arXiv:1503.05055v1 [cs.Al] 17 Mar 2015

Combining partially independent belief functions

Mouna Chebbat?®P, Arnaud Marti?, Boutheina Ben Yaghlafie

3 ARODEC Laboratory, University of Tunis, |SG Tunis, Tunisia
PIRISA, University of Rennesl, Lannion, France
¢LARODEC Laboratory, University of Carthage, IHEC Carthage, Tunisia

Abstract

The theory of belief functions manages uncertainty and@sposes a set of com-
bination rules to aggregate opinions of several sourcesneSmmbination rules

mix evidential information where sources are independaher rules are suited to
combine evidential information held by dependent sourteshis paper we have
two main contributions: First we suggest a method to quastiurces’ degree of
independence that may guide the choice of the more apptemé of combina-

tion rules. Second, we propose a new combination rule tkasteonsideration of
sources’ degree of independence. The proposed methodsisalled on generated

mass functions.
Keywords. Theory of belief functions, Combination rules, Clustering

Independence, Sources independence, Combination rulgecho

1. Introduction

Uncertainty theories like theheory of probabilities, the theory of fuzzy sets
[1], the theory of possibilities [2] and thetheory of belief functions [3, 4] model

and manage uncertain data. The theory of belief functiongleal with imprecise
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and/or uncertain data provided by several belief holdetdsadso combine them.

Combining several evidential information held by distithetlief holders ag-
gregates their points of view by stressing common pointghéntheory of belief
functions, many combination rules are proposed, some of the [2,/5, 6/ 7, 8, 9]
are fitted to the aggregation of evidential information ed by cognitively inde-
pendent sources whereas tlaeitious, bold [10] andmean combination rules can
be applied when sources ategnitively dependent. The choice of combination
rules depends on sources independence.

Some researches are focused on doxastic independenceiaiflesrsuch as
[11,112]; othersl[4| 13] tackled cognitive and evidentiaflépendence of vari-
ables. This paper is focused on measuring the independdremi@es and not
that of variables. We suggest a statistical approach tmesti the independence
of sources on the bases of all evidential information thay fbrovide. The aim of
estimating the independence of sources is to guide the elwbithe combination
rule to be used when combining their evidential information

We propose also a new combination rule to aggregate evadenformation
and take into account the independence degree of their esurthe proposed
combination rule is weighted with that degree of independdaading to the con-
junctive rule [14] when sources are fully independent antthéocautious rule [10]
when they are fully dependent.

In the sequel, we introduce in Section 2 preliminaries ofttieory of belief
functions. In the Section 3, an evidential clustering attaon is detailed. This clus-
tering algorithm will be used in the first step of the indepemze measure process.
Independence measure is then detailed in Section 4. liisasd in four steps: In
the first step the clustering algorithm is applied. Secondhpping between clus-
ters is performed; then independence of clusters and soarealeduced in the last

two steps. Independence is learned for only two sourceshemdgeneralized for
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a greater number of sources. A new combination rule is pexposthe Section 5
taking into account the independence degree of sourcesprbipesed method is

tested on random mass functions in Section 6. Finally, cmmhs are drawn.

2. Theory of belief functions

The theory of belief functions was introduced by Dempstérai@d formal-
ized by Shafer [4] to model imperfect data. Tiame of discernment also called
universe of discourse, Q = {wy, wy,...,wN}, IS an exhaustive set ™ mutually
exclusive hypotheses. Thepower set 29 is a set of all subsets 61; it is made of
hypotheses and unions of hypotheses fl@mThebasic belief assignment (BBA)
commonly callednass function is a function defined on the power s& &nd spans

the interval[0, 1] such that:

Y mA) =1 1)

ACD
A basic belief mass (BBM) also calledmass, m(A), is a degree of faith on the truth

of A. ThesBM, m(A), is a degree of belief oA which can be committed to its
subsets if further information justifies it [7].

