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This dissertation focuses on online search as a measure of consumer interest. Internet 

use is at an all-time high in the United States, and according to the Pew Internet & 

American Life Project, 91% of Internet users use search engines to find information. 

Consumers’ choices of search terms are not well understood.  However, we argue that 

people will focus their searches on terms that are of interest to them.  As such, data on 

the search terms used can provide valuable measures and indicators of consumer 

interest in a market.  This can be particularly valuable to managers in search of tools 

to gauge potential product interest in a new product launch.  In this research, we 

develop a model of pre-launch search activity.  We find search term usage to follow 

rather predictable patterns in the pre-launch and post-launch periods.  As such, we 

extend our pre-launch search model to link pre-release search behavior to release-

week sales – providing a very valuable forecasting tool.  We illustrate this approach 

in the context of motion pictures.  Our modeling framework links search activity to 



  

sales and incorporates product characteristics.  Our results indicate consistent patterns 

of search over time and systematic relationships between search volume, sales, and 

product attributes.  We extend our model by studying the role of advertising.  This 

allows us to better understand the relationship between advertising and online search 

activity and also allows us to compare the forecasting performances of each of the 

two approaches.  We find that search data offers significant forecasting power in 

opening-weekend box-office revenues.  We further find that advertising, combined 

with search data, offers improved forecasting ability.  
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Chapter 1: Introduction 

 

With the advent of the Internet, consumers are able to search for information 

about virtually anything with the click of a button, often in the comfort of their own 

homes.  The Internet has dramatically lowered the cost of information search, and 

there has been much work done on this (e.g. Brynjolfsson and Smith, 2000; 

Ratchford, Lee, and Talukdar, 2003; Johnson et al, 2004).  According to recent 

research, search engine use is a major activity of people who use the Internet, and 

data on terms that are searched for can be easily obtained.  This data is often collected 

for search engine advertising purposes.  It can also have several other useful 

applications that have not received much attention in the marketing literature.  Of 

particular interest is its use as a measure of word-of-mouth, buzz, effect of 

advertising, etc – or overall consumer interest. 

Both Internet use and search engine use are becoming increasingly common in 

the United States.  Internet penetration in the United States has hit an all-time high 

with 73% of adults reporting Internet use and 65% of users reporting daily use 

(PEW/Internet, 2006).  Of the Internet users, 91% report using a search engine to find 

information.  This activity is second out of all Internet activities, with using the 

Internet to send or read e-mail as the most common online activity (PEW/Internet, 

2006).  Thus, it is clear that both Internet use and search engine use have become a 

major part of adult life in the United States.  The percentage of American Internet 

users who say “the Internet has greatly improved the way they pursue hobbies and 

interests” has increased to 33% from 20% in 2001 (PEW/Internet, 2006).  A detailed 
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report on search engine users finds that Internet users have positive online search 

experiences.  In general, search engine users are confident and successful in their 

searching experiences and feel that search engines are an unbiased source of 

information (PEW/Internet, 2005).  The same report finds that the most common 

search terms are related to “pop culture, news events, trends, and seasonal topics” 

(PEW/Internet, 2005).  The entertainment or recreation category was sixth in terms of 

number of online queries in 2002 (PEW/Internet, 2005).  Thus, it is reasonable to 

believe that many consumers search for new product information online using a 

search engine. 

The search literature has differentiated between consumer search for product 

information when (1) they seek knowledge on specific attributes of products and (2) 

they seek knowledge on how a particular product compares relative to others in a 

given product category (e.g. Urbany, Dickson, and Wilkie, 1989; Moorthy, 

Ratchford, and Talukdar, 1997).  Prior work suggests that consumers will still benefit 

from search if they have knowledge on the offerings of a product but are uncertain 

about how that product stands relative to others when making a choice.  In the case of 

new products, it is very likely that consumers are uncertain about choice of a product 

relative to others, since they have no prior experience with the product.  Thus, 

consumer information search for a new product is likely to take place. 

In our context, the search we focus on is search term volume, or the number of 

times particular terms are submitted to online search engines.  Given the 

characteristics of search terms and search engine use that are mentioned earlier, we 

argue that this measure can capture interest in current trends in pop culture, and new 
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products.  In other words, the terms that consumers choose to submit to search 

engines indicate their interest or concern for specific topics or products (Ettredge, 

Gerdes, and Karuga, 2005), and the overall volume of the terms can indicate the 

general level of interest.  Therefore, we propose the use of this measure to predict 

product sales. 

The research objective of this dissertation is to introduce a new measure of 

consumer interest and evaluate the predictive power of this measure in new product 

sales forecasting.  We aim to answer two questions:  (1) Is search term volume a good 

measure of consumer interest? and (2) Does this measure offer good forecasting 

power?  To the best of our knowledge, we are the first to consider search term volume 

as a marketing metric.  While several recent research studies in marketing have 

examined various sources of online word-of-mouth, including online conversations, 

reviews, opinion platforms, etc, (e.g. Dellarocas, 2003; Godes and Mayzlin, 2004) we 

propose a measure that offers several advantages. 

A major advantage of search term data is that one is able to search for a 

product prior to its launch.  Thus, the measure can be obtained during a product’s pre-

launch phase, allowing for pre-launch forecasting, a task that managers have long 

struggled with.  Search engine use is also a more prevalent online activity than 

participation in newsgroup conversations, writing online reviews, or blogging.  

Therefore, search engine data is more likely to be representative of the general online 

population.  Search term volume also does not require analysis of content or great 

amounts of data cleaning or coding, making it an attractive measure for managers to 

work with.  It can also be collected or obtained with ease and little cost.  Changes in 
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search term volume over time also allow for examination of trends or patterns in 

consumer interest.  Thus, we argue that search term volume offers several advantages 

to many online measures that have recently been used in new product sales 

forecasting. 

We illustrate our framework by forecasting motion picture box office 

revenues using online search term activity.  Motion pictures are experiential products 

that have high levels of pre-launch marketing and heavily publicized launch dates.  

They are common topics of word-of-mouth or everyday conversation.  The Internet 

offers many sources of information on motion pictures during both the pre-launch and 

post-launch periods.  Other product categories that often share similar characteristics 

are music, video games, and electronics.  DVD launches of motion pictures also share 

many of these features. 

We develop a forecasting model that distinguishes between pre-launch and 

post-launch search, and ultimately forecasts sales.  We focus on opening weekend 

sales only, since these are most critical and also most difficult to predict.  We posit 

that pre-launch search is largely driven by consumer interest in a product, while post-

launch search is driven by interest in both the product, as well as consumption of the 

product.  Product interest refers to interest in specific attributes of the product, while 

consumption interest refers to interest in consuming the product.  Thus a consumer 

may search for information regarding actors/actresses, trailers, plot summaries, etc 

during the pre-launch phase of a motion picture.  A consumer may search for this 

information during the post-launch as well, but he may also search for information 

about theater locations, show times, critical/consumer reviews, etc during the post-
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launch phase.  We incorporate product characteristics in our model, such as genre and 

MPAA rating, as these are likely to have effects on both search and sales.  We also 

control for competition. 

In our base framework, we have not accounted for any drivers of search.  

Therefore, a possible alternative explanation for the predictive power of search term 

volume is that it is capturing the response to advertising, and since advertising 

expenditure data is also available during the pre-launch period, search term volume 

does not offer a significant gain.  In 2006, theater admissions, ticket prices, number of 

movies released, box-office revenues, and production costs were up from 2005 

(MPAA 2006).  The average production cost per film for MPAA member companies 

was $65.8 million, while the average marketing cost was $34.5 million (MPAA 

2006).  These figures suggest that motion pictures remain a growing industry in the 

entertainment category, and marketing expenditures play an important role in the 

success of motion pictures.  Therefore, we extend our analysis and examine the role 

of advertising in our framework.  Modeling advertising expenditures allows us to 

determine whether search term volume is capturing the effect of advertising or 

consumer interest generated from other sources, such as word-of-mouth, above and 

beyond advertising.  It also allows us to compare forecasting performances for the 

two modeling frameworks. 

Our research contributes to the existing literature on online search, online 

word-of-mouth, and new product sales forecasting.  While we choose to illustrate our 

proposed framework in the motion picture industry, our approach can be generalized 

to other product categories such as books or movies.  For example, search volume 



 

 6 
 

may be used to predict release-week sales for new music albums or books.  The 

pattern and level of search may also be useful in predicting sales in later weeks, since 

these products tend to have longer product life cycles than most motion pictures.  We 

find that both search volume and search volume pattern over time are important in 

predicting box-office sales.  In doing so, we have developed a forecasting approach 

that will aid managerial decision-making for new products. 

A recent Wall Street Journal article (Delaney, 2007) reports that Google 

“could predict with 82% or higher accuracy based on consumer search activity as 

early as six weeks before the opening whether a film would top $25 million in 

receipts its first weekend.”  Thus, it appears that online search activity offers 

significant explanatory power for predicting box-office revenues for motion pictures, 

even prior to the movie’s release.  We examine this idea in this dissertation. 
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Chapter 2: Literature Review 

 

2.1  Overview 

The focus of this dissertation is to illustrate the effectiveness of online search 

term volume as a measure of consumer interest in a new product, and then to use this 

measure to forecast new product sales.  We illustrate this framework in the context of 

motion pictures.  First, we briefly review the literature on information search and 

online search and how it relates to word-of-mouth (WOM) and the motion picture 

industry.  Since we are focusing on online search, we begin with an overview of the 

literature on information search in general, as well as online search.  We also review 

the literature on WOM, both offline and online, since we posit that online search may 

be a response to WOM and therefore a measure of WOM activity.  We also discuss 

the literature on advertising, as we go on to examine the role of advertising in our 

framework.  Lastly, because we are illustrating our framework in the context of 

motion pictures, we discuss prior work in the motion picture area and how it relates to 

WOM, advertising, and forecasting. 

2.2  Information Search 

2.2.1  General 

 
Consumer information search is an area that has received much attention in 

both the economics and marketing literature.  Meyer (1982) develops a formal model 

of consumer information search behavior where he finds that consumers are more 

likely to search when there is positive information about the product initially, when 

there is uncertainty about the product, and when the cost of searching for more 
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information is low.  Ratchford (1982) and Hauser, Urban, and Weinberg (1993) take a 

cost-benefit approach at modeling information search behavior in a constrained utility 

maximization framework.  Keil and Layton (1981) cluster information searchers into 

groups based on measures of various dimensions.  They find a high search group, a 

low search group, and a selective search group in their analysis.  This suggests 

consumers are heterogeneous in their search behavior. 

The literature suggests that consumer uncertainty is an underlying cause of 

information search.  Urbany, Dickson, and Wilkie (1989) differentiate between 

knowledge uncertainty and choice uncertainty.  Knowledge uncertainty refers to 

uncertainty regarding information about products, while choice uncertainty refers to 

uncertainty about the best choice.  Similarly, Moorthy, Ratchford, and Talukdar 

(1997) examine consumer information search and brand perceptions.  They 

distinguish between relative brand uncertainty and individual brand uncertainty.  

