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Abstract

Group decision making is a commonly-used method to develop decision supportapplications for use in counter-
terrorism, government management and business intelligence development. An appropriate decision often needs ex-
tensive debate among participants in a decision committee; overly similar opinions toa large extent may mislead to a
final decision. Measuring opinion similarity between participants (MOSP) in advance is an important strategy to re-
duce the chance of making and applying inappropriate decisions and is alsoan important concern when developing a
reliable decision support system. Due to the lack of opinion data for a focaltopic and the varieties of opinion represen-
tations, measuring the similarity is difficult and has not been well-studied in developing decision support. Noting that
the similarities gradually alter from time to time with the number and order of considered criteria, this paper develops a
gradual aggregation algorithm and establishes a method based on it, called the three-level-similarity measuring (TLSM)
method, to measure the opinion similarity at three similarity levels, i.e. the Assessment-Level, the Criterion-Level and
the Problem-Level. Two applications of the TLSM method on social policy selection and energy policy evaluation
are conducted. The study indicates that the TLSM method can effectively measure the similarity between opinions in
small-size or possibly missing opinion data and simulate the generation of a decision dynamically.
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1. Introduction

Multiple-criteria group decision making (MCGDM) is
recognised as an efficient strategy in many organisational
decision problems [1–3], where a final decision is made
based on the opinions of individual participants of a de-
cision committee on candidate options. Overly similar
opinions increase the chance of putting an inappropriate
decision into effect. In practice, making an appropriate
strategical decision is a time-consuming and costly task;
however, tuning an inappropriate decision will cost even
more. To reduce this risk, measuring opinion similarity
between participants (MOSP) in advance is, therefore, an
important issue in developing decision support for essen-
tial decision problems relating to such issues as counter-
terrorism, business intelligence, nuclear inspection, gov-
ernment management and others.
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Opinion similarity has wide applications in various
fields, for example, online recommender systems [4–8].
However, the MOSP problem is still an unsolved and chal-
lenging issue. Difficulties in solving the MOSP prob-
lem include the effective processing of small-size opin-
ion data and of varied opinion representations. Due to the
restrictions on funding, time, cost, private policies, and
other issues, a decision is often made by a limited number
of participants. The total amount of usable opinions for
measuring similarity is small sized, even though all par-
ticipants would like to express their opinions thoroughly.
The small-size opinion data makes it is very hard to apply
methods for large-size data to the MOSP problem. Varied
opinion representation is another difficulty in solving the
MOSP problem. Participants prefer to express their opin-
ions in their own ways based on their understandings of
and experiences in a given decision topic. However, this
is bound to difficulties for measuring the similarity be-
tween their opinions. A strategy commonly used to reg-
ulate opinion representation is providing a fixed number
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of choices, for example, some predefined linguistic terms
or a set of ordinal numbers [2, 9]. However, this cannot
completely avoid varied opinion representations because
the pre-defined choices may have different semantics for
different evaluation criteria. A third difficulty in solving
the MOSP problem is the lack of a fixed reference point
for the measuring task. A person’s opinion is a type of
subjective information, which varies from one object to
another. Two participants may have similar opinions on
some options, but completely different opinions on the
others. Hence, the reference point should be able to fit
these changes. The MOSP problem needs to find the sim-
ilarity between two participants on a decision problem as
a whole; so the reference point should be used at different
levels. Moreover, the majority of research on MCGDM
focus on the issue of conducting trade-off between par-
ticipants to reach a consensus based on their opinions but
ignore the MOSP issue which is the basis of that trade-off.

Keeping the aforementioned difficulties in mind, this
paper presents a measuring method to solve the MOSP
problem. The method is based on three assumptions: 1)
Given a criterion, if the opinions of two participant are
similar for the majority of testing benchmarks, it is ratio-
nal to presume that they are similar; 2) Given a set of cri-
teria, if the opinions of two participants are similar for the
majority of important criteria, it is rational to presume that
they are similar; and 3) Given a decision problem, if the
opinions of two participants produce a similar decision, it
is rational to presume that they are similar. Because these
three assumptions are presented from three similarity lev-
els, this paper refers the method presented to a three-level-
similarity measuring (TLSM) method.

The rest of the paper is organized as follows. Section 2
reviews related work in opinion analysis, similarity mea-
surement and aggregation operations. Section 3 develops
a gradual aggregation algorithm which is used to generate
an overall opinion similarity. In Section 4, we introduce
the TLSM method in detail. Section 5 illustrates two case
studies for applying the TLSM method to social policy se-
lection and energy policy evaluation problems. Section 6
summarises the main contributions of the work and our
future study plans.

2. Related works

Opinion analysis is extensively studied in social psy-
chology fields [10, 11]; recently, requirements for effec-
tively extracting, summarizing, and segmenting opinions
of general or specific users boosted the growing research
on opinion mining and sentiment analysis [12–15]. Com-

monly recognized, the opinion mining research belongs
to the field of text analysis [14]; therefore, currently re-
ported methods are mainly conducted on how to effi-
ciently extract and summarize opinions from texts dis-
tributed among web Blogs posts [15], BBS [16], online
feedback [17, 18], and web forums [12]. Many opin-
ion mining systems have been developed and applied
[12, 14, 16, 18, 19] . However, these methods are not
suitable for the MOSP problem because of the difficulties
mentioned above. In the MCGDM field, study of opinion
analysis is conducted in two main areas. Qualitative stud-
ies analyse and simulate the behaviour patterns of users
based on their opinions of a considered affair [20, 21].
Quantitative research focuses on how to represent and
process opinions in a computational framework to sup-
port decision making [9, 22–24]. For instance, fuzzy sets
and fuzzy logic are widely used as opinion representa-
tion and process facilities [25–27] because they can effec-
tively interpret and model the subjective information with
uncertainties. Noted that a participant’s opinion itself is
a kind of subjective expression with uncertainties, these
computation-based techniques provide support to develop
solutions for the MOSP problem.

Similarity measurement is widely studied in human
knowledge representation, behaviour analysis, and real-
world problem solving [28]. A similarities measure-
ment can be established on various theories (e.g., classi-
cal and/or fuzzy set theories, classical and/or non-classical
logics[29]) and applied to image processing [28, 30], nat-
ural language understanding [31], recommender systems
[32], and other applications. In MCGDM, similarity mea-
sures defined on a fuzzy set are particularly useful. Be-
cause many similarity measures can be sourced from their
counterparts defined on ordinary sets, research on their re-
lationships is conducted. For example, Wang, et al. [33]
compared commonly-used similarity measures on the or-
dinary set. De Baets, et al. [34] discussed systemati-
cally a way of generating a similarity measure for ordi-
nary sets and compared it with other 28 similarity mea-
sures. Recently, Bosteels and Kerre presented a family
of cardinality-based fuzzy similarity measures which is
specified by three parameters [35] and De Baets, et al.
[36] studied the transitivity of cardinality-based similar-
ity measures. Generally speaking, a similarity measure
can be induced from a distance measure. Therefore, in-
vestigating the relationship between them is very impor-
tant [37]. The majority of existing similarity measures are
defined on the Euclidean space and the ultimate measure-
ment is a crisp value. Noting that a crisp value cannot suf-
ficiently depict the fuzziness in real cases, Chakraborty
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and Chakraborty [22] defined a similarity, whose mea-
surement is a fuzzy set. Using this distance, they imple-
mented a clustering algorithm to solve a group decision
making problem.