Subset# having a strictly positive mass are calledal elements. Union of all
focal elements is calledore. Shafer|[4] assumed a normality condition such that
m(0) = 0, thereafter Smets [14] relaxed this condition in ordepteratem(0) > 0.

The frame of discernment can also be a focal elemerggits, m(Q), is inter-
preted as a degree norance. In the case ofotal ignorance, m(Q) = 1.

A simple support function is a mass function with two focal elements including

the frame of discernment. A simple support functioiis defined as follows:

1-w if A=BforsomeBcC Q
mA) =¢ w ifA=Q (2)

0 otherwise



WhereA is afocus of that simple support function and € [0,1] is its weight. A
simple support function is simply note®”. A nondogmatic mass function can
be obtained by the combination of several simple supporttfons. Therefore,
any nondogmatic mass function can be decomposed into $sugizort functions
using thecanonical decomposition proposed by Smets [15].

Thebelief function (bel) is computed from @BA m. The amounbel (A) is the
minimal belief onA justified by available information oB (B C A):

bel(A)= Y m(B) €)
BCAB£0

Theplausibility function (pl) is also derived from aBA m. The amounpl (A)
is the maximal belief o justified by information o8B which are not contradictory
with A (ANB # 0):

A= ¥ mB) (4)
AABAD

Pignistic transformation computes pignistic probalgétirom mass functions
in the purpose of making a decision. The pignistic probabdf a single hypothe-

sisAis given by:

(®)

Decision is made according to the maximum pignistic praiigbilhe single point

having the greate®etP is the most likely hypothesis.

2.1. Discounting

Sources of information are not always reliable, they canrtveliable or even a
little bit reliable. Taking into account reliability of sotes, we adjust their beliefs
proportionally to degrees of reliability. Discounting redsinctions is a way of

taking consideration of sources’ reliabilities into theiass functions. If reliability



ratea of a source is known or can be quantified; discounting its riasstionm
is defined as follows:

m*(A) =axm(A) ,VACQ

m*(Q) =1-ax(1-mQ))

(6)

This discounting operator can be used not only to take cersibn of source’s
reliability, but also to consider any information which che integrated into the

mass function(1— a) is calleddiscounting rate.

2.2. Combination rules

In the theory of belief functions, a great number of comboratules are used
to summarize a set of mass functions into only one. &.&nds, be two distinct
and cognitively independent sources providing two diffiéraass functionsy and
mp defined on the same frame of discernm@ntCombining these mass functions
induces a third onan, defined on the same frame of discernm@nt

There is a great number of combination rules||2,/5, 6, 7, 8pba@{,we enu-
merate in this section only Dempster, conjunctive, disjire¢ Yager, Dubois and
Prade, mean, cautious and bold combination rules. The &dmbmation rule was
proposed by Dempster inl[3] to combine two distinct masstions my andn, as
follows:

my(B) x mp(C)

BNC=A VAC O A0
meoA) = (mem)A)={ =3y mExmC S

0 ifA=0

ThessM of the empty set is nullni(0) = 0). This rule verifies the normality con-
dition and works under dosed world whereQ is exhaustive.

In order to solve the problem highlighted by Zadeh’s coumteample [[16]



where Dempster’s rule of combination produced unsatisfgaesults, many com-
bination rules appeared. Smets/[14] proposedpen world where a positive mass
can be allocated to the empty set. Hence the conjunctiveofudembination for
two mass functionsm andm, is defined as follows:
M@2(A) = (MO m)(A) = my(B) x mz(C) ®)
BrC=A

Even if Smets|[17] interpreted tr@Bm, my@)2(0), as an amount of conflict be-
tween evidences that induced andmy; that amount is not really a conflict be-
cause it includes a certain degree of auto-conflict due toticeidempotence of
the conjunctive combination [18].

