
Effective Acceptance Conditions in Real-time

Automated Negotiation

Tim Baarslag, Koen Hindriks, Catholijn Jonker

Interactive Intelligence Group
Delft University of Technology

Mekelweg 4, Delft, The Netherlands
{T.Baarslag, K.V.Hindriks, C.M.Jonker}@tudelft.nl

Abstract

In every negotiation with a deadline, one of the negotiating parties must
accept an offer to avoid a break off. As a break off is usually an undesir-
able outcome for both parties, it is important that a negotiator employs a
proficient mechanism to decide under which conditions to accept. When de-
signing such conditions, one is faced with the acceptance dilemma: accepting
the current offer may be suboptimal, as better offers may still be presented
before time runs out. On the other hand, accepting too late may prevent
an agreement from being reached, resulting in a break off with no gain for
either party. Motivated by the challenges of bilateral negotiations between
automated agents and by the results and insights of the automated negoti-
ating agents competition (ANAC), we classify and compare state-of-the-art
generic acceptance conditions. We perform extensive experiments to com-
pare the performance of various acceptance conditions in combination with
a broad range of bidding strategies and negotiation scenarios. Furthermore
we propose new acceptance conditions and we demonstrate that they outper-
form the other conditions. We also provide insight into why some conditions
work better than others and investigate correlations between the properties
of the negotiation scenario and the efficacy of acceptance conditions.

Keywords: Automated negotiation, Real-time bilateral negotiation,
Acceptance criteria, Acceptance conditions, When to accept

Preprint submitted to Decision Support Systems July 16, 2013

1. Introduction

Negotiation is an important process to reach trade agreements, and to
form alliances or resolve conflicts. The field of negotiation originates from
various disciplines including artificial intelligence, economics, social science,
and game theory (e.g., [2, 19, 24]). The strategic-negotiation model has a
wide range of applications, such as resource and task allocation mechanisms,
conflict resolution mechanisms, and decentralized information services [19,
32].

A number of successful negotiation strategies have already been estab-
lished both in literature and in implementations, (e.g. [6, 8, 7, 13, 14, 23]).
And more recently, in 2010 seven new negotiation strategies were created
to participate in the first automated negotiating agents competition (ANAC
2010) [5] in conjunction with the Ninth International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS-10). During post tour-
nament analysis of the results, it became apparent that different agent im-
plementations use various conditions to decide when to accept an offer. It is
important for every negotiator to employ such a mechanism to decide under
which conditions to accept, because in every negotiation with a deadline, one
of the negotiating parties has to accept in order to avoid a break off. How-
ever, designing a proper acceptance condition is a difficult task: accepting
too late may result in the break off of a negotiation, while accepting too early
may result in suboptimal agreements.

The importance of choosing an appropriate acceptance condition is con-
firmed by the results of ANAC 2010 (see Table 1). Agents with simple
acceptance criteria were ranked at the bottom, while the more sophisticated
time- and utility-based criteria obtained a higher score. For instance, the
low ranking of Agent Smith was due to a mistake in the implementation of
the acceptance condition [33].

Despite its importance, the theory and practice of acceptance conditions
has not yet received much attention. The goal of this paper is to classify
current approaches and to compare acceptance conditions in an experimen-
tal setting. Thus in this paper we will concentrate on the final part of the
negotiation process: the acceptation of an offer. We focus on decoupled
acceptance conditions: i.e., generic acceptance conditions that can be used
in conjunction with an arbitrary bidding strategy. The reason for this is
straightforward: we want to be able to re-incorporate the acceptance condi-

2

Rank Agent Acceptance condition

1 Agent K Time and utility based
2 Yushu Time and utility based
3 Nozomi Time and utility based
4 IAMhaggler Utility based only
5 FSEGA Utility based only
6 IAMcrazyHaggler Utility based only
7 Agent Smith Time and utility based

Table 1: An overview of the rank of every agent in ANAC 2010 and the type of acceptance
conditions that they employ. Agents using time and utility based acceptance conditions
were ranked at the top, except for Agent Smith, which had a faulty acceptance mechanism.

tions that have been found most effective into new agent designs; therefore,
the acceptance conditions under investigation should not be coupled with a
specific agent implementation.

Our contribution is fourfold:

1. We give an overview and provide a categorization of current decoupled
acceptance conditions.

2. We introduce a formal negotiation model that supports the use of ar-
bitrary acceptance conditions.

3. We compare a large selection of current generic acceptance conditions
and evaluate them in an experimental setting.

4. We propose new acceptance conditions and test them against estab-
lished acceptance conditions, using varying types of bidding techniques.

The remainder of this paper is organized as follows. Section 2 defines the
model of negotiation that we employ and provides an overview of current
acceptance conditions. In Section 3, we also consider combinations of ac-
ceptance conditions. Section 4 discusses our experimental setup and results,
which demonstrate that some combinations outperform traditional accep-
tance conditions. Finally, Section 6 and 7 outline our conclusions and our
plans for further research on acceptance strategies.

2. Acceptance Conditions in Negotiation

This paper focuses on acceptance conditions (also called acceptance cri-
teria) that are decoupled: i.e. generic acceptance conditions that are not tied

3

to a specific agent implementation and hence can be used in conjunction with
an arbitrary bidding strategy. We first describe a general negotiation model
that fits current decoupled acceptance conditions. We have surveyed existing
negotiation agents to examine the acceptance criteria that they employ. We
then categorize them according to the input that they use in their decision
making process.

2.1. Negotiation Model

We consider bilateral negotiations, i.e. a negotiation between two parties
or agents A and B. The agents negotiate over issues that are part of a
negotiation domain, and every issue has an associated range of alternatives
or values. A negotiation outcome consists of a mapping of every issue to
a value, and the set Ω of all possible outcomes is called the outcome space.
The outcome space is common knowledge to the negotiating parties and stays
fixed during a single negotiation session.

We further assume that both parties have certain preferences prescribed
by a preference profile over Ω. These preferences can be modeled by means of
a utility function U , which maps a possible outcome ω ∈ Ω to a real-valued
number in the range [0, 1]. In contrast to the outcome space, the preference
profile of the agents is private information.

Finally, the interaction between negotiating parties is regulated by a ne-
gotiation protocol that defines the rules of how and when proposals can be
exchanged. We use the alternating-offers protocol [28] for bilateral negotia-
tion, in which the negotiating parties exchange offers in turns.

