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Abstract

We consider a multi-agent system for the logistics control of Automatic Guided Vehicles that are used in the dough making process at
an industrial bakery. Here, logistics control refers to constructing robust schedules for transportation jobs. We discuss how alternative
MASdesigns can be developed and compared.Qualitative design guidelines turn out to be insufficient to select the best agent architecture.
Therefore, we also use simulation to support decisionmaking, where we use real-life data from the bakery to evaluate alternative designs.
We show that depending on the degree of dynamism and objectives of the bakery, different architectures are preferred.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years there has been a growing interest in
distributed intelligentmanufacturing due to the necessity of
greater adaptability and flexibility to changes in the market
demand. Agent technology is considered an approach that
holds high promises for developing such systems [5].
Multi-agent systems (MAS) are believed to be particularly
suited for decentralized systems in real-time and dynamic
environments. Because problems are solved locally, these
systems should (1) be able to deal with a high level of
complexity (2) require less information exchange than
central control methods (3) respond fast to unexpected
events and (4) reduce system nervousness compared to
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global optimization (which may lead to completely mod-
ified plans in case of minor information updates). In an
earlier paper [18] we have described the benefits of decen-
tralization and we have compared the performance of a
basic multi-agent system with two central scheduling heu-
ristics. Using a case study on an underground AGV system
around Schiphol Airport Amsterdam, we found that a
properly designed multi-agent system performs as good as
or even better than central scheduling methods.

As multi-agent systems are starting to find their way
from laboratory settings to real-life manufacturing, full
life-cycle methodologies are needed to support MAS
development. Methodologies that have recently been
introduced are built upon concepts from object-oriented
software engineering and artificial intelligence. These
methodologies generally provide guidelines for identifying
agents, their roles, responsibilities and interaction proto-
cols [6]. However, when applying these guidelines, several
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alternative designs for MAS can be derived. Designs may
vary in the roles and responsibilities assigned to agents, the
level of intelligence of the agents (forecasting and learning
behaviour), and the interaction protocols selected. Current
MAS methodologies lack a mechanism to evaluate such
design choices and provide only limited support to the
designer in selecting the preferred design for implementa-
tion. Therefore, we propose to extend current MAS meth-
odologies bymulti-agent discrete event simulations. These
simulations provide insight into the effect of MAS design
choices on system quality aspects such as logistical per-
formance (handling and delivery times), scalability, com-
puting time, communication cost and robustness of the
system.

We demonstrate and test this approach by applying it to
a real-life project; the design and development of a MAS
formanufacturing biscuits at the industrial bakeryMerba in
the Netherlands. Merba produces a wide range of cookies
for the Dutch and international market and is among
Europe's largest producers of American chocolate chip
cookies.

The goal of the project is the automation of the dough
making process. Currently, employees collect ingredi-
ents for dough manually into barrels and move these
barrels between the various processing locations. This
manual process has a negative effect on the labour
conditions, the product quality and the traceability of
ingredients. Product quality problems arise from devia-
tions in rising times of dough and amount of ingredients.
Also, human body contact with the dough is inevitable.
To overcome these problems and to achieve cost
reductions, Merba aims at a fully automated dough pro-
duction process using Automated Guided Vehicles
(AGVs). To achieve a reliable and flexible AGV system,
Merba aims at implementing MAS for scheduling tran-
sportation tasks.

During 2006, we have worked with Merba in im-
plementing this system. In carrying out this project, we
found that current MAS development methodologies aid
in creating various alternative MAS designs, but do not
provide sufficient support to select the preferred design for
implementation. Therefore we applied multi-agent dis-
crete event simulations in addition to the conceptual
design stages proposed in common MAS design meth-
odologies. In this paper we demonstrate and evaluate this
approach. We investigate in what way design choices
effect logistic and system performance. We thus follow a
design science approach [4] in which the artefact (the
MASmethodology) is extended by adding simulation and
evaluated in a field project.

The remainder of this paper is structured as follows. In
the next section we give an overview of related literature.
The Merba setting and the requirements of the project are
described in Section 3. In Section 4 we present our ex-
tensions to current methodologies to design MAS. We
describe the resulting alternative agent-based designs in
Section 5. We present our simulation experiments of the
alternative designs in Section 6, and end up with con-
clusions (Section 7).

2. Literature

Wooldridge and Jennings [31] define an agent as a
computer system that is situated in some environment, and
that is capable of autonomous action in this environment
in order to meet its design objectives. An intelligent agent
is further required to be proactive and social [30].

Agent technology has been used for a vast range of
applications, ranging from e-mail assistants to air traffic
controllers, see [5]. Recently, agent-based control archi-
tectures have been suggested as alternatives to traditional
manufacturing control techniques [16]. One of the earliest
agent-based manufacturing systems, called “yet another
manufacturing system” (YAMS), was developed by
Parunak [20]. He considers a hierarchical production
system in which each node (factory, manufacturing cell,
workstation, and machine) is represented as an agent. Each
agent has a collection of plans and negotiates with lower
level agents to assign production tasks. In a later paper,
Parunak et al. [22] presented AARIA in which the manu-
facturing resources (e.g. people, machines, and parts) are
encapsulated as autonomous agents that are using amixture
of different scheduling techniques. This approach to
represent manufacturing resources by agents is common
in agent-based manufacturing systems. Coordination be-
tween the agents is usually achieved through negotiation or
an auction protocol. For example Lin and Solberg [11]
introduce part agents and resource agents that negotiate
with each other to achieve individual objectives. Maturana
et al. [15] also use resource agents and introduce mediator
agents for coordination between agents. McDonnell et al.
[16] use three classes of agents: part managers, resource
managers and information managers. Coordination is
achieved using an auction protocol to construct complete
plans for part production. In [14] part dispatching decisions
are made by part agents and machine agents. The proposed
approach is effective and reactive to severe disturbances
and changes in the manufacturing environment. Shen and
Norrie [24] present an approach that combines mediation
and bidding mechanisms for agent-based dynamic manu-
facturing scheduling. For more references on agent-based
systems in the manufacturing area we refer to [5,21,23].

Most papers on agent-based control of AGV systems
focus on routing [2,27] and the MAS architecture [3,7].
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Only a few papers have appeared on planning and sched-
uling decisions in agent-based AGV control. An early
application can be found in [17] where intelligent AGV
agents bid for transportation of loads. Also closely related
is the decentralized architecture of Liu [12] for the co-
ordinated control of AGVs. They compare their approach
with a centralized approach and conclude that their system
provides higher utilization and is more robust to fluctua-
tions in processing times. Boucke et al. [1] propose a
negotiation protocol for flexible and decentralized al-
location of transportation tasks. This approach consists of a
continuous negotiation protocol where the allocation of
tasks is continuously reconsidered until the task is actually
started. Lau et al. [8] describe AGV control for material
handling in an automated warehouse. They present a self-
organizing distributed system where schedules for trans-
portation tasks arise from interactions between the AGVs.

We observe for both manufacturing and transportation
systems that (i) the majority of research on agent-based
planning and control focuses on the development of generic
architectures/frameworks, (ii) usually only a single archi-
tecture is given without any quantitative selection from
alternative designs (iii) case oriented research is often
limited to a conceptual description, in combination with
simulation based on artificial data rather than real-life data.

The contributions of our paper are (i) to show that
qualitative arguments and modelling guidelines in current
MAS methodologies are insufficient to select a single
“best” architecture for MAS (ii) to show how simulation
can be used to help in this selection process (iii) to evaluate
this approach by applying it in a real world setting.

3. Requirements for the agent system

Before presenting the requirements for the agent system
it is important to make a distinction between the scientific
and practical interest of this research. Our scientific
interest, and hence the goal of this paper, is to provide
insight into the MAS design choices, and to develop a
decision support tool (in this case simulation) in order to
evaluate the impact of these design choices on the system
quality aspects as mentioned in the introduction. Our
practical interest is related to the case study at Merba
bakeries for the automation of the dough making process.
In this paper, this case study serves as an illustration to
support our research objectives. For this purpose it is not
required to provide a full case description with all kind of
details on the dough making process.