Integrating evaluations of multiple participants is an
important step to develop a solution for an MCGDM prob-
lem, where an aggregation operator plays a crucial role.
According to whether or not an aggregation operator ex-
plicitly considers the relevant importance (weights) of the
evaluation criteria, there are three main types of aggrega-
tion operators used in MCGDM research. The first type
treats all evaluation criteria equally. Typical examples in-
clude the arithmetic mean, the geometric mean, and the
t-norms (ort-conorms) [38–40]. The second type ex-
plicitly distinguishes the weights of the evaluation crite-
ria either by their impacts on the decision problem, or by
their processing order. The weighted mean and the or-
dered weighted aggregation (OWA) [41], as well as their
extensions [42–46] belong to this type. A third type is de-
fined by certain integrals, such as the Segno and Choquet
integrals [23, 47–49]. Currently existing aggregation op-
erators often require that a participant provides a complete
evaluation report; in other words, they do not consider and
process the cases with missing evaluations. However, a
real decision problem more or less faces missing values.
How to process missing values is, therefore, a key concern
when applying an aggregation operator; but this issue has
not yet been solved. Although so many powerful aggrega-
tion operators have been presented, little is known about
how to select an appropriate one in real applications. Be-
liakov [50] reported a solution for this problem by using a
mathematical programming technique. In his solution, an
aggregation operator’s form is fixed but its parameters are
tunable.

3. A gradual aggregation algorithm

3.1. Motivations and implementations

In this section, a gradual aggregation algorithm (GAA)
is developed. The GAA is motivated by two practical is-
sues when developing a decision support system. One is-
sue concerns processing missing values; and the other is
about generating a decision dynamically.

Evaluation aggregation used in an MCGDM problem is
conventionally conducted as a one-off procedure. For ef-
fectiveness reason, the inputs are required to be significant
values in a given value set (eg. terms or numbers) and can-
not have missing values. However, real evaluations can-
not avoid missing values. Hence, how to process miss-
ing values is a regularly faced issue when making a deci-

sion, which has not been well solved. Another motivation
for presenting the GAA is the phenomenon of generating
a decision dynamically, which refers to the procedure of
making a decision where a final decision is sketched based
on a few numbers of criteria at the initial stage, and then
amended in the following stages by considering more cri-
teria added gradually. A typical example of generating de-
cision dynamically is booking a flight ticket. At the begin-
ning, a passenger has some preliminary requirements for
a ticket such as the airline provider, the departure and/or
arrival times. If these requirements cannot be fully met,
the passenger may consider extra requirements of price,
stops, etc, on top of those preliminary requirements until
find the most satisfactory ticket. In order to model this
procedure quantitatively, the GAA is therefore presented.

We implemented the GAA in two ways, i.e., the ordi-
nary gradual aggregation (OGA) and the weighted grad-
ual aggregation (WGA). The difference between them is
that OGA does not explicitly process the weights of crite-
ria but leaves it to the aggregation itself; while the WGA
does. We define the OGA and WGA in Definition 3.1 and
Definition 3.2 and illustrate the procedure of GAA in Fig-
ure 1.
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Figure 1: The typical GAA procedure.

Following the formal notations in [40], an aggrega-
tion operatorA over a closed setX is denoted byA :
⋃

i∈N+{Ai : X
i → X} whereAi is a mapping fromXi

toX and is called thei-ary aggregation operator inA. By
this notation, an aggregation operatorA refers to a family
of operators with the same computational form but vari-
able inputs number. Particularly, the unitary aggregation
operatorA1 is the identity mapping. For convenience of
discussion and practical demands, letX be a subset ofR.

Definition 3.1. Let A andB be two aggregation opera-
tors. A mappingGn from Xn to X is called ann-ary
ordinary gradual aggregation (OGA) with respect toA
andB:

Gn(x1, · · · , xn)

= Bn({αi = Ai(x1, · · · , xi), i = 1, . . . , n}).
(1)
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Definition 3.2. Let A andB be two aggregation opera-
tors; wi the weight of inputxi, i = 1, . . . , n. A mapping
Gn from Xn to X is called ann-ary weighted gradual
aggregation (WGA) with respect toA andB:

Gn(x1, · · · , xn;w1, · · · , wn)

= Bn({αi = Ai(x1, · · · , xi;w1, · · · , wi),

i = 1, . . . , n}).

(2)

Because OGA and WGA are defined by the aggrega-
tion operatorsA andB, they inherit some properties of
A andB. Some examples are given below. These proper-
ties indicate that the OGA and WGA exactly can be used
to implement aggregation procedure.

Proposition 3.1. If bothA andB are idempotent, i.e.,

Ai(x, . . . , x) = x, Bj(x, . . . , x) = x;

so do OGA and WGA. �

Proposition 3.2. If bothA andB are monotonic, i.e.,

Ai(x1, . . . , xi) 6 Ai(y1, . . . , yi) if xk 6 yk, k = 1, . . . , i

Bj(x1, . . . , xj) 6 Bj(y1, . . . , yj) if xk 6 yk, k = 1, . . . , j;

so do OGA and WGA. �

Proposition 3.3. If bothA andB are bounded, i.e.,

Ai(x1, . . . , xi) ∈ X, Bj(x1, . . . , xj) ∈ X;

So do OGA and WGA. �

3.2. Weights assignment and adjustment
Weights of criteria are important parameters in an eval-

uation aggregation; but assigning and/or adjusting weights
is not an easy task [51]. The GAA can implement weights
assignment and adjustment by itself when the used ag-
gregation operators are the arithmetic mean and weighted
mean. Moreover, it can preserve the impacts of important
criteria in the assignment and adjustment procedure.

The OGA does not explicitly process the weights of
criteria. However, when bothA andB are arithmetic
means, the OGA assigns a set of weights to its inputs im-
plicitly based on their processing order. Suppose a set of
inputsx1, x2, . . ., xn are indexed by their processing or-
der, whose weights are not known. Then by the OGA, we
have

A1(x1) = x1;

A2(x1, x2) =
x1 + x2

2
;

...

An(x1, x2, . . . , xn) =
x1 + x2 + . . .+ xn

n

and

Gn(x1, . . . , xn) =

n
∑

i=1
Ai(x1, . . . , xi)

n

=

n
∑

i=1

xi





1

n

n
∑

j=i

1

j



 . (3)

Let βi be the coefficient ofxi in Eq. (3), i.e.,

βi =
1

n

n
∑

j=i

1

j
, i = 1, 2, . . . , n. (4)

The sum ofβis is

β1 + β2 + · · ·+ βn = 1, (5)

and the order of them is

β1 > β2 > · · · > βn > 0. (6)

Eq. (5) shows thatβ1, . . ., βn form a set of weights and
are assigned to the inputs implicitly. Eq. (6) indicates that
the an input processed earlier gains a higher weight. Intu-
itively, this weight assignment result is consistent with a
real decision procedure where the most important criteria
are often processed ahead.

Furthermore, let us check the changes of these assigned
weights with respect to the numbern of inputs. Figure 2
illustrates the first five assigned weights whenn 6 18. It
shows that eachβi is convergent with the increase ofn.
A conclusion is drawn from this observation that, given
a large enoughn, the newly added inputs will exert little
affect on a sketchy decision. Since the parametern in a
real problem cannot be too large, the impacts of the most
important criteria underlying the inputs—which are pro-
cessed ahead—are therefore strengthened.
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Figure 2: Changing weights with the number of inputs.

The WGA explicitly processes the weights of criteria
in its aggregation procedure. By replacingAi with the
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weighted mean, and supposing the initial weight of input
xi is wi, we noted that the WGA can adjust the initially
assigned weights of the inputs. By the WGA, we have

A1(x1;w1) = x1

A2(x1, x2;w1, w2) =
w1

w1 + w2
x1 +

w2

w1 + w2
x2

...

An(x1, . . . , xn;w1, . . . , wn) =
w1
n
∑

j=1
wj

x1 + · · ·+
wn
n
∑

j=1
wj

xn

and

Gn(x1, . . . , xn;w1, . . . , wn)

=
x1 +

w1x1+w2x2

w1+w2
+ · · ·+

∑n
i=1

wixi∑n
j=1

wj

n

=
1

n

n
∑

i=1

xiwi

(

n
∑

k=i

1
∑k

j=1wj

)

.

Let βi be the coefficient ofxi, i.e.,

βi =
wi

n

n
∑

k=i

1
∑k

j=1wj

, i = 1, . . . , n (7)

Then we have

β1 + β2 + · · ·+ βn = 1, (8)

i.e., β1, β2, . . ., βn form a set of weights and the inputs
are re-weighted by them. Comparingβi andwi, we have
a loose inequity that

βi >
n− (i− 1)

n
wi, i = 1, . . . , n. (9)

Further analysis indicates thatβ1 > w1 and if n is large
enough andi is smaller, the first severalβis are very near
to, even greater than, the initialwis. This means the im-
pacts of those criteria are still preserved by the WGA.

