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Abstract

A market-based scheduling mechanism allocates resources indexed by time to alternative uses based on the bids of

participating agents. Agents are typically interested in multiple time slots of the schedulable resource, with value determined by

the earliest deadline by which they can complete their corresponding tasks. Despite the strong complementarities among slots

induced by such preferences, it is often infeasible to deploy a mechanism that coordinates allocation across all time slots. We

explore the case of separate, simultaneous markets for individual time slots, and the strategic problem it poses for bidding

agents. Investigation of the straightforward bidding policy and its variants indicates that the efficacy of particular strategies

depends critically on preferences and strategies of other agents, and that the strategy space is far too complex to yield to general

game-theoretic analysis. For particular environments, however, it is often possible to derive constrained equilibria through

evolutionary search methods.
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1. Introduction

1.1. Strategies for complex market games

Consider a set of agents who have values over a

set of available resources. A unit of a particular

resource can be employed only by one agent, and
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although multiple units may be available, the demand

for at least some resources at zero prices is greater

than the finite supply available. Deciding how to

assign the available resources to agents is an

allocation problem. This characterization of the

problem encompasses many complex planning and

coordinating activities.

Solution methods for allocation problems fre-

quently are developed under the assumption of

centrally available information, or distributed infor-

mation with cooperative behavior. When a centralized

approach is possible, it will in general yield results

superior to any purely decentralized method. Never-

theless, centralized methods are not directly applica-
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ble when agents have distinct interests and privately

held information about the requirements for and

values of possible uses. We cannot rely on the agents

to reliably communicate such information to the

center, as the center’s use of the information to

determine an allocation will typically create incentives

for the agents to misrepresent their situations in order

to obtain more advantageous results.

A resource allocation mechanism defines a struc-

tured communication process that determines which

agents get which resources based on messages

exchanged. The field of mechanism design considers

how to organize such mechanisms taking into account

the information and incentives facing the participating

agents. Typically, carefully designed mechanisms

induce agents to reveal essential information via

monetary transfers tied to the messages and resources

allocated.

Markets comprise a special class of resource

allocation mechanisms in which agents exchange

resources for money, at prices determined through

communication of offers, or bids. When the price-

determination process is mediated, and follows

explicit rules mapping bids into allocations, the

mechanism constitutes an auction.

A set of agents interacting through auctions defines

a market game, with payoffs representing value of

market outcomes, which in turn are a function of joint

bidding strategy. Market games are typically charac-

terized by incomplete information, complex dynam-

ics, and large sets of possible actions (bids and timing

of bids). Market games corresponding to even

moderately complex scenarios are notoriously diffi-

cult to solve. That is, except for the simplest market

mechanisms (e.g., a one-shot auction for a single item,

or a mechanism specially designed to have dominant

strategies), deriving a Bayes–Nash equilibrium is not

analytically tractable.

Strategic complexity presents a particularly difficult

problem when resources may be complements for

some agents. Complementarity manifests when an

agent’s value for a particular resource is greater if it

also obtains one or more other resources. For example,

an airline passenger may wish to obtain two connect-

ing segments to complete a trip. The airline, mean-

while, needs to obtain reservations for both a takeoff

slot and a landing slot for each flight segment. When

an agent must bid for one resource with uncertainty
about the market resolution of complements, its

decision presents risky tradeoffs.

Given the commonality of market games involving

complementary resources, it is perhaps surprising that

very little is known about optimal strategies for such

games. For example, except under very restrictive

assumptions, we do not know the optimal bidding

strategy in multiple item simultaneous ascending

auctions (discussed below). The explorations reported

here represent our effort to address this large gap in

strategic understanding, in the context of the simple

scheduling domain.

1.2. Market-based scheduling

Our investigations apply to the general problem of

strategy exploration in complex allocation mecha-

nisms. For concreteness, however, we study an

important instance of this class: scheduling problems.

A problem can be described as scheduling when the

resources are distinguished (at least in part) by the

time periods in which they are available, so that a

schedule is an allocation of these resources over time.

Scheduling arises at the core of problems in manu-

facturing, telecommunications, logistics, and many

other common contexts where reserving resources is

called for. It has of course been extremely well

studied, by researchers in operations research, com-

puter science, and artificial intelligence [5,44]. Most

scheduling methods are centralized, in effect requiring

that relevant information be globally available.

A configuration of markets that allocates resour-

ces over time defines a market-based scheduling

mechanism. Computational markets of many kinds

have been proposed for a variety of scheduling

domains, including time-shared computer systems

[37], airport time-slot allocation [32], and railroad

track allocation [4].

We focus on the strategic problem faced by an

agent participating in a market-based scheduling

mechanism. We address scheduling in particular

because it represents an intrinsically important class

of problems, and the temporal pattern of available

resources is often significant in problems beyond

scheduling. Moreover, restricting attention to sched-

uling (indeed, a particularly simple version) helps to

focus our investigation and provides some structure

constraining the problem.



1 For example, complements are patently important in the FCC

spectrum allocation problem, yet separate markets were chosen over

a combinatorial auction despite its high stakes and the authority of a

single entity to set the mechanism.
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1.3. Simultaneous auctions

When there are strong interdependencies in agent

preferences for distinct goods, mechanism designers

often recommend that the scope of the allocation

mechanisms be extended to consider the resources

together. One increasingly popular class of mecha-

nisms taking this approach is the combinatorial

auction, where agents submit offers for bundles of

goods, and the auction calculates an allocation based

on some global optimization criterion [9].

However, combinatorial auctions are often not

practical, for example, because of the difficulty of

coordinating the allocations of the various resources,

which may have overlapping yet distinct groups of

potentially interested agents. Regardless of the

reason, it is a simple fact that real-world markets

quite typically operate separately and concurrently

despite significant interactions in preferences or

costs. Thus, the problem of dealing with simulta-

neous markets for related goods is a ubiquitous one,

and although it might seem that the problem can be

alleviated in many cases by widening the scope of

the market, this is not a universally applicable

solution.

Note that, in some cases, allocating multiple

resources through simultaneous auctions is a deliber-

ate design choice, for example (until quite recently),

in the series of FCC spectrum auctions [21]. In some,

it is a result of separate initiation of commonly

operated auctions (e.g., all of the auctions running

concurrently—despite potential interactions—on

eBay), and in many others, a result of completely

separate initiation and operation of markets.