“Relative uncertainty is the uncertainty about which brand is the best, whereas 

individual uncertainty is the uncertainty about what each brand offers.”  They find 

that information search is only necessary when relative brand uncertainty is present 

for consumers with prior brand perceptions.  In the case of new products, there is a 

likely to be both relative and individual brand uncertainty, particularly during the pre-

launch phase, since consumers have yet to experience the product.  Thus, the need for 

more information results in consumer search. 

Klein and Ford (2003) study Internet use and pre-purchase search for 

automobiles.  Traditionally, there have been two dimensions to information sources.  

These are independent vs. seller-dominated and impersonal vs. interpersonal.  The 
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authors suggest inclusion of a third dimension – online vs. offline.  Though they focus 

on automobiles specifically, they find that online search is taking the place of 

traditional search.  This substitution results in higher levels of search overall.  We 

discuss the literature related specifically to online search in the next section. 

2.2.2  Online Search 

 
Online search can be any type of information search that takes place on the 

Internet, and much research has been done on this type of search.  Johnson et al 

(2004) study online search behavior in a retailing context.  They find that consumers 

visit very few sites (on average, less than two) when shopping online for products 

such as CDs, books, and airline tickets.  However, they did find that more active 

shoppers tend to visit more sites.  Bucklin and Sismeiro (2003) model online 

browsing behavior and find that with repeat visits to an online site, browsers view 

fewer pages within the site, but the time they spend viewing each page is unchanged.  

Moe (2003) uses clickstream data to identify online shoppers as buyers, searchers, 

browsers, or knowledge-builders based on characteristics of their site visit sessions, 

while Moe (2006) uses clickstream data to develop a two-stage model of the 

consumer decision process.  Wu and Rangaswamy (2003) study online navigation and 

the formation of consideration sets at an online grocery retailer’s site.  Brynjolfsson 

and Smith (2000) and Smith and Brynjolfsson (2001) study price dispersion on the 

Internet. 

While these studies focus on online search that involves web-site visits, we 

address a different type of search that involves terms submitted to search engines but 

not any web-site visits.  While some research has focused on search engine 
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performance (e.g. Bradlow and Schmittlein, 2000; Kumar and Lang, 2007), search 

engines and e-commerce (e.g. Spiteri, 2000; Jansen and Molina, 2006) or search 

engine visits over time (e.g. Telang, Boatwright, and Mukhopadhyay 2000), the use 

of search terms as a marketing measure has not received much attention in the 

literature. 

However, a recent paper was able to link online search term data and official 

unemployment data (Ettredge, Gerdes, and Karuga, 2005).  The authors were able to 

show that job-related search term (jobs, resume, employment, etc) volume is 

significantly related to official unemployment rates.  The premise of their study is 

“that people reveal useful information about their needs, wants, interests, and 

concerns via their Internet behavior, and that terms submitted to search engines reveal 

this information.”  Similarly, Deighton and Kornfeld (2008) discuss search engines 

and “thought tracing.”  They suggest that “when search leaves a trail, it is as if 

curiosity itself is revealed.  The search engine knows what is on the person’s mind.”  

This information can be useful to marketers.  “Sometimes the person who searches 

has consumption on their mind.”  (Deighton and Kornfeld, 2008)  The same premise 

underlies our study, as we aim to link online searches and consumption. 

We draw from the literature on information search in general, because the 

underlying reason for information search remains critical to the foundation of our 

study, and we focus on the online domain, since our study involves search that takes 

place on the Internet. 
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2.3  Word of Mouth 

2.3.1  Overview 

 
We review the literature on WOM, since this is one possible driver of 

consumer interest and therefore, online search.  Thus, online search may serve as a 

measure of WOM activity.  Also, as we discuss in a later section, it is very relevant to 

our context of motion pictures.  The Word-of-mouth Marketing Associate defines 

word-of-mouth (WOM) as “the act of consumers providing information to other 

consumers.”  By this definition, WOM is a phenomenon that has been occurring for 

quite some time and is very relevant to marketing.  As Brown and Reingen (1987) 

point out, “WOM communication plays an important role in shaping consumers’ 

attitudes and behaviors.”  These attitudes and behaviors include those towards new 

products.  Several studies have been done to more closely examine WOM, including 

aspects such as mediators and moderators, motivations, and consequences. 

Bone (1995) looks specifically at WOM and product judgments.  She finds 

that WOM can impact both short-term and long-term product judgments.  She further 

finds that the effect is stronger when a consumer is involved in a disconfirming 

experience, rather than a confirming experience.  The effect is also enhanced when 

the source of the WOM message is perceived to be an expert.  Herr, Kardes, and Kim 

(1991) consider the vividness of information.  They find that WOM communication 

has a greater impact on judgment than the same information presented in printed 

format.  They suggest the reason for this it that information received in-person is 

more accessible than other less vivid presentations.  However, they go on to find that 

the effect of WOM can be reduced in the presence of more diagnostic information. 
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Several other studies also look at various dimensions of WOM effects.  These 

include strong-tie versus weak-tie sources (e.g. Duhan, et al, 1997; Brown and 

Reingen, 1987) and consumer satisfaction and commitment (Brown et al, 2005).  

Banerjee and Fudenberg (2004) develop an analytical model of WOM learning, while 

Goldenberg, Libai, and Muller (2001) examine the WOM process using a complex 

systems approach.  Dodson and Muller (1978) develop an analytical model of 

diffusion through advertising and WOM, and Arndt (1967) also looks at WOM’s role 

in new product diffusion.  He finds that exposure to positive WOM increases 

purchase probability, while exposure to negative WOM decreases purchase 

probability. 

Holmes and Lett, Jr. (1977) study WOM specifically in the context of product 

sampling and find that consumers with positive attitudes towards a sampled brand are 

more likely to spread positive WOM.  Richins (1983) focuses on dissatisfied 

consumers and negative WOM.  The author finds that consumers are more likely to 

spread negative WOM the more serious the problem resulting in the dissatisfaction, 

the greater the blame on the marketing institution rather than the consumer, and the 

more negative the consumer’s perceptions of responsiveness. 

With customer satisfaction being an important component in the area of 

service products, several studies have also looked at the role of WOM specifically in 

the service sector.  These include Mangold, Miller, and Brockway (1999), Bansal and 

Voyer (2000), and Harrison-Walker (2001).  Haywood (1989) discusses the 

importance of managing WOM and puts forth guidelines for managers of service 

businesses. 
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While several papers have looked at the outcomes of WOM, the motivation of 

consumers to engage in WOM communications is equally important.  Sundaram, 

Mitra, and Webster (1998) study the motivations of consumers in spreading WOM, 

both positive and negative.  The authors find that the motivations behind positive 

WOM include altruism, product involvement, self enhancement, and helping the 

company.  The motivations behind negative WOM include altruism, anxiety 

reduction, vengeance, and advice seeking.  They further find that the majority of 

positive WOM is a result of “satisfying product performance or employee-consumer 

contact”, while the majority of negative WOM is a result of “inadequate responses to 

problems with the product and consumers’ poor value perceptions during post-

purchase evaluations.” 

Godes and Mayzlin (2004) discuss the challenge of measurement in doing 

WOM research.  Surveys were the primary tool for WOM measurement until 

recently.  While traditionally, WOM was generally thought of as consumers 

communicating with each other directly, the Internet has changed the dynamic of this 

phenomenon quite drastically, and online WOM has become an important area of 

research in marketing. 

2.3.2  Online WOM 

 
With the increase in Internet use, online WOM is becoming an important area 

of research in marketing.  Some studies have examined the motivations behind 

consumer participation in online communications – both providing and receiving.  

Hennig-Thurau and Walsh (2003) focus on the reading motivation.  They find that 

consumers choose to read online opinions of products to save time in making 
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purchase decisions and to make better purchase decisions.  On the flip-side, Hennig-

Thurau et al (2004) look at motivations behind sharing comments on online opinion 

forums.  They find that “consumers’ desire for social interaction, desire for economic 

incentives, their concern for other consumers, and the potential to enhance their own 

self-worth are the primary factors.”  Phelps et al (2004) look at motivations specific 

to viral marketing, or the forwarding of e-mails.  They find that targeting recipients 

who find the information relevant and developing messages that evoke strong 

emotion are necessary for successful viral marketing campaigns.  Berger and 

Milkman (2009) also study viral marketing.  Specifically, they study the 

characteristics of things that lend themselves to be particularly viral. 

Another stream of research focuses on online avenues that allow for 

measurement of WOM.  Dellarocas (2003) looks specifically at online feedback 

systems, which allow consumers to review and/or rate a variety of goods and 

services.  He emphasizes the Internet’s ability to gather information from large 

groups of people and create WOM communities with ease and little cost.  Godes and 

Mayzlin (2004) look at online conversations as a way to measure WOM.  They use 

this measure to predict TV show ratings.  They point out that prior to the Internet, 

direct observation of private conversations, or traditional WOM, was very difficult.  

Chevalier and Mayzlin (2006) study the effect of online reviews on book sales.  

Among their findings is that a negative review has a greater effect on sales than a 

positive review. 

These forums are just some examples of online WOM.  While online reviews 

and conversations can definitely be thought of as WOM activity, we aim to look at a 



 

 15 
 

slightly different measure – online search term volume.  We discuss WOM because of 

the important role it plays in consumers’ consumption choices, particularly in our 

product category – movies.  In addition, WOM can be thought of as one possible 

trigger of online search.  Lastly, although our goal in this study is not to measure 

WOM specifically, the data source that we use is similar to some recent online 

measures of WOM.     

2.4  Advertising 

 
We review the literature on advertising, since one of our research objectives is 

to examine the role of advertising expenditures in the search activity – sales 

relationship.  Lavidge and Steiner (1961) define three functions of advertising.  These 

are to create awareness and knowledge, to create favorable attitudes or feelings, and 

to produce action or purchase of the product.  In their review paper, Vakratsas and 

Ambler (1999) develop a general framework of how advertising works.  Advertising 

is considered an initial input for the consumer.  The authors propose two levels of 

responses from the consumer.  Firstly, an intermediate response in the form of a 

mental (conscious or unconscious) response to the advertising occurs.  The major 

intermediate effects are cognition, affect, and experience.  These intermediate mental 

effects then result in a behavioral effect, such as choice or consumption.  They 

suggest that advertising must first have a mental effect before a behavioral effect.  In 

their framework, they allow the consumer’s behavior to feed back into the 

intermediate mental effect of experience.  This is particularly relevant for packaged 

goods where repeat purchases frequently occur.  This can also occur with experiential 

products, such as motion pictures, since past experiences with motion pictures are 
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likely to influence one’s behavior towards future motion pictures.  In these cases, the 

consumer’s behavior will be affected by his previous experience with the product, in 

addition to any advertising that takes place.  The authors also include factors, such as 

involvement and motivation, as mediators of individual responses to advertising.  

Their framework is general and can be applied to several product categories. 

There have been several behavioral studies on various aspects of advertising, 

including moderators and mediators of its effect.  For example, Hoch and Ha (1986) 

find that advertising has no effect on product quality judgments when consumers have 

unambiguous evidence on product quality.  Other research has focused on attitude 

formation (e.g. Mitchell and Olson, 1981) and attitude towards the ad (e.g. 