As in [31], we assume a common global time, represented here by T =
[0, 1]. We supplement the alternating-offers protocol with a deadline at t = 1,
at which moment both agents receive utility 0. This is the same setup as
[9], with the exception that issues are not necessarily real-valued and both
agents have the same deadline equal to t = 1. We represent by xtA→B the
negotiation outcome proposed by agent A to agent B at time t. A negotiation
thread (cf. [8, 31]) between two agents A and B at time t ∈ T is defined as
a finite sequence

H t
A↔B :=

(
xt1p1→p2

, xt2p2→p3
, xt3p3→p4

, . . . , xtnpn→pn+1

)
, (1)

which satisfies the following constraints:

1. tk ≤ tl for k ≤ l, the offers are ordered over time T ,

4

2. pk = pk+2 ∈ {A,B} for all k, the offers are alternating between the
agents,

3. All ti represent instances of time T , with tn ≤ t,

4. xtkpk→pk+1
∈ Ω for k ∈ {1, . . . , n}, the agents exchange complete offers.

Additionally, the last element of H t
A↔B may be equal to one of the par-

ticles {Accept, End}. We will say a negotiation thread is active if this is not
the case.

When agent A receives an offer xtB→A from agent B sent at time t, it
has to decide at a later time t′ > t whether to accept the offer, or to send
a counter-offer xt

′
A→B. Given a negotiation thread H t

A↔B between agents A
and B, we can formally express the action performed by A with an action
function XA:

XA(t′, xtB→A) =


End if t′ ≥ 1
Accept if ACA(t′, xt

′
A→B, H

t
A↔B)

Offer xt
′
A→B otherwise

(2)

Note that we extend the setting of [9, 31] by introducing the acceptance
condition ACA of an agent A. When used in this way, the model enables us to
study arbitrary decoupled acceptance conditions. The acceptance condition
ACA takes as input

I = (t′, xt
′

A→B, H
t
A↔B), (3)

the tuple containing the current time t′, the offer xt
′
A→B that the agent con-

siders as a bid (in line with the bidding strategy the agent uses), and the
ongoing negotiation thread H t

B↔A.
The resulting action given by the function XA(t′, xtB→A) is used to extend

the current negotiation thread between the two agents. If the agent does
not accept the current offer, and the deadline has not been reached, it will
prepare a counter-offer xt

′
A→B by using a bidding strategy or tactic to gener-

ate new values for the negotiable issues. Tactics can take many forms, e.g.
time-dependent, resource dependent, imitative, and so on [31]. In our setup
we will consider the tactics as given and try to optimize the accompanying
acceptance conditions.

2.2. Acceptance Criteria

Let an active negotiation thread

H t
A↔B =

(
xt1p1→p2

, xt2p2→p3
, . . . , x

tn−1

A→B, x
tn
B→A

)
,

5

be given at time t′ > t = tn, so that it is agent A’s turn to perform an action.
As defined by Eq. (1) in our negotiation model, the action function XA of

an agentA uses an acceptance condition ACA(I) to decide whether to accept.
In practice, most agents do not use the full negotiation thread to decide
whether it is time to accept. For instance many agent implementations, such
as [9, 10, 31], use the following implementation of ACA(I):

ACA(t′, xt
′

A→B, H
t
A↔B) ⇐⇒ UA(xtB→A) ≥ UA(xt

′

A→B).

That is, A will accept when the utility UA for the opponent’s last offer at
time t is greater than the value of the offer agent A is ready to send out at
time t′. The acceptance condition above depends on the agent’s upcoming
offer xt

′
A→B. For α, β ∈ R this may be generalized as follows:

ACI
next(α, β)

def⇐⇒ α · UA(xtB→A) + β ≥ UA(xt
′

A→B). (4)

We can view α as the scale factor by which we multiply the opponent’s
bid, while β specifies the minimal ‘utility gap’ [14] that is sufficient to accept.

Analogously, we have acceptance conditions [11, 14, 30, 36] that rely on
the agent’s previous offer x

tn−1

A→B:

ACI
prev(α, β)

def⇐⇒ α · UA(xtB→A) + β ≥ UA(x
tn−1

A→B). (5)

Note that this acceptance condition does not take into account the time that
is left in the negotiation, nor any offers made previous to time t. However, it
is important to bear in mind that the behavior of the acceptance condition
may still be influenced implicitly by these factors, because of the possibility
that the bidding strategy takes such factors into account.

Other acceptance conditions may rely on other measures, such as the
remaining negotiation time or a utility threshold. For example, there is a very
simple acceptance criterion [30, 33, 36] that only compares the opponent’s
previous offer with a threshold α:

ACI
const(α)

def⇐⇒ UA(xtB→A) ≥ α. (6)

Last but not least, instead of considering utility, agents (such as [33]) may
employ a time-based condition to accept after a certain amount of time T ∈ T
has passed:

ACI
time(T)

def⇐⇒ t′ ≥ T. (7)

We will omit the superscript I in equations (4) to (7) when it is clear from the
context. We will use these general acceptance conditions to classify existing
acceptance mechanisms in the next section.

6

AC α β Agent

ACprev(α, β) 1.03 0 FSEGA,
Bayesian Agent

1 0 Agent Smith
1.02 0 IAM(crazy)Haggler
1 0.02 ABMP

ACnext(α, β) 1 0 FSEGA, Boulware,
Conceder, Trade-off,
Equilibrium strategies

1.02 0 IAM(crazy)Haggler
1.03 0 Bayesian Agent

ACconst(α) 1 - FSEGA
0.9 - Agent Smith
0.88 - IAM(crazy)Haggler

T

ACtime(T) 0.92 - Agent Smith

Table 2: A selection of existing decoupled acceptance conditions found in literature and
current agent implementations.

2.3. Existing Acceptance Conditions

We give a short overview of decoupled acceptance conditions used in
literature and current agent implementations. We are primarily interested in
acceptance conditions that are not specifically designed for a single agent. We
do not claim the list below is complete; however it serves as a good starting
point to categorize current decoupled acceptance conditions. We surveyed
the entire pool of agents of ANAC 2010, including Agent K, Nozomi [15],
Yushu [1], IAM(crazy)Haggler [36], FSEGA [30], and Agent Smith [33]. We
also examined well-known agents from literature, such as the Trade-off agent
[7], the Bayesian learning agent [11], ABMP [14], equilibrium strategies of
[10], and time dependent negotiation strategies as defined in [27], i.e. the
Boulware and Conceder tactics.

Listed in Table 2 is a selection of generic acceptance conditions found.

Some agents also use logical combinations of different acceptance conditions

7

at the same time. This explains why some agents are listed multiple times in
the table. For example, both IAMHaggler and IAMcrazyHaggler [36] accept
precisely when

ACconst(0.88) ∨ACnext(1.02, 0) ∨ACprev(1.02, 0).

We will not focus on the many possible combinations of all acceptance con-
ditions that may thus be obtained; we will study the basic acceptance con-
ditions in isolation with varying parameters. However in addition to this
we study a small selection of combinations in Section 3. We leave further
combinations for future research.

As can be seen from Table 2, in our sample the most commonly used ac-
ceptance condition is ACnext = ACnext(1, 0), which is the familiar condition
of accepting when the opponent’s last offer is better than the planned offer
of the agent. The function β 7→ ACprev(1, β) can be viewed as an acceptance
condition that accepts when the utility gap [14] between the parties is smaller
than β. We denote this condition by ACgap(β).