To come up with an AGV control system we first
established the system requirements by performing
interviews with the management of the bakery. The
main requirement is a flexible production system that (i)
can easily be adjusted to new product introductions or
modifications in the bakery layout, and (ii) can react in
real-time on process uncertainties like equipment fail-
ures, product quality problems and the arrival of rush
jobs. For example, if the quality of a (part of a) batch is
insufficient, additional dough has to be prepared,
leading to insertion of new jobs in the dough preparation
schedule. Because of the first issue, the management
decided to use AGVs rather than pipelines for the tran-
sportation of dough ingredients (as is common in in-
dustrial bakeries). Because of the second issue, the
management prefers a multi-agent system for the lo-
gistic control of the AGVs.

Themain requirement for the AGV system is that both,
the movements of AGVs and the control of AGVs are
flexible. Although the specific details are beyond the
scope of this paper, we mention a few. For details on
different AGV systems we refer to [10].

With respect to the AGV movements we can think of
(1) wireless guidance (i.e., laser or inertial), (2) automatic
battery charging or automatic battery swaps, and (3) a
flexible guide path. These guide paths should provide the
AGVs enough freedom to drop their load at different
locations (here locations are not always fixed points but
rather areas in the factory). Here we can think of free-
rangingAGVs (whichmeans that their preferred tracks are
software programmed and can be changed relatively
easily) and unidirectional conventional (networked) guide
paths [10]. Decisions regarding battery management and
guide paths may have an impact on the availability of
AGVs, and hence on the planning and scheduling de-
cisions within our multi-agent system. Here we assume
that this impact can be expressed indirectly through the
travel times between different object in the factory. These
travel times are input of our simulation environment.
Besides, given the factory layout (Fig. 1) and the estimated
number of AGVs (b10), congestion is not likely to occur.

With respect to the control of AGVswe require that the
routing decisions as well as the planning decisions are
taken by the vehicles themselves. This requires close
cooperation with the vendors of AGVs and of the AGV
control system. Luckily there is an increased interest
among these companies in so-called smart vehicles and
distributed control systems. A recent example can be
found in [28], where a Belgian manufacturer of AGVs,
EgeminN.V., in cooperation with the AgentWise research
group, did a pilot project with agent controlled AGVs.

From the requirements mentioned above we designed
several multi-agent systems. We discussed these alter-
native designs, together with our modelling assumptions,
with themanagement of the bakery. To evaluate the design
alternatives, we implemented a prototype in a simulation
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environment and collected the input data for this ex-
periment at the bakery. We provided these alternatives
together with the simulation results to the bakery man-
agement in order to make the final decision. In the next
subsections, we describe the dough preparation process at
the industrial bakery, our model of the physical process
with our basic assumptions, and the decisions involved in
planning and control.

3.1. Process description

The production process at this bakery consists of three
phases (1) preparation of dough (2) baking of cookies and
(3) packing and storage. Our focus is on the first phase, the
preparation of dough. Dough is produced in barrels that
are essentially the same. AGVs transport the barrels be-
tween the various locations in the dough preparation
process, see Fig. 1.

The process always starts with a dough production
request generated by theManufacturing Execution System
(MES). Each dough request is restricted by an earliest- and
latest delivery time of the dough at the production line. The
timing of dough requests depends on the day planning and
the packing department where cookies undergo a quality
check.

First, we have to find a suitable barrel for the dough
request. This can be a barrel that has been used before for a
similar dough type, or a barrel that has been used for an
incompatible dough type which has been cleaned at a
special cleaning area. An AGV picks up the barrel and
moves it towards a storage area consisting of three silos.
Each silo may contain multiple ingredients and the silos
have to be visited in a fixed order (displayed by S1–S2–S3
in Fig. 1). TheAGVpositions its barrel below these silos to
collect the ingredients. The time spent at each silo is the
same for all dough types. Next, the AGVmoves the barrel
to amixer. A single uniquemixer is assigned to each dough
type, but a mixer may process multiple dough types.
During mixing, also new ingredients might be added to the
dough such as decoration or ingredients that may only be
added just before finishing mixing (like chocolate chips).
After mixing the ingredients, the dough has to rise before it
can be put into the oven.Once the rising time has passed, an
AGV moves the barrel to the production line. Each dough
type is assigned to a single production line, but each
production line may process multiple dough types. There
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are no setup times for switching between dough types. At
the production line, the barrel is emptied in a feeder. This
feeder slowly delivers the dough to a conveyer belt moving
through the oven. Because a feeder can storemore than one
barrel of dough, dough can be delivered some time before it
is actually needed, that is, before the earliest delivery time.
The empty barrelwill stay on theAGVorwill be dropped at
the barrel storage area.

The rising time plays an important role in planning and
control of the dough preparation process. Rising starts
when ingredients are mixed and stops when the dough is
used at the production line. That is, rising continues if the
dough is being transported by an AGV and while it is
waiting in the feeder. However, each dough type has a
minimum rising time at the rising area. Therefore, an
AGV always waits at the rising area until the minimum
rising time has passed, even if this leads to a violation of
the latest delivery time. For each dough type, a best rising
time is specified. The product quality depends on the
deviation between the actual rising time and the best rising
time. A key problem for the planning and control system
is to balance product quality (deviation from the best
rising time) and tardiness (w.r.t. the latest delivery time).

3.2. Model

Planning of the dough preparation process consists of
scheduling all transportation jobs. To describe this inmore
detail, we discuss in this section (1) generating dough
requests (2) translating dough requests to transport jobs
(3) the overall goal function of the planning problem and
(4) the model assumptions.

3.2.1. Generating dough requests
As mentioned in Section 3.1, dough requests are

generated by the Manufacturing Execution System. We
assume that dough requests arrive one by one according to
some stochastic process (e.g. a Poisson process). Each
dough request has the size of a single barrel and is char-
acterized by a certain dough type and time-window restric-
tions. Each dough type has a uniquemixer, production line,
minimum- and best rising time. The time-window of a
dough request consist of an earliest- and latest delivery
time. The earliest delivery time is the time a line expects it
can start processing the dough. If dough is delivered before
this time, it has to wait in the feeder. Delivery after the latest
delivery time is penalized.

3.2.2. Translating dough requests to transport jobs
From the process description in Section 3.1, we can

distinguish five job types for the AGVs: (i) silos–mixer
(ii) mixer–rising area (iii) rising area–production line (iv)
production line–barrel storage area (v) barrel storage area–
silos. At each location, an AGV may drop the barrel in
order to carry out other transportation jobs during pro-
cessing times for e.g. collecting ingredients and rising.
However, it is not always practical to drop the barrel,
because (a) dropping and picking up the barrel takes time
and may cause waiting time for an AGVafter processing is
finished (b) the AGV is needed during several processing
steps for technical reasons (i.e., an AGV is needed to move
the barrel from one silo to the other when collecting
ingredients so that the barrel cannot be dropped at the silos).
For these reasons, the management decided that an AGVis
not allowed to drop the barrel at the silos, the mixer and the
production lines. As a consequence, we only have two job
types for the AGVs: a preparation job (barrel storage area–
silos–mixer–rising area) and a delivery job (rising area–
production line–barrel storage area). A preparation jobmay
be scheduled immediately after release of a dough request,
even if the corresponding line has already released other
jobs that are not yet delivered. We decided to postpone
releasing the delivery job until the corresponding doughhas
been delivered at the rising area, because (1) the earliest-
and best delivery time of the delivery job is dependent on
the uncertain delivery time of the dough at the rising area
and (2) rising times provide enough flexibility to schedule
the delivery job. Whenever an AGV delivers dough at the
rising area, it informs the corresponding line about the
actual delivery time so that it can release the delivery job.