The above algorithm and discussions indicate that the
GAA can effectively maintain the impacts of important
criteria. This feature is very important for our next dis-
cussion regarding making decisions dynamically and pro-
cessing missing values.

3.3. Dynamic decision and missing values

Definitions of OGA and WGA indicate that the two im-
plementations of GAA are closely related to the process-
ing order of the inputs. The GAA emphasises the pro-
cessing order of inputs because it is closely related to the

dynamic generation of a decision and process of missing
values.

In the course of making a decision, the most important
criteria are often considered preferentially, then the sec-
ondary important criteria, and finally the not so important
criteria. Hence, there is a natural processing order be-
tween those criteria. Similarly, there is an ordering among
the inputs if they are treated as evaluations of those crite-
ria, as shown in Section 3.2 where the GAA implemen-
tation assigns (reassigns) a set of decreasingly changed
weights to its inputs according to their processing orders.
In this sense, the GAA implementations are models of the
generation of a dynamic decision.

Missing values are inevitable in real applications. Two
intuitive strategies to handle missing values are: 1) com-
pletely discard them; or 2) try to impute them. The GAA
implementations can partially combine these. When the
parametern in GAA takes a value which is smaller than
the total number of inputs, some inputs will then not be
considered naturally. Obviously, if there are missing val-
ues in the unprocessed inputs, these missing values will
not affect the obtained aggregation result. However, if the
missing values are not avoided, it means some evaluations
about key criteria are not presented. In this situation, the
GAA repeatedly use the aggregation operatorA to cal-
culate a set of candidate results by slightly assigning or
adjusting the weights of those inputs; and then the use
of aggregation operatorB to generate a final aggregation
result which can partially impute the missing values. To
illustrate this more clearly, consider the example below.

Example 3.1. There are two common ways to process the
missed value, i.e. 1) completely ignore it; or 2) treat it
as a fixed value (such as 0 or mean for numeric values).
For illustrative purpose, suppose there are 10 inputs are
given in the second column in Table 1 and the aggregation
algorithm is the arithmetic means. We will compare three
scenarios:

• scenario 1 (S1): no missing value;

• scenario 2 (S2): ignore missing value;

• scenario 3 (S3): replace the missing value as 0 and
mean of others.

For (S1), the aggregation result without using OGA is
0.572 (column “Input”), i.e.0.572 = 1/10 ×

∑10
i=1 ai.

The aggregation result with OGA, whereA andB are
both the arithmetic means, is 0.683 (column “OGA”) and
the intermediate results are shown in the third column. For
(S2), the aggregation result without using OGA is 0.549
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Table 1: An example for processing a missing value.
S1 S2 S3

No. Input OGA DM OGA-DM IM-0 OGA-0 IM-M OGA-M
1 0.840 0.840 0.840 0.840 0.840 0.840 0.840 0.840
2 0.783 0.812 0.912 0.876 0.000 0.420 0.549 0.694
3 0.912 0.845 0.335 0.696 0.912 0.584 0.912 0.767
4 0.335 0.718 0.278 0.591 0.335 0.522 0.335 0.659
5 0.278 0.630 0.477 0.568 0.278 0.473 0.278 0.583
6 0.477 0.604 0.365 0.535 0.477 0.474 0.477 0.565
7 0.365 0.570 0.952 0.594 0.365 0.458 0.365 0.537
8 0.952 0.618 0.636 0.599 0.952 0.520 0.952 0.588
9 0.636 0.620 0.142 0.549 0.636 0.533 0.636 0.594
10 0.142 0.572 0.142 0.494 0.142 0.549

result 0.572 0.683 0.549 0.650 0.494 0.532 0.549 0.638
rate to benchmark 1.000 1.000 0.959 0.951 0.863 0.778 0.959 0.933

(column “DM”); while it is 0.650 by using OGA (column
“OGA-DM”). For (S3), the aggregation results without
using OGA are 0.494 and 0.549 for replacing the miss-
ing value by 0 (column “IM-0”) and the average of the
others (column “IM-M”), respectively; where the aggre-
gation results by using OGA are 0.532 (column “OGA-0”)
and 0.638 (column “OGA-M”), respectively.

If taking the scenario 1 as benchmark and check the
changes of aggregation results in the other two scenarios,
we noted that the OGA generates a result with bigger dif-
ference from the benchmarks than the other methods. This
fact indicates that the OGA pays more attention on the
missing value.

4. A three-level-similarity measuring method for the
MOSP problem

In this section, the TLSM method for solving the
MOSP problem is presented. Section 4.1 addresses the
MOSP problem briefly. Section 4.2 overviews the main
steps of the TLSM method. Details of those steps are in-
troduced in Sections 4.3 and Section 4.5.

4.1. The MOSP problem

An MOSP problem is briefly addressed as follows.
Given an MCGDM problem with some candidate options,
the participants evaluate these options in terms of a set of
evaluation criteria and everyone completes an evaluation
report. Each participant’s evaluations are summarised in
linguistic terms. After collecting these evaluation reports,
a question arises: can we identify which two participants
have similar opinions on this kind of decision problem,
based on the collected evaluation reports.

For convenience of discussion, the candidate options
are denoted byO = {oi|i ∈ I}; the evaluation criteria

are denoted byC = {cj |j ∈ J}; and the participants are
denoted byE = {ek|k ∈ K}. An evaluation report is de-
noted by a 2-D matrixVk = (vij)I×J , wherek is the index
of participantek andvij is the evaluation (i.e., opinion) on
optionoi about criterioncj . vij is either an element inTj ,
which is the collection of all linguistic terms used by the
participants for criterioncj , or a blank for “not available”
or “no answer”. Without loss of generality, we suppose
that each participant provides only one term for each op-
tion about each criterion.

4.2. Overview of the TLSM method

The outline of the TLSM method is shown in Table 2.
By the TLSM method, the similarity of the opinions of
two participants will be measured at three sequential lev-
els, i.e., the Assessment-Level, the Criterion-Level, and
the Problem-Level.

At the Assessment-Level, the evaluations of two partic-
ipants are compared option by option in terms of a given
criterion. The comparison is conducted based on the as-
sumption that two participants should have higher similar
opinions if the number of candidate options on which they
have similar evaluations is bigger. To judge whether or
not two evaluations are similar, the term setTj is firstly
divided into several semantic-equal groups by pari-wise
comparison on the semantics of terms used; two terms
are, then, said to be similar (or have similar semantics) if
they are in the same group. By the comparison conducted
option by option on the two participants’ evaluations, it
is known to what extent the two participants have simi-
lar opinions on a given criterion from the viewpoint of a
single criterion. The similarity should be proportional to
the ratio of the number of options with similar evaluations
against the total number of options.
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Table 2: Outline of main processes in the TLSM method.

Process level Main steps
Assessment-Level Input: two experts’ evaluation reports; evaluation term set Tj

Output: the similarity about criterioncj
Step 1.1 determine a similarity matrix for evaluation termsfor criterioncj ;
Step 1.2 determine a clustering algorithm;
Step 1.3 generate semantic-equal groups by the clustering algorithm;
Step 1.4 calculate similarity between two opinions for criterion.

Criterion-Level Input: the similarity at the assessment level and weightwcj of criterion cj , j ∈ J
Output: similarity with respect to criterioncj against the criteria setcj , j ∈ J

Step 2.1 identify a similarity utility functionuj of criterioncj for eachj ∈ J ;
Step 2.2 calculate similarity with respect to criterioncj by uj .

Problem-Level Input: similarities obtained at the criterion level
Output: similarity between two opinions

Step 3.1 construct the GAA from a pair of aggregation operators;
Step 3.2 calculate the similarity between opinions using the GAA.

