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Abstract

The Semantic Web (SW) deployment is now a realization and the amount of
semantic annotations is ever increasing thanks to several initiatives that promote
a change in the current Web towards the Web of Data, where the semantics of
data become explicit through data representation formats and standards such as
RDF/(S) and OWL. However, such initiatives have not yet been accompanied
by efficient intelligent applications that can exploit the implicit semantics and
thus, provide more insightful analysis. In this paper, we provide the means for
efficiently analyzing and exploring large amounts of semantic data by combining
the inference power from the annotation semantics with the analysis capabilities
provided by OLAP-style aggregations, navigation, and reporting. We formally
present how semantic data should be organized in a well-defined conceptual
MD schema, so that sophisticated queries can be expressed and evaluated. Our
proposal has been evaluated over a real biomedical scenario, which demonstrates
the scalability and applicability of the proposed approach.

Keywords: Semantic Web, Ontologies, Data Warehouses, OLAP,
Multidimensional design

1. Introduction

The effort behind the Semantic Web (SW) is to add machine-understandable,
semantic annotation to web-published contents so that web information can be
effectively retrieved and processed by both humans and machines in a great
variety of tasks. This is in practice achieved by using SW technologies, which
enable to attach semantics to resources, ranging from very simple to very com-
plex annotations depending on the requirements. SW technologies open a new
dimension to data integration by providing a common terminology, standard for-
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mats for knowledge resources (e.g., RDF/(S)! and OWL?), semantically linked
data, and more formal representations like description logic axioms for infer-
ence tasks. As a result, more and more semi-structured data and knowledge
resources are being published in the Web, creating what is called the Web of
Data [11]. At the same time, there is a great urgency of new analytical tools
able to summarize and exploit all these resources.

Semantic search has emerged as one of the first applications making use and
exploiting the Web of Data. New systems that offer search and browsing over
RDF data have been developed [20, 19, 39, 16, 40]. Research in this area is a hot
topic because it enhances conventional information retrieval by providing search
services centered on entities, relations, and knowledge. Also, the development of
the SW demands enhanced search paradigms in order to facilitate acquisition,
processing, storage, and retrieval of semantic data. Albeit interesting, semantic
search does not provide users with great insight into the data. Various advanced
applications that have recently emerged impose modern user and business needs
that require a more analytical view. Some examples include customer support,
product and market research or life sciences and health care applications with
both structured and unstructured information available.

The biomedical domain is one of the most active areas where significant
efforts have been spent to export database semantics to data representation
formats following open standards, which explicitly state the semantics of the
content. The use of ontologies and languages such as RDF and OWL in the
area of medical sciences has already a long way, and several web references
to medical ontologies for different areas of medicine can be found (UMLS [12],
SNOMED-CT [6], GALEN [1], GO [2], etc.) Moreover, a growing penetration of
these technologies into the life science community is becoming evident through
many initiatives (e.g. Bio2RDF [9], Linked Life Data [3], Liking Open Drug
Data [4], etc.) and an increasing number of biological data providers, such as
UniProt [7], have started to make their data available in the form of triples.
In these complex scenarios keyword or faceted search may be useful but not
enough, since advanced analysis and understanding of the information stored are
required. Given the previous analysis requirements over these new complex and
semantic representation formats, the well-known data warehousing (DW) and
OLAP technologies seem good candidates to perform more insightful analytical
tasks.

During the last decade, DW has proved its usefulness in traditional business
analysis and decision making processes. A data warehouse can be described as
a decision-support tool that collects its data from operational databases and
various external sources, transforms them into information and makes that in-
formation available to decision makers in a consolidated and consistent manner
[24]. One of the technologies usually associated to DW is multidimensional
(MD) processing, also called OLAP [17] processing. MD models define the an-
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alytic requirements for an application. It consists of the events of interest for
an analyst (i.e., facts) described by a set of measures along with the different
perspectives of analysis (dimensions). Every fact is described by a set of dimen-
sions, which are organized into hierarchies, allowing the user to aggregate data
at different levels of detail. MD modeling has gained widespread acceptance for
analysis purposes due to its simplicity and effectiveness.

This work opens new interesting research opportunities for providing more
comprehensive data analysis and discovery over semantic data. In this paper,
we concentrate on semantic annotations that refer to an explicit conceptualiza-
tion of entities in the respective domain. These relate the syntactic tokens to
background knowledge represented in a model with formal semantics (i.e. an
ontology). When we use the term “semantic”, we thus have in mind a formal
logical model to represent knowledge. We provide the means for efficiently ana-
lyzing and exploring large amounts of semantic data by combining the inference
power from the annotation semantics with the analysis capabilities provided by
OLAP-style aggregations, navigation, and reporting. We formally present how
semantic data should be organized in a well-defined conceptual MD schema, so
that sophisticated queries can be expressed and evaluated. As far as we know
there is no tool providing OLAP-like functionality over semantic web data. In
Section 2.3 we elaborate on the requirements and challenges faced when dealing
with semantic web data.

The main contributions of the paper are summarized as follows:

e We introduce a semi-automatic method to dynamically build MD fact
tables from semantic data guided by the user requirements.

e We propose two novel algorithms to dynamically create dimension hier-
archies with “good” OLAP properties from the taxonomic relations of
domain ontologies for the fact tables generated with the previous method.

e We provide an application scenario and a running use case in the biomed-
ical domain to illustrate the usefulness and applicability of our method.

The rest of the paper is organized as follows. Section 2 introduces the appli-
cation scenario with a use case that motivates our approach. Section 3 provides
an overview of the method. Section 4 contains the user conceptual MD schema
definition. Section 5 is devoted to the Fact Extraction process, and we cover
both the foundations and implementation issues. In Section 6, we propose two
methods for Dimension Extraction. Section 7 describes the experimental evalu-
ation and implementation. Section 8 reviews related work regarding the trends
in analytical tools for non-conventional data sources, mainly the semi-structured
ones and finally, in Section 9 we give some conclusions and future work.

2. Application scenario

In this paper we adopt the application scenario of the Health-e-Child inte-
grated project (HeC) [37], which aimed to provide a grid-based integrated data
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Figure 1: HeC data integration architecture (left hand) versus the Semantic Web integration
architecture (right hand)

infrastructure for new decision support systems (DSS) for Paediatrics. Such
DSS tools are mainly focused on traditional diagnosis/prognosis tasks and pa-
tient follow-up.

This scenario regards three main types of data sources: well standard-
ized records coming from hospital information systems (e.g. HL7-conformant
records), highly heterogeneous semi-structured clinical reports, and a variety of
unstructured data such as DICOM files, ECG data, X-ray and ultrasonography
images. All data are delivered to the HeC infrastructure in XML format, usually
lacking of any schema for the semi- and unstructured data sources. Unfortu-
nately, most of the interesting analysis dimensions are located in the schema-less
data sources. The integration solution proposed in the HeC project formerly
consisted of defining a flexible integrated data model [10], which is built on top
of a grid-aware relational database management system (see left hand side of
Figure 1). As clinical reports present very irregular structures (see the example
presented in Figure 2), they are decomposed and classified into a few organi-
zational units (i.e. patient, visit, medical event and clinical variables), thus
disregarding much information that could be useful for the intended DSS tools.
Additionally, this data model also includes tables that map clinical variables
to concept identifiers from the UMLS Metathesaurus [12]. These tables are in-
tended to link patient data to bibliographic resources such as MEDLINE [5]. It
is worth mentioning that a similar scenario and solution have been proposed in



the OpenEHR initiative?.