3.2.3. Goal function
The overall goal is to minimize costs based on two costs

drivers, deviation from the best rising time and tardiness
with respect to the latest delivery time. We normalize the
penalties for deviation in rising time to 1 per time unit. We
use the relative costs α for 1 minute tardiness compared to
one minute deviation from the optimal rising time. The
management of the bakery can influence the planning by
manipulating α as the relative importance of tardiness
compared to deviation from the best rising time (timeliness
versus product quality). Note that these penalty functions
can easily be extended towards non-linear functions. Dis-
advantage of this is that it will be less intuitive to the
managers.

3.2.4. Model assumptions
Throughout this paper we make the following

assumptions:

1. Although all travel- and processing times may be
stochastic; we assume that their means are known.Only
the mean waiting times have to be estimated by the
agents themselves.
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2. We do not explicitly include traffic congestion in our
model, but we can correct for traffic delays by adjusting
the effective AGV speed.

3. All dough requests have to be handled, even if they
are late.

4. An AGV can park at any location when it is idle.
5. We omit the processing times of dough at the

production lines from our model. By using externally
generated time windows we ignore possible interde-
pendencies between subsequent dough deliveries at the
same line with limited capacity.

6. We omit batteries from our model. We assume that
recharging or swapping batteries takes place during
the idle times of AGVs.

7. We omit cleaning of barrels for ease of presentation.
We assume that whenever an AGV delivers dough at
the production line, it drops the empty barrel at the
barrel storage area. For each new dough request, there
is a clean barrel available at the barrel storage area.

3.3. Planning and control

Themain functionality the AGV system should perform
is to assign all transport jobs (preparation and delivery jobs)
to AGVs and to schedule these jobs. To do so, we have to
reckon with (1) the minimal and best rising time of dough
and (2) limited capacity (and therefore waiting times) at the
silos and mixers. Because we decompose our system into
multiple agents, the main goal of the bakery has to be
achieved by individual agents with individual goals. Here
we face two difficulties (1) we have to deal with multiple
criteria and (2) goals of individual agents may differ from
the main goal (or might even be conflicting). To deal with
multiple criteria we introduced the relative costs α. An
example of divergence in goals is that minimizing the costs
of one dough delivery may have a negative effect on the
costs for the next dough delivery. An AGVwith the goal to
minimize the tardiness and deviation from best rising times
might incorporate extra waiting for a preparation job such
that the expected rising time equals the best rising time.
Because scheduling jobs has an impact on the future
availability of AGVs, it might be the case that future jobs
are delivered late. Therefore we enable the individual
agents to value their capacity. In the next section we de-
scribe alternative agent architectures to support the allo-
cation and scheduling decisions.

4. Alternative designs for the agent system

According to Luck et al. [13], a suitable methodology
for analyzing, designing and building multi-agent
systems is a key factor to introduce agent-orientation
as an engineering approach to the industry. Three well
known methodologies are Prometheus [19], Gaia [32]
and MaSE [29]. Roughly speaking each of these three
methodologies consists of the following steps:

1. Decomposition of the system intomultiple functionalities.
2. Allocation of functionalities to agents.
3. Establishing interaction protocols between the agents.
4. Designing the decision making capabilities of the

agents.

The terminology may vary, but the approaches have
many similarities. The first step is usually achieved by
listing all system goals and grouping related goals. These
related goals, together with related data, triggers and ac-
tions, form functionalities. The main task here for the
system designer is to decide among alternative decom-
positions. In the second step it is decided how these func-
tionalities are allocated to agents. In the third step, we face
several design choices such as the sequence of steps in an
interaction protocol. In the last phase we have to design
protocols for internal processing of the individual agents.
This involves the way they react on triggers and incoming
messages. In our approach, we call the first three steps the
architectural design phase and the last step the detailed
design phase. The architectural design phase is generally
supported by Agent Oriented Methodologies. For the
Detailed Design Phase, support is currently lacking, es-
pecially to quantify the quality of the design. Therefore we
apply simulation as a design technique to support this
phase.

Although our proposed method is independent of the
specific agent design methodology used, we select the
Prometheus methodology and the Prometheus Design
Tool. It is a practical, rather complete and easy to un-
derstand methodology that especially provides support to
our design choices in the architectural phase, which we
describe below. The detailed design phase is described in
Section 5.

4.1. Architectural design phase

4.1.1. Decomposition of functionalities (step 1)
The main goal of the bakery, balancing the deviation

from best rising times and tardiness (Section 3.3), has to be
decomposed into multiple functionalities, which can be
assigned to different agents. A functionality describes a
behaviour, consisting of decisions and actions, together
with relevant triggers and data [19]. Here we focus on the
decisions and ignore physical actions (drive, pickup etc)
which are obvious. First, we create a network of connected
goals, see [19]. The main design choice here is to group
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these goals. To select reasonable groupings we use the
standard software engineering criteria of coupling and
cohesion. Coupling is the level of interdependency be-
tween functionalities, while cohesion is the level of uni-
formity of the goals in a functionality. After evaluation of
different groupings we end up with three functionalities:
AGV selection, dough preparation management, and
dough delivery management. AGV selection is concerned
with the selection of AGVswaiting in a queue before a silo
or mixer. The last two functionalities are concerned with
the allocation and scheduling of respectively preparation
jobs and delivery jobs.

4.1.2. Allocation of functionalities to agents (step 2)
Next we have to allocate the functionalities to agents,

which represent physical objects in the bakery. We have
the following objects: AGVs, lines, silos and mixers.
Besides an AGVagent and a line agent, we use a storage
agent that combines the silos and mixers because an AGV
will always visit a mixer directly after visiting the silos.

To assign functionalities to these agents we look at data
and triggers. Functionalities may be triggered by actions of
physical objects within the factory, which then form can-
didates for these functionalities. We also evaluate the data
used and produced by different functionalities. This of
course requires an iterative approach, because at this point
we can only guess where information is located and which
information is necessary for decision making. Functional-
ities that share the same data source form candidates for
allocation to the same agent because it requires less infor-
mation exchange.

The AGV selection functionality has as triggers the
arrival of an AGVat a silo or mixer, and finishing loading
ingredients or mixing. Therefore we allocate this function-
ality to the storage agent. For the dough preparation and
dough delivery functionalities, we decide to investigate
allocation to either the line agent or the AGVagent. If we
allocate these functionalities to the line agent it will search
for an AGV based on its triggers (e.g. it receives a dough
request, or dough has been delivered at the rising area). If
we allocate these functionalities to the AGVagent, then it
will search for a job at all lines based on its triggers (e.g. it
becomes idle). We choose to evaluate both allocations
using simulation. In the remainder of the paper we refer to
the case where these functionalities are assigned to the line
agent by line centric (LC) and the case where they are
allocated to the AGVagent by AGV centric (AC).

4.1.3. Interaction between agents (step 3)
Having allocated functionalities to agents, we now

have to specify how agents exchange information in order
to perform their given functionalities. Again we use
Prometheus by building scenarios, interaction diagrams
and protocols, see [19]. Main difficulty is to establish
suitable interaction sequences that describe (1) which
agents communicate with which other agents and (2) the
timing of communication. Given the different agent- and
message types, we might end up with a large number of
possible interaction sequences. Therefore we propose a
stepwise approach. First we focus on the order in which
agents are involved in an interaction sequence, which we
indicate by a communication sequence. From this we
derive communication schemes that describe who com-
municates with whom. Next we make a selection of
suitable communication schemes. Finally we specify
communication by describing the communication proto-
cols. This results in several agent architectures which we
evaluate using simulation.

We illustrate this approach only for the dough pre-
paration management functionality. The interaction se-
quences for the other two functionalities are obvious
because they require only two agent types.

4.1.3.1. Communication sequences. The initiator of a
communication sequence is given by the agent that is
responsible for the functionality under consideration.
Given the two allocations of the previous section (LC
andAC) and the three agents (AGV, line, storage) involved
in the dough preparation management functionality, we
have 4 possible sequences. However we also have an
option to discard some agents in the decisions processes.
We decided also to consider communication sequences
without the storage agent, which result in 2 additional
sequences (1 for each allocation).