At the Criterion-Level, the differences in the weights
of evaluation criteria are taken into account. The TLSM
method defines for each criterion a similarity utility func-
tion based on its weight against those of other criteria. A
similarity utility function meets two requirements: 1) it
is proportional to similarity obtained at the Assessment-
Level; and 2) it is proportional inversely to the weight
for the same similarity at the Assessment-Level. The two
requirements reflect the demand in practice that require-
ments on similarity measures of more important criteria
are stricter than those of less important criteria. Based
on these similarity utility functions, it is known that to
what extent the two participants have similar opinions on
a given criterion against a set of criteria.

At the Problem-Level, the similarity is measured using
the GAA developed in Section 3. The GAA takes the sim-
ilarities obtained at the Criterion-Level as inputs and re-
orders them according to the decreasing-ordered weights
of the corresponding criteria. The aggregation algorithm
will generate a set of candidate values of the overall sim-
ilarity of two participants’ opinions at the first stage, and
then derives the overall similarity from them at the second
stage. The overall similarity obtained indicates to what
extent the two participants have similar opinions from the
viewpoint of a decision problem.

The details of the TLSM method are described in the
following sections.

4.3. Measuring similarity at the Assessment-Level

The main task at this level is to segment the term setTj

of a given criterioncj into several semantic-equal groups.
To do so, the TLSM method uses pair-wise comparison on

the semantics of each pair of terms inTj to obtain a sim-
ilarity matrix; then applies a clustering algorithm, such
as the Hierarchical Clustering for Fuzzy Similarity Ma-
trix (HCFSM) [52], to the similarity matrix to generate
semantic-equal groups.

Each element of the similarity matrix is the similarity
between a pair of terms inTj obtained by direct compar-
ison. For a given criterioncj , the similarity matrixSj for
the terms inTj is denoted by

Sj =











s11 s12 · · · s1pj
s21 s22 · · · s2pj
...

...
. . .

...
spj1 spj2 · · · spjpj











, (10)

where

• spr ∈ [0, 1] for anyp, r ∈ {1, . . . , pj};

• srr = 1 for anyr ∈ {1, . . . , pj};

• spr = srp for anyp, r ∈ {1, . . . , pj}.

Pair-wise comparison is used here for some practical
considerations. First, linguistic terms are often repre-
sented by fuzzy sets or fuzzy numbers. The semantic
interpretation of these terms varies person to person and
case by case. Pair-wise comparison can avoid difficulties
in the course of defining a term’s semantics. Secondly,
some linguistic terms are incomparable, such as colour.
It is hard to define an appropriate and rational similarity
measurement for these types of terms. Thirdly, similarity
between some terms may be changeable. In one context,
two terms may be distinguishable; however, in the other
context, they are identical. Pair-wise comparison has been



4 A THREE-LEVEL-SIMILARITY MEASURING METHOD FOR THE MOSP PROBLEM 8

proved an effective strategy to analyse relationships be-
tween a set of factors; for instance, the Analytic Hierarchy
Process (AHP) technique extensively uses pair-wise com-
parison to obtain local-priority and global-priority. Using
it can better fit an application’s specific setting and avoid
potential heavy and complicated calculations. Of course,
we do not reject other methods to determine the semantic
similarity matrix.

After obtaining the similarity matrix, the TLSM
method will segment the term set by a clustering algo-
rithm based on it. There are lots of clustering algorithms
for this purpose. However, noting that the total number of
terms in the term set is often between 5 and 9, i.e., it is
relatively small-size, the TLSM method uses the HCFSM
to implement segmenting:

• derive the transitive closurêSj from Sj by

Ŝj = Sj

⋃

S2
j

⋃

S4
j

⋃

· · · ,

whereS2k
j is the max-min composition ofSk

j (see

Appendix B for more details of the calculation ofŜj

and an illustrative example);

• decomposêSj into a set ofα-level equivalence class
(Ŝj)α by

Ŝj =
⋃

α∈[0,1]

α(Ŝj)α;

and

• terms inTj whose similarities belong to the same
(Ŝj)α form a semantic-equal term groupTGα

j and
are treated with similar semantic.

After segmentingTj , the opinions of two participants
on criterioncj are compared option by option. Based on
the comparison result, a similarity can be defined accord-
ing to the number of options on which the two opinions
are treated similarly and the total number of candidate op-
tions; as a simple illustrative example, the TLSM let the
similarity be the ratio of them.

The segmentation ofTj is not unique. It is influenced
by the parameterα, i.e., for differentα, the semantic-
equal groups may not be identical. The adjustable pa-
rameterα meets the real demands in applications where
different parameters should be used for different criteria.

The example below illustrates the processes in this step.

Example 4.1. Suppose the similarity matrix between
terms in an assessment setT is given by

S =





















1.00 0.89 0.14 0.29 0.15 0.34 0.09
0.89 1.00 0.04 0.24 0.23 0.55 0.87
0.14 0.04 1.00 0.09 0.34 0.20 0.80
0.29 0.24 0.09 1.00 0.16 0.08 0.15
0.15 0.23 0.34 0.16 1.00 0.31 0.04
0.34 0.55 0.20 0.08 0.31 1.00 0.33
0.09 0.87 0.80 0.15 0.04 0.33 1.00





















,

By the HCFSM, the first step is to obtain the transitive
closureŜ of S, which is

Ŝ =





















1.0 0.89 0.8 0.29 0.34 0.55 0.87
0.89 1.0 0.8 0.29 0.34 0.55 0.87
0.8 0.8 1.0 0.29 0.34 0.55 0.8
0.29 0.29 0.29 1.0 0.29 0.29 0.29
0.34 0.34 0.34 0.29 1.0 0.34 0.34
0.55 0.55 0.55 0.29 0.34 1.0 0.55
0.87 0.87 0.8 0.29 0.34 0.55 1.0





















.

Based onŜ, a dendrogram is then obtained as shown in
Figure 3. The dendrogram indicates that there are seven
possible segmentation results. The 1.0 level is the strictest
segmentation, by which no two terms are treated as simi-
lar, except that they are identical. The 0.87 level is looser
than the 1.0 and 0.89 levels, by which the termst1, t2 and
t7 can be treated as similar.

4.4. Measuring similarity at the Criterion-Level

The main task in this step is identifying an appropriate
similarity utility function for each criterion. To achieve
this goal, two requirements are used to design a similarity
utility function: 1) the function is proportional to simi-
larity at the Assessment-Level (PSA); and 2) it is propor-
tional inversely to the weight of a criterion (PRW).

Formally, a similarity utility function is defined below.

Definition 4.1. A similarity utility functionu(nsp, w) of
a given criterionc is a mapping fromN × W to [0, 1] if
u satisfies the PSA and PRW requirements, whereN is the
set of natural numbers andW is the range of weight.

Functions satisfying Definition 4.1 are numerous. For
simplicity, this study uses the following monotone and
continuous function to illustrate the TLSM method:

uj(nspj , wcj) =
(nspj

n

)f(wcj)
(11)

wherenspj is the number of options on which two opin-
ions are treated as similar,n is the total number of can-
didate options, andf(wcj) is a parameter determined by
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L0.89 = {{t1, t2}, {t3}, {t4}, {t5}, {t6}, {t7}}

L0.87 = {{t1, t2, t7}, {t3}, {t4}, {t5}, {t6}}

L0.8 = {{t1, t2, t3, t7}, {t4}, {t5}, {t6}}

L0.55 = {{t1, t2, t3, t6, t7}, {t4}, {t5}}

L0.34 = {{t1, t2, t3, t5, t6, t7}, {t4}}

L0.29 = {{t1, t2, t3, t4, t5, t6, t7}}

t1 t3 t5t2 t7 t6 t4

0.89

1.0

0.87

0.8

0.55

0.34

0.29

L1 = {{t1}, {t2}, {t3}, {t4}, {t5}, {t6}, {t7}}

Figure 3: The dendrogram obtained by the HCFSM onS.

wcj . To finalize the similarity utility function described in
Eq. (11), it needs to determine parameterf(wcj).