Although most of the literature on auction theory

deals with mechanisms mediating a single resource

[17], some recent work has addressed the issues of

simultaneous auctions for multiple goods. The main

lesson seems to be that simultaneous ascending

auctions tend to work well when there exists a

competitive price equilibrium. A sufficient condition

for competitive equilibrium is that goods are sub-

stitutes [15,3]. This is not altogether surprising given

that substitutability is the standard condition for

stability of the tatonnement protocol [20]. It is also

well-established that simultaneous ascending auctions

can fail miserably whenever there are any comple-

ments [24,13].
Simultaneous auctions are quite common even

when the gross substitutes condition does not hold.1

Thus, an understanding of how agents should behave

when faced with separate markets for complements

would constitute useful knowledge for strategists as

well as mechanism designers.
2. Scheduling problem definition

In the simple scheduling problem, we consider

[43], there are M units (called time slots) of a single

schedulable resource, indexed 1,. . .,M. Each of N

agents has a single job that can be accomplished using

the resource. Agent j’s job requires kj time slots to

complete, and by accomplishing this job, it obtains

some value depending on the time it completes.

Specifically, if j acquires kj time slots by deadline t, it

accrues value vj(t). Deadline values are nonincreas-

ing: tbt V implies vj(t)zvj(t V).
If kj=1 for all j, we call the scheduling problem

single unit. Problems violating this constraint are

multiple unit. If each agent j has a single deadline

[there exists a Tj such that vj(t)=vj(t V)N0 for all t,

t VVTj, and vj(tU)=0 for all TjbtUVM], we call the

problem fixed deadline. If vj(t)Nvj(t V)N0 for some j, t,

t’ (i.e., j accrues greater value for finishing the job

sooner), then we call the problem variable deadline.
3. Ascending auctions

3.1. Mechanism

In the simultaneous ascending auction for sched-

uling, a separate auction is run for each slot. Each

auction can have multiple rounds of bidding. At any

given time, the bid price on slot m is bm, defined to be

the highest bid bj
m made thus far (or zero if there have

been no bids). The ask price for slot m is defined to be

am=bm+e. To be admissible, a bid must satisfy

bj
mzam. If an auction receives multiple admissible



Table 1

A simple problem illustrating the pitfalls of SB (Example 1)

Name Job length Deadline Value

Agent 1 1 2 5

Agent 2 2 2 8
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bids in a given round, it admits the highest (breaking

ties arbitrarily). An auction is quiescent when a round

passes with no new admissible bids.

The auctions proceed concurrently. When all of

them are simultaneously quiescent, the auctions all

close and allocate their respective slots per the last

admitted bids. Because no slot is committed until they

all are, an agent’s bidding strategy on one slot cannot

be contingent on the outcome for another slot.

3.2. Straightforward bidding

In order to analyze the overall market protocol, we

evaluate how the simultaneous auction mechanism

performs when agents pursue particular strategies. We

begin with a baseline strategy called straightforward

bidding (SB).2 A straightforward bidder takes a vector

of perceived prices for the slots as given, and bids

those prices for the bundle of slots that would

maximize the agent’s surplus if it were to win all of

its bids at those prices.

If agent j is assigned a set of slots X, it accrues

value vj(X) based on the best deadline it can achieve:

vj(X)=vj(X(kj)), where X(t). is the tth time slot in X.

Given that it obtains X at prices pY, the agent’s surplus

is its value less the amount paid, r X ; pYð Þ ¼ vj Xð Þ �P
maX pm . When agent j is winning the set of slots

X�1 in the previous bidding round, we define the

current perceived prices to be p̂m=bm for maX�1, and

p̂m=am otherwise. Then, under SB, agent j bids

bj
m=p̂m for maX*, such that X* ¼ argmaxXr X ; p̂p

Y� �
.

3.3. Baseline strategy performance

The straightforward bidding strategy is quite

simple, involving no anticipation of other agents’

strategies. For the single-unit problem, such antici-

pation is unnecessary, as the agent would not wish to

change its bid even after observing what the other

agents did [3]. This is called the no regret property

[14], and means that from the agent’s perspective, no

bidding policy would have been a better response to

the other agents’ bids.
2 We adopt the terminology introduced by Milgrom [24]. The

same strategy concept is also referred to as bmyopic best responseQ,
or bmyopically optimalQ, or even bmyoptimalQ [16].
A single-unit, fixed-deadline problem in which all

agents have the same deadline (M without loss of

generality), is equivalent to a problem in which all

buyers have an inelastic demand for a single unit of a

homogeneous commodity. For this problem, Peters

and Severinov [28] showed that straightforward

bidding is a perfect Bayesian equilibrium. Up to a

discretization error, the allocations from simultaneous

ascending bid auctions are efficient when agents

follow straightforward bidding. We have shown else-

where [43] that the final price vector will differ from

the minimum unique equilibrium price by at most ej,
where jumin(M,N). The value of the allocation,

defined to be the sum of the bidder surpluses, will

differ from the optimal by at most je(1+j). A similar

bound was established by Bertsekas [2] in a more

general setting.

Unfortunately, the very nice properties for straight-

forward bidding in single-unit problems do not carry

over to multiple-unit problems. Indeed, the resulting

price vector can differ from the minimum equilibrium

price vector, and the allocation value can differ from

the optimal, by arbitrarily large amounts [43].

Example 1. There are two agents, with values as

shown in Table 1. The bid increment is e=1.3

One admissible straightforward bidding path leads

to a state in which agent 2 is winning both slots at

prices (4,3). Then, in the next round, agent 1 would

bid b1
2=4. The auction would end at this point, with

agent 1 receiving slot 2 and agent 2 receiving slot 1,

both at a price of 4.

In this example, SB leads to a result with value 5,

whereas the optimal allocation would produce a value

of 8. Adding slots and agents would enable construct-

ing slightly more complex examples, magnifying the

suboptimality to an arbitrary degree.
3 We adopt this unit bid increment and specify integer values

for achieving jobs in all subsequent examples as well.
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4. Alternative bidding strategies

We have seen that straightforward bidding fails to

guarantee high-quality allocations except in highly

restricted problems. It is also quite easy to show that

straightforward bidding is not an equilibrium strategy

in general.

Consider again Example 1. With SB agents, the

mechanism reached quiescence at prices (4,3). How-

ever, it is not rational for agent 2 to stop at this point.

If, for example, it offered b2
2=5, the auction would end

(assuming agent 1 is a straightforward bidder), and

agent 2 would be better off, with a surplus of �1

rather than �4.

It is clear that SB is not a reasonable candidate for

a general strategy in the simultaneous ascending

auction for simple scheduling.