4.1.3.2. Communication schemes. An overview of all
possible communication schemes for the dough pre-
paration functionality is given in Fig. 2. The initiator
(agent at the first row) always communicates with the
second agent in the sequence. The third agent however
can be contacted either by the first or by the second
agent. Each of these schemes provides a rough sketch
of a possible protocol. Consider for example the 6th
scheme: based on its triggers, the line agent is triggered
by a dough request and generates a preparation job. The
line agent contacts the AGVagents for offers to process
this job. To generate an offer, each AGV has to decide
when the job should be started. Therefore, they com-
municate with the storage agent about available capacity
at the silos and at the mixer.

4.1.3.3. Selection of communication schemes. In prin-
ciple, each scheme from Fig. 2 could be implemented.
However, we select a few schemes for our numerical



Fig. 2. Communication schemes.
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experiments using qualitative arguments. We may con-
sider (1) the scarceness of resources in the communication
sequences and (2) required information exchange in the
communication schemes. The scarceness of resources is
not unambiguous here because in a dynamic environment,
such as the bakery, it may occur that at different moments,
different resources will be the bottleneck. Therefore we
focus on the expected information exchange. As a guide-
line regarding the information exchangewe avoid schemes
which require more information exchange while decisions
are based on the same information.

Basically, the dough preparation management func-
tionality should support the following decision: which
AGV should do which preparation job at what time. The
three agents involved in this decision process have the
following information that might support this decision.
The line agent has knowledge about dough requests and
dough deliveries. TheAGVagent has knowledge about its
availability and expectedwaiting times. The storage agent
has knowledge about AGV arrivals. For both allocations
(LC and AC) we select one communication scheme with
three agent types using the following 2 observations:

1. If the first agent in a scheme communicates with the
other two agents, it is required that the second agent
provides all necessary information to the first agent.
Otherwise, the first agent has to provide all necessary
information to the second agent. In the AGV centric
schemes, an AGVagent only informs the other players
about its idle status. So, schemesAC2 andAC4 require
more information exchange than schemes AC1 and
AC3 respectively. In the line centric schemes, AGVs
may have schedules withmultiple jobs, and the storage
agentmay have a schedulewithmultipleAGVarrivals.
Because the line agents inform the other players only
about a single job, schemes LC2 and LC4 require more
information exchange than schemes LC1 and LC3
respectively.

2. Communication with the line agent in the AGV centric
schemes always involves communication with all line
agents (because we want to find the most suitable job
for a specific AGV), and communication with the
AGVagent in the line centric schemes always involves
communication with all AGVagents (becausewewant
to find the most suitable AGV for a specific job).
Therefore it requires less information exchange if the
storage agent is used as second agent instead of third.
So we skip schemes AC1 and LC1.

After applying these guidelines we end up with
schemes AC3, AC5, LC3 and LC5. Note that we only
skipped schemes for which there is an alternative that
requires less communication in order to make decisions
based on exactly the same information. Therefore, this
choice does not affect the logistics performance. However,
it has an impact on the responsibilities and decision
making capabilities of the agents. In schemes AC3 and
LC3, the storage agent plays a more central role compared
to the skipped schemes. A possible disadvantage, we did
not take into account, is that these schemes have a single
point of failure.

4.1.3.4. Agent architectures. Next, we have to specify
the communication protocols to be applied to the re-
maining communication schemes. The most common
protocol between agents in both real applications and
detailed simulations is the Contract-Net Protocol (CNP)
[20]. The CNP, introduced by Smith [26], is a high level
negotiation protocol for achieving efficient cooperation.
This protocol consists of four steps: (1) an initiator sends a



Fig. 3. AGV centric architecture AC3.
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call for proposals to a set of participants (2) the participants
respond with a proposal (3) the initiator chooses the best
proposal and awards a contract to the respective participant
(4) the other participants are rejected. We use the CNP to
support the dough preparation management and dough
delivery management functionalities. For the AGV
selection functionality we simply use a FCFS strategy,
that is, the storage agent simply selects the AGV that
arrived first in a queue.

Given the remaining communication schemes we
derive four architectures. Here, an architecture consists
of a description of how agents react on triggers and
exchange information with other agents. In the agent
centric architectures (AC3 & AC5), the job allocation
process is triggered by an AGV that becomes idle. Then it
might occur that a line receives a dough request while all
AGVs are idle. In this case the dough will never be al-
located to an AGV. Therefore, we also trigger an arbitrary
idle AGV, if there is one, whenever a new job arrives.

In AC3 (Fig. 3), the AGV informs the storage agent
about its position whenever it becomes idle. In return, the
storage agent sends a request to all lines to submit their job
characteristics. After receiving the job characteristics, the
storage agent selects the most suitable job, informs the
corresponding line agent about the expected delivery time
of this job, and informs the AGVagent where to move to
and when.

In AC5 (Fig. 4), the AGV sends a request to all lines to
submit their job characteristics. After receiving the job
characteristics, the AGV agent selects the most suitable
job and informs the corresponding line agent about the
expected delivery time of this job.

In the line centric architectures (LC3 & LC5),
preparation jobs are triggered by a line agent who receives
a dough request. Delivery jobs are triggered when cor-
responding dough has been delivered to the rising area. In
Fig. 4. AGV centric ar
LC3 (Fig. 5), the line agent informs the storage agent about
a new job. The storage agent sends a request to all AGVs.
After receiving the requested information from all AGVs,
the storage agent selects themost suitableAGVand informs
both, the line agent and AGVagent.

In LC5 (Fig. 6), the line agent sends the job char-
acteristics to all AGVs. Each AGV selects the best time to
start this job and calculates a price. The line agent simply
selects theAGVwith lowest price and informs thewinning
AGV.

The decision making capabilities of the agents
(illustrated by the white squares in the figures above)
are described in Section 5.

4.2. Summary of the architectural design phase

In the architectural design phase we go from a main
system goal through a sequence of the following steps:
(1) decomposition into functionalities (2) allocation of
functionalities to agents (3) establishing interaction
protocols between the agents. The last step is achieved
by (i) determining communication sequences for all
allocations, (ii) determining communication schemes for
each sequence and (iii) determining interaction protocols
for all communication lines in each scheme.

This design approach enables us to avoid overlooking
promising architectures. However, when there are a lot of
resources (with corresponding agents), the number of
possible schemes may become very large. In our case we
have 12 schemes for the dough preparation management
functionality and 2 schemes for the dough delivery man-
agement functionality. Suppose we also incorporate the
cleaning process of barrels. Then we have an additional
functionality called barrel management and a cleaning
agent. The total number of possible schemes is then 168.
By going through a stepwise approach we are able to limit
chitecture AC5.



Fig. 5. Line centric architecture LC3.
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the number of possibilities in a structured manner. In our
case we end up with 4 architectures.

5. Detailed design (step 4)

In this section we describe the following decision
making capabilities that are required in the four al-
ternative architectures: create jobs (5.1), evaluate jobs
(5.3), evaluate AGVs (5.4), schedule arrivals (5.5),
schedule jobs (5.6), and price jobs (5.7). In addition, we
introduce a waiting strategy (5.2) that is required for
scheduling and job evaluation, and end with a section on
how agents estimate parameters (5.8).

5.1. Create jobs

As mentioned before, a dough request leads to a
preparation job and a delivery job for the AGVs. The
characteristics of these two jobs are determined from the
characteristics of the dough request. We characterize a
dough requests i by a dough type ti, a release time ai, a
production line pi, and an earliest- and latest delivery time
at the production line denoted respectively by ei and li.
The dough type uniquely describes the following
characteristics of a dough request i: a minimum rising
time rmin,i, a best rising time rbest,i, and a mixer mi. For
notational convenience we subtract the travel time from
themixer to the rising area from the rising time. The rising
time therefore starts upon delivery at the rising area and
ends at the time the line start working on this dough.