Because non-negative real numbers and linguistic terms
are commonly used as weights of criteria in an MCGDM
problem, we will illustrate how to finalize a similarity util-
ity function for the two requirements.

4.4.1. Weights are non-negative real numbers
Supposewc1, . . ., wcm is a set of normalized weights

andwcj > 0,
∑m

j=1wcj = 1, m = |C|. Without loss
of generality, supposewc1 6 wc2 6 · · · 6 wcm. In this
situation, we determine the parameterf(wcj) as follows:

• determine a reference valuewcj0 and setf(wcj0) =
1;

• for eachwcj , setf(wcj) = wcj/wcj0 .

To find awcj0 from wc1, . . ., wcm, the following il-
lustrative method is used: ifm is odd, then setwcj0 =
wc(m+1)/2; if m is even, then setwcj0 = (wcm/2 +
wcm/2+1)/2. Based on thiswcj0 , all wcjs are then
mapped to[0,∞) by

f(wcj0) = 1, f(wcj) =
wcj
wcj0

, j = 1, . . . ,m. (12)

Thef used in Eq. (12) is just used for illustration pur-
pose. In fact, they can be in other forms in real applica-
tions accordingly.

To summarize the above process, let us consider a nu-
meric example. Suppose seven criteria are considered and
their weights are shown in column 2 in Table 3. Under
this setting, the weights are listed in an increasing order
as outlined below:

0.01 6 0.03 6 0.08 6 0.09 6 0.15 6 0.31 6 0.33

Because 7 (the number of criteria weights) is an odd num-
ber, thewcj0 is therefore set as 0.09. Then letf be of form
shown in Eq. (12), the parametersf(wcj)s of the similar-
ity utility function for the seven criteria can be obtained as
shown in column 3 in Table 3.

Table 3: Weights and their corresponding parameterf(wcj) of criteria.
criteria indexj weightwcj parameterf(wcj)
1 0.09 1.00
2 0.01 0.11
3 0.03 0.33
4 0.31 3.44
5 0.08 0.89
6 0.33 3.67
7 0.15 1.67

4.4.2. Weights are linguistic terms
Linguistic weights are often represented by fuzzy num-

bers (or fuzzy sets). Specific numeric features of a fuzzy
number (set), such as its centre of gravity (COG) or its
generalized integral, can be used to determine the parame-
terf(wcj). A brief outline for determining this parameter
is given below.

• select a numeric featureNF of fuzzy numbers and
calculateNFj of the linguistic term (i.e., a fuzzy
number)wcj ;

• determinef(NFj) following steps forf(wcj) in
Section 4.4.1;

• setf(wcj) = f(NFj) in Eq. (12).

Following this outline, let us consider an illustrative ex-
ample. Suppose the linguistic weights are “Very High
(VH)”, “Fairly High (FH)”, “Medium (M)”, “Rather Low
(RL)”, and “Very Low (VL)”; and their corresponding
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fuzzy numbers are shown in Figure 4(b) and the selected
numeric feature is the horizontal coordinate of COG of a
fuzzy number, i.e.,

NFj =

∫

xµ(x)dx
∫

µ(x)dx
(13)

whereµ(x) is the membership function of the fuzzy num-
ber. By Eq. (13), the numeric features of these linguistic
weights are calculated as shown in Table 4.

Without loss of generality, we calculate the numeric
feature of the linguistic weight “Medium (M)” as follows.
The membership function of “Medium” is

µM (x) =



















0, 0 6 x < 0.2

(x− 0.2)/(0.5− 0.2), 0.2 6 x < 0.5

(x− 0.8)/(0.5− 0.8), 0.5 6 x 6 0.8

0, 0.8 < x 6 1.0.

Hence,NFM is calculated as

NFM =

∫ 1
0 xµM (x)dx
∫ 1
0 µM (x)dx

=

∫ 0.5
0.2 x (x−0.2)

0.5−0.2dx+
∫ 0.8
0.5 x (x−0.8)

0.5−0.8dx
∫ 0.5
0.2

(x−0.2)
0.5−0.2dx+

∫ 0.8
0.5

(x−0.8)
0.5−0.8dx

=
0.06 + 0.09

0.15 + 0.15
= 0.5

Following steps in Section 4.4.1, thef(NFj) is calcu-
lated and shown in Table 4. Replacing thef(wcj) in Eq.
(12) byf(NFj), we obtain the similarity utility functions
for the five linguistic weights, which can then be applied
to calculate the similarity at the criterion level.

Table 4: Linguistic weight, numeric feature, parameter of similarity
utility function of criteria.

wcj VH FH M RL VL
NF 0.9 0.767 0.5 0.233 0.1
f(NF ) 1.800 1.534 1 0.466 0.200

After determining the similarity utility function for
each given criterion, we apply them to measure the simi-
larity of the opinions of two participants at the Criterion-
Level. Suppose a referential criterion is weighted “FH”
and the evaluations of two participants are treated simi-
larly for seven options against a total nine options, then
the similarity of the opinions of two participants with re-
spect to this criterion is 0.680 (= (7/9)1.534) by Eq. (11).

4.5. Measuring similarity at the Problem-Level

Section 4.4 details how to measure similarity of two
opinions about each individual criterion from the view-
point of a set of criteria. An individual criterion provides
a single perspective by which we observe the similarity of
two opinions. A set of criteria provides multiple obser-
vations. The main task in this step is to integrate those
observations to form a comprehensive one. We will use
the GAA developed in Section 3 to generate the compre-
hensive similarity.

The following two examples illustrate how to use the
GAA. Suppose the similarities with respect to 10 criteria
are obtained at the criterion level, which are those in the
second column of Table 1.

Example 4.1. This example illustrates the usage of OGA.
Assume that bothA and B are the arithmetic mean.
For the 10 inputs, the GAA first generates 10 candidate
similarities for the final similaritȳs by usingAi, where
i = 1, . . . , 10:

s̄1 = 0.840, s̄2 = 0.812, s̄3 = 0.845, s̄4 = 0.718,

s̄5 = 0.630, s̄6 = 0.604, s̄7 = 0.570, s̄8 = 0.617,

s̄9 = 0.619, s̄10 = 0.572.

Then the GAA appliesB10 to the 10 candidate similarities
s̄1, . . ., s̄10 to generatēs which is s̄ = 0.683, i.e., the
similarity of the two experts’ opinions is0.683.

Example 4.2. This example illustrates the usage of
WGA. Assume thatA is the OWA aggregation (see Ap-
pendix A for a brief definition, more details about OWA
please refer [41]) andB is the arithmetic mean. Because
an OWA aggregation needs the weights of inputs, we ran-
domly generate 10 weights for them as:

w1 = 0.394, w2 = 0.798, w3 = 0.198, w4 = 0.768,

w5 = 0.554, w6 = 0.629, w7 = 0.513, w8 = 0.916,

w9 = 0.717, w10 = 0.607.

Then, GAA calculates the candidate values ofs̄is follow-
ing OWA:

s̄1 = 0.952, s̄2 = 0.925, s̄3 = 0.913, s̄4 = 0.866,

s̄5 = 0.819, s̄6 = 0.755, s̄7 = 0.703, s̄8 = 0.632,

s̄9 = 0.586, s̄10 = 0.541.

Finally, GAA applies theB10 to s̄1, . . ., s̄10 to find the
overall similarity, which is0.769.
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Based on the similarity measurement at the three levels,
an overall similarity between the opinions of two partic-
ipants is generated, which can be used as the answer of
the MOSP problem. In the next section, we will apply the
TLSM method to two real-world problems.

5. Applications in policy selection and evaluation

This section applies the TLSM method to an social pol-
icy selection application and an energy policy evaluation
application.

5.1. Case 1: Do similarities exist between social actors?

This example is quoted from [2, 52]. In a social pol-
icy selection problem, six social actors (i.e., participants)
have presented their assessments for seven possible poli-
cies (i.e., options). The social impact matrix (i.e., evalu-
ation report) is given in Table 5 and the semantics of the
used linguistic assessments are given in Figure 4(a). The
problem is to answer whether or not similarities exist be-
tween these social actors.