4.1. Equilibrium strategies in the scheduling game

Finding equilibrium strategies for even the rela-

tively simple scheduling problem we have defined is a

daunting task. First, the strategy space is enormous.

An agent’s preferences are described by a job length

plus a potentially different value for each of M

deadlines. Therefore, the space of joint preferences

is (M+1)�N dimensional. The state information that

agents have consists of the price-quote history. When

the bid increment e is small relative to the range of

agent valuations, the number of bidding rounds can be

quite large. Each round will generate an M-vector of

current bid prices
Yb. The strategy space is all

functions mapping the Cartesian product of the space

of preferences and the space of all price-quote

histories into a vector of next-round bids. Finding

an optimal strategy by enumeration will be computa-

tionally infeasible for any nontrivial problem instance

in this class.

We might hope that thoughtful reflection on the

structure of the scheduling problem might lead us to a

workable set of plausible strategies, within which the

search for an optimal strategy would be manageable.

However, our first example above rules out SB as a

candidate, and even a small amount of further

exploration reveals that best-response behavior in

simple examples is highly sensitive to the realizations

of agent preferences, and to the strategies of other

agents.
A desirable approach to search for optimal strat-

egies is to analytically derive them from the optimality

criterion and certain axiomatic restrictions on ration-

ality. Unfortunately, optimal strategies are rarely found

for problems of even moderate complexity, such as

ours. At least one difficulty in interesting schedule

problems that we believe makes analytic derivation of

optimal strategies extremely difficult is the presence of

complementarities in preferences: that is, the value to

an agent for a given slot typically depends on whether

or not the agent acquires one or more other slots. This

presents the agent with the so-called exposure prob-

lem, where, in order to obtain the combination it

prefers, it must expose itself to the risk it will get

caught paying for a far less desirable (in our schedul-

ing problem, completely worthless) subset. Managing

such exposure presents a complex risk assessment and

decision problem, and we have as yet seen no evidence

that a general solution is forthcoming.

Rather than restrict our analyses of scheduling

mechanisms to their performance when agents imple-

ment ad hoc bidding strategies we know are arbitrarily

far from optimal, we propose a method for directed

search to find improved strategies. The idea is not

complicated. In our work to date, we select a set of

candidate strategies, and then evaluate their perform-

ance against each other through a statistical simulation

based on an evolutionary game. Strategies are

assigned population frequencies, and samples of

agents compete against each other. Strategies that

perform relatively well are rewarded with higher

population frequencies. Thus, through what amounts

to a structured Monte Carlo simulation, poor strategies

are weeded out.

We describe our evolutionary game tool in greater

detail in Section 5. First, we illustrate our specification

of the strategy space with a concrete example.

4.2. Variant strategy: bsunk awarenessQ

We showed in Example 1 that in some problems,

agents following a straightforward bidding strategy

may stop bidding prematurely. A bit of reflection

indicates why straightforward bidding is failing in this

situation. In a given round, agents bid on the set of

slots that, at the current ask prices, will maximize their

surplus. If no configuration of slots would yield

positive net surplus, the agent chooses not to bid,
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because the alternative is to earn negative surplus.

However, this behavior ignores outstanding commit-

ments: the agent may already be winning on one or

more slots. If the agent drops out of the bidding, and

others do not bid away the slots the agent already is

winning, then its alternative surplus is not zero, but

negative the sum of bid prices for the slots the agent

wins. Thus, this failure of straightforward bidding is

due to ignoring the true opportunity cost of not

bidding.

We refer to this property of straightforward bidding

as bsunk unawarenessQ. Agents are bidding as if the

incremental cost for slots they are currently winning is

the full price. However, because they are already

committed to purchasing these slots (if another agent

does not raise the bid price), the cost is sunk, and the

incremental cost is zero.

Given this clear failure of straightforward bidding,

we have parameterized a family of strategies to permit

agents to account to a greater or lesser extent for the

true incremental cost for slots they are currently

winning. We call this strategy bsunk awareQ. A sunk-

aware agent bids as if the incremental cost for slots

currently winning is somewhere on the interval of

zero and the current bid price. In Section 6, we report

on our experiments to discover the optimal setting of

the sunk-awareness parameter.

We now formalize the sunk-aware strategy family.

Define agent j’s perceived price for slot m to be kbm if

the agent j is currently winning slot m, and bm+e
otherwise. The sunk-awareness parameter is ka[0,1].

If k=1, the strategy is identical to straightforward

bidding. At k=0, the agent is fully sunk aware,

bidding as if it would retain the slots currently

winning with certainty. Intermediate values are con-

sistent with bidding as if the agent puts an inter-

mediate probability on the likelihood of retaining the

slots it is currently winning.

The sunk-awareness parameter is a reactive adap-

tation to a complex tradeoff: the agent’s bidding

behavior changes after it finds itself exposed to the

underlying problem (owning slots it may not be able

to use). An alternative is predictive adaptation: the

agent uses a model of the underlying problem to

anticipate possible exposure, and adapts its bidding

behavior for the anticipated risk. For example, the

agent might model the probability of winning various

slots, or expectations about the eventual prices.
Entrants in a series of trading agent competitions

explored a variety of bidding strategies that rely on

explicit price predictions [12,36,42]. We have started

to investigate price prediction strategies using our

methodology [19]. The predictive approaches of

which we are aware require more specific knowledge

and more parameters, but offer some compensating

advantages.
5. Searching for restricted equilibria

We explore bidding strategies for our scheduling

market by searching within a small set of candidate

strategies for a Nash equilibrium (with respect to ex

ante expected payoffs), then extending the search to

new strategy sets. To do this, we first convert our

game from extensive to strategic form, by using

Monte Carlo simulation to generate an expected

payoff matrix for every combination of the strategies

playing against each other. Given the expected payoff

matrix, we find Nash equilibria (NE) with one of three

methods: replicator dynamics (an evolutionary tourna-

ment), GAMBIT (a computational game solver), or

Amoeba (a function minimization search algorithm).

In the remainder of this section, we describe each of

these tasks.

5.1. Generating payoff matrices

We have implemented a simulator for the mecha-

nism described in Section 2. We estimate the payoff

matrix for a restricted game, in which agents are

permitted to play only strategies drawn from a

restricted set.

An instance of the restricted game is defined by

! the auction rules (e.g., simultaneous ascending bid;

minimum bid increment e),
! a number of slots M,

! a number of participating agents N,

! the distribution of agent preferences, and

! a finite set S of strategies permitted to agents.