When a line receives a dough request at time ai,
it creates a preparation job with the following charac-
teristics: a production line pi, a mixer mi and a best-
and latest delivery time at the rising area, respectively
Fig. 6. Line centric ar
denoted by bi
p, li

p. For the best delivery time we use
bi
p=max(ai,ei− rbest,i) because we want to deliver this

job as early as possible such that there is more flexibility
for the corresponding delivery job. For the latest
delivery time we use li

p= li− rbest,i because delivery
after this time will certainly result in penalties for the
corresponding delivery job. When a line receives a
message, at time d, that dough has been delivered at the
rising area, it creates a delivery job for this dough. This
delivery job i is characterized by a production line pi
and an earliest-, best-, and latest delivery time of the
dough at the production line, respectively denoted by
ei
d, bi

d, li. The earliest delivery time is given by ei
d=di+

rmin,i+τi, where τi is the travel time between the rising
area and the production line of job i. The best delivery
time is given by bi

d=min(di+ rbest,i,li).

5.2. Waiting strategy

To describe the waiting strategy we introduce a best
starting time of a job. The best starting time of a
preparation job provides the best time to start loading
the ingredients at the first silo. The best starting time of a
delivery job provides the best time to pickup the dough at
the rising area. To derive the best starting time, agents have
to be able to make a trade-off between loss of capacity
(waiting) and the direct costs caused by deviation from the
best rising time or tardiness w.r.t. the latest delivery time.
Therefore we introduce a cost factor β for the value of
AGV capacity per unit time (see Section 5.8 for estimation
of this parameter). If (β≥1), then the costs for waiting are
higher than the expected costs for deviation in rising times.
The best starting time of a preparation job is given by the
earliest arrival time of the AGV at the first silo. The best
chitecture LC5.
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starting time of a delivery job is given by the maximum of
the earliest pickup time (delivery time plus minimum
rising time) and earliest arrival time of the AGV at the
rising area. Otherwise, if (βb1), then it is better to wait if
this results in less deviation from the best delivery time.
The best starting time of a preparation job is given by the
maximumof the earliest arrival time of theAGVat the first
silo, and the best delivery time bi

pminus the expected time
between loading the ingredients at the first silo and the
time to drop the barrel at the rising area. The best starting
time of a delivery job is given by the maximum of the
earliest arrival time of the AGVat the rising area, and the
best delivery time bi

d minus the travel time τi from the
rising area to the production line.

5.3. Evaluate jobs

Job evaluation is used in the agent centric architec-
tures to determine the job which should be handled first.
Therefore we determine a priority value of each job.
This value should reflect the priority of a job and the
waiting time of an AGV doing this job. The total
handling time is not a valid selection criterion because
delivery jobs have shorter handling times than prepara-
tion jobs but may be equally important.

As input we need the job characteristics of a job i,
and the expected earliest delivery times zj for an AGV j
to deliver these jobs. In AC3, jobs are evaluated by the
storage agent. To calculate the earliest delivery time of
an AGV, the storage agent receives the current location
of the AGV and the costs β. In AC5, jobs are evaluated
by an AGVagent. To calculate the earliest delivery time,
the AGV agent estimates the waiting times before
loading- and mixing ingredients. The priority value vij
for an AGV j doing a job i, is a measure of the distances
between the best- and latest delivery times, and the
earliest possible expected delivery time zj. If the earliest
delivery time zj is later than the best delivery time bi

p,
we add the difference to the priority value because other
AGVs will do the job with even more penalties. If the
earliest delivery time zj is earlier than the best delivery
time, then we subtract the difference because another
AGV may do this job better at a later moment. The same
holds for the difference between the earliest delivery
time and the latest delivery time. If waiting is required
due to minimum- or best rising time constraints, we
subtract the value of waiting given by β times the
waiting time. We have the following:

vij ¼ zj � bpi
� �þ a zj � lpi

� �� bd max 0; bpi � zj
� �

preparation job
zj � bdi
� �þ a zj � li

� �� bd max 0; bdi � zj
� �

delivery job

�

ð1Þ
After calculation of all priority values, the job with
highest priority will be selected.

5.4. Evaluate AGVs

AGVevaluation is used in LC3 to determine the AGV
that should handle a specific job. We use the same ap-
proach as for job evaluation. As input we need the ex-
pected delivery times of all AGVs and the job
characteristics of the job. To calculate the earliest delivery
time of a delivery job, the storage agent receives the
earliest arrival time at the rising area from all AGVagents.
To calculate the earliest delivery time of a preparation job,
the storage agent receives the earliest arrival time at the
first mixer from all AGVagents. The AGV j with highest
priority value vij for a specific job i is selected.

5.5. Schedule arrivals

In AC3 & LC3, the storage agent maintains a schedule
of AGV arrivals. This schedule consists of the following
AGV handling records:

[AGV, Earliest arrival time, Scheduled starting time,
Mixer, Arrival at mixer,Waiting time at mixer, Departure
time, Best departure time, Latest departure time].

Initially these times are random variables. For simpli-
city of the planning, we decide to use the expectations only.
These expected times are updated at three events (1)
whenever an AGV starts loading ingredients at the silos,
(2) when an AGV leaves the mixer and (3) when a new
AGVarrival is scheduled.When an AGV leaves the mixer
the corresponding record will be deleted. Whenever the
storage agent or AGV agent decides about a scheduled
starting time, the storage agent adds a record to his sched-
ule and updates the times of all records. When scheduled
starting times of other AGVs are changed, they are only
communicated toAGVagents at themoment they schedule
a new job (earlier is not necessary).

The AGV arrival schedule has two purposes, earliest
arrival scheduling and best arrival scheduling. Earliest
arrival scheduling is used by the storage agent in AC3 to
calculate the earliest delivery time of a preparation job.
Best arrival scheduling is used in architectures AC3 &
LC3 to schedule the starting times of AGVs such that the
expected penalties are minimized. For both purposes, the
storage agent needs to know the earliest arrival time of the
AGV, the costs β, and the best-, and latest departure times
from the mixers. The only distinction between the two
purposes is that in case of earliest arrival scheduling, we
set the best departure time equal to the earliest departure
time (based on the earliest arrival time and zero waiting
times at the silos and mixers).
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The storage agent will schedule a new AGVarrival as
close as possible to the best departure time, moving some
jobs earlier (without violating the earliest arrival time
restrictions) andmoving other jobs forward. Therefore the
storage agent evaluates the following situations: (1) for
each insertion position after the first job the new arrival is
scheduled directly after the previous arrival (possibly
moving further jobs forward) and (2) for each insertion
position before the last arrival, the new arrival is sched-
uled as close as possible before the next job (moving
earlier jobs backwards and possibly moving further jobs
forward if preceding arrivals cannot be moved further
backwards and (3) the delivery time of the new job is
scheduled as close as possible to the best delivery time
while moving the other arrivals.

If the current AGVarrival schedule contains n arrivals,
thenwe have 2n+1 possible insertion positions of the new
AGV arrival. The alternative schedule with lowest costs
will become the temporal schedule. In case of earliest
arrival scheduling, the temporal schedule is only used to
provide the earliest departure times for different jobs. In
case of best arrival scheduling, the storage agent replaces
the current schedule with the temporal schedule derived
for the most suitable job or AGV.

5.6. Schedule jobs

In AC3, an AGV has only one job at a time. The
storage agent determines the best starting time for this job
(Section 5.2), calculates the loading- and mixing times in
case of a preparation job, and informs the AGV where to
be at what time. Also in AC5, an AGV has one job at a
time. This time the AGV determines the best starting time
for a job (Section 5.2). Because, loading- and mixing
times are not communicated with the storage agent, the
AGV agents estimate the expected waiting times at the
first silo and the mixer. The expected waiting time is
subtracted from the best starting time.