The conjunctive rule is used only when both sources arebtelidsSmets|[14]
proposed also to use a disjunctive combination when an umkrsource is unre-
liable. The disjunctive rule of combination is defined foloteBAs my andmy, as

follows:

MQ2(A) = (MONM)(A) = my(B) x m(C) ©)
BUC=A

Yager in [8] interpretedn(0) as an amount of ignorance; consequently it is
allocated toQ. Yager’s rule of combination is also defined to combine twssna

functionsm; andmy, as follows:

my(X) = m@a(X) VX CQ, X£D
my(Q) = m@2(Q) + m@E2(0) (10)
my(0) =0

Dubois and Prade’s solution [2] was to affect the mass riegulitom the combina-
tion of conflicting focal elements to the union of these stdise

mDp(B) = m]_@z(B) + % m]_(X)mz(A) VACQ, A#£0D
ANX=0, AUX=B (11)

mDp((D) =0



Conjunctive, disjunctive and Dempster’s rules are assigeiand commutative,
but Yager and Dubois and Prade’s rules are not associatiee, iethey are com-
mutative. Unfortunately, all combination rules descriladdve are not idempotent
becausenm # mandm@m # m.

Mean combination rule detailed in| [6fmean, Of two mass functionsn, and
My is the average of these ones. Therefore, for each focal ateinef M mass

functions, the combined one is defined as follows:
1 M
Myiean(A) = M i;m(A) (12)

Besides idempotence, this combination rule verifies natynandition (n(0) = 0)
if combined mass functions are normaliz&fil € M, m(0) = 0). We note also that
this combination rule is commutative but not associative.

All combination rules described above work under a strosgiaption of cog-
nitive independence since they are used to combine mastdosdnduced by
two distinct sources. This strong assumption is alwaysrmasedibut never verified.
Denoeux|[10], proposed a family of conjunctive and disjwmctules based on tri-
angular norms and conorms. Cautious and bold rules are merabthat family
and combine mass functions for which independence assomigtinot verified.
Cautious combination of two mass functiomg andm, issued from probably de-

pendent sources is defined as follows:

My @ Mp = @pcq AMA WA (13)

WhereA™(A) andA%2(A) are simple support functions focusedAwith weights
wy andws issued from the canonical decomposition [15hafandm, respectively,
note also thap is amin operator of simple support functions weights. The bold
and cautious combination rules are commutative, assegiatid idempotent.

To summarize, the choice of the combination rule is basedhenl¢pendence
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of sources. Combination rules like [2,5,.6, 7, 8] combine srfasctions which
sources are independent, whereas cautious, bold and meamre the most fitted
to combine mass functions issued from dependent sources.

In this paper, we propose a method to quantify sources’ ésgoéindepen-
dence that may be used in a new mixed combination rule. In f&etpropose a
statistical approach to learn sources’ degrees of indepemdfrom all provided
evidential information. Indeed, two sets of evidentiabimhation assessed by two
different sources are classified into two sets of clustedsist€rs of both sources
are matched and the independence of each couple of matalmdrslis quanti-
fied in order to estimate sources’ degrees of independerwrefore, a clustering
technique is used to gather similar objects into the samselin order to study
the source’s overall behavior. Before introducing ournéay method, we detail in
the next section the evidential clustering algorithm thifittve used in the learning

of sources’ degrees of independence.

3. Evidential clustering

In this paper, we propose a new clustering technique toifjfasisjects; their
attributes values are evidential and classes are unknowopo®ed clustering al-
gorithm uses a distance on belief functions given by Joosselt al. [19] such as
proposed by Ben Hariz et al. [20].

Ben Hariz et al. |[20] detailed a beli&t-modes classifier in which Jousselme
distance|[19] is adapted to quantify distances betweerctsbfnd clusters modes.
These are sets of mass functions; each one is the combimditionattribute’s val-
ues of all objects classified into that cluster. An objecttistauted to the cluster
having the minimum distance to its mode.

Temporal complexity of clustering algorithm proposed byBtariz et al. [[20]



is quite high as clusters modes and distances are compueatimiteration. The
combination by the mean rule to compute modes values leadg$s functions
with a high number of focal elements. Hence, the bigger thstet is, the least
significant is the distance.