However, in this paper we adopt a different integration architecture (see
right hand side of Figure 1), which follows the current trends in biomedical [13]
and bioinformatics data integration [27], and relies entirely on SW technology.
In this architecture, the integrated data model is defined as an application on-
tology that models the health care scenario (e.g. patients, visits, reports, etc.)
This ontology can import concepts defined in external knowledge resources (ref-
erence domain ontologies in Figure 1). Finally, the biomedical data is semanti-
cally annotated according to the application ontology and stored as RDF triples
(i.e. triple store). In the HeC scenario, the application ontology modeling the
rheumatology domain has 33 concepts and 39 roles. However, this ontology
can import any concept from UMLS, which is used as reference domain ontol-
ogy, and contains over 1.5 million concepts. The triple store of the application
scenario has 605420 instances containing references to 874 different concepts of
UMLS. Moreover, depending on the user’s requirements (i.e. dimensions se-
lected) more domain ontology axioms will be imported in order to build the
dimension hierarchies.

In this paper, we aim at analyzing and exploiting all this semantic data
through OLAP-based tools. Subsequent sections present the representation
formalism of the semantic data, some examples of OLAP-based analysis, and
finally, the main issues involved in carrying out OLAP-based analysis over se-
mantic data.

2.1. Semantic Data Representation

We use the language OWL-DL to represent the application ontology to which
semantic annotations refer. OWL-DL has its foundation in the description log-
ics (DL) [8]. Basically, DLs allow users to define the domain of interest in terms
of concepts (called classes in OWL), roles (called properties in OWL) and in-
dividuals (called instances in OWL). Concepts can be defined in terms of other
concepts and/or properties by using a series of constructors, namely: concept
union (L), intersection (M) and complement (—), as well as enumerations (called
oneOf in OWL) and existential (3), universal (V) and cardinality (>, <, =)
restrictions over a role R or its inverse R™.

Concept definitions are asserted as axioms, which can be of two types: con-
cept subsumption (C' C D) and concept equivalence (C' = D). The former one
is used when one only partially knows the semantics of a concept (the neces-
sary but not sufficient conditions). Equivalence and subsumption can be also
asserted between roles, and roles can have special constraints (e.g., transitivity,
symmetry, functionality, etc.) The set of asserted axioms over concepts and
roles is called the terminological box (T'Bozx).

Semantic data is expressed in terms of individual assertions, which can be
basically of two types: assert the concept C' of an individual a, denoted C(a),

Shttp://www.openehr.org/home . html
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Figure 2: Fragment of a clinical report of the Rheumatology domain.

and assert a relation between two individuals a and b, denoted R(a,b). The set
of assertions over individuals is called the assertional box (ABox).

For practical purposes, the T'Box and the ABox are treated separately.
Notice that while the A Boz is usually very dynamic for it is constantly updated,
the T'Box hardly changes over time. From now on, we will use the term ontology
to refer to the T'Box, and instance store to refer to the ABox storage system.
We assume that the instance store is always consistent w.r.t. the associated
ontology.

Figure 3 shows a fragment of the ontology designed for patients with rheuma-
tic diseases in our application scenario, whereas Table 1 shows a fragment of
an instance store associated to this ontology. In this case, the instance store
is expressed as triples (subject, predicate,object), where a triple of the form
(a, type, C) corresponds to a DL assertion C(a), and otherwise the triple (a, R, b)
represents the relational assertion R(a,b).

2.2. Ezample of Use Case

In the previous application scenario, we propose as use case to analyze the
efficacy of different drugs in the treatment of inflammatory diseases, mainly
rheumatic ones. At this stage, the analyst of this use case should express her
analysis requirements at a conceptual level. Later on, these requirements will
be translated into dimensions and measures of a MD schema that will hold
semantic data.

Figure 4 depicts the conceptual model of the analyst requirements where
the central subject of analysis is Patient. The analyst is interested in exploring
the patient’s follow-up visits according to different parameters such as gender,
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subject predicate object
PTNXZ1 hasAge “10”

PTNXZ1 sex Male

VISIT1 date “06182008”
VISIT1 hasReport RHEX1
RHEX1 damagelIndex “10”

RHEX1 results ULTRA1
ULTRA1 hasAbnormality “Malformation”
ULTRA1 hasAbnormality Knee

VISIT1 hasReport DIAG1

DIAG1 hasDiagnosis Arthritis
VISIT1 hasReport TREAT1
TREAT1 | hasDrugTherapy | DT1

DT1 hasDrug Methotrexate
PTNXZ1 | hasVisit VISIT2

VISIT2 date “08202008”
VISIT2 hasReport RHEX2
RHEX2 damagelIndex “15”

RHEX2 results ULTRA2
ULTRA2 | hasAbnormality “Malformation”
ULTRA2 hasAbnormality Knee

RHEX2 results ULTRA3
ULTRA3 | hasAbnormality “Rotation 15degrees”
ULTRA3 | hasAbnormality Right_Wrist
VISIT2 hasReport DIAG2

DIAG2 hasDiagnosis Systemic_Arthritis
VISIT2 hasReport TREAT?2
TREAT2 | hasDrugTherapy | DT2

DT2 hasDrug Methotrexate
TREAT2 hasDrugTherapy | DT3

DT3 Corticosteroids

hasDrug

Table 1: Semantic annotations (Abox).




age, the drugs prescribed, the affected body parts, the diseases diagnosed, the
articular damage and the number of occurrences.

| Body Parts | | Articular Damage |

| Gender | | Age | |# occs.|

Figure 4: Use case analysis requirements.

Later on, the previous analysis requirements will be formally expressed in
terms of DL expressions over the ontology and these expressions will be mapped
to elements of a MD schema (i.e. dimensions and measures) that will eventually
be populated with the semantic annotations of the instance store. The ultimate
goal of the approach is to effectively analyze and explore the semantic annota-
tions using OLAP-style capabilities. In this use case, the analyst will be able to
specify useful MD queries in order to analyze patient data and discover useful
patterns and trends. As an example, we show two MD queries expressed in
MDX-like syntax that an analyst would execute over the resulting fact table in
order to generate cubes. The first query builds a cube where for each admin-
istered drug and diagnosed disease the articular damage registered is averaged.
By exploring this cube the analyst can find out interesting patterns such as
which drugs mitigate the articular damage depending on the disease type.

CREATE CUBE [cubeArticularDamagel]

FROM [patient_dw]

(
MEASURE [patient_dw].[avgArtDamIndex],
DIMENSION [patient_dw].[Drug],
DIMENSION [patient_dw].[Disease]

)

The second query builds a cube where the articular damage is explored over
different analysis perspectives, namely the affected body parts and the patient’s
gender. This way the analyst can discover which body parts contribute most to
the total damage index contrasted by gender.

CREATE CUBE [cubeArticularDamage2]

FROM [patient_dw]

(
MEASURE [patient_dw].[avgArtDamIndex],
DIMENSION [patient_dw].[BodyPart],
DIMENSION [patient_dw].[Gender]



2.3. Issues in analyzing semantic data

The full exploitation of semantic data by OLAP tools is far from trivial due
to the special features of semantic data and the requirements imposed by OLAP
tools. Next, we describe some of the main challenges we encounter when dealing
with semantic web data, which are treated in this paper:

e Usability: When dealing with the Web of Data, the user typically needs to
specify a structured query in a formal language like SPARQL. However,
the end user often does not know the query language and the underlying
data graph structure. Even if she did, languages such as SPARQL do not
account for the complexity and structural heterogeneity often common in
RDF data. We overcome this issue by providing the user with a simple
mechanism to specify her analysis requirements at the conceptual level.
We ask the user to compose a conceptual MD schema by selecting concepts
and properties of interest from the available ontologies.

e Imprecision: The information needs expressed by the user might be im-
precise. On one hand, the flexibility and ease of use offered to the user in
the requirements phase can lead to an ambiguous specification (i.e. the
concepts and properties selected might be used in several contexts in the
ontologies). On the other hand, the user might have limited knowledge
about the domain and her specification might be too general or abstract.
Our method overcomes both types of imprecision by taking into account
all possible interpretations of the concepts specified by the user. Moreover,
thanks to the semantics attached to the data, implicit information can be
derived and made explicit so that the user can refine her MD specification
by selecting these new inferred concepts.

e Scalability: As the amount of available data is ever growing, the ability
to scale becomes essential. What is more important, scalability is known
to be an issue when reasoning with large ontologies. In this work, we
overcome this issue by applying specific indexes to ontologies in order to
handle basic entailments minimizing the use of the reasoner.

e Dynamicity: The web is continuously changing and growing. Therefore,
analytical tools should reflect these changes and present fresh results.
Also, data are being provided at an overwhelming level of detail and only
a subset of attributes constitute meaningful dimensions and facts for the
analyst. For these reasons, our method allows the user to select only the
concepts of interest for analysis and automatically derives a MD schema
(i.e. dimensions and facts) and its instantiation ready to be fed into an
off the shelf OLAP tool, for further analysis.