3. Combined Acceptance Conditions

We define three acceptance conditions that are designed to perform well
in conjunction with an arbitrary bidding strategy. This will incorporate all
ideas behind the traditional acceptance conditions we have described so far.
We will show in Section 4 that they work better than the majority of simple
generic conditions listed in Table 2.

From a negotiation point of view, it makes sense to alter the behavior
of an acceptance condition when time is running short. For example, many
ANAC agents such as Yushu, Nozomi and FSEGA [1, 30, 15] split the ne-
gotiation into different intervals of time and apply different sub-strategies to
each interval.

The basic idea behind combined acceptance conditions ACcombi is similar.
In case the bidding strategy plans to propose a deal that is worse than the
opponent’s offer, we have reached a consensus with our opponent and we
accept the offer. However, if there still exists a gap between our offer and
time is short, the acceptance condition should wait for an offer that is not
expected to improve in the remaining time. Thus ACcombi is designed to be a
proper extension of ACnext, with adaptive behavior based on recent bidding
behavior near the deadline.

8

To define ACcombi, suppose an active negotiation thread

H t
A↔B =

(
xt1p1→p2

, xt2p2→p3
, . . . , x

tn−1

A→B, x
tn
B→A

)
,

is given at time t′ > t = tn >
1
2

near the deadline, when it is agent A’s turn.
Note that there is r = 1− t′ time remaining in the negotiation, which we will
call the remaining time window. A good sample of what might be expected in
the remaining time window consists of the bids that were exchanged during
the previous time window W = [t′ − r, t′] ⊆ T of the same size.

Let
HW

B→A =
{
xsB→A ∈ H t

A↔B | s ∈ W
}

denote all bids offered by B to A in time window W . We can now formulate
the average and maximum utility that was offered during the previous time
window in the negotiation thread H = HW

B→A:

MAXW = max
x∈H

UA(x),

and

AVGW =
1

|H|
∑
x∈H

UA(x).

We let ACcombi(T, α) accept at time t′ exactly when the following holds:
ACnext indicates that we have to accept, or we have almost reached the
deadline (t′ ≥ T) and the current offer suffices (i.e. better than α) given the
remaining time:

ACcombi(T, α)
def⇐⇒

ACnext ∨ACtime(T) ∧ (UA(xtB→A) ≥ α).

(8)

Note that equation (8) defines ACcombi(T, α) in such a way that it splits
the negotiation time into two phases: [0, T) and [T, 1], with different behavior
in both cases.

We will consider three different combined acceptance conditions:

1. ACcombi(T,MAXW): the current offer is good enough when it is better
than all offers seen in the previous time window W ,

2. ACcombi(T,AVGW): the offer is better than the average utility of offers
during the previous time window W ,

3. ACcombi(T,MAXT): the offer should be better than any bid seen be-
fore.

9

4. Experiments

In order to experimentally test the efficacy of an acceptance condition,
we considered a negotiation setup with the following characteristics. We
equipped a set of agents (as defined later) with an acceptance condition, and
measured the result against other agents in the following way. Suppose agent
A is equipped with acceptance condition ACA and negotiates with agent B.
The two parties may reach a certain outcome ω ∈ Ω, for which A receives the
associated utility UA(ω). The score for A is averaged over all trials on various
domains (see Section 4.1.2), alternating between the two preference profiles
defined on that domain. E.g., on the negotiation scenario between England
and Zimbabwe, A will play both as England and as Zimbabwe against all
others. This average utility score is then an indication of the efficacy of
ACA.

For our experimental setup we employed Genius (General Environment
for Negotiation with Intelligent multi-purpose Usage Simulation) [21]. This
environment, which is also used in ANAC, helps to facilitate the design and
evaluation of automated negotiators’ strategies. It can be used to simu-
late tournaments between negotiating agents in various negotiation scenarios,
such as the setup described in this section. It supports the alternating offer
protocol with a real-time deadline as outlined in our negotiation model. The
default negotiation time in Genius and in the setup of ANAC is 3 minutes
per negotiation session; therefore we use the same value in our experiments.

4.1. Detailed Experimental Setup

4.1.1. Agents

We use the negotiation tactics that were submitted to The Automated
Negotiating Agents Competition (ANAC 2010) [5]. ANAC is a negotiation
competition aiming to facilitate and coordinate the research into proficient
negotiation strategies for bilateral multi-issue negotiation, similar to what
the Trading Agent Competition (TAC) has achieved for the trading agent
problem [34]. The seven agents that participated in ANAC 2010 have been
implemented by various international research groups of negotiation experts.
We used these strategies in our experiments as they are representative of the
state-of-the-art in automated negotiation at the time of writing. Firstly, we
removed the built-in acceptance mechanism from this representative group of
agents; this left us with its pure bidding tactics. As outlined in our negotia-
tion model, this procedure allowed us to test arbitrary acceptance conditions

10

in tandem with any ANAC tactic.
We aimed to tune our acceptance conditions to the top performing ANAC

2010 agents. Therefore we have selected the top 3 of ANAC agents that were
submitted by different research groups, namely Agent K, Yushu and IAMhag-
gler (we omitted Nozomi as the designing group also implemented Agent K,
cf. Table 1). For the set of opponents, we selected all agents from ANAC
2010, for the acceptance conditions should be tested against a wide array
of strategies. The opponents also had their built-in acceptance conditions
removed (and hence were not able to accept), so that differences in results
would depend entirely on the acceptance condition under consideration. To
test the efficacy of an acceptance condition, we equipped the top 3 tactics
with this condition and compared the average utility obtained by the three
agents when negotiating against their opponents.

4.1.2. Domains

The specifics of a negotiation domain can be of great influence on the
negotiation outcome [12]. Acceptance conditions have to be assessed on
negotiation domains of different size and complexity. Negotiation results
also depend on the opposition of the parties’ preferences. The notion of
weak and strong opposition can be formally defined [16]. Strong opposition
is typical of competitive domains, when a gain for one party can be achieved
only at a loss for the other party. Conversely, weak opposition means that
both parties achieve either losses or gains simultaneously.

With this in mind, we aimed for a good spread of negotiation charac-
teristics by selecting four different negotiation scenarios with two preference
profiles each (see Table 3 and Figure 1). We picked two domains from the
three that were used in ANAC 2010 (cf. [4, 5]). We have also taken two
negotiation scenarios from the ANAC 2011 competition [3] to include both
a smaller and a larger domain to our experimental setup.

Some agents participating in ANAC 2010 did not scale well and could not
deal with very large bid spaces; therefore, we omitted the even larger domains
that featured in ANAC 2010 and 2011, as the agents had too many difficulties
with them to make them reliable testing domains. Additionally, in contrast
to the 2010 competition, ANAC 2011 introduced discount factors for some
of the scenarios. We removed these discount factors to ensure compatibility
with the ANAC 2010 agents.