We propose a clustering technique to classify objects titi@bates values are
uncertain. However uncertainty is modeled with the thedryadief functions de-
tailed in Sectiom 2. In the proposed algorithm, we do not useciuster mode to
avoid the growth of focal elements number in clusters mod@emporal complex-
ity is also significantly reduced because all distances amgpated only once.

In this sectionK is the number of cluste@ly (1 < k < K); n is the number
of objects to be classified)k is the number of objects classified into clusi;
0; are objects to classifg; : 1 <i < n; cis the number of evidential attributes
a; . 1< j < cwhich domains aré)aj and finallym; is a mass function value

u ”

of attribute “” for object “i”. Mass functionsm; can be certain, probabilistic,
possibilistic, evidential and even missing.

To classify object®; into K clusters, we use a clustering algorithm with a dis-
tance on belief functions given by [19]. The number of cltskeis assumed to be
known. Proposed clustering technique is based on a distelnich quantifies how
much is far an objeat; from a clusterCly. This distance is the mean of distances

betweeno;, and all object®, that are classified into clust@fy as follows:

D(0;,Cly) = i Z dist(0j,0q) (14)
Nk ¢
and
dist(0,0q) = %i d(mj, mg;) (15)
with :
d(myj, mgj) = \/%Um — M)’ D(m;j — ;) (16)



such that :

D(A B 1 ifA=B=0 17

JAUB|
Each object is affected to the most similar cluster in aratiee way till reach-

ing an unchanged cluster partition. It is obvious that eshumbelK must be
known. Temporal complexity of the proposed algorithm is\gigantly optimized
as pairwise distances are computed once a time from therbegiriWe do not use
any cluster mode. Consequently, there will be no problemafiasing number of
focal elements because attributes values are not combindded, the evidential
clustering algorithm provides a cluster partition that mizes distances between
objects into the same cluster and maximizes the distanegebatobjects classified
into different clusters. The main asset of the evidentiadtgring algorithm accord-
ing to the beliefK-modes proposed by Ben Hariz et al.|[20] is the optimizatibn o
the temporal complexity. In fact, run-time of the evidehtstering algorithm
is improved. The optimization of run-time depends on the siz the frame of

discernmen{Qy, |, the number of clusters and number of objects. For exam-

ple, figure[1 shows a big gain in the run-time of evidentialstdting according
to the beliefK-modes when the number of mass functions varies,[10,1000.

Temporal complexity of the evidential clustering alganmithis optimized and that
optimization is especially noticed when the number of masstfons to classify is
high and also when the frame of discernment contains mangthgpes. Thanks
to the improve of the temporal complexity, this clusterihgoaithm is used in the

following sections.

4. Learning sourcesindependence degree

In this section we extend paper [21] for many sources, anpga® a com-

bination rule emphasizing sources independence degregheltheory of prob-
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Figure 1: Run-time optimization of the evidential clustgriand the belieK-modes|[20] according

ton e [10,1000, | Q4 [=5andK =5

abilities, two hypotheseX andY are assumed to be statistically independent if
P(XNY) =P(X) x P(Y) or P(X|Y) = P(X). In the context of the theory of belief
functions, Shafer [4] defined cognitive and evidential peledence.

Definition 1. “Two frames of discernment may be called cognitively indegent
with respect to the evidence if new evidence that bears onam of them will

not change the degree of support for propositions discemgede other'H.

The cognitive independence isagak independence; two variables are inde-
pendent with respect to a mass function if new evidence teatsbon only one
of the two variables does not change propositions discdogdtie other one. For
two variablesX andY such thaQy andQy their domains (frames of discernment)
and Qx x Qy the product space of domaiisx andQy. VariablesX andY are

cognitively independent with respectr® > jf:

pI <O (x,y) = pI D rix () x pl BBl y) (18)

114], page 149
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Note thatQyx x Qv | Qx is the marginalization o2y x Qy in Qx [7,122].
Shafer [4] defined also grong independence called evidential independence as

follows:

Definition 2. “Two frames of discernment are evidentially independerihwe-
spect to a support function if that support function coulb&ined by combining

evidence that bears on only one of them with evidence thaslogeonly the other”.