In LC3, an AGV schedule may contain multiple jobs.
Each time a new job arrives, the AGVadds this job to the
end of its schedule and determines the best starting time for
this job (Section 5.2). The waiting times at the silos and
mixers are calculated by the storage agent whomaintains a
schedule of AGVarrivals. Also in LC5, an AGV schedule
may contain multiple jobs. Again, AGVs may use a
scheduling method, denoted by append scheduling, where
new jobs are always added to the end of the schedule.
However, this time it hasmore freedom to schedule its own
jobs because they are not communicated with the storage
agent. Therefore we also consider an insertion scheduling
method where a new job can be inserted at any position in
the current schedulewithout altering the order of other jobs
(like we did in the previous section with the AGVarrival
schedule). For a given order of jobs, AGVs calculate the
best starting times (Section 5.2). Because loading- and
mixing times are not communicatedwith the storage agent,
AGVs estimate the waiting times at the first silo and the
mixers, and subtract these times from the best starting
times. AGVs may update their schedule at the following
moments: arrival at some destination (line, silos, mixer,
rising area), finishing an action (pickup barrel, drop barrel,
loading, mixing), during bid calculation, and after re-
ceiving a grant.

5.7. Price jobs

In LC5, AGVs have to price jobs and provide this price
to the line agent. This price is given by the marginal costs
of appending or inserting a new job in the current
schedule. Depending on the schedulingmethod, the AGV
agent can schedule a new job at different positions in the
current schedule. We indicate the current schedule byΨ⁎

and wewriteΨn for schedule alternative n, where the new
job is inserted after job n (1≤n≤ |Ψ⁎|). For each insertion
position we also have to schedule the optimal starting
times of all jobs. For example, suppose the new job is
added directly after delivery of the last job in the current
schedule and the new job is delivered after its due time,
then we might remove unnecessary waiting times for the
previous jobs. Therefore we solve a simple linear program
for each alternative schedule (see Appendix A).

The total cost of a schedule Ψ is denoted by V(Ψ).
The bid price of a vehicle is given by the difference in
costs between the cheapest alternative schedule and the
current schedule:

P ¼ min
n

V Wnð Þ � V W⁎ð Þ ð2Þ

The value of a schedule is given by the sum of the
deviations in best delivery times, α times the total lateness
and β times all waiting-, travel- and handling times
(a formal expression can be found in the Appendix A).

5.8. Parameter estimation

To perform their tasks, AGV agents have to estimate
some parameters. In all architectures they estimate the
costs β per unit time. In AC5 and LC5, they also estimate
the waiting times before loading and mixing ingredients.

To estimate the variables, we use an exponential
smoothing procedure [25] where a learning rate γ is
introduced as a weighting factor that determines the extent
to which the current observation is to influence an ex-
pected value of an internal parameter. The meaning of the



Table 1
Dough request characteristics

Line TBJ Look-ahead
li−ai

Min rising time Best rising time Mixer

L1 30 50 15 20 M1
L2 60 50 15 20 M1
L3 15 70 20 30 M2
L4 30 70 30 52 M3
L5 30 70 30 52 M4
L6 30 70 30 52 M5
L7 15 70 30 52 M5
L8 30 70 30 45 M6
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learning rate in this procedure is that when γ is close to
one, the new forecast will be based almost exclusively on
the last observation. Conversely, when γ is close to zero,
the new forecast will be similar to the previous one.

The waiting times are updated after each visit at the
first silo or mixer. The value of β is calculated by the AGV
agent-based on the average penalties paid per time unit.
The logic behind this is that if we wait an extra time unit,
this AGV will be available one time unit less, which
possibly results in one time unit of extra penalties. We use
the exponential smoothing procedure to incorporate
fluctuations in the average penalties. To avoid unstable
behaviour we smooth the penalties per period instead of
penalties per job.

6. Simulation

The goal of this simulation study is twofold: (1) to find
out which agent architecture can be used best at the bakery
and (2) to demonstrate the impact of design choices on the
system performance under different parameter settings.
Hence, this simulation acts as a decision support tool for
the management of Merba to select the best architecture.

To design a valid simulation model we follow the
approach of [9]. Basically this consists of (1) collection of
high-quality input data, (2) regular interaction with the
managers, (3) keeping record of the assumptions and
discussing them with the management, (4) validation of
the output. Comparison of the simulation model with the
existing situation is not a valid approach here because (1)
there are large differences between the current situation
and the proposed automated dough production process and
(2) there is a lack of performance data of the current
manual processes. As an alternative we compared the
outcomes of our simulation with the expectations from the
management of Merba. These expectations are based on
spreadsheet calculations using the same input data.

In this section we subsequently describe our fixed sim-
ulation settings, the experimental factors and the results.

6.1. Simulation settings

The bakery produces over 100 dough types. For ease
of presentation, we aggregated these dough types into
one fictive dough type per production line based on
historical data of all dough requests. These virtual dough
characteristics are given in Table 1. Here TBJ is the
average time between subsequent job arrivals. All times
are given in minutes.

Production runs 5 days per week, 24 h per day. Every
week, production starts Monday morning at 4:00 hour.
The last batch is released to the dough preparation process
on Saturday morning at 4:00. Because the system starts
and ends empty each week, we have a terminating
simulation. We consider one week as a replication for our
simulation experiments. We assume that the release of
dough requests follows a Poisson process with mean time
between jobs per production line as given in Table 1.
These figures have been derived from historical data on
peak days of the bakery.

All AGVs have a constant speed of 1 m/s. For sim-
plicity, we assume that AGVs always travel in a straight
line (shortest distance) from one object to another. We add
half a minute to all movements to incorporate the time it
takes for an AGV to turn. The time to pickup or drop a
barrel is 30 s and the loading time for ingredients is 2 min
per silo. The time for mixing is 11.9 min at mixer 1,
11.6 min at mixer 2 and 5.3 min at the other mixers. The
distances between all objects can be calculated from Fig. 1.
For all experiments we use 7 AGVs, a penalty factor
α=10, and a smoothing factor γ=0.05. The number of
AGVs is chosen such that all dough requests can be
handled (not necessarily in time). In our simulation ex-
periments we have seen that the choice for the penalty- and
smoothing factor does not affect the relative performance
of the alternative architectures. As overall performance
measures we use (i) the penalty costs for job tardiness and
deviation between actual and best rising time, (ii) number
of communication messages, and (iii) the computation
time. The number of communicationmessages provides an
indication of the network load. The computation time is
measured per job assignment, taking into account parallel
computation. We implemented the agent architectures in
the object-oriented simulation package eM-Plant and
performed experiments on a Pentium IV processor
3.4 GHz. All performance measures are calculated as
weekly averages. We choose the number of replications
(weeks) needed in our simulation experiments such, that a
95% confidence interval for the total costs per work week
shows a relative error of at most 5%. We found that 10
replications are sufficient for all scenarios.



Table 2
Experimental factors

Factor Values

Architecture AC3/AC5/LC3/LC5
Scheduling in LC5 Append (LC5a)/Insert (LC5i)
Stochasticity (%) 0/8/16/24/32/40/48
Fraction TBJ 0.90/0.95/1.00/1.05/1.10/1.15/1.20
Fraction handling times 1.00/1.08/1.16/1.24/1.32/1.40/1.48
Fraction look-ahead 0.8/0.9/1.0/1.1/1.2/1.3/1.4

Fig. 8. Varying look-ahead.
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6.2. Experimental factors

The experimental factors can be found in Table 2. We
evaluate the 4 different agent architectures, and for
architecture LC5we consider the two schedulingmethods.
The stochasticity describes the uniform deviation around
the mean handling- and travel times. So a deviation of 20
will result in handling- and travel times between 0.9 and
1.1 of the normal value. We include this factor to examine
the impact of uncertainty because of possible congestion
effects (which architecture and planning method is most
robust?). Next, we consider three fractions that describe
the deviation from the standard settings (Section 6.1).
These factors will be examined one at a time.