Our smallest scenario is called Laptop. In this scenario, a seller and
a buyer are negotiating the specifications of a laptop. An agreement in the

11

Laptop Itex–Cyp Zim–Eng Grocery

Size 27 180 576 1600
Opposition Weak Strong Medium Medium
Mean utility 0.67 0.48 0.58 0.44
Nash Point (1.00, 0.82) (0.72, 0.67) (0.91, 0.73) (0.84, 0.90)
K-S Point (0.87, 0.87) (0.72, 0.67) (0.82, 0.79) (0.84, 0.90)

Table 3: The eight preference profiles used in the experiments, as used in ANAC 2010 [5]
and ANAC 2011 [3]. The rows indicate respectively: the size of the outcome space, the
level of opposition, the arithmetic mean utility that can be obtained in the scenario, and
the location of the Nash point and Kalai Smorodinsky point.

negotiation reconciles their differences and results in a purchase. The scenario
has three issues: the laptop brand, the size of the hard disk, and the size of
the external monitor. Each issue has only three options, making it a very
small scenario with only 27 possible outcomes. Unbeknownst to each other,
the buyer and seller actually both prefer to buy (and sell, respectively) a
laptop with a small screen. The buyer prefers this because it is cheaper, and
the seller prefers to sell laptops with small screens because s/he has more
of those in stock. If the two parties are able to find the outcomes that are
mutually beneficial to both, then they are happy to do business together
with high utility scores on both sides. This can be confirmed in Table 3:
the scenario has the highest arithmetic mean utility, and the most favorable
Nash and Kalai-Smorodinsky point.

Our second scenario is taken from [17], which describes a buyer–seller
business negotiation. It involves representatives of two companies: Itex Man-
ufacturing, a producer of bicycle components, and Cypress Cycles, a builder
of bicycles. There are four issues that both sides have to discuss: the price of
the components, delivery times, payment arrangements and terms for the re-
turn of possibly defective parts. The opposition between the parties is strong
in this domain, as the manufacturer and consumer have naturally opposing
requirements. Even the Nash point utilities are quite low for both parties.
Altogether, there are 180 potential offers that contain all combinations of
values for the four issues.

Third, the domain taken from [20, 22] involves a case where England and
Zimbabwe negotiate an agreement on tobacco control. The leaders of both
countries must reach an agreement on five issues. England and Zimbabwe

12

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Laptop

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●
●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Itex–Cypress

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●●
●●●

●●●●
●●●●

●●●

●

●●

●●

●●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) England–Zimbabwe

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Grocery

Figure 1: The Pareto frontier of the outcome space of the four scenarios used in the
experiments.

have contradictory preferences for the first two issues, but the other issues
have options that are jointly preferred by both sides. The domain has a total
of 576 possible agreements.

13

Our final negotiation case concerns the Grocery scenario, which models
a shopping negotiation in a local supermarket. The negotiation is between
two persons having different tastes, who wish to buy groceries together. The
discussion is about five product categories: bread, fruit, snacks, spreads, and
vegetables. Each category consists of four to five possible options, resulting
in a scenario with 1600 possible outcomes. Apart from their differences in
taste, the two parties also differ in what category of product they find more
important. The preferences are modeled in such a way that a good outcome
is achievable for both, so the Nash and Kalai-Smorodinsky point utilities are
high for both parties; however, the outcome space is scattered (resulting in
a relatively low mean utility), so agents must explore it considerably to find
the jointly profitable ones.

To compensate for any utility differences in the preference profiles, the
agents play both sides of every scenario.

4.1.3. Acceptance Conditions

For each acceptance condition we tested all 3× 7 = 21 pairings of agents,
playing with each of the 8 different preference profiles. We ran every experi-
ment a total of N = 15 times, so that altogether each acceptance condition
was tested 21 × 8 × 15 = 2520 times in total. This resulted in running as
many negotiations, and as every negotiation lasts 3 minutes, the experiments
took 126 hours of cpu time. We selected a wide range of 102 acceptance con-
ditions for experimental testing, as shown in Table 4. The different values of
parameters will be discussed in the section below.

Additionally, we ran five more experiments with agents having their orig-
inal, built-in acceptance mechanism in place. That is, we also tested the
original agents’ coupled acceptance mechanism for comparison purposes. As
we cannot for example, equip Agent K with the coupled acceptance condition
of Yushu, we tested the built-in mechanism by having each agent employ its
own mechanism.

4.2. Hypotheses and Experimental Results

The experiments considered here are designed to discuss the main proper-
ties and drawbacks of the acceptance conditions listed above. We formulate
several hypotheses with respect to the acceptance conditions we have dis-
cussed.

To evaluate the hypotheses below, we have carried out a large number
of experiments. A small selection of the results is summarized in Table 5.

14

AC Ranges Increments

ACprev(α, β), and α ∈ [1, 1.05), and for α: 0.01, and

ACnext(α, β) β ∈ [0, 0.1) for β: 0.02

ACconst(α) α ∈ [0, 1) 0.05 increments

ACtime(T) T ∈ [0, 1) 0.05 increments

ACcombi(T,MAXW), and T ∈ [0.95, 1) 0.01 increments

ACcombi(T,AVGW)

ACcombi(T,MAXT) T = 0.99 -

Table 4: The selected ranges and increments for the parameters of different acceptance
conditions in the experimental setup.

The table shows the average utility obtained by the agents, and the standard
deviation (of the N = 15 experiments), when equipped with several accep-
tance conditions. The “average utility of agreements” column represents the
average utility obtained by the agent given the fact that they have reached
an agreement. When they do not reach an agreement (due to reaching the
deadline), they get zero utility. Thus, as a general observation, the following
holds:

(The acceptance dilemma)

Total average utility = Agreement percentage
×

Average utility of agreements.

This formula captures the essence of the acceptance dilemma: accepting
bad to mediocre offers yields more agreements of relatively low utility; while
accepting only the best offers produces less agreements, but of higher utility.

Our first hypothesis is about the simplest condition, ACconst(α), and reads
as follows:

Hypothesis 1. There is no single choice for α that makes ACconst(α) an
effective acceptance condition; this is mainly because the optimal choice of
α is very domain-dependent.