Firstly, we recited the solution in [52] as a comparison
with the TLSM method. The Munda’s method includes
three main steps.

• Generate a similarity matrix between the social ac-
tors by a similarity measurements(bi, bj) of linguis-
tic assessments:

1

1 +

[

7
∑

k=1

(

∫∫

x,y |x− y|fi(x)gj(y)dydx
)2
]1/2

.

whereµ1(x) andµ2(y) are membership functions of
two linguistic terms (as assessments)x andy, respec-
tively; and

∫∫

x,y |x− y|f(x)g(y)dydx is the seman-
tic distance betweenx andy.

By this measurement, the similarity matrixS of the
six social actors is obtained, and is presented in Table
6.

• Generate hierarchical clustering. By the HCFSM
clustering algorithm, a dendrogram is given in Fig-
ure 5(a).

• Analyze clustering result. By the clustering result,
the social actorsb1 andb2 have higher similarity.

We now apply the presented TLSM method to resolve
this problem. For convenience, we take the social actors
b1 andb4 as examples to illustrate the experiment. More-
over, because the problem setting does not provide any

Table 6: Similarity matrix between six social actors.
b1 b2 b3 b4 b5 b6

b1 1 0.729 0.426 0.399 0.403 0.403
b2 0.729 1 0.410 0.386 0.390 0.390
b3 0.426 0.410 1 0.675 0.584 0.569
b4 0.399 0.386 0.675 1 0.729 0.672
b5 0.403 0.390 0.584 0.729 1 0.595
b6 0.403 0.390 0.569 0.672 0.595 1

Very bad Bad Fairly bad Moderate Fairly good Good Very good

1.0

0.9

0.8

Figure 6: Dengrogram of linguistic assessments (terms).

information about evaluation criteria, we can assume that
it only concerns one criterion.

Step 1: Measuring similarity at the Assessment-Level.
Firstly, we use the following distance measure between

two termsti andtj to obtain the similarity matrix of all
linguistic assessments:

d(ti, tj) = |xi − xj |, (14)

wherexi andxj are the points whose membership degrees
are equal to 1 with respect toti andtj respectively. Based
on this distance, the similarity betweenti andtj is defined
by

sij = 1− d(ti, tj). (15)

Therefore the similarity matrix for linguistic assessments
is obtained and shown in Table 7. Hence, the dendrogram
for the seven linguistic assessments by the HCFSM clus-
tering algorithm is obtained and presented in Figure 6.

We next take 0.9-level equivalence-class in Figure 6
to segment the seven terms and compare the evaluations
from actorsb1 andb4. It is noted that these two social ac-
tors have a similar opinion on policya5 only. Table 8 lists
the number of options on which participants have similar
opinions by pair-wise comparison.

Step 2: Measuring similarity at the Criterion-Level.
Because this problem involves only one criterion, it is
enough to determine a unique parameterf(wc).

For simplicity, suppose the similarity utility function
used is of the form in Eq. (11). Settingf(wc) to be less
than, equal to, or greater than 1.0 obtains three typical util-
ities of a criterion. The three utilities are illustrated below
respectively.

The first situation is settingf(wc) = 1. The similarity
utility function is, therefore, a linear function, by which
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Table 5: An illustrative example of social impact matrix
Social Policy options
actors a1 a2 a3 a4 a5 a6 a7
b1 Very good Good Moderate bad Fairly good Fairly bad Very bad
b2 Very good Good Moderate Bad Fairly good Very bad Very bad
b3 Very bad Fairly bad Moderate Good Very good Good Moderate
b4 Very bad Fairly bad Fairly bad Good Fairly good Good Very good
b5 Very bad Bad Fairly bad Moderate Fairly good Good Very good
b6 Very bad Good Bad Good Good Good Very good

0.080 0.24 0.41 0.59 0.920.76 1

0.91

0.624

0.382
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(a) Linguistic assessments in Munda’s method.

FH VHMVL RL

0.0 0.2 0.5 0.8 1.0

(b) Linguistic weights in Case 2.

Figure 4: Semantic of linguistic terms.

1.0

b1 b2 b3 b4 b5 b6

0.729

0.675

0.672

0.426

(a) Result by Munda’s method.

1.0

0.95

0.83

0.659

b1 b2 b3 b4 b5 b6

(b) Result by the TLSM method.

Figure 5: Dendrogram of similarities between experts.

Table 8: Number of options with similar opinions by pairwise compar-
ison.

nsp b1 b2 b3 b4 b5 b6
b1 7 6 1 1 1 2
b2 6 7 1 1 1 2
b3 1 1 7 4 3 3
b4 1 1 4 7 6 6
b5 1 1 3 6 7 5
b6 2 2 3 6 5 7

the similarity betweenb1 andb4 is 0.143. Table 9 illus-
trates the pair-wise similarity of all actors under this set-
ting.

The second situation is settingf(wc) > 1. The ob-
tained similarity utility function increases slowly with a
smaller similarity at the Assessment-Level and then in-
creases quickly with a larger one. Supposef(wc) = 2,
then the pair-wise similarities of the six actors are shown

Table 9: Pair-wise comparison of similarity at the Criterion-Level
(f(wc) = 1).
f(n(v)) b1 b2 b3 b4 b5 b6

b1 1 0.857 0.143 0.143 0.143 0.286
b2 0.857 1 0.143 0.143 0.143 0.286
b3 0.143 0.143 1 0.571 0.429 0.429
b4 0.143 0.143 0.571 1 0.857 0.857
b5 0.143 0.143 0.429 0.857 1 0.714
b6 0.286 0.286 0.429 0.857 0.714 1

in Table 10.

The third situation isf(wc) < 1. Under this setting,
the obtained similarity utility function increases quickly
with a smaller similarity at the Assessment-Level and
then increases slowly with a bigger one. When setting
f(wc) = 1/3, the pair-wise similarities are shown in Ta-
ble 11.

Based on the identified similarity utility function, the
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Table 7: Similarity matrix for linguistic assessments.
Term Very bad Bad Fairly bad Moderate Fairly good good Very good
Very bad 1.0 0.8 0.7 0.5 0.3 0.2 0.0
Bad 0.8 1.0 0.9 0.7 0.5 0.4 0.2
Fairly bad 0.7 0.9 1.0 0.8 0.6 0.5 0.3
Moderate 0.5 0.7 0.8 1.0 0.8 0.7 0.5
Fairly good 0.3 0.5 0.6 0.8 1.0 0.9 0.7
good 0.2 0.4 0.5 0.7 0.9 1.0 0.8
Very good 0.0 0.2 0.3 0.5 0.7 0.8 1.0

Table 10: Pairwise comparison of similarity at the Criterion-Level
(f(wc) = 2).
f(n(v)) b1 b2 b3 b4 b5 b6

b1 1 0.735 0.020 0.020 0.020 0.082
b2 0.735 1 0.020 0.020 0.020 0.082
b3 0.020 0.020 1 0.327 0.184 0.184
b4 0.020 0.020 0.327 1 0.735 0.735
b5 0.020 0.020 0.184 0.735 1 0.510
b6 0.082 0.082 0.184 0.735 0.510 1

Table 11: Pairwise comparison of similarity at the Criterion-Level
(α = 1/3).
f(wc) b1 b2 b3 b4 b5 b6
b1 1 0.950 0.523 0.523 0.523 0.659
b2 0.950 1 0.523 0.523 0.523 0.659
b3 0.523 0.523 1 0.830 0.754 0.754
b4 0.523 0.523 0.830 1 0.950 0.950
b5 0.523 0.523 0.754 0.950 1 0.894
b6 0.659 0.659 0.754 0.950 0.894 1

similarity betweenb1 andb4 is obtained at the Criterion-
Level.

Step 3: Measuring similarity at the Problem-Level. Be-
cause the example only involves a unique criterion, this
step is redundant, i.e., the similarity at the Criterion-Level
can be used at the subject level. Therefore, the similarity
betweenb1 andb4 has already been obtained, i.e. 0.020.