Each strategy is a function that maps agent

preferences plus available auction information to a

set of bids. For our simulations, we construct agents

implementing selected strategies. We calculate the
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expected payoffs with respect to specified distribu-

tions from which agent preferences are drawn. See

Section 6 for specifics on the preference distributions.

As discussed in Section 4.1, the space of strategies

is enormous. In the present work, we explore a very

restricted region of this space. First, we consider only

reflex agents: they consider only information from the

current auction round (prices and which slots the

agent is winning), not from previous rounds. We

further consider only a specific parameterized family

of strategy functions defined on this restricted space

of preferences and information. Our family of strategy

functions is based on SB, generalized in six dimen-

sions: sunk awareness, price monotonicity belief,

price time bias, reluctance, price aggressiveness, and

slot aggressiveness. For the explorations reported in

this paper, we vary only the sunk-awareness param-

eter (k).

With the game parameters and agent strategies

specified, we compute the expected payoff matrix. An

element in the matrix is an N-vector of expected

payoffs associated with a particular strategy profile. A

strategy profile for an N-player game is a list of the

specific strategies that each player follows. For

example, in a five-player game in which two players

play with sunk awareness k=0.5 and the others play

k=1, the profile is {0.5, 0.5, 1, 1, 1}. There is a

distinct element in the payoff matrix for each of the�
N þ jSj � 1

N

�
possible strategy profile combinations,

where |S| is the number of permissible strategies.

To estimate an entry of the expected payoff matrix,

our Monte Carlo simulator repeatedly draws prefer-

ences and assigns them to agents, simulates the

auction protocol for the given strategy profile to

quiescence, and averages the resulting surpluses. Note

that this means that the values used in the payoff

matrix are only estimates. In related work, Walsh et al.

[40] show how to interleave the Monte Carlo

simulation with the Nash equilibrium computation to

concentrate sampling on profiles for which more

accurate payoff estimates will yield better estimates of

the Nash equilibria of the underlying game, allowing

substantial reduction in the number of simulations

needed to estimate a payoff matrix. In this work, we

apply naive uniform sampling of the strategy profiles.

In Section 7, we consider the problem of determining

how sensitive the derived equilibria are on the sample

sizes used to estimate the payoff matrices.
5.2. Evolutionary search for equilibria

In his original exposition of the concept, Nash [25]

suggested an evolutionary interpretation of the Nash

equilibrium. We use the replicator dynamics formal-

ism, introduced by Taylor and Jonker [38] and

Schuster and Sigmund [35]. If the probabilities in a

mixed strategy are cast as proportions of a large

population of agents playing the corresponding pure

strategies, then an agent population that has reached a

fixed point with respect to the replicator dynamics

will be a candidate symmetric mixed strategy Nash

equilibrium. Weibull [41] shows that for two-player,

two-strategy games, fixed points of a broad class of

replicator processes are Nash equilibria if neither

strategy is extinct. For N-player games, the set of

fixed points that are locally asymptotically stable (all

states sufficiently close converge to the same state) are

a subset of the set of Nash equilibria (NE) [10]. A

fixed point (i.e., a stationary state) is a population in

which every pure strategy with more than zero

representatives in the population does as well in

expectation against N�1 strategies drawn randomly

from the population as N strategies drawn randomly

from the population do against each other. In other

words, every pure strategy is doing as well as every

other, given the population proportions.

This definition suggests an iterative (evolutionary)

algorithm for finding an equilibrium in NE. We

choose an initial population proportion for each pure

strategy in the permissible set, and then update them

in successive generations so that strategies that

perform well increase in the population at the expense

of low-performing strategies. The proportion pg(s) of

the population playing strategy s in generation g is

given by

pg sð Þ~pg�1 sð Þ EPs �Wð Þ;

where EPs is the expected payoff for pure strategy s

against N�1 players all playing mixed strategies

according to the population proportions, and W is a

lower bound on payoffs (e.g., the minimum value in

the payoff matrix) which serves as a dampening

factor. To calculate the expected payoff EPs from the

payoff matrix, we average the payoffs for s in the

profiles in which it appears, weighted by the

probabilities of those profiles. The probability of a
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particular profile (n1,. . .,n |s |), where ns is the number

of players playing strategy s, is

N !

n1! . . . nASA!
p 1ð Þn1: : :p jSjð ÞnjSj :

(This is the multinomial coefficient multiplied by the

probability of a profile if order mattered.)

If the population update process reaches a fixed

point, then the final population proportions are a

candidate mixed strategy equilibrium. We verify

directly that the candidate is indeed a static Nash

equilibrium by checking that the evolved strategy is a

best response to itself.4 In all the experiments reported

here, this process indeed reaches a fixed point and

these fixed points always correspond to Nash equi-

libria. However, we have found examples for which

the replicator dynamics do not converge and the

population proportions cycle.

5.3. Solving payoff matrices with GAMBIT

GAMBIT [23] is a tool for solving finite games. It

takes the full matrix representation of a strategic form

game and proceeds by iteratively eliminating strongly

dominated strategies and then applying the simplicial

subdivision algorithm [22] to enumerate all Nash

equilibria.

The problem with using GAMBIT in its current

implementation is that it cannot take advantage of

symmetry in a payoff matrix. This means that the

matrix will consist of |S|N cells.5 The other approaches

described in this section take advantage of a sparse

representation of the payoff matrix that exploits the
4 Friedman [10] has shown in a fairly general setting that a

dynamically stable equilibrium of the evolutionary game is also a

Nash equilibrium of the static game. However, we cannot strictly

rely on this result. First, our numerical results at best identify an

approximate fixed point, with a finite error tolerance (typically

10�10). Second, a fixed point is only a necessary condition for a

Nash equilibrium; sufficiency requires verifying that the fixed point

is Lyapunov stable. There is also a regularity condition for

Friedman’s results—that the dynamics are continuous, not discrete

in time—that we do not satisfy (although Friedman conjectures that

the generalization holds).
5 This computational burden is not trivial. For example, in

many experiments we have run on five-player/five-strategy games,

GAMBIT took hours or sometimes days to find all the Nash

equilibria when it could find them at all.
symmetry and requires only
�
N þ jSj � 1

N

�
cells. For

example, with N=|S|=5, symmetry reduces the number

of distinct profiles to 126, versus 3125 for the full

matrix representation.