3. Method overview

In this section we present an overview of our method. We focus on the end-
to-end description of the data flow from expressing the analysis requirements
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to returning analytical query results. Figure 5 depicts a schematic overview of
the whole process. The repository of semantic annotations on the left of Fig-
ure 5 stores both the application and domain ontology axioms (i.e. Thoz) and
the semantic annotations (i.e. instance store). This repository maintains the
necessary indexes for an efficient management. For obtaining OLAP style func-
tionality, our goal is to create a MD schema from both the analyst requirements
and the knowledge encoded in the ontologies. The fact table is populated with
facts extracted from the semantic annotations —a fact is not a simple RDF triple
but a valid semantic combination of structurally related instances— while dimen-
sion hierarchies are extracted by using the subsumption relationships inferred
from the domain ontologies. Each of the phases are described in turn.

User/Analyst

@”@ MDX

- % Query

Ontology
(T-Box)

Fact
Extractor FaitD'\I{\e/))ble Geﬁi?aetor —
(=)
Semantic Annotations A A\{\\
(O Named Instance @ Literal Dimensions
Extractor =

Figure 5: Architecture for semantic annotations analysis.

e During the design of the conceptual MD schema, the user expresses her
analysis requirements in terms of DL expressions over the ontology. In
particular, she selects the subject of analysis, the potential semantic types
for the dimensions and the measures.

e The fact extractor is able to identify and extract facts (i.e. valid combi-
nations of instances) from the instance store according to the conceptual
MD schema previously designed, giving rise to the base fact table of the
DW.

e The dimensions extractor is in charge of building the dimension hierarchies
based on the instance values of the fact table and the knowledge available
in the domain ontologies (i.e. inferred taxonomic relationships) while also
considering desirable OLAP properties for the hierarchies.

e Finally, the user can specify MD queries over the DW in order to analyze
and explore the semantic repository. The MD query is executed and a
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cube is built. Then, typical OLAP operations (e.g., roll-up, drill-down,
dice, slice, etc.) can be applied over the cube to aggregate and navigate
data.

4. Multidimensional schema definition

In this section, we present how the analyst information requirements are
translated into a conceptual MD schema in order to leverage the aggregation
power of OLAP. The analyst defines the MD elements with DL expressions,
which seems the most natural choice given that the data sources are expressed
under this logical formalism. In particular, the MD schema contains the follow-
ing elements:

e Subject of analysis: the user selects the subject of analysis from the on-
tology concepts. We name this concept Csyp.

e Dimensions: usually, a dimension is defined as a set of levels with a partial
order relation among them (i.e., hierarchy). We postpone the hierarchy
creation of each dimension in order to dynamically adapt it to the base
dimension values appearing in the resulting fact table. Therefore, the
analyst must specify just the semantic type of each dimension. They can
be either concepts, named C, or data type properties, named ditp, selected
from the ontology.

e Measures: The user selects measures from the ontology by specifying the
numeric data type property dtp and the aggregation function to be applied
(i.e., sum, average, count, min, max, etc).

Notice that at this point, the analyst does neither know the dimension values
nor the roll-up relationships that will eventually be used in the resulting MD
schema. The method presented in this paper will automatically capture this
information from the application and the domain ontologies involved in the
analysis but always taking into account the user requirements. The syntax for
the definition of the MD elements is specified in Figure 6 by means of a version
of Extended BNF where terminals are quoted and non-terminals are bold and
not quoted. For the running use case, the MD schema definition is shown in
Figure 7.

5. Extracting Facts

This section addresses the process of fact extraction from the semantic an-
notations. First, the foundations of the approach are presented and then we
discuss implementation details.
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subject ::= 'SUBJECT(' name ', concept ')’

dimension ::='DIM (' name ', concept | datatypeprop’)’
measure ;1= /M(/ name ', numValueFunction /(/datatypeprop/))/
name ::= identifier

concept ::= concept definition according to OWL DL syntax
datatypeprop ::= datavaluedPropertyID
numValueFunction ::= "AVG' | 'SUM’ | "COUNT' | 'MAX' |"MIN’
datavaluedPropertyID ::= URIreference

identifier ::= valid string identifier

Figure 6: BNF syntax for MD schema specification

SUBJECT( PatientCase , Patient)

DIM( Disease , Disease_or_Syndrome)
DIM( Drug , Pharmacological_Substance)
DIM( Age , hasAge)

DIM( Gender , Gender)

DIM( BodyPart , Body_Space_Or_Junction)
M( AvgArtDamlIndex , AVG (damagelndex)
M( NumberOccs. , COUNT (PatientCase))

Figure 7: MD schema specification for the use case

13



5.1. Foundations

The ultimate goal of the approach is to identify and extract valid facts ac-
cording to the user’s requirements. However, the user’s conceptual MD schema
is ambiguous in the sense that it can have several interpretations. In the run-
ning example, the dimension Disease can refer to the patient’s main diagnosis, to
some family member diagnosis, or it can be a collateral disease derived from the
main disease detected through laboratory tests or rheumatic exams. In absence
of further knowledge, the fact extraction process should account for all possible
interpretations of the user’s conceptual MD schema. Later on, when construct-
ing OLAP cubes, the system will ask the user for her interpretation of the di-
mensions and measures in case there is more than one. This section elaborates
on the definitions that allow to capture all possible interpretations of the user
analysis requirements and thus extract all possible facts under these different in-
terpretations. From now on, O refers to the ontology axioms, IS to the instance
store and Csyp, D and M are the subject of analysis, dimensions and measures,
respectively. We show examples of the definitions with a simplified version of
the user requirements for the sake of readability and comprehension. Suppose
the analyst is interested in analyzing rheumatic patients with the following
dimensions and measures: Csyp = Patient, D = {Gender, Drug, Disease},
M = {damagelndex}. Figure 8 shows a graph-based representation of the
ontology fragment where the schema elements are shaded.

hasVisit m hasReport,
Patient \V'_Sl(/

Report

Diagnosis
s-d
Rheumatology FindingType

I1s-a
Ultrasonography

hasDrug

i 1S-a

hasDiagnosis

hasAbnormality

Disease

Figure 8: Example of ontology graph fragment.

Definition 1. The subject instances are the set Isyp = {i/i € IS, OU IS |=
Csup(i)}.

In the running example Csyp is Patient and Isyp is the set of all instances
classified as Patient.

Definition 2. Let ¢ € D be a dimension. We define the senses of ¢ as the
following set:
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senses(c) = MSC({d|3r € 0,0 = ( © 3r.c)} U T)

where the function M SC* returns the most specific concepts of a given con-
cept set, that is, those concepts of the set that do not subsume any other concept
in the same set.