MacKenzie, Lutz, and Belch, 1986; MacKenzie and Lutz, 1989).  Studies have also 

examined the roles of emotions (e.g. Holbrook and Batra, 1987) and feelings (e.g. 

Edell and Burke, 1987) in advertising effects.  Consumer involvement in both the 

product (Petty, Cacioppo, and Schummann, 1983) and the advertising (Greenwald 

and Leavitt, 1984) have also been found to be important moderators of advertising 

effectiveness. 

There is also a stream of research within the advertising literature that focuses 

on modeling various aspects of advertising.  Milgrom and Roberts (1986) develop a 

model that looks at advertising as a signal of product quality.  They find that 

advertising may signal quality, but this usually occurs in the presence of price 

signaling as well.  Other models of advertising examine areas such as advertising 

strategy (e.g. Mahajan and Muller, 1986; Sasieni, 1989), price sensitivity (e.g. 

Krishnamurthi and Raj, 1985; Kaul and Wittink, 1995; Mela, Gupta, and Lehmann, 
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1997), targeting (e.g. Iyer, Soberman, and Villas-Boas, 2005), and competitive 

response (e.g. Steenkamp et al, 2005).  As of recent, studies related to online 

advertising have also emerged (e.g. Dreze and Hussherr, 2003; Chatterjee, Hoffman, 

and Novak, 2003). 

An important aspect of advertising research is its wearout, or its reduction in 

effectiveness due to various factors (e.g. Calder and Sternthal, 1980).  Naik, Mantrala, 

and Sawyer (1998) model two types of wearout:  repetition wearout and copy 

wearout.  Repetition wearout refers to wearout resulting from excessive advertising, 

and copy wearout refers to wearout resulting from the passage of time. 

While we are not interested in advertising content or advertising strategy in 

our study, these papers suggest the importance of advertising in a consumer’s choice 

to purchase a product.  Thus, while we take advertising expenditures as given, we aim 

to look at the role of advertising in driving consumer to online search.  Advertising 

creates awareness, so in order to obtain more information about something that 

consumers are aware of, they may use online search engines. 

2.5  Motion Picture Industry 

 
We review the literature on motion pictures and how WOM and advertising 

play a role in this industry specifically, since both of these can result in online search.  

We focus on these two drivers of consumer interest, and subsequently online search.  

We also discuss forecasting approaches that have been studied in the past. 

2.5.1  Word of Mouth 
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There is a stream of literature that focuses on WOM and the motion picture 

industry specifically.  Burzynski and Bayer (1977) study the effect of both favorable 

and unfavorable WOM on motion picture appreciation.  The authors find that subjects 

exposed to negative WOM before viewing a movie rate film enjoyment significantly 

lower than subjects who are exposed to positive WOM prior to viewing the movie.  

The ratings of subjects who were not exposed to any WOM were not significantly 

different from the ratings of those who were exposed to either positive or negative 

WOM.  The authors’ results suggest that movie satisfaction is affected by WOM.  In 

a similar domain, Moul (2007) takes an economic approach to examining WOM’s 

impact in the motion picture industry.  He develops and estimates a demand model 

for movie admissions.  He finds that a significant amount of the variance in movie 

admissions can be explained by WOM, even while controlling for movies’ fixed 

effects. 

Liu (2006) looks at an online measure of WOM specifically for movies.  The 

author uses messages from Yahoo Movies to study both volume and valence of 

WOM.  Volume refers to the amount of WOM activity, while valence refers to how 

positive or negative the WOM activity is.  He finds that WOM activities are most 

prevalent prior to the movie’s release and in the opening week.  He also finds that 

WOM data provide significant explanatory power for box office revenues.  Further, 

he finds that volume offers most of this explanatory power, as opposed to valence.  

This finding leads directly to the motivation of our research, since search term data 

offers a volume measure, but does not have a valence dimension to it. 
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As Eliashberg, Elberse, and Leenders (2006) suggest, WOM can be an 

important factor of product performance in the entertainment industry.  They point 

out two reasons for this.  Firstly, these products are often consumed in groups.  

Secondly, these products are often topics of daily conversations.  Their review paper 

on the motion picture industry gives several examples of research that looks at the 

relationship between advertising expenditures and box-office revenues (e.g. 

Zufryden, 1996).  They go on to suggest that “the amount of advertising necessary to 

market a movie is inversely related to the amount of WOM that the movie is likely to 

generate.”  Bayus (1985) suggests that WOM is an indirect effect of marketing 

activity and a key factor in a consumer’s purchase decision.  These marketing efforts 

include advertising and promotion – two marketing strategies that are heavily 

employed in the motion picture industry. 

Thus, while it is interesting to examine online search activity and the potential 

for its usefulness as a forecasting measure, it is also important to control for the effect 

of advertising.  As Godes and Mayzlin (2004) point out, it is likely that at least some 

WOM results from advertising, therefore it is imperative to account for these effects. 

2.5.2  Advertising 

 
The relationship between advertising expenditures and motion picture 

revenues has been widely researched.  Zufryden (1996) develops a marketing 

planning model that focuses on planned advertising expenditures.  The author 

proposes a behavioral framework where advertising expenditures, combined with 

WOM, affect film awareness.  This awareness affects intention to view a film, and 

ultimately, this intention affects the number of tickets purchased.  The model also 
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incorporates movie characteristics and other marketing variables.  Similar to our 

framework, their model allows for pre-launch forecasting of a film.  However, their 

model differs from ours in that their main objective is to develop a planning model, 

thus it allows for simulation of various advertising levels.  Particularly relevant to our 

research objective, their model results suggest that anticipated WOM and advertising 

expenditures have an inverse relationship.  In other words, to reach a given 

performance level, a film with high anticipated WOM may be able to lower its 

advertising expenditures.  Conversely, a film with low anticipated WOM may need 

higher levels of advertising to obtain a given performance level. 

Elberse and Anand (2005) also study pre-launch advertising for motion 

pictures.  They focus on market expectations of sales rather than actual sales.  These 

expectations can be observed before a motion picture is released, and are shown to be 

accurate predictors of actual sales upon release.  They also incorporate product 

quality in their approach.  Their main findings suggest that advertising significantly 

affects pre-launch expectations, and this relationship is stronger for products of higher 

quality.  The second finding suggests that advertising’s effect is not only persuasive, 

but also informative. 

While these studies are most relevant to our research in that they focus on the 

pre-launch phase of motion pictures and advertising, several other papers also study 

and find significant relationships between advertising and motion picture 

performance.  These include Bruce and Foutz (2007) and Lehmann and Weinberg 

(2000) who focus on theater and home video releases, Basuroy, Desai, and Talukdar 
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(2006) who focus on sequels, Elberse and Eliashberg (2003) who focus on 

international markets, and Luan and Sudhir (2007) who focus on the DVD market. 

2.5.3  Forecasting 

 
As is evident, there has been much work done on the motion picture industry, 

and several methods have been used to predict the success, as measured by box office 

revenues, of a motion picture (e.g. Sawhney and Eliashberg, 1996).  These include 

factors such as film critics, star power, budgets, (e.g. Basuroy, Chatterjee, and Ravid, 

2003) and more recently, online movie reviews (e.g. Liu, 2006).  Neelamegham and 

Chintagunta (1999) focus on forecasting film performance in domestic and 

international markets. 

The role of critical acclaim has also been examined.  Basuroy, Chatterjee, and 

Ravid (2003) and Eliashberg and Shugan (1997) study the role of critics.  Eliashberg 

and Shugan (1997) find that critical reviews seem to serve as predictors rather than 

influencers, while results from Basuroy, Chatterjee, and Ravid’s (2003) study seem to 

suggest that critics can serve as both predictors and influencers. 

Dellarocas, Zhang, and Awad (2007) explore revenue forecasting of motion 

pictures in the online domain.  They use the valence of online movie ratings and 

opening weekend revenues as predictors of a movie’s future revenues.  They find that 

their method performs better than other approaches that have been previously used, 

including the movie’s marketing budget and critical reviews.  Foutz and Jank (2007) 

focus on pre-release forecasting using another online metric - virtual stock markets.  

They find that these stock markets offer significant predictive power for a motion 

picture’s opening weekend box-office sales.  Pre-launch forecasting has also been 
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studied in the music industry.  Moe and Fader (2002) use advance purchase orders for 

music to forecast post-launch album sales. 

It is well established in the motion picture literature that movie revenues 

follow predictable patterns of decay in the weeks following their opening weekend 

(e.g. Krider and Weinberg, 1998).  Sawhney and Eliashberg (1996) find that movie 

revenue patterns can be categorized into three groups, and total revenues can be 

accurately predicted using revenue data from the first few weeks.  Since the opening 

weekend is most critical for a motion picture’s overall performance and is also the 

most difficult to predict, we focus our analysis on opening weekend revenues in the 

context of our application. 

We discuss the literature on the motion picture industry, since this is the 

product category we focus on in our study.  It is important to emphasize that the 

framework and forecasting approach we develop can be generalized to other product 

categories as well.  We discuss this idea in later chapters.   
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Chapter 3: Conceptual Framework 

 

3.1  Overview 

 
In our study, online search term volume refers to the number of times a movie 

title is searched for using an online search engine.  We posit that online search term 

volume offers a main advantage to measures such as online reviews (e.g. Liu, 2006).  

Unlike posting a review, a consumer need not have viewed the movie to search for it 

online.  Thus, this activity can be captured several weeks before the movie is released 

in theaters – the pre-release period.  Additionally, since virtually anybody can search 

for a movie title online, effects of the distribution or availability of the movie do not 

come into play as much.  In other words, anybody can search for a movie regardless 

of when, where, or how often it is showing.  Although the search volume does not 

capture any content or valence as a review does, we think that the advantage of 

having more pre-release data outweighs this.  We argue that searches indicate 

consumer interest in a product, and thus we aim to use this measure of interest to 

forecast sales.  We discuss the components of our framework in detail in the next 

sections. 

3.2  Internet and Search Engines 

 
Many would agree that the Internet is at the core of the recent technological 

revolution.  The age of information is associated with the ease of availability of 

information, largely due to the Internet.  Consumers are able to search for information 

about virtually anything using the Internet.  The most basic tool that enables this is an 
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online search engine (PEW/Internet, 2006).  In addition to the Google explosion, 

search engines such as Yahoo!, MSN, AltaVista, etc. enable a person to enter a 

keyword or search term and access the most relevant web pages without knowing an 

exact web-site address.  This is becoming so common that the term “Google” is often 

used as a verb for online search using a search engine, specifically Google.  Often 

times if an issue is disputed or there is uncertainty about something in a casual 

conversation, one will want to “Google it” to obtain more information.  Perhaps one 

overhears a conversation about a new restaurant, book, movie, TV show, news event, 

etc. and wants more information.  One is likely to search for it online using a search 

engine of some sort.  Since an online search requires an action on the part of the 

consumer, i.e. entering a search term, there must be a trigger or driver of any given 

search and the desire for more information.  This driver could be WOM, advertising, 

promotion, news coverage, or any combination of these.  Thus, one could suggest that 

online searches are a measure of interest or “buzz” for a topic or product. 