15

AC α β Util SD Agt Agt
% Util

ACprev(α, β) 1 0 0.680 0.0084 80% 0.851
1 0.04 0.711 0.0094 84% 0.842
1 0.08 0.722 0.0076 87% 0.827
1.02 0.04 0.723 0.0085 86% 0.837

ACnext(α, β) 1 0 0.683 0.0112 81% 0.843
1 0.04 0.727 0.0067 87% 0.833
1 0.08 0.731 0.0057 89% 0.819
1.02 0.04 0.737 0.0060 89% 0.830

ACconst(α) 0.20 - 0.492 0.0025 100% 0.492
0.55 - 0.619 0.0027 92% 0.671
0.80 - 0.501 0.0078 60% 0.842
0.90 - 0.343 0.0080 36% 0.952

Built-in mechanism - - 0.737 0.0057 89% 0.774

T

ACtime(T) 0.10 - 0.533 0.0035 100% 0.533
0.40 - 0.548 0.0064 100% 0.548
0.70 - 0.602 0.0062 100% 0.602
0.95 - 0.648 0.0063 100% 0.648

ACcombi(T,MAXW) 0.97 - 0.756 0.0019 100% 0.756
0.98 - 0.762 0.0031 100% 0.764
0.99 - 0.761 0.0046 98% 0.776

ACcombi(T,AVGW) 0.97 - 0.739 0.0050 100% 0.739
0.98 - 0.754 0.0037 100% 0.757
0.99 - 0.759 0.0056 98% 0.774

ACcombi(T,MAXT) 0.99 - 0.737 0.0083 93% 0.796

Table 5: A small selection of the various acceptance conditions that were tested, together
with average utility obtained and standard deviation. The utility of the best scoring AC
of each category is in bold. The two right-hand side columns show agreement percentages
and the utility obtained when an agreement is reached.

16

Figure 2: The average utility obtained by agents using ACconst(α). The vertical error
bars indicate one standard deviation to the mean.

First, consider ACconst(0.9) and ACconst(0.8) by consulting Table 5. When
they reach an agreement, they receive a very high utility (at least 0.9 or 0.8
respectively), but this happens so infrequently (resp. 60% and 36% of all
negotiations), that they are ranked at the bottom when we consider total
average utility. On the other hand, choosing a low value for α, such as using
ACconst(0.2), will always result in an immediate agreement, but with one of
the lowest possible scores of 0.492.

The best possible choice for α should therefore be somewhere in the mid-
dle between zero and one, and is found to be 0.55 (see Figure 2), yielding a
payoff of 0.619. Firstly, this is still a suboptimal outcome compared to other
AC’s, such as the ACnext and ACcombi variants.

Moreover, it is worth noting that this optimal value may be best on
average, but in this case, averaging over all scenarios also hides a lot of
information. When we break down our analysis and look at the four domains

17

(a) Laptop (b) Itex–Cypress

(c) England–Zimbabwe (d) Grocery

Figure 3: The average utility of ACconst(α) per negotiation scenario, for α ∈ [0, 1).

separately (see the four figures of Figure 3), we see that the optimal range of
α differs greatly per domain. For example, on Itex vs. Cypress, the optimal
choice for α is around 0.6, while on Grocery, the best performing value is
in the range of [0.7, 0.8]. On the Laptop domain, any choice for α ∈ [0, 0.8]
is the best ACconst(α) can do in this scenario, and will cause the agent to

18

instantly accept most offers.
We conclude that our hypothesis is confirmed: in isolation, ACconst(α)

is not very advantageous to use. The main reason is that the choice of the
constant α is highly domain-dependent. A very cooperative scenario may
have multiple win–win outcomes with utilities above α. ACconst(α) would
then accept an offer which is relatively bad, i.e. it could have done much
better. On the other hand, in highly competitive domains, it may simply
‘ask for too much’ and may rarely obtain an agreement. Its value lies mostly
in using it in combination with other acceptance conditions such as ACnext.
It can then benefit the agent by accepting an unexpectedly good offer or a
mistake by the opponent.

As we discussed earlier in Section 2.3, the acceptance conditions ACprev(α, β)
and ACnext(α, β) are standard in literature for α ∈ [1, 1.03] and β ∈ [0, 0.2].
Many agents tend to use these acceptance conditions, as they are well-known
and easy to implement. We have formed the following hypothesis about them:

Hypothesis 2. ACnext(α, β) will outperform ACprev(α, β) for all α and
β. However, both conditions will perform worse than combined acceptance
conditions, which also take the remaining time into account.

To test this hypothesis, we considered many different values for α and β
in our experiments, with ranges chosen around the values we had found in
existing agents (cf. Table 2).

Consulting Table 5, the first observation is that ACprev(α, β) as well
as ACnext(α, β) already perform much better than ACconst for all tested
values of α and β. Higher values for α and β generally yield a better result,
although the differences are quite small. However, given that we average the
utility over 15 runs, we are able to statistically distinguish the performance
for different values of α and β. We have found ACnext(α, β) does indeed
outperform ACprev(α, β) for all tested values of α and β, except for β = 0
(two-tailed t-test, p < 0.01), thereby partially confirming the hypothesis.

As an example, we have plotted ACnext(1, β) = ACgap(β) and ACnext(1, β)
for β ∈ [0, 1) in Figure 4. We can confirm that ACnext(1, β) obtains scores
that are significantly higher (using p < 0.01) scores than ACprev(1, β), for
β 6= 0.

It makes sense that comparing the opponent’s offer to our upcoming offer
is more beneficial than comparing it to our previous offer, as ACnext is always

19

‘one step ahead’ of ACprev. In general, ACnext is never worse than ACprev,
and therefore there seems no reason to use the latter.

One of the top choices for both ACnext and ACprev, is setting α = 1.02,
and β = 0.04 (interestingly, IAM(crazy)haggler makes the same choice for
α, cf. Table 2). However, even for this choice, the combined acceptance
conditions ACcombi(T,MAXW) outperform both of them for all tested values
of T (two-tailed t-test, p < 0.01). This also settles the second part of the
hypothesis.

The reason for the relatively bad performance of ACnext and ACprev is
that many bidding strategies focus on the ‘negotiation dance’ [26]. That is,
modeling the opponent, trying to make equal concessions and so on. When
a strategy does not explicitly take time considerations into account when
making an offer, this poses a problem for these two standard acceptance
conditions: they rely completely on the bidding strategy to concede to the
opponent before the deadline occurs. When the agent or the opponent does
not concede enough near the deadline, the standard conditions lead to poor
performance.

Our third hypothesis with respect to the time-dependent condition is as
follows:

Hypothesis 3. ACtime(T) always reaches an agreement, but of relatively
low utility. This utility improves when T gets closer to the deadline.

To evaluate this hypothesis we tested ACtime(T) for many possible values
of T ∈ [0, 1), a selection of which can be examined in Table 5. We have
found that the obtained utility increases monotonously with larger T , i.e.: it
is optimal to choose the value of T sufficiently close to the deadline, while
still allowing enough time to reach a win-win agreement. The fact that one
has to accept as late as possible when using ACtime(T) clearly stems from
the fact that we are dealing with undiscounted domains only; see Section 7
for a discussion on possible extensions in this regard.

From observing the acceptance probability of ACtime(T) in the experi-
mental results, we see that the agent will always reach an agreement, there-
fore we consider this part of the hypothesis confirmed.