Two variables are evidentially independent if their joiraga function can be
obtained by combining marginal mass functions that bearsamh one of them.

VariablesX andY are evidentially independent with respecttgx < if:

IQxXQY X, — IQXXQYLQX X |QX><QY~LQY
{ p (xy)=p () xp v) (19)

bel %9 (x, y) = bel Q10 (x) x bel Ax* Qi (y))
Independence can also be defined in termsrafevance. The knowledge of
the value of one variable does not change the belief on thex otte. In the theory
of belief functions, irrelevance is based on the conditigni VariablesX andY
are irrelevant with respect tm, |Rn(X,Y) if the marginal mass function oX is
obtained by conditioning the joint mass function on valpesY and marginalizing

this conditioned joint mass function oft
MR () 0 P Ovi0x () (20)

Note that proportionality] is replaced by equality when[‘;]x XX gngmx<Qvix
are normalized.

Doxastic independence is especially proposed in the thefdoglief functions
by [11,/12] and it is defined as follows:
Definition 3. “Two variables are considered as doxastically indepenadiggtwhen
they are irrelevant and this irrelevance is preserved ubDdenpster’s rules of com-

bination”.
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In other words, two variableX andY are doxastically independent if they are
irrelevant with respect tm@ mp when they are irrelevant with respectteandmy.
Indeed, ifX andY are irrelevant according to any mass functiomand if they are
also irrelevant with respect to another mass functign they are assumed to be
doxastically independent if they are irrelevant with regge the orthogonal sum
of mandmy . Thus, ifIRn(X,Y), IRm(X,Y) andlRnem,(X,Y) is verified thenX
andY are doxastically independent.

This paper is not focused on variables independence [1 1] 1®it onsources
independence. Sources independence is computed according to a set efetiff
belief functions provided by each source separately. ®susice dependent when
all their beliefs are correlated, there is a link betweemslks functions they pro-
vide. This problem is not tackled till now, we noticed a ladkeferences treating
this problem. To study sources independence, a great nuoflmeass functions
provided by both sources is needed. This set of mass fursctiust be defined on
the same frame of discernment according to the same problongxample, two
distinct doctors provide diagnoses in the examination of the samgatients. In
that case, the frame of discernment contains all diseaskssaiready the same

for both doctors. We define sources independence as follows:

Definition 4. Two sources are cognitively independent if they do not comoate

and if their evidential corpora are different.

Definition 5. Evidential corpus is the set of all pieces of evidence held bgurce.

Not only communicating sources are considered dependérdlfn sources
having the same background of knowledge since their beadiefcorrelated. The
aim of estimating sources independence is either to guelehbice of combina-
tion rules when aggregating their beliefs, or to integrais tegree of indepen-

dence in a new combination rule.
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In this paper, mass functions provided by two sources adiestun order to
reveal any dependence between them. In the following, waelafi independence
measure d, (I4(s1,%2)), as the independence sf on s, verifying the following

axioms:

1. Non-negativity: The independence of a solgioen another sourc®, l4(s1, %)
cannot be negative, it is either positive or null.

2. Normalization: The degree of independengésia degree ovel0, 1], it is
null when the first source is dependent on the second onel teqLiavhen it
is completely independent and a degree fi0m| otherwise.

3. Non-symmetry: In the case wheggis independent os, S, is not necessar-
ily independent ors;. Even ifs; ands, are mutually independent, degrees
of independence are not necessarily equal.

4. ldentity: Any source is completely dependent on itsetf kiis;,s1) = 0.