Similarly, we can define the senses of a measure p € M as follows:

senses(p) = MSC{J|OE C3Ip.THUT)

Finally, we define S as the union of the senses of each dimension and mea-
sure:

S = U senses(i)

Vie DUM

Example 1. In Figure 8 the senses of each MD element are enclosed in boxes.
senses(Drug) = {DrugTherapy}, senses(Disease) = { Diagnosis, Ultrasono-
graphy}, senses(Gender) = {Patient} and senses(damagelndex) =
{Rheumatology}. Notice that the senses are the different interpretations that
the MD elements can have in the ontology.

We need to identify the senses for both dimensions and measures because
dimension values can participate in different parts of the ontology and measures
can also be applied to different domain concepts.

The following definitions (3-6) are aimed at capturing the structural prop-
erties of the instance store w.r.t. the ontology in order to define valid instance
combinations for the MD schema.

Definition 3. The expression (r1 0 ...or,) € Paths(C,C") is an aggregation
path from concept C to concept C' of an ontology O iff O = C C I rio...or,.C".

Definition 4. Let C,,Cy € S be two named concepts. Contexts(Cq, Cy,Csup)
= Uvcrercorec,,o,cs0)1C"/C" E C'}, where the function LCRC(Cq, Cy,
Csup) returns the set of least common reachable concepts,
1. |Paths(C’,Cy)| > 0 A |Paths(C’,Cy)| > 0 A |Paths(Csyp,C’)| > 0 (C is
common reachable concept).
2. BE € O such that E satisfies the condition 1 and |Paths(C’, E)| > 0 (C'
is least).

The first condition states that there must be a path connecting C’ and Cj,
another path connecting C’ and Cj and a third path connecting the subject
concept Cspyp with C’. The previous definition is applied over all the senses in
S pairwise in order to find common contexts that semantically relate them.

4Do not confuse with the inference task in DL with the same name, MSC of an instance.
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Example 2. In Figure 8, Contexts(DrugTherapy, Diagnosis, Patient) =
{Visit} because p1 = Visit.hasReportohasTherapy.DrugTherapy, pa = Visit.
hasReport.Diagnosis and ps = Patient.hasVisit.Visit.

Definition 5. Let i,i’ € IS be two named instances. The expression (rpo---o
rn) € Paths(i,i') is an aggregation path from i to i’ iff:

1. There exists a list of property assertions rj(ij—1,i;) € IS, 1 < j < n.
2. There exists two concepts C,C" € O such that OUIS = C(i) AC' (') and
(rio---ory,) € Paths(C,C")

The first condition of the previous definition states that there must be a
property chain between both instances in the IS, and the second one states that
such a path must be also derived from the ontology.

Definition 6. Let 4,7, € IS be two named instances such that O U IS =
Coia) NCy(ip) N Co,Cp € S N Cy # Cy. Contexts(iy, iy, isup) =

Uvire Lo R0 iy, is05) L} where the function LCRI(iq, i, isuB) returns the set
of least common reachable instances,

1. |Paths(i',ia)| > 0 A |Paths(i',ip)] > 0 A |Paths(isup,i')] > 0 (i’ is
common reachable instance).

2. Bj € IS such that j satisfies the condition 1 and |Paths(i',j)| > 0 (i’ is
least).

The previous definition is applied over instances belonging to different senses
pairwise in order to find common contexts that relate them.

Example 3. Figure 9 shows an example of IS represented as a graph that is
consistent with ontology fragment in Figure 8. In this example, Contexts(DT1,
DIAG1, PTN_XY21) ={VISIT1} because p1 = VISIT1.hasReport o
hasTherapy.DT1, po = VISIT1.hasReport. DIAG1 and ps = PTN_XY?21.
hasVisit. VISIT].

Now, we can define which instances can be combined to each other for a
certain analysis subject C'sypg.

Definition 7. Two instances i,,iy € IS are combinable under a subject in-
stance isyp iff 3 C1 € {C(iy)/iy € Contexts(ia,ip,isup)}, 3 Co € Contexts(
C(ia), Cliv), Csup) such that O = Cy 3 Cy where C (i) is the asserted class for
the instance i in IS.

Example 4. As an example of the previous definition, let us check if instances
DT1 and DIAG1 of Figure 9 are combinable. In the definition, Cy can only be
Visit and Cy is also Visit by looking at Figure 8. Since O = Visit J Visit,
instances DT1 and DI AG1 are combinable under subject instance PI'N_XY 21.
The intuition of the previous definition is that two instances are combinable only
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Figure 9: Example of instance store fragment consistent with ontology fragment of Figure 8.

if at the instance level (i.e., in the instance store or Abox) they appear under
a context that belongs to or is more general than the context specified at the
conceptual level (i.e., in the Thox). Following this intuition, instances DT1
and DIAG?2 are not combinable because their contexts at the instance level are
{PTN_XY21} whose type is Patient while at the conceptual level their contexts
are {Visit}. This makes complete sense because the ontology has been defined in
such a way that each visit contains the diseases diagnosed along with the drugs
prescribed.

Only valid combinations conformant with the MD schema are taken into
account in the following definition.

Definition 8. An instance context associated to isyg € 1.5 is the tuple
(i1, yin), with n > |D U M|, satisfying the following conditions:

1. Ye € {DUM?}, there is at least one tuple element i,, 1 < x < n, such that
OUIS = C(i,) and C € senses(c) or i, = NULL otherwise. From now
on, we will denote with dim(i,) to the MD element associated to i, (i.e.
c).

2.V, k), 1 <j,k<n,j#k, (ij,ix) are combinable instances under isyp.

In other words, each of the elements of an instance context tuple is an
instance that belongs to one sense and satisfies the combinable condition of
Definition 7 with the rest of instances in the tuple. Therefore, an instance
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Dimensions Disease Drug Gender damageIndex
Senses Ultrasono. Diagnosis DrugTherapy Patient Rheuma.
PTN_XY21 ULTRA1 DIAG1 DT1 PTN_XY21 RHEX1
PTN_XY21 ULTRA2 DIAG2 DT2 PTN_XY21 RHEX2
PTN_XY21 ULTRA2 DIAG2 DT3 PTN_XY21 RHEX?2
PTN_XY21 ULTRA3 DIAG2 DT2 PTN_XY21 RHEX?2
PTN_XY21 ULTRA3 DIAG2 DT3 PTN_XY21 RHEX?2

Table 2: Instance context tuples generated for the running example. The second row accounts
for the senses associated to each dimension.

context tuple represents all the potential valid interpretations from IS for a
MD schema specification since all the elements of the MD schema must be
covered by at least one instance or the NU LL value if there is not such instance
(i.e. in case of optional values in the ontology).

We say that an instance context tuple is ambiguous if there is more than one
sense associated to the same dimension (measure). For example, tuples in Table
2 are ambiguous because the dimension Disease has associated two senses in
all the tuples.

Example 5. Given dimensions D = {Disease, Drug, Gender} and measures
M = {damagelIndex} with their associated senses, Table 2 shows the instance
context tuples generated for subject instance PI'N_XY 21. Notice we keep track
of the subject of analysis (i.e. Patient) in a new column.

Finally, we must project the intended values to obtain the facts that will
populate the MD schema.

Definition 9. A data fact associated to an instance context tuple (i1, ,im),
is a tuple (dy,--- ,d,) with n > m such that

Je if dim(ix) € D and ji € [],(ix) and OU IS = C(jx) and
C T dim(iy,)
vp if dim(iy) € M and vg € [ 14, (k)
null  otherwise

dy, =

where Hp is the projection operation over an instance through the property
p.

Notice that we take into consideration that the projection can be multivalued
(i.e. more than one value can be accessed with the same property in an instance).