Regarding the utility of the agreement, ACtime(T) with T < 1 is a sen-
sible criterion to avoid a break off at all costs. It is rational to prefer any
outcome over a break off of zero utility. However, the resulting deal can

20

Figure 4: The average utility obtained by agents using ACnext(1, β) (in black), and
ACprev(1, β) (in white). The vertical error bars indicate one standard deviation to the
average utility of N = 15 different runs.

be anything. As we can see from the table, this is the reverse situation
of ACconst(0.9): ACconst(0.9) rarely gets a deal, but when it does, it is of
high utility. Conversely, ACtime(T) yields a low agreement score (0.648 for
T = 0.95), but with certainty of agreement. The overall score is the same
(0.648), but it is interesting to note that this score is worse than all scores
by either ACnext or ACprev (two-tailed t-test, p < 0.01). This phenomenon
can again be explained by the acceptance dilemma: by accepting any offer
near the deadline, it reaches more agreements, but of relatively low utility.

This insight led us to believe that more consideration has to be given to
the remaining time when deciding to accept an offer. The combined accep-
tance conditions evaluated in the next chapter expand upon this idea to get
better deals near the deadline.

21

4.2.1. Evaluating ACcombi(T, α)

When evaluating ACcombi(T, α), we expected the following characteris-
tics. First, ACcombi(T, α) is an extension of ACnext in the sense that it will
accept under broader circumstances. It alleviates some of the mentioned
drawbacks of ACnext by also accepting when the utility gap between the par-
ties is positive. Also note that in addition to the parameters that current
acceptance conditions use, such as my previous bid x

tn−1

A→B, my next bid xt
′
A→B,

the remaining time, and the opponent’s bid xtB→A, this condition employs the
entire bidding history H t

A↔B to compute the acceptability of an offer. There-
fore we expect better results than with ACnext, with more agreements, and
when it agrees, we expect a better deal than by using ACtime(T).

We capture this last statement in our final hypothesis:

Hypothesis 4. The combination ACcombi(T, α) outperform other accep-
tance conditions, such as ACtime(T) and ACnext(α, β), primarily by getting
deals of higher utility.

As is evident from the experimental results, there are two acceptance con-
ditions that dominate the others, namely ACcombi(T,MAXW), as well as
ACcombi(T,AVGW) with T close to the deadline. The results are not sta-
tistically different for the different values of T , but any of the tested values
performs quite well. One of the best AC’s of the test is ACcombi(0.98,MAXW)
with a score of 0.762, which is even better than the built-in mechanisms of
the agents, and also surpasses the performance of ACnext(α, β) for any α and
β (significantly so, using a two-tailed t-test, p < 0.01). In particular, it is at
least 12% better than ACnext (two-tailed t-test, p < 0.01).

Similar to ACtime, the combined conditions still get a deal almost every
time, but with a higher payoff. However, the average utility of an agreement
is not the highest: the built-in mechanisms and several ACconst(α) conditions
get better agreements. But again, we can observe that their agreement rate
is also lower, resulting in a higher overall score for the combined criteria.
This settles our last hypothesis.

Finally, aiming for the highest utility that has been offered so far (i.e.,
using ACcombi(T,MAXT)) is not as successful, mostly due to a big decrease
in agreements. The higher utility that is obtained with this condition does
not compensate for the loss of utility that is caused by a break off.

22

5. Related Work

All existing negotiation agent implementations deal with the problem of
when to accept. In many cases, the agent accepts a proposal when the value
of the offered contract is higher than the offer it is ready to send out at that
moment in time. Examples include the time dependent negotiation strategies
defined in [27] (e.g. the Boulware and Conceder tactics). The same principle
is used in the equilibrium strategies of [10] and for the Trade-off agent [7],
although this concerns a setting where the deadline can be different for both
agents. In our work, we consider strategies that do not always reach an
agreement, and we have concentrated on acceptance conditions that yield
better results in such cases.

Of all ANAC 2010 participants, we shortly discuss Agent K [15] as it
employs the most sophisticated method to decide when to accept. Its accep-
tance mechanism is based on the mean and variance of all received offers.
It then tries to determine the best offer it might receive in the future and
sets its proposal target accordingly. In contrast to our approach, this mecha-
nism is not fully decoupled from the bidding strategy as it directly influences
its bid target. Furthermore, it does not restrict its scope to the remaining
or previous time window. Finally, we note that Agent K performs better
in our experimental setup (cf. Table 5) when equipped with our combined
acceptance conditions than with its built-in mechanism.

This work builds upon earlier research [4], which also experimentally
tested various acceptance conditions, albeit in a more limited setting. In
this paper, we extend results in [4] and gain additional insights by explor-
ing a larger class of acceptance conditions in a wider range of negotiation
scenarios. Although we do not focus on negotiation tactics and convergence
results, our negotiation model also builds upon the model of [31]. However,
in this model, the action function of an agent only takes into account the
offer it is ready to send out at that moment in time. Moreover, the focus
of the paper is not on comparing acceptance conditions as only one specific
instance is studied. We take a more general approach in which the agent
utilizes a generic acceptance mechanism, in which the current time and the
entire bidding history is considered.

6. Conclusion

In this paper, we aimed to classify current approaches to generic accep-
tance conditions and to compare a selection of acceptance conditions in a

23

real-time setting. We presented the challenges and proposed new solutions
for accepting offers in current state-of-the-art automated negotiations. The
focus of this paper is on decoupled acceptance conditions (i.e.: general con-
ditions that do not depend on a particular bidding strategy), for which we
have defined a formal negotiation model.

Designing an effective acceptance condition is challenging because of the
acceptance dilemma: better offers may arrive in the future, but waiting for
too long can result in a break off of the negotiation, which is undesirable for
both parties.

We have presented and classified many of the standard acceptance criteria
that are currently used by negotiating agents, including ACnext, ACprev,
and ACconst. From our results, it is apparent that they do not always yield
optimal agreements, and we established that they perform worse than more
sophisticated acceptance conditions.

In addition to classifying and comparing existing acceptance conditions,
we have devised three new acceptance conditions by combining existing ones.
This included two acceptance conditions that estimate whether a better offer
might occur in the future based on recent bidding behavior. These condi-
tions obtained the highest utility in our experiments and hence performed
better than the other conditions we have investigated. In particular, they
outperform the acceptance mechanisms that are used by the top ANAC 2010
agents.

7. Discussion and Future Work

We have examined the effectivity of acceptance conditions in a setting
with two key elements: a bilateral alternating offers protocol, and a real-
time deadline. We briefly discuss our results and possible lines of future
work in light of different negotiation contexts.