An interesting next step would be to investigate the relationship between these 

searches and actual consumption of products.  In other words, can the number of 

searches for a given product suggest the level of interest in that product and therefore 

help predict sales for that product?  Given that searches tend to relate to pop culture 

and trends (PEW/Internet, 2005), this type of relationship is likely to be strongest for 

products that are new or “trendy” and have heavy pre-launch marketing campaigns.  

These would include high-technology products, music, and movies.  These types of 

products tend to generate high levels of WOM and often have heavily publicized 
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launch dates.  Thus, we aim to use searches for a new product to predict the sales of 

that product. 

Search term data is easily collected and obtained.  It also does not require as 

much data cleaning or coding as analyses of online messages or conversations, thus it 

can be used on a larger scale.  Additionally, since search engine use is a very 

prevalent online activity as compared to blogging, participation in newsgroups, etc., 

the data is less likely to suffer from selection bias and is more representative of the 

general online population.  Search term volume is able to measure consumer interest 

very early in the consumer decision process (before the consumer has made a 

purchase decision), as well as in early stages (pre-launch) of the product life-cycle.  

We explore this stage and its implications for forecasting in a digital context. 

3.3  Motion Picture Context 

 
We choose the motion picture industry to explore this idea because movies 

have relatively short life-cycles and reliable data is easily available.  There are also 

several sources of movie-related information available online (Eliashberg, Elberse, 

and Leenders 2006).  Additionally, motion pictures involve high levels of pre-launch 

marketing activity that generate consumer interest.  Therefore, consumers are able 

and likely to search for motion picture information prior to release.  Other product 

categories that are also characterized by high levels of pre-launch marketing are 

music, video games, and electronics.  DVD launches of motion pictures  and popular 

press books also exhibit pre-launch marketing.  While many of these products have 

longer product life-cycles than box-office motion pictures, our framework of linking 
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pre-release search as a measure of consumer interest to post-release sales can still be 

applied. 

Wierenga (2006) points out that consumers and the way they behave is an 

important area in the literature on motion pictures.  The consumer movie decision 

process is described by “need recognition, search for information, evaluation of 

alternatives, purchase, consumption, and post-consumption evaluation” (Blackwell, 

Miniard, and Engel, 2001).  The information search stage is most relevant to our 

work, since this is usually when online search activity will take place.  The author 

points out that WOM is particularly important in this phase (Eliashberg et al, 2000).  

Eliashberg, Elberse, and Leenders (2006) give several examples of movie-related 

information sources that are available online.  These include chat rooms, Web logs, 

portals, recommendation sites, customer and critic review sites, official movie sites, 

and databases.  Additionally, consumers may search movie titles to find show times 

or locations of theaters screening a particular title. Thus, we argue that consumers 

who are interested in viewing a movie may search for it online using a search engine. 

The first week of release is often the most crucial for motion picture revenues, 

and is also the most difficult to forecast.  Therefore, pre-launch forecasting will 

provide several useful implications to managers.  Given the characteristics of online 

search terms that are mentioned earlier and these characteristics of the motion picture 

industry, we think it is a good area to begin investigating the potential of search term 

activity as a forecasting measure.  While we use motion pictures to illustrate our 

forecasting framework, we’d like to emphasize that our approach is generalizable to 

other new product launches, particularly those that involve high levels of pre-launch 
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marketing activity and heavily advertised launch dates.  Specifically, search term 

volume and pattern over time can be used as a similar measure of consumer interest 

for products such as books or movies, and our framework can be applied to forecast 

release-week sales and extended to predict sales in later weeks. 

3.4  Pre- and Post-Launch 

 
We consider search for a product in two phases – pre-launch and post-launch.  

We posit that pre-launch search is largely driven by consumer interest in the product.  

Consumers may search for general information about the product, features about the 

product, press releases, etc.  Pre-launch information search is likely to be an 

indication of product interest.  This could be a response to WOM, advertising, 

promotion, or other media coverage related to the product’s upcoming launch.  Post-

launch search would also include product interest, however it will also be affected by 

interest in consumption of the product.  Thus, after a product is launched, consumers 

may search for a product with interest in finding information about availability, 

reading reviews, etc.  This is in addition to the increased WOM or buzz that is likely 

to take place after a product is launched (Liu, 2006), since other consumers have now 

purchased the product and are able to talk about it.  This increase in WOM is also 

likely to result in increased online search. 

In the context of motion pictures, pre-launch search may be driven by 

consumers’ interest in learning more about the actors or actresses in the movie, 

viewing trailers, reading media coverage, etc.  Post-launch search may be driven by 

all of these, in addition to need for information about theater locations, show times, 

consumer reviews, etc. with particular interest in actual consumption or viewing the 
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movie.  Therefore, we posit that pre-launch search is a measure of product interest, 

while post-launch search is a measure of both product and consumption interest. 

 

Figure 1: Search – Sales Model:  Conceptual Framework 
 

 

 

3.5  Conceptual Development 

 
We illustrate our conceptual framework in Figure 1 and discuss it in detail in 

the next section. 

3.5.1  Pre-release Search (Product Interest) 

 
We begin with pre-release search.  We argue that this indicates consumer 

interest in the product.  The sources of this interest can include exposure to WOM, 

advertising, promotion or press coverage, although we do not explicitly measure any 

of these in the current framework.  Given that the product it not yet available for 

consumption or purchase, a search for it suggests some level of interest in it.  For 
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example, a consumer that searches for a movie before it is released is likely to be 

interested in obtaining information specific to the movie, such as details about 

actors/actresses, plot or story line, trailer, etc, although the movie is not yet available 

for purchase or consumption. 

3.5.2  Post-release Search (Product Interest and Consumption Interest) 

 
Once the product is launched or released, online search will indicate interest 

in both the product itself, as well as in consumption of the product.  There is likely to 

be a strong relationship between pre-release search and post-release search, as high 

levels of product interest are likely to translate into high levels of consumption 

interest.  Therefore, we model the link between pre-release search and post-release 

search.  In our illustration, consumption interest could drive consumers to search for a 

movie to find information about show times, theater locations, critical/consumer 

reviews, etc.  This information is not likely to be available during the pre-release 

period. 

3.5.3  Purchase (Box-Office Sales) 

 
We further link post-release search to box-office sales.  Since we are using 

search activity as a measure of interest, this interest should translate into purchase of 

the product.  Again, we argue that it is reasonable to believe that the levels of 

consumption interest and product interest will have a strong relationship with ultimate 

purchase.  Since post-release search is a measure of both product interest and 

consumption interest, it is likely to be a better predictor of sales than pre-release 

search alone, which is a measure of only product interest.   
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3.5.4  Product Characteristics 

 
Characteristics inherent to the product are the main attributes that potential 

consumers are interested in.  We argue that product characteristics can have an impact 

on both search and sales.  In the case of motion pictures, product characteristics 

include attributes such as genre, MPAA rating, and production budget.  Particular 

genres or MPAA rating levels of movies are likely to generate varying levels of 

consumer interest.  Big-budget films may result in search behavior and sales different 

from smaller, niche films.  Thus we model heterogeneity across products to capture 

differences in search behavior in both the pre- and post-launch periods.  These 

product characteristics will also play a role in the performance of a given movie once 

it is released (Sawhney and Eliashberg, 1996). 

3.5.5  Competition 

 
It is also important to control for competition or the number of alternatives 

available for purchase (Liu, 2006).  Competition will also affect both search and 

sales.  Consumers are not likely to search for information about every movie in the 

market.  Thus, the more movies there are in the market, the less likely a consumer 

will search for any given alternative.  This is true of both the pre- and post-release 

periods.  The same rationale extends to sales – the more competition there is, the 

fewer the sales for any given movie. 

Our framework aims to link product interest, consumption interest, and 

product sales while controlling for the effects of competition and product 

characteristics.  We propose online searches as a measure of product and 
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consumption interests and examine their relationship with sales.  We develop a model 

and discuss our estimation and results in the following chapters. 
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Chapter 4: Search – Sales Model 

 

4.1  Overview 

 
As discussed in the conceptual framework, we aim to develop a model that 

links pre-launch search, post-launch search, and sales.  Since we differentiate between 

product interest and consumption interest, we use two separate processes to represent 

them.  We first model searches resulting from product interest as a Weibull process.  

We choose the Weibull process because of its flexibility in capturing a variety of 

different patterns.  Since search activity typically declines in weeks following the 

week of launch, we model consumption interest to follow an exponential distribution.  

Thus, post-launch search represents a combination of product and consumption 

interest and is therefore the sum of the Weibull and exponential processes.  Moe and 

Fader (2002) use a similar approach in their paper on forecasting music sales.   

While the Weibull and exponential processes capture pattern of search, the 

level or volume of search is also very important.  Therefore, we incorporate a 

penetration rate to account for the volume of searches. 

There is likely to be heterogeneity across the data sample as well as in the 

relationships between the components of our framework.  Therefore, we use a latent-

class segmentation approach (Kamakura and Russell, 1989) to segment the movies, 

where the probability of belonging to any given segment is determined by search, 

sales, and product characteristics/competition. 

We model sales to follow a normal distribution.  We discuss each of these 

components in detail in the next section. 
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4.2  Model Development 

4.2.1  Product Interest Search 

 
We begin by modeling the search pattern as a Weibull process.  We choose 

the Weibull for its flexibility in capturing various shapes, such as the ones we observe 

in the data.  The hazard function, h(t | s), survival function, S(t | s), and cumulative 

distribution function, F(t | s), for each segment s are as follows: 

(1)  1( | ) sc

s sh t s c tλ −=  

(2)  ( | )
cs

stS t s e λ−=  

(3)  ( | ) 1 ( | ) 1
cs

stF t s S t s e λ−= − = −  

where t =  week in movie’s launch period (t=1,2,…T) 

 λs = slope parameter for search in segment s 

 cs = shape parameter for search in segment s 

Thus, the probability of search occurring in any given week t for a given segment s is: 

(4)  ( | ) ( | ) ( 1 | )P t s F t s F t s= − −  

( 1)c cs s
s st te eλ λ− − −= −  

We posit that pre-launch search captures only consumer interest in the product, as 

consumption of the product is not yet feasible.  In general, our search data shows a 

non-linear growth trend as the week of launch approaches, and the Weibull performs 

well in modeling this pattern over time.  Figure 2 illustrates a typical pattern of 

search. 
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Figure 2: Search and Sales Pattern for Casino Royale 

 

4.2.2  Consumption Interest Search 

 
In our conceptual framework, we differentiate between pre-launch and post-

launch search.  We argue that pre-launch search indicates product interest, while post-

launch search indicates both product interest and consumption interest.  As seen in 

Figure 2, our data shows a surge in searches occurring in the week of a movie’s 

launch, representing both product interest and consumption interest.  We model post-

launch search in subsequent weeks in order to capture the peak in searches that 

typically occurs in the week of release and the decline in searches that typically 

follows.  We model consumption interest as an exponential process with probability 

density function and cumulative distribution function as follows: 
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where τ  = week of post-release, beginning with the first week of release.  It is 

important to note the differentiation between the λ parameters – from this point 

onwards we will use λw  to refer to the Weibull component and λe  to refer to the 

exponential component.  It is also important to note the different time periods.  t = 1 

refers to the first week in the movie’s launch period, including pre-launch, for the 

Weibull process, while τ =1 refers to the first week of launch of the movie (post-

launch only) for the exponential process.  Therefore f(τ) = 0 for the exponential 

process during the pre-launch period. 