5.4. Searching for equilibria with Amoeba

One of the many characterizations of a (symmetric)

Nash equilibrium is as a global minimum of the

following function from mixed strategies to the reals:

f pð Þ ¼
X
saS

max 0; u s; pð Þ � u p; pð Þ½ 	2;

where u(x, p) is the payoff from playing strategy x

against everyone else playing strategy p. The function

f is bounded below by zero and in fact for any

paNE, f( p) is zero. This is because f( p) is positive if

any pure strategy is a strictly better response than p

itself.

We can search for the root of f using the Amoeba

algorithm [30], a procedure for nonlinear function

minimization based on the Nelder–Mead method [26].

For our experiments, we use an adaptation of Amoeba

developed by Walsh et al. [39].

5.5. Replicator dynamics and biased sampling

Based on the observation that estimating the cells

of the payoff matrix is far more compute-intensive

than finding equilibria, we have explored another use

for our evolutionary game simulator: as a biased-

sample approach to generating the expected payoff

matrix. For this method, we do not calculate the

payoff matrix first, then search for equilibria; rather,

we tackle the two simultaneously. We start with an

initial set of population proportions for each pure

strategy. Then, as before, we repeatedly sample from

the preference distribution, iterating our auction

mechanism to quiescence. However, now, strategies

are randomly drawn to participate according to their

population proportions. Then, after a relatively small

number of samples—long before we have confidence

that they are precise estimates of the expected

payoffs—we apply the replicator dynamics using the

realized average payoffs. Then, given the new

population proportions, we iterate, calculating a

sequence of new generations, except that for each

generation we retain the accumulated estimate of
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average payoffs from previous generations, and

calculate a correctly weighted average of the old and

new sample information. The iteration of generations

continues until the population proportions are sta-

tionary with respect to the replicator dynamics.

The above procedure straightforwardly accumu-

lates a statistically precise estimate of the expected

payoff matrix. However, the sampling is biased:

strategies that are more successful (and thus more

highly represented in the population) are sampled

more often. We conjecture that this approach would

be more efficient than uniform sampling, especially

for problems with a large number of permissible

strategies. Because many of them will likely not be

present in a Nash equilibrium—that is, their popula-

tion fractions will converge to zero—extensive

sampling to lower the standard error of the estimated

payoff would be wasteful. However, we have found it

easier to study the dynamics of our experiments when

the full payoff matrix is calculated to high precision

before the replicator dynamics are applied, and for the

relatively small problems we simulate here the

computational cost has been manageable.
6. Experiments in sunk awareness

We have begun our search in strategy space with a

systematic exploration of bidding strategies that vary

on the sunk-awareness parameter (k). We consider

parameter settings in multiples of 1/20 from 0 to 1.

For simplicity of reference, we designate strategies

by an integer from 0 to 20, such that strategy i

refers to the baseline agent with k=i/20. For all of

these experiments, we used the following game

parameters:

! number of slots M=5,

! number of agents N=5 (except in Section 6.4),

! bid increment e =1.

We varied the distributions from which preferences

are drawn. The primary structural distinction we have

explored is with respect to the distributions of job

lengths, k. In the uniform model, job length is

~U[1,M], that is, Pr(k=l)=1/M, la{1,. . .,M}. In the

constant model, kj is fixed at a particular value for all

j (in all of the trials we report, kj=2). Finally, in the
exponential model, we draw job length from an

exponential distribution. Specifically,

Pr k ¼ lð Þ ¼ 2�l l ¼ 1; . . . ;M � 1

2�Mþ1 l ¼ M :

�

In all three of these models, the deadline values for

each slot are initialized as integers ~U[1,50], but then

modified to ensure monotonicity (since the game is

only defined for monotone preferences):

v tð Þpv min iztjv ið ÞVv t � 1ð Þf gð Þ or 0;

t ¼ k þ 1;: : :;M :

In words, iterate through the deadline values and

whenever one violates monotonicity (i.e., exceeds its

predecessor) set it to the earliest later deadline value

that restores monotonicity (i.e., is less than or equal to

its predecessor).

Finally, in Section 6.4, we explore games with

varying number of agents (players) within the

exponential preference model.

6.1. Uniform job length

In Fig. 1, we offer a representation of the payoff

matrix for the restricted game with strategies 18, 19,

20, and uniformly distributed job length. To illustrate,

the first column represents the payoffs for the strategy

profile {18,18,18,18,18}. Each strategy in this profile

receives the same payoff (since each agent is playing

the same strategy and the game is symmetric) of about

1.12. The second column presents the payoffs for

{18,18,18,18,19}. When playing against one k=19/20

agent, the other four k=18/20 agents now do better

than in the all-18 profile, and very slightly better than

the sole k=19/20 agent does in this profile. When one

agent deviates from 18 to 20 (third column), it does

noticeably better and so do the agents playing 18.

In Fig. 2, we show the result of running the payoff

matrix through the replicator dynamics. The popula-

tion evolves to all playing 20 (k=1). This is in fact a

Nash equilibrium as can be seen by noting that the all-

20 profile in the payoff matrix (Fig. 1) scores higher

than any unilateral deviation. In this restricted game,

20 is a dominant strategy (this can be verified, albeit

tediously, by inspecting the payoff matrix), and hence

the only Nash equilibrium.



Fig. 1. Payoff matrix for strategies 18,19,20 with uniform preferences. Each column corresponds to a strategy profile: {18,18,18,18,18} through

{20,20,20,20,20} in lexicographic order. The jth dot within a column represents the mean payoff for the jth strategy in the profile. This payoff

matrix is based on over 45 million games simulated for each of the 21 profiles, requiring weeks of cpu time. The error bars denote 95%

confidence intervals.
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We have confirmed this result with both GAMBIT

and Amoeba. We also find that the replicator

dynamics converges to the unique Nash equilibrium

from various initial population proportions (for

example, see Fig. 3). Note that the strategy k=1

corresponds to straightforward bidding (no sunk

awareness).
Fig. 2. First 14 generations of replicator dynamics for strategies

20ka{18,19,20} in a game with uniform preferences. Strategy 20

quickly takes over the population, hence the evolved equilibrium is

(0,0,1) meaning everyone plays 20 (i.e., k=1).
6.2. Constant job length

It is not the case that k=1 is always a dominant

strategy. This follows immediately from the discus-

sion above (Section 4) for the unrestricted game. Even

when we restrict strategies to straightforward bidding

extended only by the sunk-awareness parameter (k),

we can find environments in which k=1 does not

dominate.

In our experiments with constant job length, we fix

kj=2 for all j, and we consider a slightly larger set of

strategies. In our first run, we consider strategies 16, 17,

18, 19, and 20. We present the evolutionary dynamics

for our estimate of the expected payoff matrix in Fig. 4.