It is worth mentioning that “disambiguation” of instance tuples and data
facts must be performed before building the OLAP cubes. Such a disambigua-
tion can only be manually performed by the user according to her analysis
requirements and the semantics involved. We will not treat further this issue as
we consider it out of the scope of this paper.
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Dimensions Disease Drug Gender | damagel.
Senses Ultrasono. Diagnosis DrugTherapy Patient Rheuma.
PTN_XY21 Malformation Arthritis Methotrexate Male 10
PTN_XY21 Malformation Systemic_Arthritis Methotrexate Male 15
PTN_XY21 Malformation | Systemic_Arthritis | Corticosteroids Male 15
PTN_XY21 Bad rotation Systemic_Arthritis Methotrexate Male 15
PTN_XY21 Bad rotation Systemic_Arthritis Corticosteroids Male 15

Table 3: Data fact tuples generated for the running example.

Example 6. The previous instance context tuples in Table 2 give rise to the
data fact tuples in Table 3 where each instance has been projected according to
the previous definition. In the data fact tuples, measures are treated the same
way as dimensions. Only when data fact tuples are going to be loaded into a
cube, measure values sharing dimension values are aggregated according to the
aggregation function selected.

Complezity Issues. In our method, the extraction of facts from the I.S (Def-
inition 9) requires the generation of different subsets of O (i.e. senses, paths
and contexts), which in turn requires the use of a reasoner to perform infer-
ences like O =« and OUIS | a. The complexity of current reasoners depends
on the expressiveness of both O and «, and consequently it directly affects to
the efficiency of our method. It is worth mentioning that the expressivity of
OWL DL leads to exponential complexity for these inferences. Fortunately,
recently proposed OWL2 profiles (EL, QL and RL) have been demonstrated
to be tractable for the main reasoning tasks (i.e. ontology consistency, class
subsumption checking and instance checking). Additionally, definitions 4 to 8
require intensive processing over the inferred taxonomy of O and the underlying
graph structure of I.S. For this reason, we have designed a series of indexes
and data structures aimed to efficiently perform the required operations. Next
section is devoted to this issue.

5.2. Implementation

The process of identification and extraction of valid facts from a semantic
data repository involves several steps. In the previous section we have explained
the identification of facts by means of a conceptual MD schema defined by the
user. We have also lied down the foundations of valid facts from a semantic
point of view. In this section we present an implementation for fact extraction
that resembles ETL processes.

Figure 10 sketches the steps involved in the fact extraction process. In
the upper part of the figure we can see how ontology axioms (i.e., Thox) are
indexed in order to handle basic entailments and hence minimizing the need of
a reasoner. This task needs to be performed just once for each ontology and it
can be done off-line. The on-line phase is shown in the bottom part of Figure
10. The first task consists of creating the composition triples from the instance
store (i.e., Abox) according to the user MD schema. These triples allow efficient
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instance retrieval as well as reachability queries. Then, we generate instance
context tuples (see Definition 8) from the composition triples with the help of
the indexes. Since each context tuple can give rise to multiple facts, we project
them over the desired attributes specified in the user MD schema, obtaining
the intended data fact tuples (see Definition 9). Finally, we apply the required
transformations over data fact tuples (e.g., normalizing or making partitions of
numeric values). Next sections illustrate the index structures and their role in
the fact extraction process.

Ontology
Indexes

Ontology

Data
warehouse|
\’2

—
~

Composition Instance Projection of Fact
triples context facts Transformation
extraction generation

Figure 10: ETL process for fact extraction.

5.2.1. Ontology indexes

We have designed two indexes over the ontology in order to handle basic
entailments namely: is-a indexr and aggregation indez.

The is-a index is intended to efficiently answer concept subsumption queries
and ancestors/descendants range queries. Briefly, the construction of the in-
dex involves the following steps: the TBox is normalized and completion rules
are applied to make implicit subsumptions explicit. This process is similar to
that presented in [14]. Then, all “is-a” relationships are modeled as a graph
where nodes correspond to concepts and edges to “is-a” relationships. An inter-
val labeling scheme able to encode transitive relations is applied to the graph.
As a result, each node (i.e., concept) has assigned a descriptor that includes
compressed information about its descendant and ancestor nodes in the form of
intervals. Moreover, we provide an interval’s algebra over the node descriptors
that allows performing basic DL operations over concepts. A detailed descrip-
tion of the indexing process and interval’s algebra can be found in [30].

The aggregation index is an index structure that allows answering reacha-
bility queries between concepts (see Definition 3). In order to construct this
index, we apply the same interval labeling scheme as before over the ontology
graph G = (V, L, E), where nodes in V are associated to the ontology classes,
edge labels L represent the object property relation names and the “is-a” rela-
tion and edges e(vy,v2) € E represent the asserted relationships e € L between
nodes vy, vy € V. By encoding descendants (i.e., reachable nodes following edge
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direction) and ancestors (i.e., reachable nodes following inverse edge direction)
for each node, we are able to encapsulate reachable nodes through both explicit
and implicit aggregation paths. Going back to the graph fragment G showed in
Figure 8, concept Drug has among its ancestors (i.e., reachable nodes) not only
DrugTherapy and Treatment, but also Visit through inheritance of hasReport
property of Visit. The operation Contexts(Cy, Cy, Csyp) (see Definition 4) can
be easily implemented using the aggregation index as follows:

Contexts(Cq, Cy, Csyp) = U (ancestors(C) U C)

Céenca(C,,Ch)Ndescendants(Csur)

where operations nca, descendants and ancestors are efficiently performed
through the interval’s algebra previously mentioned.

5.2.2. Instance store index

The main purpose of the instance store (I.S) index is to ease the task of
finding out if two instances, or an instance and a literal, are connected in the
instance store (see Definition 5). This index is materialized as composition
triples.

Definition 10. A composition triple is a statement of the form (s,o0,p) where
the subject (s) and object (0) are resources, and the predicate (p) is a composition
path from the subject to the object. A composition path is an alternate sequence
of properties and resources that connect both the subject and the object.

For our purposes, the instance store index only keeps the composition triples
that go from each instance of Csyp (i.e., the subject of analysis) to each of the
instances 4 such that C(i) where C' is a sense of the dimensions and measures.
Moreover, both the subject and object of a composition triple contain a reference
to their concept type C' in the is-a inder. Consequently, we can perform searches
over the composition triples not only at the instance level (i.e., by exact match-
ing of instance names in the subject and object) but also at the conceptual level
(i-e., by specifying the subject and object concepts). The main operation de-
fined over the composition triples is get_instances(subject, path, object), where
subject and object can be either a concept or instance, and path is a pattern
matching string over the intended paths.

Notice that the number of composition triples between two instances is equal
to the number of unique paths in the IS graph for these instances. If the
graph contains cycles, this number can be infinite. To avoid this problem, we
assume that the IS forms a DAG, which indeed usually occurs in real world
applications. We also require the composition path between a subject and an
object to be unique. This way the number of composition triples is limited
to |subjects| x |objects| and the relation between a subject and an object is
unambiguous, avoiding possible summarizability issues in the resulting facts
due to redundancy.
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Subject Composition Path Object Type
PTN_XY21 /hasVisit VISIT1 Visit
PTN_XY21 /hasVisit VISIT2 Visit
PTN_XY21 | /hasVisit/VISIT1/hasReport RHEX1 Rheumatology
PTN_XY21 | /hasVisit/VISIT1/hasReport/RHEXI /results ULTRA1 | Ultrasono.
PTN_XY21 | /hasVisit/VISIT1/hasReport DIAG1 Diagnosis
PTN_XY21 | /hasVisit/VISIT1/hasReport/TREAT1/hasTherapy | DT1 DrugTherapy
PTN_XY21 | /hasVisit/VISIT2/hasReport RHEX2 Rheumatology
PTN_XY21 | /hasVisit/VISIT2/hasReport/RHEX2/results ULTRA2 | Ultrasono.
PTN_XY21 | /hasVisit/VISIT2/hasReport/RHEX2/results ULTRA3 | Ultrasono.
PTN_XY21 | /hasVisit/VISIT2/hasReport DIAG2 Diagnosis
PTN_XY21 | /hasVisit/VISIT2/hasReport/TREAT2/hasTherapy | DT2 DrugTherapy
PTN_XY21 /hasVisit/VISIT2/hasReport/TREAT2/hasTherapy | DT3 DrugTherapy

Table 4: An excerpt of the composition triples of instance store fragment in Figure 9.