Noting that Table 11 is a similarity matrix of the six
social actors, we can use the HCFSM to obtain a similar
dendrogram (Figure 5(b)). Comparing these two dendro-
grams, we recognized two minor differences: 1) social
actorb6 will join the group ofb4 andb5 earlier than social
actorb3; and 2) the parameterα is slightly different.

5.2. Case 2: energy policy selection for sustainable de-
velopment with missing assessments

A governmental consultant committee has designed
some energy policies for a nation’s sustainable develop-
ment in the future. Three of them are sent to six do-
main experts for evaluation in terms of eight primary cri-
teria. Each primary criterion is composed of a few sec-

ondary criteria and the total number of criteria really eval-
uated is 16. An expert’s evaluation report includes two
components: 1) the assessments on the importance of all
primary criteria concerned for sustainable development;
and 2) the assessments on the impacts of the three alter-
native policies on sustainable development according to
those criteria. All assessments are selected from a set of
provided linguistic terms, or left blank for “unavailable”,
or with a question mark for “uncertain assessments (un-
known or unsure)”. After collecting the evaluation reports
from these experts, the committee wants to know which
two experts have similar opinions.

Without loss of generality, this study assumes that the
weights of those 16 evaluation criteria have been deter-
mined in advance and the only task is to measure the sim-
ilarity of the six experts. To illustrate our process more
clearly, letO1,O2,O3 be the three alternative policies;c1,
· · · ,c16 be the 16 evaluation criteria; ande1, . . ., e6 be the
six experts. The collected evaluation reports (only the as-
sessments section in a real report) are listed in Table 12.
The linguistic terms used in Table 12 for weights of cri-
teria and evaluations on policies are summarised in Table
13.

Table 13: Abbreviations and semantics of linguistic terms used in eval-
uation reports.

Abbreviation. Names Semantics
VH Very high (0.7, 1.0, 1.0)
FH Fairly high (0.5, 0.8, 1.0)
M Medium (0.2, 0.5, 0.8)
RL Rather low (0.0, 0.2, 0.5)
VL Very low (0.0, 0.0, 0.3)
AC Almost certain (0.7, 1.0, 1.0)
VL Very likely (0.5, 0.8, 1.0)
L Likely (0.2, 0.5, 0.8)
UL Unlikely (0.0, 0.2, 0.5)
HUL Highly Unlikely (0.0, 0.0, 0.3)
NA No answer

Noting that all weights and assessments of the six ex-
perts are expressed by linguistic terms, this study uses
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Table 12: Evaluation reports of six experts
ci wi O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6
1 VH UL L AC VL VL L HUL L VL VL L UL VL UL HUL L UL HUL
2 FH L L AC UL L L UL UL L VL L VL VL UL HUL VL L UL
3 FH UL L VL UL HUL L HUL L VL AC UL VL UL HUL L HUL HUL
4 FH HUL VL AC UL UL L HUL UL HUL L L HUL L HUL HUL UL UL HUL
5 FH L L VL L VL L UL VL VL AC L UL AC L HUL VL VL L
6 FH AC VL AC VL VL UL L VL AC UL UL HUL AC UL HUL L UL HUL
7 FH L UL VL UL HUL L HUL L UL HUL HUL UL L HUL HUL HUL HUL
8 FH VL L VL AC AC AC UL VL VL AC VL L AC UL HUL AC AC AC
9 FH AC VL L AC AC AC UL VL AC VL AC L AC UL HUL AC AC AC
10 FH L UL L VL L L VL VL UL VL L AC VL UL HUL HUL HUL HUL
11 FH UL UL ? L L VL VL VL HUL HUL HUL L L UL HUL
12 FH HUL UL L HUL HUL VL AC AC L AC AC VL VL UL HUL L UL HUL
13 VH UL VL UL VL L UL AC L UL L HUL HUL
14 VH VL VL VL VL VL VL VL UL VL VL UL VL L UL
15 FH UL HUL VL HUL HUL UL L HUL HUL UL VL UL HUL VL UL HUL
16 FH UL UL L HUL HUL L L VL L UL UL HUL VL L UL L UL HUL

triangular normal fuzzy numbers to represent linguistic
terms. The semantic definitions of those linguistic terms
are shown in the fourth column in Table 13 and in Figure
4(b). Based on this pre-process, the TLSM method is ap-
plied to this case and detailed steps are illustrated below.

Step 1: Measuring similarity at the Assessment-Level.
To determine a similarity matrix for assessment terms, this
study uses the same method shown in case 1 to define sim-
ilarity between linguistic terms. The obtained similarity
matrixS is

sij AC VL L UL HUL
AC 1.0 0.8 0.5 0.2 0.0
VL 0.8 1.0 0.7 0.4 0.2
L 0.5 0.7 1.0 0.7 0.5

UL 0.2 0.4 0.7 1.0 0.8
HUL 0.0 0.2 0.5 0.8 1.0

By applying the HCSFM algorithm toS, we obtain
three possible segments :

segment level Segments
1.0 {AC}, {VL}, {L}, {UL}, {HUL}
0.8 {AC, VL}, {L}, {UL, HUL}
0.7 {AC, VL, L, UL, HUL }

It is noted that the only two possible weights are used
for the 16 criteria, i.e., “VH” and “FH”, the segments with
1.0-level is used for criteria with weight “VH”; and the
segments with 0.8-level is used for criteria with weight
“FH”. (Note. The segments with 0.7-level will not be used
in this study because it lacks capability to distinguish dif-
ferent terms.) Therefore, we can compare experts’ opin-
ions at the assessments level. The following illustration
will take expertse1 ande2 as an example.

For criterionc1: Because the weight ofc1 is “VH”, two
assessments are similar if and only if they are the same

one. Hence, the number of assessments with similar se-
mantics between(UL,L,AC) (of e1) and (V L, V L,L)
(of e2) about this criterion is 0.

For criterionc2: Because the weight ofc2 is “FH”, the
assessment “AC” is treated the same as “VL”; so do “UL”
and “HUL”. Hence, the number of assessments with simi-
lar semantics between(L,L,AC) (of e1) and(UL,L, L)
(of e2)) about this criterion is 1 because the two opinions
have the same assessment on policyO2 only.

Similarly, we can compare these two experts on the re-
maining 14 criteria one by one. Table 14 lists the number
of options with similar opinion for all 16 criteria.

Table 14: Number of options with similar opinion for 16 criteria with
respect toe1 ande2.
ci 1 2 3 4 5 6 7 8
no. of similar ass. 0 1 1 1 1 2 1 2

ci 9 10 11 12 13 14 15 16
no. of similar ass. 2 1 0 2 0 3 2 3

It is noted that criteriac11 and c13 are different from
other criteria because of the missing or uncertain assess-
ments. To deal with these missing assessments, this study
treats them as dissimilar.

Step 2: Measuring similarity at the Criterion-Level. For
simplicity, this study uses the similarity utility function
defined in Eq. (11). The parameterf(wcj) is determined
by the same method as used in case 1. The numeric feature
of these five linguistic terms are:

NFV H = 0.9, NFFH = 0.767, NFM = 0.5

NFRL = 0.233, NFV L = 0.1.
(16)

The study setsf(NFM ) = 1.0 and calculates the param-
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eters for the other four weights accordingly:

f(NFV H) = 0.9/0.5 = 1.8, f(NFFH) = 1.534,

f(NFRL) = 0.466, f(NFV L) = 0.2.
(17)

Once similarity utility functions of all evaluation criteria
are finalized, they can be used to obtain similarity at the
Criterion-Level. For instance, consider the criteriac1 and
c6. The weight ofc1 is “VH” and f(NFV H) = 1.8; hence
the similarity with respect toc1 is 0.134. Because the
weight of c6 is “FH” and thef(NFFH) = 1.534, then
the similarity with respect toc6 is 0.537. For the other 14
criteria, the calculation is similar. The similarities at the
Criterion-Level betweene1 ande2 are summarized below.

s1 = 0.000, s2 = 0.185, s3 = 0.185, s4 = 0.185,

s5 = 0.185, s6 = 0.537, s7 = 0.185, s8 = 0.537,

s9 = 0.537, s10 = 0.185, s11 = 0.000, s12 = 0.537,

s13 = 0.000, s14 = 1, s15 = 0.537, s16 = 1.