The payoff matrix required 22 million game simu-

lations for each of the 126 strategy profiles. When run

through our replicator dynamics, the system evolves to

{0.745,0.255,0,0,0} which constitutes a mixed strategy

Nash equilibrium. Convergence to this equilibrium is

robust to a variety of different initial population

proportions. Note that in this environment, the baseline

sunk-unaware strategy is not even supported. Instead,

the most sunk-aware (i.e., lowest k) strategies have



Fig. 3. Replicator dynamics for the same game as shown in Fig. 2, but with 100 times fewer 20s in the initial population as 18s or 19s.
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greatest weight in the mixed strategy. GAMBIT reveals

that strategies 19 and 20 are dominated.

We have not successfully verified that this is a

unique equilibrium; GAMBIT (which attempts to find

all equilibria) was not able to find a symmetric

equilibrium for this game after days of cpu time (it did

find one asymmetric equilibrium). Amoeba takes

about 15 min to find this equilibrium.

Given that 16 was the most heavily represented

strategy when the game is restricted to the 16–20

range, it is natural to investigate whether lower values

might perform better still. We tested the above game

with a broader but coarser grid of strategies: 0, 8, 12,

16, and 20. We show the evolutionary dynamics in

Fig. 5 based on a payoff matrix estimated by 8 million
Fig. 4. Replicator dynamics for strategies 20ka{16,. . .,20} in a

game with uniform preferences but a fixed job length of two. The

evolved Nash equilibrium is (0.745, 0.255, 0, 0).
simulations per profile. The evolved Nash equilibrium

is for everyone to play 16. According to GAMBIT,

strategies 0 and 8 are dominated, and everyone

playing 16 is the only Nash equilibrium.

This game stressed two of our solution methods: it

took GAMBIT about a day of runtime to reach its

conclusion. The Amoeba algorithm did not find any

Nash equilibria at all (although it identified a mixed

strategy close to pure strategy 16 as nearly in

equilibrium).

6.3. Exponential job length

Our final variation on the agent preference model

applies exponential preferences. We present the
Fig. 5. Replicator dynamics for strategies 20ka{0,8,12,16,20} in a

game with uniform preferences but fixed job length of two. The

evolved equilibrium is (0, 0, 0, 1, 0)—i.e., everyone play 16.



Fig. 6. Replicator dynamics for strategies 20ka(16,. . .,20} in a

game with exponential preferences. The evolved equilibrium is (0,

1, 0, 0, 0)—i.e., everyone play 17.
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evolutionary dynamics for the strategy set 16–20 in

Fig. 6, which is based on a payoff matrix estimated

from 22 million samples per profile. The system

evolves to {0,1,0,0,0} (i.e., everyone play 17), which

is a Nash equilibrium. This equilibrium is robust to

initial population distribution using our evolutionary

method. Amoeba does not find this equilibrium, but

again identifies a nearby mixed strategy as close.

GAMBIT determined that no strategy was dominated

in this game, and was unable to determine whether the
Fig. 7. Payoff matrix for two-player game with exponential prefer
equilibrium is unique. From this configuration, the

exponential model yields an observed equilibrium

distribution for k intermediate between the uniform

and constant models.

6.4. Varying number of players

The experiments reported above all employ a five-

player game configuration. We have performed further

trials varying the number of agents (N=2, 8, 10),

maintaining the other game parameters as in our

standard setup, with exponentially distributed job

length (Section 6.3). The objective of this variation

was to exercise the methodology on a range of

settings of game shapes, and to identify any system-

atic relation between N and the equilibria we find.

6.4.1. Two agents

With only two players, we can consider a larger set

of candidate strategies. For this experiment, we

investigated 14 strategies, defined by the set 20

ka{0,3,6,8,10,11,. . .,17,18,20}. This yields 105 pro-

files, for each of which we simulated 1.2 million

games to construct the payoff matrix, depicted in Fig.

7. Our replicator dynamics (shown in Fig. 8) finds the
ences and with strategies 20ka{0,3,6,8,10,11,. . .,17,18,20}.



Fig. 8. Replicator dynamics for two-player game with exponential preferences with strategies 20ka{0,3,6,8,10,11,. . .,17,18,20}.

6 In fact, the sample mean follows a t-distribution with n�1

degrees of freedom where n is the sample size. With our sample

sizes in the millions, the t-distribution is indistinguishable from the

normal distribution. In other words, we can safely use the Centra

Limit Theorem’s normal approximation.
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Nash equilibrium in which all agents play 15.

GAMBIT identifies this as one of three equilibria

(all symmetric) for this payoff matrix. All playing 14

is also Nash, as is the mixed strategy of playing 14

with probability 0.514 and 15 otherwise. Only

strategies 14, 15, and 16 survive iterated elimination

of dominated strategies. We see in Fig. 8 that these are

indeed the three most tenacious strategies under our

replication process.

6.4.2. Eight and ten agents

With more than a handful of agents, it is not

generally feasible to create a payoff matrix with more

than a handful of strategies. Our experiments with

eight- and ten-player games employ a pool of four

strategies: 20ka{10,14,17,20}. This yields 165 pro-

files for the eight-player case, for which we simulated

1.5 million games per profile. For the ten-player case,

there are 286 profiles. We simulated 3.9 million

games per profile, which took many cpu-weeks.

The conclusion for both eight and ten players is the

same: k=1 is a dominant strategy. In both cases, the

replicator dynamics show strategy 20 overwhelming

the population within 40 generations. For the eight-

player case, GAMBIT confirms that 20 is dominant

(and therefore also the unique Nash equilibrium). But

for ten players, the raw payoff matrix (i.e., the normal

form without exploiting symmetry) contains 10 million

payoff values. GAMBIT is not able to use the more

compact symmetric representation, and in our installa-

tion, crashes trying to load this game into memory.
6.5. Discussion

In our experiments with exponential preferences,

the equilibrium k value was monotone in the number

of agents, N. This can be explained by observing that

increasing N can ameliorate the exposure problem.

Consider the situation when the prices pass the

threshold at which an agent stops bidding. The

presence of more competing bidders increases the

likelihood that the stopped agent will be let boff the
hookQ for its current winnings by being outbid.