We incorporate an inflation parameter to capture the consumption interest 

aspect of the search pattern.  Thus, the probability of observing a search at time t for a 

given segment s can be represented as: 

(7) P(t | s) =  (1-φs)[Fe(τ | s) – Fe(τ-1 | s)]It+ φs[Fw(t | s) – Fw(t-1 | s)] 

where τ = t-8, since we have 8 weeks of pre-launch search.  Fe represents the cdf of 

the exponential process (consumption interest) and Fw represents the cdf of the 

Weibull process (product interest).  It = 1 for post-launch weeks (It = 0 otherwise), φs 

represents the proportion of search resulting from product interest, and (1-φs) 

represents the proportion of search resulting from consumption interest, which is 

present only in the weeks that the product is available for consumption. 

4.2.3  Search Volume 

 
It is reasonable to believe that volume, not only pattern, of search activity is 

also important when trying to capture consumer interest in a product.  Therefore, we 
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incorporate a penetration rate, αs, to capture the level of search activity.  Our 

probability of a search is now as follows: 

(8) P(t | s) =  αs {(1-φs)[Fe(τ | s) – Fe(τ-1 | s)]It+ φs[Fw(t | s) – Fw(t-1 | s)]} 

where again τ = t-8.  In order to measure penetration, it becomes necessary to 

incorporate the size of the potential market.  Thus, we need to account for the non-

searchers.  In our case, we will definite the non-searchers as: 

(9)  
1

T

i it
t

non search M sv
=

− = −∑  

where M is the market size and svi is the search volume for movie i at time t.  The 

market size represents the total number of potential searches that could occur.  

4.2.4  Box-Office Sales 

 
Our objective is to examine the relationship between online searches and 

opening weekend box office sales.  Therefore, we specify box-office sales to follow a 

normal distribution with probability density function as follows: 

(10)  
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where xi is the natural log of opening weekend box-office sales for movie i, µ is 

average opening weekend box-office sales, and σ is standard deviation of opening 

weekend box-office sales. 

4.2.5  Segment Membership 

 
In order to account for heterogeneity, we segment the movies using a latent-

class segmentation approach.  We specify membership probability in segment s, πs, to 

be a function of product characteristics (Gupta and Chintagunta, 1994).  In our 
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context, product characteristics refer to movie characteristics.  We incorporate these 

covariates as follows: 

(11)  ��� � ����

�	∑ �����
    where isθ = ββββisZis 

where Zis is a vector of covariates that include an intercept and the following: 

 PG13i = dummy variable for MPAA rating “PG13” 

 Ri = dummy variable for MPAA rating “R” 

 Comedyi = dummy variable for genre comedy and romantic comedy 

 Dramai = dummy variable for genre drama 

 Compi = number of other movies in the dataset released in the same week  

The dummy variables take the value of “1” if the movie belongs to that 

category and “0” otherwise.  Our omitted category for MPAA rating is “PG,” and our 

omitted category for genre is “ActAdvHor,” action, adventure, and horror.  We do not 

include production budget as a covariate in our estimation because production budget 

and advertising budget, which we include later, are very highly correlated.  However, 

we do provide summary statistics on it in the next section for the sake of information.  

Lastly, we link the search and sales components using the segment membership 

probability.  We discuss our estimation procedure and empirical analysis in the next 

sections. 

4.3  Data Description 

We create our dataset by merging two types of data – one consisting of search 

data and the other consisting of movie-related variables.  We obtain the search data 

from a search term research service that collects and compiles search term data.  The 

service maintains a database of search terms collected from all of the major search 
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engines, including Google, Yahoo!, MSN, AltaVista, Ask.com, Lycos, AOL, HotBot, 

Information.com, and Dogpile.  Search term volume is available at both the weekly 

and monthly levels and refers to the number of times the term is searched for within 

the given time period.  For example, for the term “ipod,” one could obtain the number 

of searches on that term for a given week or month.  The data is available for a period 

of twelve months, making it possible to see trends or patterns of search over time.  

The data comes from a database based on user panel data and is free from skew 

caused by automated agents.  It contains data on over 4.3 billion searches.  We obtain 

the data at the aggregate level and do not have demographic information on the user 

panel.  Specifically, we obtain the weekly search volume for each movie title in our 

analyses during both the pre-launch and post-launch phases.  In other words, we have 

the number of times each movie title is searched for on a weekly basis.  Our analysis 

focuses on 16 weeks of search data – 8 weeks of pre-launch and 8 weeks of post-

launch. 

Our dataset includes movies released from July to November of 2006 in the 

United States.  There were 599 new feature films released in the US in 2006, and 63 

grossed more than $50 million in box office revenues (MPAA 2006).  We limit our 

set of titles to those that were in the top fifty in box office revenues during their 

opening week.  After removing titles for which we were not able to obtain all 

variables or had very sparse search data, we conduct our analyses on 63 movie titles.  

We obtain motion picture data from two popular movie sites, The Numbers 

(http://www.the-numbers.com) and Yahoo Movies (http://movies.yahoo.com/).  We 

collect box office release date, weekend box office revenues, MPAA rating, and 
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genre for each movie title in our analyses.  We use the box-office release date to 

determine the competition level.  We define competition as the number of other 

movies in our dataset that are released in the same week as a given movie.  We collect 

production budget data from The Internet Movie Database Pro 

(http://www.imdb.com/).  Summary and descriptive statistics on the movie sample 

can be found in Tables 1 and 2.  Summary statistics on search activity for the movie 

sample can be found in Table 3.  “SVPreSum” indicates the sum of searches in all 

pre-release weeks, while “SVRel” refers to the number of searches in the week of 

release. 

Table 1:  Movie Descriptive Statistics 

Categorical Variables Category Proportion Description 

Genre Comedy 0.270 Comedy or Romantic Comedy 

 ActAdvHor 0.397 Action, Adventure, or Horror 

  Drama 0.333 Drama 

MPAA Rating PG 0.127 Rated 'PG' 

 PG13 0.429 Rated 'PG13' 

  R 0.444 Rated 'R' 

 

Table 2:  Movie Summary Statistics 

Variable Min Max Mean SD 

Production Budget $400,000 $225,000,000 $36,839,683 $42,329,493 

Opening Weekend Sales $33,316 $135,634,554 $13,283,776 $19,339,359 

Competition 1 5 2.86 1.19 
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Table 3:  Search Data Summary Statistics 

    Average   
Categorical 
Variables Category SVPreSum SVRel Description 

Genre Comedy 2346 1704 Comedy or Romantic Comedy 

 ActAdvHor 3019 2044 Action, Adventure, or Horror 

  Drama 1922 1023 Drama 

MPAA Rating PG 1944 1435 Rated 'PG' 

 PG13 2127 1293 Rated 'PG13' 

  R 2955 1970 Rated 'R' 

Overall   2472 1612   

 

We have three categories of genre.  Comedy refers to comedy or romantic 

comedy movies.  ActAdvHor refers to movies that are action, adventure, or horror.  

Drama represents drama.  Each of the genre categories is fairly equally represented, 

with action, adventure, or horror being the largest.  We also have three categories of 

MPAA ratings, PG, PG13, and R.  Our dataset does not contain any movies rated G 

or NC17.  Movies rated PG are fewest in number in our dataset. 

We can see that there is a great deal of variance in both production budget and  

opening weekend sales.  The number of competing movies ranges from one to five, 

with the average being about three. 

In our analyses, we focus only on the opening weekend box office sales.  We 

do so because box office sales tend to follow fairly predictable patterns in subsequent 

weeks, and these can often be determined from the first week’s sales. 

As an example, Figure 2 shows the search and sales patterns for one movie in 

our sample, Casino Royale.  This figure illustrates the usual pattern of search volume 

over time, and the relationship between search volume and opening weekend sales.  

Search tends to follow a non-linear growth pattern in the week up until the release 



 

 41 
 

week, then surges in the week of release.  Box-office revenues tend to peak in the 

opening week and then exponentially decline in subsequent weeks. 

4.4  Estimation 

 
We estimate our model using Maximum Likelihood Estimation on a sample of 

63 movies.  We first separate the search and sales component of our probability 

statement as follows: 

(12)  ��,�,������ ��|�� � �����1 � ������� |�� � ��� � 1|��!"# $ ����%��|�� � �%�� � 1|��!&! 

(13)  ��,�,��'�� �(|�� � �)*�(�|��! 

where Fe is given in equation (6), Fw is given in equation (3), and πis is given in 

equation (11).  τ = t-8 as before. 

Our likelihood function is then given by:   

(14) 

+ � ∑ ,��� -∏ ∏ ��,��������|���/01#� 2-∏ -�1 � ∑ ��,��������|��!*3*4������0# 2� 2 -∏ ��,��'��   �(|����'��� 2  

Note that we account for the non-searchers in Lsearch.  Our search data comes from a 

user panel, and we do not have information on the size of the panel.  Therefore, we 

specify M=100,000, since none of the movies in our sample has a sum of search 

volume greater than 100,000.  The highest number of searches we have is 75,419 

summed over 16 weeks for the movie Borat. (See Appendix for estimation results for 

various values of M.)  We note that one limitation of our framework is the 

independence of the search and sales components in our likelihood function. 

We discuss the estimation results in the next sections. 

4.5  Model Fit 
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We begin by determining the best model fit.  We first estimate the model 

without any movie characteristics using a latent class segmentation approach that 

minimizes the Bayesian Information Criterion (BIC).  The BIC is given by BIC = -

2LL + kln(N), where LL is the log-likelihood, k is the number of parameters, and N is 

the sample size.  The BIC measure penalizes overparameterization (Schwarz, 1978) 

and is commonly used to compare latent class segment models.  We then estimate the 

model, incorporating movie covariates, also using the latent class segmentation 

approach.  We begin with a no-covariate model to examine the importance of 

incorporating heterogeneity in product characteristics.  The results can be found in 

Table 4.  (We will discuss the last set of results, “With Advertising,” in a later 

chapter.) 

Table 4:  Model Fit Based on BIC 

 

 
We find that a two-segment model with movie covariates performs the best.  

We can see from the results that movie covariates contribute substantially, as the 

optimal number of segments in the no-covariate model is three.  The improvement in 

both the BIC and log-likelihood is also substantial after controlling for movie effects.  

These results highlight the importance of incorporating product characteristics. 

BIC LL BIC LL BIC LL

1 segment 6.31496E+06 -3.15745E+06 - - - -

2 segments 6.29550E+06 -3.14770E+06 6.20380E+06 -3.10183E+06 6.10333E+06 -3.05158E+06

3 segments 6.29522E+06 -3.14753E+06 6.20389E+06 -3.10183E+06 6.10345E+06 -3.05158E+06

4 segments 6.29528E+06 -3.14753E+06 - - - -

No Covariates With Covariates With Advertising
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The estimation results of the two-segment model can be found in Table 5.  

The plots for each of the distributions (Weibull and exponential) for search can be 

found in Figures 3 and 4. 