Table 4 shows an excerpt of composition triples for the I.S fragment in Figure
9. The fourth column of the table shows the concept reference for the object.
The concept reference for the subject is omitted because it is Patient for all the
composition triples showed.

5.2.8. Instance Context & Data Fact Generation

Our method to generate instance context tuples according to Definition 8,
does not perform an exhaustive search over the instance store, since checking the
combinable condition (see Definition 7) for each pair of instances would result
in a combinatorial explosion. Instead, we use the ontology axioms to just select
proper contexts that lead to valid combinations of instances. For this purpose
we define the following data structure.

Definition 11. Let O be an ontology (only the Tbox), Csyp the subject concept,
DM = DUM the set of dimensions and measures and S the set of senses of the
dimensions and measures. The Contexts Graph (CG) is a graph-like structure
generated from O that satisfies the following conditions:

1. The root of the CG is Csyp.

2. The rest of the nodes of the CG are DM U S U {nd/ VC;,C;,1 < i,j <
|S|,Cs, Cj € S,nd € contexts(C;,Cj,Csup)}-

3. There is one edge from node nd; to node nd; iff |Paths(nd;,nd;)| > 0,
3 ndy, € nodes(CG) such that |Paths(nd;,ndy)| > 0 A |Paths(ndy, nd;)|
> 0, where nodes(CG) denotes the set of nodes of CG.

The generation of the CG is performed by calculating context nodes of the
dimensions and measures senses. This process is supported by the operations
provided by the aggregation index.

Example 7. Given the conceptual MD schema of Example 5, the CG according
to the previous definition is shown in the upper part of Figure 11, where shaded
nodes act as contexts. The actual dimensions and measures are obviated for the
sake of readability.
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Algorithm 1 generates instance context tuples and uses the C'G as a guide to
process each subject instance (see Figure 11). The main idea is to process the
CG in depth in order to recursively collect and combine instances under context
node instances. They are collected with the operation gI(isy g, path, CG_node),
where each output instance is a tuple and path is recursively constructed as the
CG is processed, reflecting the actual path. Tuples are combined with the carte-
sian product until complete context tuples are obtained. The resulting instance
context tuples are shown in Table 2. Data fact tuples are generated according
to Definition 9 by projecting instances over the dimensions and measures. The
resulting data fact tuples are shown in Table 3.

Algorithm 1 Fact_Extraction_Algorithm

Require: CG: contexts graph (as global var.),
CT: composition triples (as global var.),
isup = “*7: subject instance,
cpath = “*”: composition path,
CG_node = CG.root: node from CG
Ensure: ICT: valid instance context tuples (as global var.)

1: tuples =0

2: Dvals =0

3: Cvals =10

4: instances = CT.get_instances(isu B, cpath, CG_node)
5: for i € instances do

6: if isup == “*” then

7: isuB =1

8: else

9: cpath = concatenate(cpath, i)

10: end if

11: for n € CG.successors(CG-node) do

12: if not CG.context_node(n) then

13: v = CT.get_instances(isu s, cpath,n)
14: add(Dvals, v)

15: end if

16: end for

17: Dwvals = cartesian_product(Dvals)

18: for n € CG.successors(CG-node) do

19: if CG.context_node(n) then
20: L = Fact-Eztraction_Algorithm(isu g, cpath, n)
21: add(Cwvals, L)
22: end if

23: end for
24: Cvals = combine(Cvals)

25: combs = cartesian_product(Dvals, Cvals)
26: if CG.is_root-node(CG-node) then

27: add(ICT, combs)

28: else

29: add(tuples, combs)

30: end if

31: end for

32: return tuples

6. Extracting Dimensions

Once instance facts are extracted, the system can proceed to generate hier-
archical dimensions from the concept subsumption relationships inferred from
the ontology. These dimensions, however, must have an appropriate shape to
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Figure 11: Contexts graph processing along with the generation of context tuples for instance
store of Figure 9. Shaded nodes correspond to contexts. Function gI is the short name for function
get_instances.

perform properly OLAP operations. Therefore extracted hierarchies must com-
ply with a series of constraints to ensure summarizability [22]. In this section,
we propose a method to extract “good” hierarchies for OLAP operations from
the ontologies in the repository, but preserving as much as possible the original
semantics of the involved concepts. In this work we only consider taxonomic
relationships, leaving as future work other kind of relationships (e.g. transitive
properties, property compositions, etc.), which have been previously treated in
the literature [34].

6.1. Dimension Modules

The first step to extract a hierarchical dimension D; consists of selecting
the part of the ontology that can be involved in it. Let Sig(D;) be the set of
most specific concepts of the instances participating in the extracted facts (see
Definition 9).

We define the dimension module Mp, C O as the upper module of the
ontology O for the signature Sig(D;). We define upper modules in the same
way as in [21, 23, 30], that is, by applying the notion of conservative extension.
Thus, an upper module M of O for the signature Sig is a sub-ontology of O
such that it preserves all the entailments over the symbols of Sig expressed in
a language £, that is, O = a with Sig(a) C Sig and a € L iff Mp, | «.

For OLAP hierarchical dimensions we only need to preserve entailments of
the form C'C D and C disjoint D, being C' and D named concepts. Thus, the
language of entailments corresponds to the typical reasoners output. This kind
of upper modules can be extracted very efficiently over very large ontologies
[30].
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6.2. Dimension Taxonomies

Let TAX(Mp,) be the inferred taxonomy for the module Mp,, which is
represented as the directed acyclic graph (DAG) (V, E), where V contains one
node for each concept in Mp,, and ¢; — ¢; € E if ¢; is one of the least com-
mon subsumers of ¢; (i.e. direct ancestor). TAX (Mp,) is usually an irregular,
unbalanced and non-onto hierarchy, which makes it not suitable for OLAP op-
erations. Therefore, it is necessary to transform it to a more regular, balanced
and tree-shaped structure. However, this transformation is also required to
preserve as much as possible the original semantics of the concepts as well as
to minimize the loss of information (e.g. under-classified concepts). Former
work about transforming OLAP hierarchies [33] proposed the inclusion of fake
nodes and roll-up relationships to avoid incomplete levels and double counting
issues. Normalization is also proposed as a way to solve non-onto hierarchies
[26]. These strategies however are not directly applicable to ontology taxonomies
for two reasons: the number of added elements (e.g. fake nodes or intermedi-
ate normalized tables) can overwhelm the size of the original taxonomy and,
the semantics of concepts can be altered by these new elements. Recently, [15]
proposes a clustering-based approach to reduce taxonomies for improving data
tables summaries. This method transforms the original taxonomy to a new
one by grouping those nodes with similar structures and usage in the tuples.
However, this method also alters the semantics of the symbols as new ones are
created by grouping original ones.

6.3. Selecting good nodes

Similarly to our previous work about fragment extraction [30], we propose
to build tailored ontology fragments that both preserve as much as possible
the original semantics of the symbols in Sig(D;) and present a good OLAP-
like structure. For the first goal, we will use the upper modules Mp, as the
baseline for the hierarchy extraction. For the second goal, we propose a series
of measures to decide which nodes deserve to participate in the final hierarchy.

Before presenting the method, let us analyze why TAX (Mp,) presents such
an irregular structure. The usage of symbols in Sig(D;) can be very irregular
due to the “popularity” of some symbols (i.e. Zipf law), which implies that
few symbols are used very frequently whereas most of them are used few times.
As a result, some parts of the taxonomy are more used than others, affecting
to both the density (few dense parts and many sparse parts) and the depth of
the taxonomy (few deep parts). A direct consequence is that some concepts in
Sig(D;) are covered by many spurious concepts which are only used once, and
therefore are useless for aggregation purposes. So, our main goals should be to
identify dense regions of the taxonomy and to select nodes that best classify the
concepts in Sig(D;).