Step 3: Measuring similarity at the Problem-Level. The
GAA is implemented as follows:

• re-order the criteria by their weights in descending
order;

• setAi to be the arithmetic mean,i = 1, . . . , 16;

• setB16 to be thet-conorm maximummax.

To re-order the criteria, this study used theNF values
obtained at the Criterion-Level as the ordering reference.
Then following the order of criteria, thei-ary aggregation
operatorAi is applied to those similarities to obtain pos-
sible similarities between the two experts:

0.000, 0.000, 0.333, 0.296, 0.274, 0.259, 0.249, 0.285,

0.274, 0.300, 0.322, 0.310, 0.304, 0.320, 0.362, 0.362

From them the biggest is selected byB16, which is 0.362.
Therefore, the similarity between the expertse1 ande2 is
0.362.

Table 15 gives the pair-wise similarity of the six ex-
perts. Based on the pair-wise similarity measurement,
the experts can be grouped again based on a clustering
method. For instance, Figure 7 is the dendrogram that
uses the HCFSM algorithm. Further observation indicates
that expertse4, e5, ande6 have higher similarities in their
opinions.

Table 15: Pair-wise similarities of all six experts.

e1 e2 e3 e4 e5 e6
e1 1 0.362 0.273 0.289 0.108 0.151
e2 0.362 1 0.275 0.277 0.189 0.379
e3 0.273 0.275 1 0.253 0.199 0.239
e4 0.289 0.277 0.253 1 0.493 0.337
e5 0.108 0.189 0.199 0.493 1 0.482
e6 0.151 0.379 0.239 0.337 0.482 1

1.000

0.482

0.493

0.379

0.362

0.275

e6e5e4e3 e2e1

Figure 7: Deprogram of experts using the HCFSM.

6. Conclusions and future works

MCGDM is an efficient strategy to support decision
making in many applications. However, overly similar
opinions of participants may lead to an inappropriate de-
cision. To reduce the potential risk of putting an inap-
propriate decision into practice, measuring opinion simi-
larity between participants (MOSP) is an important issue,
which has not been solved. To solve the MOSP problem,
our research develops a gradual aggregation algorithm to
model the dynamic generation of a decision and to pro-
cess the missing value in it. Based on the gradual aggrega-
tion algorithm, a three-level similarity measuring (TLSM)
method for the MOSP problem is presented which mea-
sures the similarity between two opinions at the assess-
ment level. Applying the TLSM method, two applications
in social policy selection and energy policy evaluation are
conducted.

The main contributions of this research are summarised
below. Firstly, the TLSM method provides a processing
framework for the MOSP problem. The MOSP problem
is a significant but easily neglected practical topic in many
applications. Existing opinion similarity measuring meth-
ods can tackle a part of the MOSP problem; however, they
do not present a whole solution for it. Secondly, the small
size of relevant opinion samples is a primary obstacle that
prevents existing statistical learning techniques from be-
ing applied to the MOSP problem. The TLSM method
can resolve these problem partially. Moreover, the TLSM
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method combines an opinion with its provider in its entire
processing. This helps to develop more effective opinion
similarity measuring and analysis techniques to overcome
difficulties resulting from separation of opinions and their
providers in real applications. Finally, the experiments
indicate that the TLSM method effectively handle miss-
ing data, unclear information, and linguistic assessments
by adjusting the developed gradual aggregation algorithm.
Highly satisfactory results have been obtained from the
experiments.

Based on these two case-based experiments, some is-
sues will be further studied. Firstly, the GAA is a novel
technique to integrate information according to a group of
inputs. The process order of the inputs has special mean-
ing and impact on the final result. This study rearranges
the inputs according to the descent order of the weights
of criteria and a satisfactory result is obtained, however,
the GAA is still need to amend. For example, we can
extend it to and implement it at multiple levels. Secondly,
missing data and unclear answers are very common in real
applications. The TSLM method treats them as distinct
without distinguishing their real meanings and utilities
further. This is an intuitive and simple processing strat-
egy. Whether there is a better strategy is a further area re-
quiring investigation. Moreover, we will pay more atten-
tion on how to select a clustering algorithm for the TSLM
method. For simplicity and illustrating purpose, this paper
mainly used the HCFSM method. Although the experi-
ment results are consistent with our expectation, it is by no
means that the HCFSM is the best one. We recognised that
selecting an appropriate clustering method should base on
real applications. Thirdly, the MOSP problem is a special
case of the user opinion analysis and behaviour modelling
problem. Due to a variety in the natures of different appli-
cation contexts, effective techniques for solving the user
opinion analysis and behaviour modelling problem have
not yet been found. Our next step is to extend the TLSM
method and develop new techniques to provide applicable
solutions for both the MOSP problem and the user opin-
ion analysis and behaviour modelling problem. Finally,
the application of the proposed TSLM method involves
heavy computational burden for large size decision mak-
ing problems, which requires to develope a corresponding
decision support system. We currently implemented the
presented method using the C++ and Java programming
languages in a Linux distribution. We aim to amend and
integrate the method into a decision support system which
is being designed and developed.

Appendix A: Ordered weighted aggregation (OWA)

The ordered weighted aggregation was presented by
Yager in [41]. It becomes an important type of aggrega-
tion operators and is widely used in MCGDM research.

Definition 6.1. LetAgg be a mapping fromRn toR. Sup-
posea1, a2, . . ., an is a set of inputs ofAgg, andw1,
w2, . . ., wn is a set of weights such thatwi > 0 for
i = 1, . . . , n and

∑n
i=1wi = 1. Then the output ofAgg

with respect to the inputsa1, . . ., an is

Agg(a1, · · · , an) =

n
∑

i=1

wibi, (18)

wherebi is thei-th largest element in{a1, a2, . . . , an}.

From Definition 6.1, it is noted that the weight values
are closely associated with the places where the inputs
will be assigned to and an input’s value determines which
place it should go. Compared with the GGA in the pre-
sented work, the Yager’s OWA aggregation orders the in-
puts; while the GGA potentially orders the places.

Appendix B: Calculation of transitive closure Ŝ

SupposeS is a similarity matrix and, for convience, de-
scribed as follows

S = S1 =











s11 s12 · · · s1p
s21 s22 · · · s2p
...

...
. . .

...
sp1 sp2 · · · spp











. (19)

Then the max-min compositionS2k of S2k−1

is a similar-
ity matrix

S2k = S2k−1

◦ S2k−1

=















s
(2k)
11 s

(2k)
12 · · · s

(2k)
1p

s
(2k)
21 s

(2k)
22 · · · s

(2k)
2p

...
... . . .

...

s
(2k)
p1 s

(2k)
p2 · · · s

(2k)
pp















,

(20)

wheres(2
k)

ij is calculated as

s
(2k)
ij =

p
max
l=1

min(s
(2k−1)
il , s

(2k−1)
lj ) (21)

wherek = 0, 1, . . ., i, j = 1, . . . , p. Finally, the transitive
closureŜ of S is defined as

Ŝ = S
⋃

S2
⋃

S4
⋃

S8
⋃

· · · (22)
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whereŝij = max(sij , s
(2)
ij , s

(4)
ij , s

(8)
ij , · · · ).

Reconsidering the similarity matrixS in Example 4.1,
we will show how to calculate the compositionS2 from
S1. Supposei = 2 andj = 4, then the elements(2)24 in S2

is calculated by

s
(2)
24 = max(min(0.89, 0.29),min(1.0, 0.24),

min(0.04, 0.09),min(0.24, 1.00),min(0.23, 0.16),

min(0.55, 0.08),min(0.87, 0.15))

= max(0.29, 0.24, 0.04, 0.24, 0.16, 0.08, 0.15)

= 0.29
(23)

The other elements inS2 are calculated in the similar way.
After obtaining the matrixesS, S2, S4, · · · , we can obtain
the transitive closurêS by Eq. (22).
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