The fraction TBJ provides the fraction of the mean
time between subsequent job arrivals compared to the
default values as given in Section 6.1. The fraction
handling times describe the increase in handling time for
silo 1 compared to the default value from Section 6.1. The
handling times of the other two silos is decreased by half
of this amount such that the total handling time at the
storage department will be the same. In our case, a value
of 1.4 means a handling time of 2 min and 48 s at silo 1
and 1 min and 36 s at the other silos. We use this factor to
investigate the effects of longer queues at the storage
department. The fraction look-ahead is a multiplication
factor for the look-ahead values from Table 1.
Fig. 7. Varying time between orders.
6.3. Results

In the first 4 experiments, we examine the performance
of the different architectures in terms of penalties on
tardiness and deviation from the best rising time.

In the first experiment we vary the time between jobs
(Fig. 7). We see that architectures LC3 and LC5a, where
new jobs are added to the end of AGV schedules, are less
robust against increasing number of jobs. Architecture
LC5i performs best in most situations. However with
decreasing number of jobs, the AGV centric architectures
may become in favour. In the second experiment, we vary
the look-ahead of jobs (Fig. 8). We see a similar behaviour
in which the AGV centric architectures are better with
increasing look-ahead. The reason for this is that increasing
look-ahead leads to longer schedules which may result in
less flexibility. This is especially true in case of append
scheduling, where also rush jobs have to be added at the
end of the schedule. With decreasing look-ahead, the time
becomes too short for AGVs to delivery the jobs on time.

In a third experiment, we investigate the effect of
uncertainty in the handling- and travel times (Fig. 9). As
expected, penalties increase with increasing uncertainly
Fig. 9. Varying deviation.



Fig. 10. Varying handling times. Fig. 12. Computation time.
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for all architectures. We see that with increasing un-
certainty, scheduling the AGV arrivals becomes less
useful. In a fourth experiment, we investigate the effects
of congestion at silo 1 (Fig. 10). We see the performance
of architecture AC3 remains the same with increasing
congestion, while the costs of all other architectures
increase. We also see that with increasing congestion, it
becomes more useful the scheduling the loading- and
mixing times (AC3 & LC3).

Next, we consider the number of communication mes-
sages and computation time as performance indicators. In
the fifth experiment, we vary the time between jobs and
investigate the number of communication messages of the
different architectures (Fig. 11). Note that the number of
communication messages is the same for both scheduling
methods in architecture LC5. We see (1) the number of
messages decreases with decreasing number of jobs,
(2) communication with the storage agent (LC3 & AC3)
requires much more communication because loading- and
mixing times have to be communicated for every job with
every schedule update, and (3) the line centric architec-
tures require themost amount of communication. In a sixth
and final experimentwe show the impact of a varying time
Fig. 11. Communication messages.
between jobs on the computation time (seconds) in Fig. 12.
The results are obvious: (1) scheduling loading- and
mixing times, increases the computation time and (2) the
computation time for all architectures decreases with
increasing time between jobs. Note that computation time
is measured based on a parallel implementation. For
architectures AC3 and AC5 this does not make a
difference because we have sequential decision processes.
However, in architectures LC5a and LC5i, most computa-
tion is done in parallel by all AGVs when they try to
schedule a new job received by a line agent.

We conclude that architecture LC5i perform best in
almost all situations, although it requires an intermediate
amount of communication and computation time. How-
ever, the AGV centric architectures come in favour in case
of (1) decreasing number of jobs, or (2) increasing look-
ahead or (3) increasing congestion at the silos.

The data used for the experiments described above is
based on real factory data in which we changed one factor
at a time.We did not use a full factorial design because this
would be beyond the scope of this paper. However, we
also examined the effect of several other experimental
factors. We found that for each architecture, there exists at
least one instance in which it performs best. For example,
if the minimum rising times of dough are very small, the
timewindows are very tight, andwe havemore congestion
at the silos, the architecture LC3 performs best.

7. Conclusions

During our field project at Merba bakeries, we found
that current MAS development methodologies do not
provide sufficient support to select the preferred design for
implementation. The scientific contribution of this paper is
to provide insight in these design choices and to improve
current MAS development methodologies to offer
enhanced support in cases where multiple alternative
decision and communication scenarios exist. Scenarios
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vary in roles and responsibilities assigned to the agents, the
level of intelligence of the agents, and the interaction
protocols. Thus, our results are not restricted to the agent-
based control of AGVs. In a wide range of MAS
application areas where different actors and roles collabo-
rate, such method support will be beneficial. Also the
proposed multi-agent system itself provides insights that
can be generalized to other situations. Especially regarding
the way agents balance different delivery criteria in the
scheduling of jobs.

To illustrate the design process, we considered a
simplified part of the dough production process at Merba
bakeries. By using a stepwise approach, built upon existing
MAS development methodologies, we already derived
eight alternative designs for this part only. By using qual-
itative arguments, we were able to reduce this to four
alternative designs. In order to select the preferred design
for implementation we used multi-agent discrete event
simulation.

This simulation gave us insight into the effect of our
MAS design choices on the system performance in terms
of delivery punctuality, product quality, robustness,
amount of communication, and computation time of
the different agents. It is shown by our simulation study,
that qualitative arguments are not sufficient because each
alternative design has its own advantages. A practical
way of dealing with these results is to use a combination
of different control mechanisms. Suppose for example
that we are using the line centric architecture LC5i.
Whenever we observe increasing congestion, we might
temporarily switch to an AGV centric architecture. This
adaptability of the system design is part of our future
research. In addition, we want to investigate the impact
of MAS design choices on a broad class of performance
indicators such as flexibility, scalability, adaptability and
extensibility.
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Appendix A

Formally, we define an AGV schedule Ψ by an
ordered list of 3-tuples (i,spti,sdti) where i refers to a
specific job, spti to the scheduled pickup time, and sdti
to the scheduled delivery time of this job. We write
τ(desti,orii + 1) for an empty move from the destination
of job i to the origin of the next job. The value of a
schedule is given by the deviations from the best rising
times plus α times the tardiness plus β times the total
time:

Va Wð Þ ¼ b sdtjWj � h
� �

þ
XjWj

i¼1

jsdti � bpi j þ a � max 0; sdti � lpið Þ preparation job

jsdti � bdi j þ a � max 0; sdti � lið Þ delivery job

�

ð3Þ
We introduce the symbol θ to indicate the current time.
The scheduled delivery time is given by sdti=spti+h(i),
where h(i) is the handling time of job i. In case of a
preparation job, this handling time is given by the ex-
pected time between picking up a barrel at the storage area
and dropping the barrel at the rising area, including ex-
pectedwaiting times at the silos and themixer. In case of a
delivery job, the handling time is given by the time be-
tween picking up a barrel at the rising area dropping it at
the line. The pickup times are scheduled such that they
minimize the total costs of the schedule:

min
spti;i¼2::jWj

Va Wð Þ
s:t:
sptizei for all delivery jobs
sptizspti�1 þ h i� 1ð Þ þ s desti�1; oriið Þ for iz2

ð4Þ

We assume that the scheduled times of the first job (which
may be in execution) may not be changed.

References

[1] N. Boucke, D. Weyns, T. Holvoet, K. Mertens, Decentralized
allocation of tasks with delayed commencement, Second European
Workshop on Multiagent Systems, EUMAS, Barcelona, Spain,
2004.

[2] E. Frazzoli, L. Pallottino, V.G. Scordio, A. Bicchi, Decentralized
cooperative conflict resolution for multiple nonholonomic
vehicles, AIAA Conf. on Guidance, Navigation, and Control,
San Francisco, CA, 2005.

[3] S.S.Heragu, R.J. Graves, B.Kim,A.S.Onge, Intelligent agent-based
framework formanufacturing systems control, IEEETransactions on
Systems, Man, and Cybernetics 32 (5) (2002) 560–573.