Table 5:  Search – Sales Model:  Estimation Results 

 

 

φ Inflation Parameter 0.798 (0.007) 0.769 (0.002)

λw Weibull Slope Parameter 0.007 (0.000) 0.006 (0.000)

c Weibull Shape Parameter 1.798 (0.018) 1.960 (0.010)

µ Normal Mean 15.073 (0.412) 15.389 (0.288)

σ Normal Standard Deviation 2.128 (0.093) 1.888 (0.095)

λe Exponential Parameter 0.494 (0.010) 0.710 (0.004)

α Penetration Rate 0.038 (0.001) 0.126 (0.001)

β0 -212.570 (0.961) - -

βPG13 -2.448 (0.031) - -

βR -43.223 (0.718) - -

βComedy 164.691 (0.732) - -

βDrama -173.948 (0.896) - -

βComp 61.188 (0.335) - -

Standard errors are in parentheses

All estimates are significant at the .05 level

Parameter Segment 1 Segment 2
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Figure 3:  Weibull Distribution Plot 
 

 
 
 
 

Figure 4:  Exponential Distribution Plot 
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4.6  Results 

 
We discuss the estimation results for each of the parameters in the two 

segments in detail. 

4.6.1  Segment Structure 

 
Our estimation results indicate a well-defined segment structure.  We find that 

search pattern, overall, does not differ much across the two segments.  However, the 

two segments differ in terms of search volume, sales, and movie attributes.  Segment 

1 consists mainly of comedy films.  These movies also tend to exhibit lower levels of 

search activity (penetration) and lower opening-weekend box-office revenues.  The 

movies in segment 1 also exhibit higher levels of variance in sales.  Segment 2 

consists mainly of films with MPAA rating of “R” and dramas.  These movies are 

perhaps of more popular genres.  These movies also exhibit higher levels of search 

activity and opening-weekend box-office revenues, and smaller variance in opening-

weekend box-office revenues.  We discuss the estimation of each of the parameters in 

detail in the next section. 

4.6.2  Search Pattern 

 
The parameter estimates provide some insight into the characteristics of the 

two segments.  First, we begin with (φ), which represents the proportion of search 

attributed to the Weibull process or product interest.  The estimates for (φ ), .798 for 

segment 1 and .769 for segment 2, suggest that most of the search can be attributed to 

the Weibull process, which we specify as capturing consumer interest in the product.  
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This suggests that even in the post-release period, most of the search is driven by an 

interest in the product. 

Next we focus on the slope (λw ) and shape (c) parameters from the Weibull 

process, which represents product interest.  These parameters capture the pattern of 

search over time.  Since the level of interest may differ across time, it is important to 

model this aspect of search.  The slope parameter for segment 1 is larger than that of 

segment 2, while the shape parameter for segments 2 is larger than that of segment 1.  

From a practical perspective, these parameters are not substantially different across 

the segments, suggesting that the pattern of product interest is fairly similar across the 

movies in our sample.  Figure 3 illustrates the pattern captured by the Weibull process 

for both segments. 

Lastly, we look at the parameter for the exponential process ( λe ).  This 

parameter is capturing the consumption interest that occurs during the post-launch 

period.  This parameter is fairly different across the two segments, suggesting that the 

pattern of consumption interest may differ across the movies in our sample.  Figure 4 

illustrates the pattern of post-launch search captured by the exponential process for 

segments 1 and 2.  We can see that the pattern differs initially, but overlaps for some 

of the later weeks for the two segments.  Thus, we can conclude that search patterns, 

in both the pre- and post-launch periods, are rather predictable and consistent for 

motion pictures. 

4.6.3  Search Volume 

 

We incorporate search volume using a penetration rate (α).  Since the level of 

search can vary drastically across movies, it is important to incorporate volume of 
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search.  The parameter estimates for the penetration rates (α) are very different across 

the two segments.  The results indicate that movies with higher levels of search 

volume tend to belong to segments 2, while movies with lower levels of volume tend 

to belong to segment 1.  Higher levels of search are associated with movies with 

higher levels of sales.  These results suggest the importance of modeling not only 

search pattern, but also search volume.  

4.6.4  Sales 

 

The sales component of the model consists of two parameters, (µ ) and (σ ), 

where (µ ) is the mean and (σ ) is the standard deviation of opening weekend box-

office sales.  These two parameters allow us to capture both average sales, as well as 

the dispersion in sales.  The parameter estimates for these parameters (µ andσ ) also 

differ across the two segments.  Segment 1 is characterized by movies with lower 

average sales and higher variance, while segment 2 is characterized by movies with 

higher average sales but lower variance.  The results suggest that we have identified a 

relationship between search (particularly search volume) and sales.  Movies that have 

higher levels of search also tend to have higher levels of opening-weekend box-office 

revenues, which is fairly intuitive.  Higher levels of consumer interest will generate 

higher sales. 

4.6.5  Movie Covariates 

 
Lastly, we discuss the results for the movie covariates.  These covariates are 

used to segment the movies.  The results for the coefficients of the movie parameters 

are very interesting.  Firstly, the results of the segmentation indicate that the movie 
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covariates contribute substantially to model fit.  They also help to characterize 

segment membership using product attributes. 

Movies rated R are likely to belong to segment 2, which is also characterized 

by high sales and high search.  Movies rated PG13 are also likely to be in segment 2.  

Comedies and romantic comedies (Comedy) likely belong to segment 1, while dramas 

(Drama) likely belong to segment 2.  It is not surprising to find that segment 2 

consists mainly of both dramas and R-rated films, as these types of movies tend to be 

popular with mainstream consumers. 

The coefficient for the competition (Comp) measure is positive.  This suggests 

that movies released in weeks of higher competition are more likely to belong to 

segment 1.   

4.7  Discussion 

 
These results provide some insights into the performance of our modeling 

framework.  The significant differences in parameters for search volume, sales, and 

movie covariates illustrate the importance of segmenting the market to account for 

heterogeneity.  The result that search pattern does not differ dramatically across the 

two segments suggests that search trend is fairly predictable in both the pre- and post- 

launch periods.  Thus, if the pattern deviates from the norm, perhaps a manager can 

respond to improve both consumer interest in the product, as well as sales. 

The characteristics of the two segments are also interesting.  Segment 1 seems 

to consist of films that are associated with lower levels of search and sales, while 

segment 2 seems to consist of more popular genres that tend to be associated with 

higher levels of search and sales.  For segment 1, lower sales and higher variance in 
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sales suggests that smaller, niche films are likely to belong to this segment.  They 

cover a wider range, in terms of box office sales, and also do not generate as much in 

sales.  Also, the releases of larger, mainstream films are often timed to not compete 

directly with other big films, thus the positive coefficient on competitions for segment 

1 is logical.  Smaller films are more likely to be released in weeks of higher 

competition.  Segment 2 films are what are typically considered popular blockbusters.  

High levels of consumer interest (as measured by search penetration rate), high sales, 

and less variability in sales characterize these films.  They are also of popular, well-

performing MPAA ratings (PG13 and R) and genres (dramas).     

The results imply that different types of movies generate different levels of 

interest.  Thus, perhaps managers can use search volume as a marketing metric and 

adjust marketing mix variables to enhance consumer interest and sales.  For example, 

if consumer interest is higher or lower than expected for a product of given 

characteristics, managers can increase, decrease, or otherwise change their marketing 

strategy accordingly. 

Managers can also use our framework to forecast sales.  We will discuss the 

forecasting procedure and performance of our model in a later chapter. 
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Chapter 5:  Search-Sales Model with Advertising 

 

5.1  Overview 

 
Thus far, we have developed a model to examine the effectiveness of online 

search activity as a measure of consumer interest in a product, particularly during the 

pre-launch phase.  We will use this measure of consumer interest to predict post-

launch sales of the product.  However, we have not explicitly accounted for any 

drivers of this consumer interest.  While we argue that online search can serve as an 

all-encompassing measure of interest stemming from a variety of sources, including 

WOM and marketing campaigns, an interesting extension would be to study the role 

of a product’s advertising, since it is likely that at least some search activity is 

triggered by advertising.  Since we are illustrating our framework in the context of 

motion pictures, where advertising budgets can be substantial, it is particularly 

important to examine the effect of advertising. 

5.2  Conceptual Development 

 
Our conceptual framework for the advertising expenditures parallels that of 

the search – sales model discussed earlier.  However, we do not distinguish between 

pre- and post- launch advertising.  We are interested in the relationship between 

advertising expenditures, online search, and sales.  We argue that advertising can 

have a direct effect on sales and also an indirect effect on sales through online search.  

In other words, one of the triggers of online search may be exposure to advertising.  

Also, as is evidenced in the literature, advertising has also been shown to have a 
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relationship with box-office sales.  There are likely to be systematic differences in 

advertising expenditures of movies of various genres and MPAA ratings, so we again 

include those as covariates.  We do not include production budget as a covariate in 

the model, due to the high degree of correlation between production budget and 

advertising expenditures.  Competition, in the form of other movies released at the 

same time, is also likely to play a role in advertising strategy of a given movie, so we 

also include this measure as a covariate.  Our conceptual framework can be found in 

Figure 5. 

Figure 5:  Search-Sales Model with Advertising Framework 

 

 

5.3  Model Development 

 
Our modeling framework extends the model developed in the previous chapter 

to include advertising expenditures.  We incorporate advertising in two ways – (1) an 

indirect effect on sales through search and (2) a direct effect on sales.  Our existing 

model is defined as follows (equations 12 and 13): 

Advertising

Competition

Product  
Interest

(Pre- and Post-
Release Search
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(Post-release 
Search)

Purchase

(Box Office Sales)
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(12)  ��,�,������ ��|�� � �����1 � ������� |�� � ��� � 1|��!"# $ ����%��|�� � �%�� � 1|��!&! 

(13)  ��,�,��'�� �(|�� � �)*�(�|��! 

where  αs is the penetration rate.  The penetration rate is used to capture search 

volume.  Thus, we introduce an effect of advertising on search by specifying the 

penetration rate to be a function of advertising. 

 (15)   αis  = 
�  5678597:;<0

=	 �  5678597:;<0
 

This formulation specifies penetration rate (αis) as a logit transform of an intercept-

term capturing the baseline penetration rate (a0s) and a coefficient (a1s) of advertising 

(Advi) to capture the effect of advertising on search penetration.  Secondly, we 

incorporate the direct and indirect effect of advertising on sales.  As previously 

discussed, we specify sales to follow a normal distribution with µ (mean) and σ  

(standard deviation).  We define µ (the mean of the normal distribution) to be a 

function of the baseline penetration rate (a0s) and advertising (Advi) as follows.   

(16)  µis = m0s + m1s*a0s + m2s*Advi 

This formulation allows for both of the effects, direct and indirect (through the 

penetration rate) that we previously discussed.  In other words, the direct effect of 

advertising on sales is captured through the coefficient (m2s) of advertising (Advi) in 

equation 16.  The indirect effect of advertising on sales through search is captured 

through the coefficient (mis) on baseline penetration (a0s), where baseline penetration 

is specified in equation 15.  We use baseline penetration, rather than the actual 

penetration rate, to avoid multicollinearity between the penetration rate and the 

advertising expenditures.  
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We describe our advertising data and estimation results in the next sections.  