If 51 ands, are independent, there will be no correlation between thass func-
tions. The main idea of this paper is: First, classify masgtions provided by
each source separately. Then, study similarities betwlestec partitions to reveal
any dependence between sources. By using clustering talgorsources overall
behavior is studied. The proposed method is in three stapst, fass functions
of each source are classified. Then, similar clusters arehedt Finally, weights

of linked clusters and sources independence are quantified.

4.1. Clustering

Clustering algorithm detailed in Sectigh 3 is used to cfassio sets ofn
mass functions respectively provided by sourgeands,. Clustering algorithm is
performed on all mass functions sf independently of the clustering performed

on those of,. We remind that all mass functions of both sources are detingde
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same frame of discernment and so considered as values obwalgttribute when
classifying their corresponding objects. For the same @kauof doctors, patients
are objects to classify according to an attribdisease. Values of this attribute
are mass functions defined on the frame of discernment ematimgiall possible
diseases. Distancé _(14) can be simplified as follows becaeskave only one

attribute:
D(g;,C ——nzkdlli My 21
( (5} Ik) kq,l ( I ) ( )

In this paper, we fix the number of clusters to the number ofottygses in the
frame of discernment. In a classification point of view, nembf hypotheses is
the number of possible classes. For example, the frame oémiisient of the
attribute disease enumerates all possible diseases. Helnere a doctor examines
a patient, he gives a mass function as a classification ofdatierth in some possible

diseases.

4.2. Cluster matching

After clustering technique, both mass functions providgdibands, are dis-
tributed separately oM clusters. In this section, we try to find a mapping between
clusters in order to link those containing the same objdttdusters are perfectly
linked, meaning all objects are classified similarly fortbeburces, we can con-
clude that sources are dependent as they are choosingrdiotiéd elements (not
contradictory at least) when providing mass functions &mns objects. If clusters
are weakly linked, sources choose similar focal elementdifferent objects and
so they are independent. Clusters independence degrespmonal to the num-
ber of objects similarly classified. More clusters contdia same objects, more
they are dependent as they are correlated.

We noteCI&l where 1< k; < K for clusters ofs; andCIlf2 where 1< k, < K

for those ofs,. The similarity between two clustefsili1 andCIlf2 is the proportion
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of objects simultaneously classified irGty andCIZ :

clinel} |

: 22
N (22)

Bix =B'(Cl},.Cl)) =

with i, j € {1,2} andi # j. Bkllkz guantifies a proportion of objects classified
simultaneously in clustei@l, andCIZ, with regard to objects i€l , analogically
B2, is a proportion of objects simultaneouslyGiy andCIZ with regard to those
in CIZ . Note thatBl, # B2, since the number of objects classified iflig and
CIZ are different (CI¢ || CIZ ).

We remind thaiB! are similarities towards; and 32 are those towardsy. It
is obvious thaiﬁi(Cllg,Cllij) = 0 whenCl;, andCIlij do not contain any common
object; however they are completely differef.(Cl| ,Cllij) = 1 when these clus-
ters are strongly similar so they contain the same objectsimMarity matrix M1
containing similarities of clusters & according to those o (81), andM, the

similarity matrix between clusters ef and those o$; (32) are defined as follows:

Bh B - Bik Bh BL ... Bi
My = Bkll Bklz Ble and Mz = Bkzl Bkzz Bsz (23)
Ba Bz - Bik B B% - Bi

We note thatM; and M, are different sinceﬁkllk2 =+ Bkzzkl. Clusters ofs; are
matched to those & according to maximum oB* such that each clust@iy is
linked to only one clusteElZ and each clusteZIZ, has only one clusteZl; linked
to it. The idea is to link iteratively clusters having the rimaal 31 in M1 then elim-
inate these clusters and the corresponding line and coluonm the matrix until
having a bijective cluster matching. AlgoritHm 1 detailaster matching process.