[4] A.R. Hevner, S.T. March, J. Park, S. Ram, Design science in
information systems research, MIS Quarterly 28 (1) (2004)
75–105.

[5] M.J. Jennings, K. Sycara, M. Wooldridge, A roadmap of agent
research and development, Autonomous Agents andMulti-Agent
Systems 1 (1) (1998) 7–38.

[6] W. Jiao, J. Debenham, B. Henderson-Sellers, Organizational
models and interaction patterns for use in the analysis and design
of multi-agent systems,Web Intelligence andAgent Systems 3 (2)
(2005) 67–83.

[7] B. Kim, R.J. Graves, S.S. Heragu, A.S. Onge, Intelligent agent
based modeling of an industrial warehouse problem, IIE
Transactions 34 (7) (2002) 601–612.

[8] H.Y.K. Lau, V.W.K. Wong, I.S.K. Lee, Immunity-based
autonomous guided vehicles control, IOS Press, 2003.



999M. Mes et al. / Decision Support Systems 44 (2008) 983–999
[9] A.M. Law, D.M. Kelton, Simulation Modeling and Analysis,
McGraw–Hill Higher Education, 1999.

[10] T. Le-Anh, M.B.M.d. Koster, A review of design and control of
automated guided vehicle systems, European Journal of Opera-
tional Research 171 (2006) 1–23.

[11] Y.J. Lin, J. Solberg, Integrated shop floor control using
autonomous agents, IIE Transactions 24 (3) (1992) 57–71.

[12] S. Liu, W.A. Gruver, D.B. Kotak, Holonic coordination and
control of an automated guided vehicle system, Integrated
Computer-Aided Engineering 9 (3) (2002) 235–250.

[13] M. Luck, P. McBurney, C. Preist, Agent Technology— Enabling
Next Generation Computing: A Roadmap for Agent Based
Computing, 2003.

[14] B. Maione, D. Naso, Evolutionary adaptation of dispatching
agents in heterarchical manufacturing systems, International
Journal of Production Research 39 (7) (2001) 1481–1503.

[15] F.Maturana,W. Shen, D.H. Norrie,Metamorph: an adaptive agent-
based architecture for intelligent manufacturing, International
Journal of Production Research 37 (10) (1999) 2159–2173.

[16] P. McDonnell, G. Smith, S. Joshi, S.R.T. Kumara, A cascading
auction protocol as a framework for integrating process planning
and heterarchical shop floor control, International Journal of
Flexible Manufacturing Systems 11 (1999) 37–62.

[17] J.F. McElroy, L.M. Stephens, R.D. Bonnell, J. Gorman,
Communication and cooperation in a distributed automatic
guided vehicle system, Proceedings of the IEEE Southeastcon
'89, 1989, pp. 999–1003.

[18] M.R.K. Mes, M.C. van der Heijden, A. van Harten, Comparison
of agent-based scheduling to look-ahead heuristics for real-time
transportation problems, European Journal of Operational
Research 181 (1) (2007) 59–75.

[19] L. Padgham, M. Winikoff, Developing Intelligent Agent
Systems: A Practical Guide, John Wiley and Sons Ltd, 2004.

[20] H.V.D. Parunak, Manufacturing experience with the contract net,
in: M.N. Huhns (Ed.), Distributed artificial intelligence, Pitman,
London, UK, 1987, pp. 285–310.

[21] H.V.D. Parunak, Industrial and practical applications of agent-
based systems, in: G. Weiss (Ed.), Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence, MIT
Press, Cambridge, 1998, pp. 377–424.

[22] H.V.D. Parunak, A.D. Baker, S.J. Clark, The AARIA agent
architecture: from manufacturing requirements to agent-based
system design, Integrated Computer-Aided Engineering 8 (1)
(2001) 45–58.

[23] W. Shen, D.H. Norrie, Agent-based systems for intelligent
manufacturing: a state-of-the-art survey, Knowledge and Infor-
mation Systems, an International Journal 1 (2) (1999) 129–156.

[24] W. Shen, D.H. Norrie, Dynamic manufacturing scheduling using
both functional and resource related agents, Integrated Computer-
Aided Engineering 8 (1) (2001) 17–30.

[25] E.A. Silver, D.F. Pyke, R. Peterson, Inventory management and
production planning and scheduling, Wiley, New York, 1998.

[26] R. Smith, The contract net protocol: a high level negotiation
protocol for distributed problem solving, IEEE Transactions on
Computers 29 (1980).
[27] A. Wallace, Application of AI to AGV control — agent control
of AGVs, International Journal of Production Research 39 (4)
(2001) 709–726.

[28] D. Weyns, K. Schelfthout, T. Holvoet, T. Lefever, Decentralized
control of E'GV transportation systems, in: M.P.a.D.S.a.S.G.
Thompson (Ed.), Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems,
ACM, The Netherlands, 2005.

[29] M.F. Wood, S.A. DeLoach, An overview of the multiagent
systems engineering methodology, The First International Work-
shop on Agent-Oriented Software Engineering (AOSE-2000),
2000, pp. 207–222.

[30] M. Wooldridge, MultiAgent Systems, Jonn Wiley & Sons, Ltd,
2002.

[31] M. Wooldridge, N.R. Jennings, Agent theories, architectures, and
languages: a survey, Proceedings of the ECAI-94 Workshop on
Agent Theories, Architectures, and Languages, Amsterdam, The
Netherlands, 1995, pp. 1–39.

[32] M. Wooldridge, N.R. Jennings, D. Kinny, The Gaia methodology
for agent-oriented analysis and design, Autonomous Agents and
Multi-Agent Systems 3 (3) (2000) 285–312.

Martijn Mes is a PhD student at the School of Management and
Governance at the University of Twente, The Netherlands. He obtained
his Master's degree at the Faculty of Electrical Engineering,
Mathematics and Computer Science. His research interests lie at the
intersection of operations management, economics, and computer
science and include multi-agent systems, transportation procurement
auctions, behavioural issues in freight transport, pricing in freight
transport, dynamic vehicle routing problems, AGV routing, and
simulation.

Matthieu van der Heijden is associate professor in Operations
Research and Logistics at the University of Twente. He holds a masters
degree in econometrics and a PhD in Economics, both from the Free
University in Amsterdam. He has been working as consultant in
operations research and statistics at CQM, Philips Electronics from
1986 to 1994 and as senior researcher in logistics at TNO from 1999 to
2000. His current research interests include supply chain management,
logistics agents networks, and spare parts logistics.

Jos van Hillegersberg is a professor of the Department of Information
Systems and Change Management, School of Management and
Governance at the University of Twente. Before joining this
University, he was on the faculty of the Rotterdam School of
Management at the Erasmus University for 15 years, working on
component based software systems, IT management, global out-
sourcing and agent systems for supply chains. He also worked for
several years in business. At AEGON he was component manager for
the setup of an Internet Bank. He worked at IBM on artificial
intelligence and expert systems. He is currently running several
projects on improving collaboration in business networks using
innovative ICT such as agent technology.


	Design choices for agent-based control of AGVs in the dough making process
	Introduction
	Literature
	Requirements for the agent system
	Process description
	Model
	Generating dough requests
	Translating dough requests to transport jobs
	Goal function
	Model assumptions

	Planning and control

	Alternative designs for the agent system
	Architectural design phase
	Decomposition of functionalities (step 1)
	Allocation of functionalities to agents (step 2)
	Interaction between agents (step 3)
	Communication sequences
	Communication schemes
	Selection of communication schemes
	Agent architectures


	Summary of the architectural design phase

	Detailed design (step 4)
	Create jobs
	Waiting strategy
	Evaluate jobs
	Evaluate AGVs
	Schedule arrivals
	Schedule jobs
	Price jobs
	Parameter estimation

	Simulation
	Simulation settings
	Experimental factors
	Results

	Conclusions
	Acknowledgements
	app1
	References