5.4  Data Description 

 
Our data consists of advertising expenditures for each of the movies in our 

dataset for both the pre- and post- launch periods on a weekly basis.  The 

expenditures reflect the week that the advertising occurred and not the week that the 

payment was made.  The data includes advertising expenditures across television, 

radio, magazines, newspapers, Internet, and outdoors.  Similar to our approach in the 

search volume framework, we consider advertising expenditures up to eight weeks 

prior to the motion picture’s release.  We find that for many of the movies in our 

dataset, advertising expenditures do not occur until much closer to the movie’s 

release date.  A summary of the pre-launch weeks of advertising expenditures can be 

found in Tables 6 and 7.  Summary statistics on advertising expenditures can be 

found in Table 8.  The advertising data is in $1000, and “PreSumAd” indicates the 

sum of advertising expenditures during the pre-release period, while “AdRel” 

indicates the advertising expenditures in the week of release.  The advertising 

measure that we use in our estimation is the sum of all advertising expenditures in the 

eight weeks of pre-launch and the week of release (total of nine weeks). 

Table 6:  Weeks of Pre-Launch Advertising Expenditures 
 

Number of Weeks of 
Pre-launch Advertising 

Number of 
Movies 

0-1 5 

2-3 16 

4-5 22 

6-7 13 

8+ 7 
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Table 7:  Advertising by Pre-Launch Week 

Pre-launch 
Week 

Number of 
Movies 

-8 8 

-7 13 

-6 21 

-5 32 

-4 41 

-3 50 

-2 58 

-1 62 

 

Table 8:  Advertising Expenditure Summary Statistics 

  Min Max Mean SD 

PreSumAd $0 $22,049,700 $7,943,473 $6,339,462 

AdRel $11,200 $9,394,900 $4,503,687 $2,789,035 

 

We can see that most of the movies in our dataset have advertising 

expenditures for two to five weeks of the pre-launch period.  Only seven movies 

engage in pre-launch advertising for eight or more weeks.  Since we observe search 

activity for nearly all of the movies (61 out of 63) in our dataset for the entire pre-

launch period of eight weeks, we can infer that search activity is capturing consumer 

interest that is not simply a response to advertising.  Additionally, we have five 

movies with zero or one week of pre-launch advertising and one movie with no pre-

launch advertising.  For these movies, search activity may provide a valuable 

opportunity for gauging consumer interest during the pre-launch phase. 
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5.5  Estimation Results 

 
We estimate our extended model using Maximum Likelihood Estimation.  

Since we are still using a latent class segmentation approach, we begin by 

determining the optimal number of segments.  The last set of results in Table 4 

reflects the advertising framework.  We again find that a two-segment model is 

optimal, based on minimization of the BIC.  The estimation results of the two-

segment model can be found in Table 9.   

Table 9:  Search-Sales Model with Advertising: Estimation Results 

 

There are several interesting results.  First, we find that even after 

incorporating the role of advertising, the parameter estimates for search are still 

significant.  This finding lends support for our premise that online search activity is 

measuring consumer interest that is driven by sources other than only advertising.  

Second, we find that the coefficient on baseline penetration (m1) and the coefficient 

φ Inflation Parameter 0.838 (0.005) 0.773 (0.019)

λw Weibull Slope Parameter 0.008 (0.003) 0.007 (0.002)

c Weibull Shape Parameter 1.652 (0.098) 1.958 (0.105)

σ Normal Standard Deviation 1.010 (0.117) 0.727 (0.153)

λe Exponential Parameter 0.545 (0.015) 0.726 (0.018)

m0 260.807 (6.987) 6.775 (2.218)

m1 51.214 (1.233) 1.336 (0.100)

m2 0.986 (0.114) 1.347 (0.114)

a0 -5.097 (0.073) -9.537 (0.334)

a1 0.137 (0.009) 0.473 (0.019)

β0 -169.990 (5.992) - -

βPG13 -131.522 (8.719) - -

βR -203.593 (10.486) - -

βComedy 225.409 (10.163) - -

βDrama -95.126 (3.171) - -

βComp 88.716 (2.697) - -

Standard errors are in parentheses

All estimates are significant at the .05 level

Parameter Segment 1 Segment 2
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on advertising in the sales component (m2) are positive, suggesting a direct 

relationship between search and sales, as well as advertising and sales.  This implies 

that advertising is indeed an important factor in the success of a motion picture.  The 

large difference in magnitude for m1 suggests a much stronger effect in segment 1.  

We also find that the coefficient on advertising in the penetration component (a1) is 

positive and significant, implying a direct relationship between advertising 

expenditures and search volume. 

We discuss our results in the next section. 

5.6  Discussion 

 
We have already proposed the use of online search as a measure of consumer 

interest.  We further differentiate between pre-launch and post-launch search.  We 

posit that pre-launch search represents product interest, while post-launch search 

represents consumption interest, along with product interest.  We have not explicitly 

measured any of the drivers of this interest in a new product but have linked online 

search for a motion picture to opening-weekend box-office revenues.  In this chapter, 

we link advertising expenditures to search, as well as opening-weekend box-office 

revenues.  Therefore, we incorporate advertising in both the search and sales 

components of our proposed framework.  Our results indicate that although 

advertising expenditures are important in modeling the performance of motion 

pictures, search is also significant.  Thus, search appears to indicate consumer interest 

in a movie that results from sources other than advertising.  These sources could be 

WOM, press releases, etc.  We do not explicitly measure any other drivers of online 

search in our study.  We do focus on advertising, since these expenditures are 
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especially important in the motion picture industry.  Our results also suggest the 

usefulness in incorporating both search and advertising in a forecasting model. 

Lastly, we seek to more closely examine the relationship between online 

search and advertising and their respective abilities to forecast opening weekend 

sales.  Forecasting product sales during the pre-launch period for a new product is a 

problem that is often faced by managers.  Our approach addresses this issue.  We 

discuss our forecasting procedure using our proposed framework in the next section. 
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Chapter 6:  Forecasting 

 

6.1  Literature 

 
Some recent work in the forecasting literature has focused on the pre-release 

or pre-launch period.  Urban, Weinberg, and Hauser (1996) look at pre-launch 

forecasting for really-new products, specifically, electric vehicles.  They use a 

qualitative framework that is based on a “virtual-buying environment” where 

consumers are engaged in simulated product-related experiences and able to search 

for product information.  Moe and Fader (2002) look at advance purchase orders for 

CDs to forecast sales.  Advance purchase orders refer to customer orders that are 

placed for an item prior to the item being available for purchase.  The authors use the 

pattern of advance orders to forecast new album sales using data from an online 

retailer of music albums.  Lee, Boatwright, and Kamakura (2003) also look at pre-

launch sales forecasting of music.  They use sales of previous albums and pre-launch 

information about the album to forecast weekly sales.  Our research also follows a 

similar stream in that we look at the pre-launch or pre-release period for motion 

pictures.  We discuss our forecasting procedure and results in the next sections. 

6.2  Calibration and Validation 

 
We test the forecasting performance of our modeling approach using 

calibration and validation samples.  Our calibration sample consists of 48 movies, and 

our validation sample consists of the remaining 15 movies.  After sorting the movie 

titles in alphabetical order, every fourth title is included in the validation sample.  We 
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estimate both the Search-Sales Model and Search-Sales Model with Advertising on 

the calibration sample of 48 movies.  The models are estimated on all 16 weeks of 

search data.  The estimation results can be found in Tables 10 and 11. 

 

Table 10:  Search – Sales Model:  Calibration Estimation Results 
 

 

 

 

 

 

 

 

 

 

 

φ Inflation Parameter 0.741 (0.015) 0.765 (0.008)

λw Weibull Slope Parameter 0.011 (0.001) 0.006 (0.000)

c Weibull Shape Parameter 1.951 (0.043) 2.032 (0.027)

µ Normal Mean 14.944 (0.457) 15.466 (0.430)

σ Normal Standard Deviation 2.328 (0.367) 1.911 (0.141)

λe Exponential Parameter 0.714 (0.016) 0.774 (0.006)

α Penetration Rate 0.024 (0.001) 0.128 (0.000)

β0 -212.521 (4.288) - -

βPG13 -2.202 (0.092) - -

βR -38.358 (1.376) - -

βComedy 166.542 (3.200) - -

βDrama -173.948 (1.000) - -

βComp 59.683 (1.149) - -

Standard errors are in parentheses

All estimates are significant at the .05 level

Parameter Segment 1 Segment 2
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Table 11:  Search-Sales Model with Advertising:  Calibration 

Estimation Results 

 

 

 

We use these estimation results to determine segment membership 

probabilities for each of the movies in the validation sample.  Segment membership 

for the validation sample is determined using only movie characteristics (i.e., no 

search data).  For the Search-Sales model, the segment membership probabilities and 

the estimated values for µ for each segment give us predicted sales.  For the Search-

Sales Model with Advertising model, segment membership probabilities are 

determined similarly.  The predicted sales (µ) are calculated using the calibration 

sample estimates for m0, m1, and m2 as specified in the model.  It is important to note 

that we are forecasting the natural log of sales.  The results of the forecasting are 

discussed in the next section. 

φ Inflation Parameter 0.076 (0.001) 0.126 (0.001)

λw Weibull Slope Parameter 0.006 (0.000) 0.002 (0.000)

c Weibull Shape Parameter 2.369 (0.006) 2.860 (0.005)

σ Normal Standard Deviation 2.794 (0.218) 0.897 (0.078)

λe Exponential Parameter 0.006 (0.000) 0.009 (0.000)

m0 88.264 (1.944) 4.869 (0.934)

m1 4.427 (0.707) 0.408 (0.077)

m2 1.182 (0.642) 1.195 (0.080)

a0 -20.702 (0.071) -20.713 (0.103)

a1 1.323 (0.005) 1.325 (0.007)

β0 -45.213 (0.500) - -

βPG13 -43.781 (0.464) - -

βR -76.643 (0.857) - -

βComedy 73.217 (0.703) - -

βDrama -67.567 (0.677) - -

βComp 28.397 (0.255) - -

Standard errors are in parentheses

All estimates are significant at the .05 level

Parameter Segment 1 Segment 2
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6.3  Forecasting Results 

 
As discussed earlier, we forecast sales for a validation sample of 15 movies.  The 

results of the forecasting are found in Table 12.  The forecasting performance of our 

Search-Sales model is quite good.  The MAPE (mean absolute percentage error) is 

9.46%.  We can see from the results that there is a fairly large range in the APEs 

(absolute percentage error) for the movies in the validation sample.  The movies with 

the highest APEs are Babel, Little Miss Sunshine, and Quinceanera.  These movies 

gained popularity in later weeks of release, and therefore did not follow the typical 

pattern of sales.  Overall, this model performs well.  The results offer support for our 

premise that online search offers a useful measure of consumer interest in a new 

product, and therefore offers predictive power in forecasting sales for a new product. 