The first measure we propose to rank the concepts in TAX(Mp,) is the
share:

1
. _ R
share(n) H : |children(n;)|

n; Eancs(n
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where ancs(n) is the set of ancestors of n in TAX (Mp,), and children(n)
is the set of direct successors of n in the taxonomy.

The idea behind the share is to measure the number of partitions produced
from the root till the node n. The smaller the share the more dense is the
hierarchy above the node. In a regular balanced taxonomy the ideal share is
S(n)erth(n) wwhere S is the mean of children the ancestor nodes of n have.
We can then estimate the ratio between the ideal share and the actual one as
follows:

S(n)depth(n)

ratio(n) = share(n)

Thus, the greater the ratio, the better the hierarchy above the node is.
The second ranking measure we propose is the entropy, which is defined as
follows:

entropy(n) = EniEchildren(n)Psig(nv nz) : ZOQ(Psig (n; nz))

coveredSig(n;)
Paig(nmi) = coveredSig(n)

where coveredSig(n) is the subset of Sig(D;) whose members are descen-
dants of n.

The idea behind the entropy is that good classification nodes are those that
better distribute the signature symbols among its children. Similarly to decision
trees and clustering quality measures, we use the entropy of the groups derived
from a node as the measure of their quality.

In order to combine both measures we just take the product of both mea-
sures:

score(n) = entropy(n) - ratio(n)

6.4. Generating hierarchies

The basic method to generate hierarchies consists of selecting a set of “good”
nodes from the taxonomy, and then re-construct the hierarchy by applying the
transitivity property of the subsumption relationship between concepts. Algo-
rithm 2 presents a global approach, which consists of selecting nodes from the
nodes ranking until either all signature concepts are covered or there are no
more concepts with a score greater than a given threshold (usually zero). Al-
ternatively, we propose a second approach in Algorithm 3, the local approach,
which selects the best ancestors of each concept leaf of the taxonomy. In both
approaches, the final hierarchy is obtained by extracting the spanning tree that
maximizes the number of ancestors of each node from the resulting reduced tax-
onomy [30]. One advantage of the local approach is that we can further select
the number of levels up to each signature concept, defining so the hierarchical
categories for the dimensions. However, this process is not trivial and we de-
cided to leave it for future work. Each method favors different properties of the
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generated hierarchy. If the user wants to obtain a rich view of the hierarchy, she
must select the global one. Instead, if the user wants a more compact hierarchy
(e.g., few levels) then she must select the local one.

Algorithm 2 Global approach for dimension hierarchy generation

Require: the upper module (Mp,) and the signature set (Sig(D;)) for dimension D;.
Ensure: A hierarchy for dimension D;.
Let Lrank be the list of concepts in Mp, ordered by score(n) (highest to lowest);
Let Fragment = 0 be the nodes set of the fragment to be built.
repeat
pop a node n from L,qnk
add it to F'ragment
until score(n) < 0 or UneFmgme”t coveredSig(n) == Sig(D;)
Let NewTax be the reconstructed taxonomy for the signature Fragment
return spanningTree(NewTax)

Algorithm 3 Local approach for dimension hierarchy generation

Require: the upper module (Mp,) and the signature set (Sig(D;)) for dimension D;.
Ensure: A hierarchy for dimension D;.
Let Licaves be the list of leaf concepts in Mp, ordered by ratio(n) (highest to lowest);
Let Fragment = () be the nodes set of the fragment to be built.
for all ¢ € Licgyes do
Set up Lgnes(c) with the ancestors of ¢ ordered by score(n)
for all n, € Lynes(c) do
if there is no node ny € Lgncs(c) such that score(nz) < score(ng) and order(nz) <
order(ng) then
if ng, ¢ Fragment then
add n, to Fragment
end if
end if
end for
end for
Let NewTax be the reconstructed taxonomy for the signature Fragment
return spanningTree(NewTax)

7. Evaluation

We have conducted the experiments by applying our method to a corpus of
semantic annotations about rheumatic patients. The experimental evaluation
has two differentiated setups. On one hand, we are concerned with scalabil-
ity and performance issues regarding the generation of facts from the analyst
requirements. On the other hand, we evaluate the two proposed methods for
generating dimensions from the ontology knowledge by measuring the quality
of the resulting hierarchies.

7.1. Fact extraction

The dataset used for the fact extraction evaluation has been synthetically
generated from the features identified from a set of real patients. For this pur-
pose, we have extended the XML generator presented in [36] with new operators
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Figure 12: Example of local and global methods: (a) node selection and (b) hierarchy recon-
struction. Dashed edges in (b) are removed in the final spanning tree. Nodes inside squares
in (b) are those that change its parent in the resulting dimension.

specific for RDF/OWL. The Thox template has been carefully designed follow-
ing the structure of the medical protocols defined in the Health-e-Child® project
for rheumatic patients. Moreover, domain concepts are taken from UMLS. With
the previous setup, we are able to generate synthetic instance data of any size
and with the intended structural variations to account for heterogeneity and op-
tional values of semantic annotations. In particular, the dataset contains more
than half million of instances.

Figure 13 presents how the number of elements in the MD schema (i.e.
number of dimensions and measures) affects the time performance to generate
the fact table with all valid combinations of instances (i.e. data fact tuples). For
the experiment setup we have preselected a set of 11 candidate dimensions and
measures from the ontology and have computed all the fact tables that can be
generated from all subsets of these 11 elements. The total number of fact tables
is 211 = 2048. Then, we have organized the fact tables according to the number
of dimensions and measures in their MD schema (z axis), from two dimensions
to eleven. Axis y shows the time performance in seconds. Each boxplot in the
figure shows the variance in time between fact tables having the same number
of dimensions and measures. The explanation for this variance is that different
MD configurations of the same size may obtain very different CGs depending
on their structural dependencies. Therefore, the number of instances processed

Shttp://www.health-e-child.org/
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Figure 13: Fact table generation performance w.r.t. the number of dimensions and measures
involved.

and the levels of recursion are different, resulting in different processing times.
In general, the time complexity increases linearly with respect to the number
of dimensions and measures of the fact table, which proves the scalability and
efficiency of the approach.

On the other hand, we are also concerned about how the size of the in-
stance store affects the generation of the fact tables. Figure 14 illustrates the
results. From the previous experiment we have selected one of the smallest (i.e.,
2 elements) and the largest (i.e., 11 elements) MD schema specification. For
these two MD configurations we measure the time to create the respective fact
tables with instance stores of different sizes, ranging from 100 to 3000 com-
plex instances of type Patient. Notice axis z measures the number of subject
instances, although the number of total instances in the store ranges from a
thousand to more than half million instances. For both configurations, the time
performance is linear w.r.t. the size of the instance store, which means the
method proposed is scalable.

7.2. Dimensions extraction

In order to measure the quality of the dimension hierarchies obtained with
the methods proposed in Section 6 (i.e. global vs. local), we have adapted the
measures proposed in [15], namely

1
dilution(D;, Fragment,T) = el Z Ao (parento(t[D;]), parent pragment (t[Ds]))
Kt
. . 2
diversity(D;, Fragment,T) = W Z Apragment (t1[Di], t2[Ds])

t1,to€T b1 #ta
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Figure 14: Increase in the time complexity w.r.t. the size of the instance store.

where T is the fact table, hits(T,n;) is the times n; has been used in T,
parento(n)® is the parent of n in O, and Ao is the taxonomic distance between
two nodes in O. t[D;] represents the concept assigned to the fact ¢ for the
dimension D;.