Therefore, it is less compelling for an agent to treat

its current winnings as a sunk cost. In other words, k

should be closer to 1 the more agents there are, which

is what we find here.
7. Sensitivity analysis: robustness to sampling noise

As discussed in Section 5.1, the payoff matrices

used in deriving the above results are estimates based

on sampling. An important question is whether the

equilibria we find are robust or would they change

with further sampling? By the Central Limit Theorem,

the mean of a sample from any distribution approx-

imates a normal distribution, given enough samples.6
l



Fig. 10. Sensitivity analysis for five-player game with uniform

preferences but a fixed job length of two and strategies

20ka{0,8,12,16,20}. Compare to the replicator dynamics for the

maximum likelihood payoff matrix for this game in Fig. 5.
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Therefore, we have a probability distribution for each

of the expected payoffs in the payoff matrix. By

sampling from these distributions independently, we

can generate a new, variant payoff matrix. If many

such variant payoff matrices yield the same equili-

brium results, then we can conclude that we are

insensitive to sampling noise. We expect this to be a

conservative measure of sensitivity because it treats

the errors in the expected payoffs as independent. So

to the extent that the errors are correlated, we expect

this measure will overestimate our sensitivity to

sampling noise. We have in fact observed informally

that our sensitivity analysis tends to report wider

variances in equilibria than there turns out to be after

gathering additional samples.

Several of our results reported above are imper-

vious to sampling noise. This was determined by

performing our equilibrium analysis on several

thousand variants and finding that the equilibrium

never changed. This was the case for the uniform

preferences game reported in Section 6.1 and for the

games with eight and ten players reported in Section

6.4.2. For our other results, we find varying amounts

of sensitivity. Figs. 9–12 illustrate this by showing

cumulative distribution functions for the equilibrium

proportions of each of the strategies. The dotted

vertical lines show the mean proportion for the

corresponding strategy over all the variant payoff

matrices sampled.

For example, we see in Fig. 9 that for the fixed job

length game reported in Section 6.2, the mean

proportion of strategy 16 is identical to the proportion
Fig. 9. Sensitivity analysis for payoff matrix for five-player game

with uniform preferences but a fixed job length of two and strategies

20ka{16,. . .,20}. Compare to the replicator dynamics for the

maximum likelihood payoff matrix for this game in Fig. 4.
found for the maximum likelihood payoff matrix

(using the actual sample means) and it varies

according to a near-perfect normal distribution. We

also see that strategy 18, which died out for the

maximum likelihood payoff matrix, has a 10% chance

of actually holding on to 5% of the population in

equilibrium. Again, note that since this measure is

conservative, the true equilibrium results are actually

more likely to match those reported in Section 6 for

the max-likelihood payoff matrices.

Fig. 12 shows a clear need for more samples before

we can give much credence to the equilibria reported

in Section 6.4.1. However, we have run a smaller two-

player experiment with nine strategies (20ka{0,3,6,8,

10,12,14,17,20}) where 14 was dominant and found
Fig. 11. Sensitivity analysis for payoff matrix for five-player game

with exponential preferences and strategies 20ka{16,. . .,20}.

Compare to the replicator dynamics for the max-likelihood payoff

matrix for this game in Fig. 6.



Fig. 12. Sensitivity analysis for two-player game with exponential

preferences and with strategies 20ka{0,3,6,8,10,11,. . .,17,18,20}.

Strategy 15 is the only one with most of its mass significantly above

zero. In Fig. 8, 15 is the only strategy to survive.
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this result to be perfectly robust to sampling noise.

Therefore, the qualitative conclusions about this game

are not seriously suspect. Nonetheless, we ran an

additional 3 million simulations (per profile) and

found some slight changes: strategy 16 no longer

survives iterated elimination of dominated strategies

and the mixed strategy equilibrium is skewed more

towards strategy 14. There was no change in the pure

strategy equilibria. The sensitivity analysis with the

additional games shows greater robustness to sam-

pling error with the additional samples.
8. Related work: evolutionary search for trading

strategies

Several prior studies have employed evolutionary

techniques for the analysis or derivation of trading

strategies. An early example was an evolutionary

simulation among trading agents submitted to the

Santa Fe Insitute (SFI) Double Auction Tournament

[33].

The SFI Artificial Stock Market [1] has been used

to investigate theories of trading behavior and market

dynamics, incorporating genetic algorithms (GAs) and

other evolutionary mechanisms in versions of the

model. This work is part of a growing literature in

agent-based finance [18], much of which makes use of

evolutionary techniques.

Price [31] demonstrates the use of genetic algo-

rithms (GAs) for a variety of standard industrial

organization games (e.g., Bertrand and Cournot
duopoly). In Price’s approach, the GA serves as an

optimization method, employed to derive a best

response. For instance, his GA model for the duopoly

games comprises populations of strategies for each

producer, each updated separately according to GA

rules. The search is coevolutionary in the sense that

fitness statistics are derived by joint sampling from

the pair of populations.

Cliff [7] applied GAs to evolve improved versions

of his bZIPQ trading strategy for continuous double

auctions. Improvement in his study is defined in terms

of convergence to competitive equilibrium prices, as

opposed to surplus for particular agents. The evolu-

tionary search, therefore, is for a high-performing

homogeneous trading policy, rather than a strategic

equilibrium. In a more recent work, Cliff [8] expanded

the search space to include a market-mechanism

dimension, thus evolving a trading strategy in con-

junction with an auction rule. As above, the GA’s

fitness measure is in terms of aggregate market

performance, rather than individual profit.

Using a coevolutionary approach similar to that of

Price discussed above, Phelps et al. [29] employ

genetic programming to derive strategies for an

electricity trading game studied by Nicolaisen et al.

[27]. They then extend the model to evolve auction

rules in tandem with the trading strategies. Unlike

Cliff, Phelps et al. evaluate fitness of the mechanism

based on aggregate performance, while evolving

trading strategies based on individual performance.

Byde [6] evaluated a parametrized range of auction

mechanisms, essentially equivalent to a one-sided

version of k-double auctions [34]. For each scenario

(auction setting and distribution of private and

common values), he employs the GA to evolve a

trading strategy, and evaluates the average revenue of

the given auction with respect to a population of

traders using that strategy.
9. Best response to SB

The foregoing account of our experiments suggests

that our approach does not escape the curse of

dimensionality: we cannot derive an unrestricted

characterization of equilibrium behavior in the full

strategy space. However, we have shown that focused

simulations can reveal restricted equilibria in selected
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environments, and we continue to work on extending

this method. An approach toward more general

strategy recommendations would be to relax the

restriction on one agent’s strategy selection, while

maintaining a focusing constraint on the others’. This

would not yield an equilibrium result, of course, but it

might establish a best response strategy to some

environment the agent might face. Since prior

researchers have given this strategy substantial atten-

tion, one natural candidate assumption about the other

agents is that they are straightforward bidders. Thus,

we pose the question: What is the best response to

SB? And in particular, can the best response be

usefully characterized as an SB variant? Unfortu-

nately, it does not appear that this is the case, or that

the best response has any simple form, as indicated by

the following examples. These examples demonstrate

that, at least when an agent has strong priors about the

preferences and strategies of other agents, its optimal

behavior can be very far from bstraightforwardQ.

