

(iv) for CNTD - F = 1,K = 2, J = 4, P = 4; and (v) for NPD - F = 1,K = 1, J = 8, P = 4.

Figures 8(a) and 8(b) show, respectively, the SER and NMSE of the RD link versus PT /N0 for the compared

systems. From these figures, it can be noted that the DCNTD and CNTD provide the best SER. This is due to the fact

that these two systems, along with the DCNPD, use multiple relays and, therefore, benefit from cooperative diversity.

Among these three systems that use multiple relaying, the DCNPD is the one that provides higher SERs, due to the

fact that the matrix slices of the tensor code are diagonal, which makes it less efficient from the spatial diversity point

of view, as already explained.

Even so, the SER obtained with the DCNPD is similar to the ones obtained with the Tucker-based models NTD

and NTD2, and significantly smaller than the SER with the NPD, which also uses KRSTF coding. In fact, the NPD

provides the highest SER among all the compared systems due to the use of diagonal matrix slices in the tensor code

and to the fact that the NPD does not use multiple relays.

In Fig. 8(b), it can be viewed that DCNTD, DCNPD, NPD, and NTD provide similar NMSEs of the RD channels,

while the NTD2 gives smaller NMSE. The better channel estimation of the NTD2 is due to the fact this system has

less channel coefficients to be estimated than the other systems, as it is a non-cooperative system. On the other

hand, the CNTD provides the highest NMSE among all the compared systems, due to the fact it uses multiple relays,

therefore, with more channel coefficients to be estimated than the non-cooperative (NTD2) and single relay systems

(NTD, NPD). It should be highlighted that, although the DCNTD and DCNPD also correspond to multi-relaying, their
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Figure 8: Comparison of the DCNTD, DCNPD and state-of-the-art systems: (a) SER versus PT /N0; (b) NMSE of RD link versus PT /N0.

NMSE is similar to the single relay systems (NTD, NPD), which shows the efficiency of the proposed communication

systems.

It can be concluded that the DCNTD is the method that offers the best trade-off between the SER and NMSE,

as it provides the best SER, along with the CNTD, and the second best NMSE, along with the DCNPD, NPD, and

NTD. Moreover, it is also worth noting that the PARAFAC-based DCNPD provides significantly better SER than the

PARAFAC-based NPD, with similar NMSE results.

6. Conclusion

In the first part of the paper, we have introduced two new tensor decompositions for sixth-order tensors by ex-

ploiting the concepts of nested and doubly coupled decompositions (DCD). The so-called doubly coupled nested

Tucker/PARAFAC decompositions, respectively denoted DCNTD and DCNPD, allow a global processing of high

dimensional coupled data tensors. Uniqueness issue for these decompositions is addressed under the assumption of

an a priori knowledge of the tensor cores, as it is the case of the proposed communication systems.

In a second part, a new multirelay multicarrier MIMO communication system has been proposed using either

TST and TSTF codings, or KRST and KRSTF ones, at the source and relay nodes, which induces DCNTD and

DCNPD models, respectively, for the tensors of signals received at the destination. Assuming DFT-based code tensors

unfoldings for simplifying the computation, semi-blind closed-form receivers have been derived to jointly estimate

the channels and transmitted symbols. Identifiability conditions of the proposed algorithms have been established.

Monte Carlo simulation results illustrate the good performance of the proposed cooperative communication systems,

providing a SER close to the one obtained with the ZF receiver that assumes a perfect knowledge of CSI.
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From an analysis of the simulations results, it can be concluded that the proposed cooperative relaying sys-

tems provide a better tradeoff between SER and channel NMSE than state-of-the-art existing ones. These results

corroborate the performance improvement of cooperative systems which exploit multiple relays, multiple subcarri-

ers, with tensor codes. Moreover, the DCNTD-based system provides smaller SERs than PARAFAC-based systems,

with similar channel NMSE. However, it is worth mentioning that the DCNPD-based system has less constraining

identifiability conditions than the DCNTD-based one. In future works, the general framework proposed for nested

DCD models will be extended to more complex coupling structures for designing new cooperative communications

systems.
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