Dilution measures the weighted average distance in the original taxonomy
between the new and original parents of the signature concepts from dimension
D;. The weight of each signature concept corresponds to its relative frequency
in the fact table. The smaller the dilution, less semantic changes have been
produced in the reduced taxonomy. Diversity measures the weighted average
distance in the reduced taxonomy of any pair of concepts from dimension D;
used in the fact table. The greater the diversity, better taxonomies are obtained
for aggregation purposes. A very low diversity value usually indicates that most
concepts are directly placed under the top concept.

We have set up 25 signatures for 14 dimensions of the dataset described in
the previous section. The size of these signatures ranges from 4 to 162 concepts
(60 on average). The corresponding upper-modules are extracted from UMLS
following the method proposed in [29]. The size of these modules ranges from
40 to 911 concepts (404 on average). Their inferred taxonomies present between
8 and 23 levels (17 on average). Results for the global and local methods are

6Indeed, we assume that the parent of n in O is the parent in the extracted spanning tree
of O.
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Measure Global Local
Reduction (%) | 72.5-75.9 | 76.5 - 79.8
Sig. Lost (%) 7.08-12.12 3.5-7.8
Dilution 0.367-0.473 | 0.342-0.429
Diversity 9.08-10.79 7.72-9.46

Table 5: Results for global an local dimension extraction methods. Value ranges represent
the 0.75 confidence intervals of the results for all the signatures.

shown in Table 5.

From these results we can conclude that: (1) the local method generates
smaller dimension tables, (2) the local method implies less signature lost, but
dilution values of both methods are not statistically different and, (3) diversity
is usually greater in the global method (i.e. richer taxonomies are generated).
To sum up, each method optimizes different quality parameters, and therefore
their application will depend on the user requirements.

7.8. Implementation

We use MySQL” database as back-end to store the semantic annotations
(i.e. ABoz), the domain and application ontologies (i.e. T Box) and the required
indexes. On the other hand, we use the Business Intelligence (BI) tool of
Microsoft SQL Server 2008% to instantiate the MD schema designed by the
user and create cubes. Our method is completely independent of any data
management system. We simply need to create an API to the back-end where
the information is stored and the populated MD schema is delivered as a series
of tables that can be fed into any off the shelf analysis tool.

In Figure 15 we show the result of one of the MD queries proposed for the
use case in section 2.2. In this use case, the user is interested in analyzing the
efficacy of different drugs w.r.t. a series of dimensions, such as the disease diag-
nosed, the patient’s age, gender, etc. The method first generates the fact table
according to the conceptual MD schema proposed by the analyst and then, for
each dimension, a dimension hierarchy is extracted using the global approach.
The result (i.e. the populated MD schema) has been fed to SQL Server and
the BI tool allows the analyst to create cubes and navigate through them. In
particular, Figure 15 shows the cube generated by averaging the damagelndex
measure by disease (rows) and drug (columns). As shown, the user can navi-
gate through the different levels of the dimension hierarchies and the measures
are automatically aggregated. It is worth mentioning the added value that pro-
vides the semantics involved in the aggregations, since the dimension hierarchies
express conceptual relations extracted from a domain ontology.

"MySQL: http://www.mysql.com
8SQL Server 2008: http://www.microsoft.com/sqlserver/2008
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Figure 15: Example of MD cube created by averaging the damagelndexr measure by disease
(rows) and drug (columns).

8. Related work

Although there is a significant amount of literature that relates to different
aspects of our approach (e.g. SW, MD models, OLAP analysis, etc.), there
is little or no research that addresses the analysis of semantic web data (i.e.
RDF/(S) and OWL) by using the above-mentioned technologies. However, we
find worth reviewing some work on querying and analysis over heterogeneous
XML data, which is the standard on which SW languages rely on.

Some research has focused on querying complex XML scenarios where docu-
ments have a high structural heterogeneity. In [25, 41] it is shown that XQuery
is not the most suitable query language for data extraction from heterogeneous
XML data sources, since the user must be aware of the structure of the under-
lying documents. The lowest common ancestor (LCA) semantics can be applied
instead to extract meaningful related data in a more flexible way. [25, 41] apply
some restrictions over the LCA semantics. In particular they propose SLCA
[41] and MLCA [25] whose general intuition is that the LCA must be minimal.
However, in [28, 32] they showed that these approaches still produced undesired
combinations between data items in some cases (e.g. when a data item needs
to be combined with a data item at a lower level of the document hierarchy).
In order to alleviate the previous limitations they propose the SPC (smallest
possible context) data strategy, which relies on the notion of closeness of data
item occurrences in an XML document. There exists other strategies to extract
transactions or facts from heterogeneous XML [38]. However, they are used
in data mining applications and they do not care for OLAP properties such
as “good” dimensions and summarizability issues. We face similar challenges
as the previous approaches mainly due to the structural heterogeneity of the
semantic annotations. However, we still need to deal with the semantics, which
requires logical reasoning in order to derive implicit information.

Other approaches such as [34, 35] try to incorporate semantics in the design
of a data warehouse MD schema by taking as starting point an OWL ontology
that describes the data sources in a semi-automatic way. Instead of looking
for functional dependencies (which constitute typical fact-dimension relations)
in the sources, they are derived from the ontology. However, this work focuses
on the design phase, overlooking the process of data extraction and integration
to populate the MD schema. This issue is partially addressed in [24] by using
SPARQL over RDF-translated data sources. However, this is not appropriate
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for expressive and heterogeneous annotations. By combining IE techniques with
logical reasoning, in [18] they propose a MD model specially devised to select,
group and aggregate the instances of an ontology. In our previous work [31]
we define the semantic data warehouse as a new semi-structured repository
consisting of semantic annotations along with their associated set of ontologies.
Moreover, we introduce the multidimensional integrated ontology (MIO) as a
method for designing, validating and building OLAP-based cubes for analyzing
the stored annotations. However, the fact extraction and population is pointed
out in a shallow way and it is the main concern of the current paper.

9. Conclusions

More and more semantic data are becoming available on the web thanks to
several initiatives that promote a change in the current Web towards the Web of
Data, where the semantics of data become explicit through data representation
formats and standards such as RDF/(S) and OWL. However, this initiative has
not yet been accompanied by efficient intelligent applications that can exploit
the implicit semantics and thus, provide more insightful analysis.

In this paper, we investigate how semantic data can be dynamically analyzed
by using OLAP-style aggregations, navigation and reporting. We propose a
semi-automatic method to build valid MD fact tables from stored semantic data
expressed in RDF/(S) and OWL formats. This task is accomplished by letting
the user compose the conceptual MD schema by selecting domain concepts and
properties from the ontologies describing the data. Dimension hierarchies are
also extracted from the domain knowledge contained in the ontologies. The
benefits of our method are numerous, however we highlight the following: 1)
we provide a novel method to exploit the information contained in the semantic
annotations, 2) the analysis is driven by the user requirements and it is expressed
always at the conceptual level, 3) the analysis capabilities (i.e. the OLAP-style
aggregations, navigation, and reporting) are richer and more meaningful, since
they are guided by the semantics of the ontology. To our knowledge, this is
the first method addressing this issue from ontological instances. Hence, we
do believe this work opens new interesting perspectives as it bridges the gap
between the DW and OLAP tools and SW data.

As future work, we plan to improve the method in several aspects. In par-
ticular, we plan to extend the local method for generating dimension hierarchies
so that the dimension values can be grouped into a defined number of levels or
categories. We are also working on an extended conceptual MD specification for
the analyst in terms of richer ontology axioms. Regarding performance issues,
a promising direction is the application of bitmap indexing techniques to SW
data management, including efficient reasoning. Finally, we are also concerned
about different SW scenarios where the development of the ontology axioms and
the instance store is not coupled. In such scenarios, we need to study how to
treat the possible vagueness of the ontology axioms (or even absence) w.r.t. to
the instance store, which hinders the proposed extraction of facts.
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