The adoption of the alternating offers protocol imposes an important
restriction on the negotiation process, because the agents only exchange in-
formation in one of three possible forms: an offer, an accept, or a withdrawal.
Normally it is irrational to withdraw from a negotiation (i.e., by sending a
message ending the negotiation) without any outside options, as it leaves the
agent with nothing. However, recently there has been interest [3] in real-time
settings with reservation values and discount factors. When both contract
utility and outside options devaluate with the passing of time, novel accep-
tance conditions are required that give more consideration to the negotiation

24

timeline. For example, it can be advantageous for an agent to end the nego-
tiation prematurely and receive its reservation value, rather than continuing
an exchange of offers while the contract diminishes in value. This adds an ad-
ditional dimension to the acceptance dilemma, as prolonging the negotiation
does not necessarily increase the agent’s chances of a good outcome.

In a multi-party setting, the problem of when to accept is even more
complex, as the outside options become dynamic; however, the presence of
a mediator can reduce some of the complexity by taking over the role of
finding acceptable agreements, for example through letting the agents vote
on whether a proposed contract is acceptable [18]. It may then be sufficient
for an agent to simply accept anything above its reservation value. In the
same way, when richer protocols are employed (e.g., when communication is
possible, for instance in persuasive, or argumentation-based negotiation [25,
32]), the acceptance dilemma may be easier to resolve, as agents have more
knowledge about the acceptability of offers. Lastly, in traditional negotiation
protocols such as ours, once a contract is settled upon, it is binding. However,
a more general approach is to allow decommitment, i.e. backing out of the
negotiation after finding a superior option elsewhere, usually at the cost of
a penalty [29]. This requires complex acceptance strategies for committing
and decommitting to agreements in a concurrent way; there has been recent
work in the same negotiation setting that we employ, which opens up possible
research in this area [35].

Finally, the real-time setting presents an additional challenge to finding
effective acceptance mechanisms. For example, in a round-based setting, re-
sults are usually less ambiguous, as this usually concerns bargaining games
with perfect information where a unique subgame-perfect equilibrium ex-
ists. An optimal acceptance strategy can then be adopted through backward
inductive reasoning; the most well-known solution being that agreement is
reached immediately in the first round [28]. In a real-time setting, it is gener-
ally unknown when the last offer has been made, and this makes it difficult to
find optimal acceptance conditions for this setting; this is why our approach
is heuristic in essence.

For future work, we plan to test acceptance conditions in more dynamic
settings with more agents and on more complex scenarios, using the resources
of ANAC 2011 and 2012.

Secondly, a suggestion for future research would be to explore the many
possible combinations of acceptance conditions that may be obtained using
conjunction and disjunction (and possibly negation). Some agents already

25

use a logical combination of different acceptance conditions at the same time.
For example, the IAM(crazy)Haggler agents accept when

ACconst(0.88) ∨ACnext(1.02, 0) ∨ACprev(1.02, 0).

A suitable combination of acceptance conditions could provide a considerable
improvement over current acceptance conditions. We plan to examine such
extensions in future work.

Acknowledgments

This research is supported by the Dutch Technology Foundation STW,
applied science division of NWO and the Technology Program of the Ministry
of Economic Affairs. It is part of the Pocket Negotiator project with grant
number VICI-project 08075.

References

[1] Bo An and Victor Lesser. Yushu: a heuristic-based agent for automated
negotiating competition. In Takayuki Ito, Minjie Zhang, Valentin Robu,
Shaheen Fatima, and Tokuro Matsuo, editors, New Trends in Agent-
based Complex Automated Negotiations, Seriesof Studies in Computa-
tional Intelligence, pages 145–149, Berlin, Heidelberg, 2012. Springer-
Verlag.

[2] Robert J. Aumann and S. Hart, editors. Handbook of Game Theory with
Economic Applications, volume 1. Elsevier, 1 edition, 1992.

[3] Tim Baarslag, Katsuhide Fujita, Enrico H. Gerding, Koen Hindriks,
Takayuki Ito, Nicholas R. Jennings, Catholijn Jonker, Sarit Kraus, Raz
Lin, Valentin Robu, and Colin R. Williams. Evaluating practical negoti-
ating agents: Results and analysis of the 2011 international competition.
Artificial Intelligence, 198(0):73 – 103, 2013.

[4] Tim Baarslag, Koen Hindriks, and Catholijn Jonker. Acceptance condi-
tions in automated negotiation. In Takayuki Ito, Minjie Zhang, Valentin
Robu, and Tokuro Matsuo, editors, Complex Automated Negotiations:
Theories, Models, and Software Competitions, volume 435 of Studies in
Computational Intelligence, pages 95–111. Springer Berlin / Heidelberg,
2013.

26

[5] Tim Baarslag, Koen Hindriks, Catholijn M. Jonker, Sarit Kraus, and
Raz Lin. The first automated negotiating agents competition (ANAC
2010). In Takayuki Ito, Minjie Zhang, Valentin Robu, Shaheen Fatima,
and Tokuro Matsuo, editors, New Trends in Agent-based Complex Au-
tomated Negotiations, Seriesof Studies in Computational Intelligence,
pages 113–135, Berlin, Heidelberg, 2012. Springer-Verlag.

[6] Chi-Bin Cheng, Chu-Chai Henry Chan, and Kun-Cheng Lin. Intelligent
agents for e-marketplace: Negotiation with issue trade-offs by fuzzy in-
ference systems. Decision Support Systems, 42(2):626 – 638, 2006.

[7] P. Faratin, C. Sierra, and N. R. Jennings. Using similarity crite-
ria to make negotiation trade-offs. Journal of Artificial Intelligence,
142(2):205–237, 2003.

[8] P. Faratin, C. Sierra, and N.R. Jennings. Negotiation decision functions
for autonomous agents. Robotics and Autonomous Systems, 24(3-4):159–
182, 1998.

[9] S. Shaheen Fatima, Michael Wooldridge, and Nicholas R. Jennings.
Optimal negotiation strategies for agents with incomplete information.
In Revised Papers from the 8th International Workshop on Intelli-
gent Agents VIII, ATAL ’01, pages 377–392, London, UK, UK, 2002.
Springer-Verlag.

[10] Shaheen S. Fatima, Michael Wooldridge, and Nicholas R. Jennings.
Multi-issue negotiation under time constraints. In AAMAS ’02: Proceed-
ings of the first international joint conference on Autonomous agents and
multiagent systems, pages 143–150, New York, NY, USA, 2002. ACM.

[11] Koen V. Hindriks and Dmytro Tykhonov. Opponent modelling in auto-
mated multi-issue negotiation using bayesian learning. In Proceedings of
the 7th international joint conference on Autonomous agents and mul-
tiagent systems - Volume 1, AAMAS ’08, pages 331–338, Richland, SC,
2008. International Foundation for Autonomous Agents and Multiagent
Systems.

[12] KoenV. Hindriks and Dmytro Tykhonov. Towards a quality assessment
method for learning preference profiles in negotiation. In Wolfgang Ket-
ter, Han Poutr, Norman Sadeh, Onn Shehory, and William Walsh, ed-
itors, Agent-Mediated Electronic Commerce and Trading Agent Design

27

and Analysis, volume 44 of Lecture Notes in Business Information Pro-
cessing, pages 46–59. Springer Berlin Heidelberg, 2010.