Example 2. Let N=M=2, with bourQ agent requiring
both slots for its job, which has value 250. Suppose

the other agent (by assumption, a straightforward

bidder) has job length 1, and one of the following

deadline/value profiles, known to our agent:

! (100,98) (i.e., value of 100 for slot 1 or 98 for slot

2), or

! (200,170).

Note that our agent will be profitable in the first

case, but not the second.

If our agent in Example 2 bids straightforwardly, it

will eventually reach a point where the prices reach or

exceed the first of the possible profiles of the other

agent’s values. If prices go past these values, then the

agent must either take a significant loss on one of the

slots and stop bidding, or proceed to pay 370 to outbid

the high profile. [If the other agent has the high

profile, then the prices at the threshold point will be

(100,70), so taking the loss of 70 is preferred to going

all out and losing 120.]

A variant on the straightforward bidding strategy,

SBV, would distinguish the two profiles based on

observed prices long before reaching the threshold of

the low profile. If the second agent has the low profile,

it will never bid the price of slot 1 more than two
above the price of slot 2, since the gain in surplus

from winning slot 1 is only two. If it has the high

profile, however, it will bid the price for slot 1 as

much as 30 higher than the price for slot 2. Therefore,

if the other agent is actively bidding and the difference

in prices between the two slots exceeds 2, the other

agent must have the higher profile. By recognizing

this and stopping intelligently when the price of the

first slot reaches 4 or greater, our agent playing SBV
would lose only 1 (what it bid for the second slot).

Example 3. Consider a setup identical to that of

Example 2, except that there is a third agent with job

length 1 and job value of 20 for either deadline.

SBVbehaves qualitatively the same in this example,

except that it would lose 21 rather than 1 in case the

second agent has the high profile. The reason is that

the third agent masks the behavior of the second, by

alternately bidding up the prices for each slot (since

their value is the same to this agent). The second

agent’s profile-dependent behavior is reflected in

prices only when the third agent drops out. By then,

SBVhas offered 21 for slot 2.

A bsmarter than straightforward biddingQ strategy
(SSBV) would avoid this loss by actively bidding in a

way to distinguish the cases earlier. Specifically,

suppose SSBV offers 23 for slot 1 right away. The

response of the straightforward second agent will

immediately reveal whether it has a high or low

profile. If high, it will outbid our agent, which can

then drop out without having lost anything. If low, it

can proceed straightforwardly to win a profitable job.

This reasoning also applies to Example 2, where SSBV
would provide a further slight advantage over SBV.

Example 4. Consider a setup identical to that of

Example 2, except that the (sole) other agent has

possible profiles:

! (150,20), or

! (200,75).

For this example, even SSBVcannot distinguish the

two profiles until the difference in slot prices is at least

125, and moreover, in the high-profile case, it has

offered that much for slot 1 when the other agent

reveals itself by bidding for slot 2. It will then be stuck

with that magnitude of loss.



D.M. Reeves et al. / Decision Support Systems 39 (2005) 67–85 83
We require a bsmarter than smarter than straight-

forwardQ bidder, SSSBV, to realize that what it should

do at this point is outbid the agent on slot 2 (a bid of 4

suffices), causing it to switch back to slot 1. At this

point, our agent stops bidding, and is stuck with the

loss of �4 on slot 2, but this amount is quite small

compared to what it would have lost if it had stopped

with slot 1. Notice that this SSSBV bidder behaves

exactly as a sunk-aware (k=0) SB bidder (see Section

3.2) until the distinguishing information is revealed

about its opponent’s preferences, and then has the

intelligence to drop out (long before an SB bidder

would stop).

Examples 2–4 clearly illustrate the point that even

relatively simple (two-slot) scenarios with one or two

straightforward bidders can call for rather sophisti-

cated bidding strategies in response. In fact, it is easy

to construct scenarios where small distinctions about

time slots in which our agent has no interest (i.e., past

its latest deadline) resolve critical uncertainty with

respect to the slots we do care about. Thus, we tend to

be skeptical that any simple strategy form will capture

general situations where information revelation is

pivotal.

One might object that the foregoing examples,

despite their simplicity, are unrepresentative of realistic

environments precisely because of the way that price

patterns reveal sharp distinctions among valuation

levels. For example, the distributions of deadlines and

their values assumed in the experiments of Section 6

do not have this property. One potentially fruitful

avenue for future work would be to characterize

problem classes based on bdiffuseQ distributions where
information revelation is not a driving factor. It may

well be that variants of SB are reasonable responses to

SB in some natural scheduling environments.
10. Conclusion

The foregoing study illustrates the difficulty of

drawing conclusions about strategy choices in even a

relatively simple simultaneous ascending auction

game. Straightforward bidding is not even approx-

imately optimal, nor are straightforward variants of

same, even in response to other straightforward

bidders. The space of strategies is too large for

analytic methods to be directly fruitful, and exhaustive
simulation studies are out of the question. Analysis

and simulation can produce results for restricted

versions of the game; however, restrictions on the

strategy choices available are inherently somewhat

arbitrary, and results remain sensitive to particular

distributions of agent preferences.

Some may interpret this pessimistic assessment as

further argument that a simultaneous auction design in

the presence of complementarities is untenable, and

propose that combinatorial or other mechanisms of

broader scope be imposed in their stead. We agree that

more coordinated market designs have advantages,

and advocate use of combinatorial auctions or even

direct mechanisms where possible.

Nevertheless, we observe that separation of related

markets is a prevalent situation today, and expect that

it will always be so, since coordinating the allocation

of all significantly related resources in the world

through a single mechanism is simply infeasible.

Thus, despite its difficulty, strategic analysis of games,

such as that studied here, is a necessary task for those

interested in market-based resource allocation.

Although we are still far from achieving a

comprehensive understanding of the market schedul-

ing game, we are hopeful that the techniques

developed here will prove useful tools. Specifically,

through parameterization of a strategy space, sam-

pling-based simulation, and evolutionary search, it is

possible to explore systematically the strategic issues

salient to the simultaneous auction setup, as well as a

variety of similar market games.
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