The forecasting performance of our Search-Sales Model with Advertising is 

better than the Search-Sales model.  We can see from the results that the range for the 

APEs is narrower, and the MAPE (3.20%) is lower than the Search-Sales model as 

well.  This is not surprising, as advertising expenditures in the movie industry are 

substantial, and as our results appear to support, can play a large role in the success of 

a motion picture.  However, it is important to highlight that the search parameters are 

still significant, even after the inclusion of advertising in our model.  We discuss our 

results and their implications in more detail in the next section. 
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Table 12:  Forecasting Results 

 

 

6.4  Discussion 

 
The primary focus of this dissertation is to investigate the predictive power of 

online search data in forecasting new product sales, movies, in our specific case.  We 

can see from our earlier results, that search patterns for movies are fairly predictable.  

The forecasting results of our model indicate that search data does indeed offer 

predictive power in forecasting sales.  The MAPE is under 10%, suggesting that 

search data may offer a useful measure to managers interested in forecasting sales of 

a new product, particularly in the pre-launch period.  We emphasize that in our 

validation sample, the only data that is used to forecast is movie characteristics 

(including competition), which is available well in advance of a motion picture’s 

release.  Thus, this framework can be used to forecast before any advertising data is 

available, the only necessary data is on product characteristics.  This again highlights 

SearchSales Advertising

Title APE APE

Babel 19.55 5.82

Clerks II 6.52 1.98

Déjà Vu 8.61 0.41

Flicka 2.95 0.45

Happy Feet 12.27 4.20

Jackass: Number Two 12.28 9.13

Little Miss Sunshine 17.53 0.29

One Night with the King 1.06 11.31

Quinceanera 34.22 2.28

Scoop 0.96 0.50

The Ant Bully 5.49 3.49

The Descent 3.83 4.11

The Illusionist 12.00 0.75

The Protector 0.28 1.70

The Wicker Man 4.29 1.54

MAPE 9.46 3.20
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the usefulness of our modeling framework and forecasting procedure for pre-launch 

forecasting of new product sales. 

In our specific context, the motion picture industry, advertising is known to be 

an important factor in the success of a new movie.  Our results also illustrate the 

importance of incorporating advertising expenditures into a forecasting model.  The 

forecasts are greatly improved with the inclusion of advertising data, suggesting that 

the combination of search data and advertising data may offer a powerful tool to 

managers in industries where advertising expenditures are substantial.  Managers may 

be able to predict, with a fair amount of accuracy, new product sales during the pre-

launch period.  It is important to note that this framework can only be applied once 

advertising data for a motion picture is available.  As discussed earlier, the 

forecasting of new product sales early in their life-cycle is a problem that managers 

have long struggled with.  Our framework offers one possible approach to address 

this issue. 

The overall results and managerial implications of our study, as well as 

concluding remarks and areas for future research, are discussed in the next section. 
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Chapter 7:  Conclusion 

 

7.1  Overview 

 
Our main objective is to illustrate the effectiveness of online search volume as 

a new product sales forecasting measure.  We are particularly interested in the pre-

launch aspect of forecasting.  We illustrate this in the context of motion picture 

revenues.  We distinguish between online search that takes place before launch and 

search that takes place after launch (post-launch).  We use pre-launch search volume 

as a measure of product interest and post-launch search as a measure of both 

consumption interest and product interest.  Post-release search can be driven by 

product interest, as well as interest driven by other characteristics such as product 

availability. 

We develop a modeling framework that links pre-launch search, post-launch 

search, and box-office revenues.  We also incorporate product characteristics, 

including competition.  We extend our framework and model the effect of 

advertising.  Doing so allows us to account for at least one driver of online search and 

compare the forecasting performances of our two modeling approaches – with and 

without advertising data.  We find that online search is a significant predictor of 

opening-weekend box-office revenues.  We also find that our framework performs 

well as a forecasting tool.  Further, our results indicate improved forecasting with the 

inclusion of advertising.  Although advertising is also a significant predictor of sales, 

we find that search is also significant.  Thus, the combination of search activity and 
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advertising expenditures can provide managers a valuable tool in managing consumer 

interest in new products. 

7.2  Contribution 

 
In this dissertation, we aim to address two questions.  (1) Is online search term 

volume a good measure of consumer interest? and (2) Does this measure offer sales 

forecasting power?  Our first contribution lies in the proposal of a new measure of 

consumer interest that is available prior to a new product’s launch.  WOM is one 

indication of consumer interest, and measurement of WOM is an issue that has been 

raised in the literature on WOM.  Therefore, we introduce an easily-obtained, cost-

effective measure for consumer interest in a new product.  Data on search activity is 

easy to collect and clean.  It does not require much coding or analysis of content.  

Search engine activity is also a very prevalent online activity as compared to blogging 

or writing consumer product reviews.  The data is available early in the product’s life 

cycle, and can capture consumer interest in a new product early in the consumer 

decision process.  In other words, search data is available before a new product is 

launched, often several months prior to launch.  Therefore, this measure can provide 

useful measures of consumer interest in a new product well in advance of the 

product’s launch.  This gives managers the opportunity to adjust their marketing 

strategy as necessary, depending on the levels of consumer interest in the new product 

before the product is even available for consumption. 

Our second contribution is in the development of a model that uses this 

measure to forecast new product sales.  We first develop a model that forecasts sales 

using product characteristics and search term data.  We then extend our modeling 
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framework to include one possible driver of search activity - advertising.  We focus 

on advertising because we are illustrating our framework in the context of motion 

pictures, where advertising expenditures can play a large role in the success of a 

movie.  We find that search data offers significant predictive power in forecasting 

opening-weekend box-office revenues, and our modeling framework and forecasting 

procedure perform quite well.  We further find that search data combined with 

advertising data improves the forecasting ability of our framework.  It is important to 

note that the significance of the search data is not eliminated with the inclusion of 

advertising.  Thus, we can infer that search activity is capturing consumer interest in a 

product stemming from other drivers as well.  These results have useful implications 

for managers of new products.  Managers can monitor the search pattern and volume 

for terms related to their products during the pre-launch period to gauge interest in 

their new products.  They can use this information to alter their marketing strategy, if 

necessary. 

Our study offers several opportunities for further research in this area.  We 

discuss limitations of our research and areas for future work in the next section. 

7.3  Limitations and Future Research 

 
One problem that is faced when using search data is the lack of very clean 

data.  For example, some movie titles that are also related to other products (e.g. 

water, firewall, cars) may be searched for using search terms that involve more than 

just the title.  Thus, the data for these terms may be contaminated.  Also, sometimes a 

motion picture title is also a book title.  If a movie title is very long, perhaps online 

searchers only enter the first few words or the main words as search terms.  
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Consumers may also search using the names of actors or actresses with roles in the 

motion picture.  Thus, in some cases, it may be difficult to tell exactly what a 

consumer would enter as a search term when searching for information on a motion 

picture.  Some experimental work in this area would help to better understand 

consumer choice of a search term. 

Although this work represents an example of the usefulness of online search 

volume as a predictor of motion picture success, there exist many opportunities for 

future research.  A similar problem could be examined for DVD release dates.  Also, 

with the historical data on search volume, other times of high motion picture interest 

could be determined.  For example, DVDs are often given as gifts during the holiday 

season.  Thus, there is likely to be a surge in searches for particular titles during this 

time.  As mentioned earlier, the most recent work in this area has focused on online 

reviews and ratings posted by consumers.  An obvious extension would be to 

combine reviews/ratings and search volume into a consumer interest measure in a 

forecasting model. 

Also, the timing problem could be examined.  There has been research done 

on the optimal timing of a motion picture release on DVD based on the success of the 

motion picture in theaters (Lehmann and Weinberg, 2000).  Perhaps WOM data 

captured by search volume could help optimize this solution as well.  Elberse and 

Eliashberg (2003) look at the sequential release of motion pictures in international 

markets.  They find that “the longer is the time lag between releases, the weaker is the 

relationship between domestic and foreign performance.”  Though they focus on 

screen allocations, the authors suggest that this is “consistent with the idea that the 



 

 68 
 

‘buzz’ for a movie is perishable.”  If this is the case with international markets, it is 

likely to be the case for the box-office – DVD performance relationship.  Again, 

perhaps the strength of this “buzz” could be captured by search volume to help 

optimize this solution as also. 

Our approach could also be extended to product categories beyond motion 

pictures.  Search data on terms related to other products are just as easily available.  

Thus, our framework could be applied to products such as books, music, or 

technology products.  Our framework is flexible in the sense that the probability 

distributions that are used can be adapted to fit the data better.  Other distributions 

may be used for products with longer life-cycles or different patterns of search, in 

general. 

Lastly, there are some demographic biases when looking only at Internet data.  

For example, it has been reported that males tend to use the Internet more than 

females.  Also, Internet use tends to increase with household income and education 

level.  People of Hispanic ethnicity are least likely to use the Internet (PEW/Internet, 

2006).  Additionally, younger Internet users are more likely to use search engines and 

use them often (PEW/Internet, 2005).  We do not address these issues in our study. 

While there are many limitations and opportunities for further study in our 

area of research, we take the first step of measuring consumer interest in a new 

product using online search term data and use this data to successfully predict new 

product sales. 
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Appendix 
 

Search-Sales Model:  Estimation Results for Various Market Sizes 

  

 

 

 

φ Inflation Parameter 0.7969 (0.0027) 0.7525 (0.0017)

λw Weibull Slope Parameter 0.0090 (0.0001) 0.0046 (0.0001)

c Weibull Shape Parameter 1.8301 (0.0094) 2.1313 (0.0086)

µ Normal Mean 15.0043 (0.2382) 16.1473 (0.1935)

σ Normal Standard Deviation 2.0248 (0.0891) 1.4711 (0.0332)

λe Exponential Parameter 0.6543 (0.0060) 0.7733 (0.0084)

α Penetration Rate 0.0683 (0.0004) 0.2091 (0.0006)

β0 -137.4962 (1.2277) - -

βPG13 8.6298 (0.0719) - -

βR -235.4280 (1.3861) - -

βComedy 276.6742 (1.8006) - -

βDrama 318.2247 (1.8862) - -

βComp 72.4208 (0.6206) - -

Standard errors are in parentheses

All estimates are significant at the .05 level

M=95,000

Parameter Segment 1 Segment 2

φ Inflation Parameter 0.8312 (0.0108) 0.7678 (0.0034)

λw Weibull Slope Parameter 0.0062 (0.0004) 0.0064 (0.0001)

c Weibull Shape Parameter 1.7543 (0.0372) 1.9627 (0.0352)

µ Normal Mean 15.0784 (0.7276) 15.3873 (0.1019)

σ Normal Standard Deviation 2.1276 (0.2084) 1.8885 (0.1723)

λe Exponential Parameter 0.4855 (0.0144) 0.7058 (0.0047)

α Penetration Rate 0.0372 (0.0005) 0.1008 (0.0029)

β0 -228.4689 (0.9218) - -

βPG13 -168.2976 (0.7054) - -

βR -224.0473 (0.6523) - -

βComedy 298.4611 (0.9048) - -

βDrama -339.2037 (1.0737) - -

βComp 109.1394 (0.3108) - -

Standard errors are in parentheses

All estimates are significant at the .05 level

M=125,000

Parameter Segment 1 Segment 2
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