[13] Takayuki Ito, Hiromitsu Hattori, and Mark Klein. Multi-issue negotia-
tion protocol for agents: exploring nonlinear utility spaces. In Proceed-
ings of the 20th international joint conference on Artifical intelligence,
IJCAI’07, pages 1347–1352, San Francisco, CA, USA, 2007. Morgan
Kaufmann Publishers Inc.

[14] Catholijn Jonker, Valentin Robu, and Jan Treur. An agent architecture
for multi-attribute negotiation using incomplete preference information.
Autonomous Agents and Multi-Agent Systems, 15:221–252, 2007.

[15] Shogo Kawaguchi, Katsuhide Fujita, and Takayuki Ito. Compromising
strategy based on estimated maximum utility for automated negotiating
agents. In Takayuki Ito, Minjie Zhang, Valentin Robu, Shaheen Fatima,
and Tokuro Matsuo, editors, New Trends in Agent-based Complex Au-
tomated Negotiations, Seriesof Studies in Computational Intelligence,
pages 137–144, Berlin, Heidelberg, 2012. Springer-Verlag.

[16] G. E. Kersten and S. J. Noronha. Rational agents, contract curves, and
inefficient compromises. Trans. Sys. Man Cyber. Part A, 28(3):326–338,
May 1998.

[17] Gregory E. Kersten and Grant Zhang. Mining inspire data for the de-
terminants of successful internet negotiations. InterNeg Research Pa-
pers INR 04/01 Central European Journal of Operational Research,
11(3):297–316, 2003.

[18] Mark Klein, Peyman Faratin, Hiroki Sayama, and Yaneer Bar-Yam. Ne-
gotiating complex contracts. Group Decision and Negotiation, 12:111–
125, 2003. 10.1023/A:1023068821218.

[19] Sarit Kraus. Strategic Negotiation in Multiagent Environments. MIT
Press, October 2001.

[20] R. Lin, S. Kraus, D. Tykhonov, K. Hindriks, and C. M. Jonker. Sup-
porting the design of general automated negotiators. In Proceedings of
the Second International Workshop on Agent-based Complex Automated
Negotiations (ACAN’09), volume 319, page 69–87. Springer, Springer,
2011.

28

[21] Raz Lin, Sarit Kraus, Tim Baarslag, Dmytro Tykhonov, Koen Hindriks,
and Catholijn M. Jonker. Genius: An integrated environment for sup-
porting the design of generic automated negotiators. Computational
Intelligence, 2012.

[22] Raz Lin, Sarit Kraus, Jonathan Wilkenfeld, and James Barry. Nego-
tiating with bounded rational agents in environments with incomplete
information using an automated agent. Artificial Intelligence, 172(6-
7):823 – 851, 2008.

[23] Raz Lin, Yinon Oshrat, and Sarit Kraus. Investigating the benefits
of automated negotiations in enhancing people’s negotiation skills. In
AAMAS ’09: Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems, pages 345–352, 2009.

[24] Martin J. Osborne and Ariel Rubinstein. Bargaining and Markets (Eco-
nomic Theory, Econometrics, and Mathematical Economics). Academic
Press, April 1990.

[25] Iyad Rahwan, Sarvapalic Ramchurn, Nicholas R. Jennings, Peter
McBurney, Simon Parsons, and Liz Sonenberg. Argumentation-based
negotiation. The Knowledge Engineering Review, 18(04):343–375, 2003.

[26] H. Raiffa. The Art and Science of Negotiation. Harvard University
Press, 1982.

[27] Raquel Ros and Carles Sierra. A negotiation meta strategy combining
trade-off and concession moves. Autonomous Agents and Multi-Agent
Systems, 12:163–181, 2006.

[28] Ariel Rubinstein. Perfect equilibrium in a bargaining model. Economet-
rica, 50(1):97–109, 1982.

[29] Tuomas Sandholm and Victor R. Lesser. Advantages of a leveled com-
mitment contracting protocol. In William J. Clancey and Daniel S.
Weld, editors, Proceedings of the Thirteenth National Conference on
Artificial Intelligence and Eighth Innovative Applications of Artificial
Intelligence Conference, AAAI 96, IAAI 96, Portland, Oregon, August
4-8, 1996, Volume 1, pages 126–133. AAAI Press / The MIT Press,
1996.

29

[30] Liviu Dan Serban, Gheorghe Cosmin Silaghi, and Cristian Marius Litan.
Agent fsega - time constrained reasoning model for bilateral multi-issue
negotiations. In Takayuki Ito, Minjie Zhang, Valentin Robu, Shaheen
Fatima, and Tokuro Matsuo, editors, New Trends in Agent-based Com-
plex Automated Negotiations, Seriesof Studies in Computational Intelli-
gence, pages 159–165, Berlin, Heidelberg, 2012. Springer-Verlag.

[31] C. Sierra, P. Faratin, and N.R. Jennings. A service-oriented negotia-
tion model between autonomous agents. In M. Boman and W. van de
Velde, editors, Proceedings of the 8th European Workshop on Modelling
Autonomous Agents in Multi-Agent World, MAAMAW97, volume 1237
of Lecture Notes in Artificial Intelligence, pages 17–35. Springer-Verlag,
1997.

[32] Katia P. Sycara. Machine learning for intelligent support of conflict
resolution. Decision Support Systems, 10(2):121 – 136, 1993.

[33] Niels van Galen Last. Agent smith: Opponent model estimation
in bilateral multi-issue negotiation. In Takayuki Ito, Minjie Zhang,
Valentin Robu, Shaheen Fatima, and Tokuro Matsuo, editors, New
Trends in Agent-based Complex Automated Negotiations, Series of Stud-
ies in Computational Intelligence, pages 167–174, Berlin, Heidelberg,
2012. Springer-Verlag.

[34] Michael P. Wellman, Peter R. Wurman, Kevin O’Malley, Roshan
Bangera, Shou de Lin, Daniel Reeves, and William E. Walsh. Design-
ing the market game for a trading agent competition. IEEE Internet
Computing, 5(2):43–51, 2001.

[35] Colin R. Williams, Valentin Robu, Enrico Gerding, and Nick Jennings.
Towards a platform for concurrent negotiations in complex domain. In
Proceedings of The Fifth International Workshop on Agent-based Com-
plex Automated Negotiations (ACAN 2012), In Press.

[36] Colin R. Williams, Valentin Robu, Enrico H. Gerding, and Nicholas R.
Jennings. Iamhaggler: A negotiation agent for complex environments.
In Takayuki Ito, Minjie Zhang, Valentin Robu, Shaheen Fatima, and
Tokuro Matsuo, editors, New Trends in Agent-based Complex Auto-
mated Negotiations, Series of Studies in Computational Intelligence,
pages 151–158, Berlin, Heidelberg, 2012. Springer-Verlag.

30