We note that different matchings are obtained dpand s, becausevi; and M,
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are different. This algorithm is iterative and the numbettefation is equal to the

Algorithm 1 Cluster matching
Require: Similarity matrixM .

1. while M is not emptydo

2 Findmax(M) and indexeg andl of clusters having this maximal similarity.

3:  Map clusterd andc.
4:  Delete linel and columnc from M.
5: end while

6: return Cluster matching.

number of cluster&. Even if this algorithm is quite simple, it provides a matai

of clusters in order to compare evidential information jded by both sources.
The assignment algorithm proposed.in [23] for square megrand that for rectan-
gular matrices [24] can also be used to minimize the disaitityl between matched

clusters. Other methods for cluster matching [25] and [26)] @lso be used.

4.3. Cluster independence

Once cluster matching is obtained, a degree of indepenttmpmndence of
matched clusters is quantified in this step. A set of matchestars is obtained for
both sources and a mass function can be used to quantify eapkef clusters
independence. Assume that clusfnélfl is matched tcCl 22, a mass functiom

defined on the frame of discernme®t = {Dependent Dep, |ndependent Ind}

2We note the frame of discernment in the mass functions tala@ifusion.
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describes how much this couple of clusters is independetgendent as follows:

M (Dep) = aj By

mgy' (Ind) = af, (1- B ) (24)

rryi_zl'(’ji(Depu Ind) = 1— oy
A mass function quantifies the degree of independence of @agbie of clusters
according to each sourceﬁl'(’ji is a mass function for the independence of each
linked clusters{:llg andCIlij according tos with i, j € {1,2} andi # j. Coefficient
O’L is used to take into account of number of mass functions ih elsterCl, of
the sourca. Reliability factorali(j is not the reliability of any source but it can be
seen as the reliability of the clusters independence estimaConsequently, inde-
pendence estimation is more reliable when clusters coataingh mass functions.
For example, assume two clusters; one containing only orss faaction and the
second one containing 100 mass functions. It is obvioudlieahdependence esti-
mation of the second cluster is more precise and signifitemt the independence
estimation of the first one.
Reliability factorsaiz are proportional to the number of hypotheses in the frame of

discernment Q |, and the number of objects classifiedilqu as follows:
a, = f(1Q1,|Cl ) (25)

The bigger| Q | is, the more mass functions are needed to have a reliableiclus
independence estimation. For example @ |= 5 then there are®possible focal
elements, also independence estimation of a cluster cimgaR0 objects cannot
be precise. No existing method to define such funcfiorHence, we use simple
heuristics as follows:

af =1- ———+ (26)
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Reliability factor

As shown in figuré 2, iff Q | and number of mass functions in a cluster are big
enough, cluster independence mass function is almost scbulited. Reliability

factor is an increasing function 6f | and| Cl!. | which favors big clust

1Q1=2

101=4

101=6

101=8

|QI=10

|Q]=12

Q=14

|QI=16

|Ql=18

Q=20

100 200 300 400 500 600 700 800 900 1000
Number of mass functions

Figure 2: Reliability fac’[ors;zrli(i

4.4, Sources independence

Obtained mass functions quantify each matched clusteepémntience accord-
ing to each source. Therefoi€,mass functions are obtained for each source such
that each mass function quantifies the independence of eagiecof matched
clusters. The combination &€ mass functions for each source using the mean,
defined by equatiod(12), is a mass functio defining the whole independence

of one source on another one:
K .
mAS(A) =3¢ 3 Mg/ (A) VAC 29 (27)

With k; is the cluster matched tg according tos. Two different mass func-

tionsm®-St andm®-% are obtained fos, ands, respectively. We note that -t

3Big clusters are those containing enough mass functiorsa@iog to| Q |.
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is the combination oK mass functions representing the independence of matched
clusters according ts; defined using equatiofi (4). Mass functian® s and
m<-% are different since cluster matchings are different whietifies the axiom of
non—symmetry.[Bkl1 k27Bk22 K, € [0,1] verify the non-negativity and the normalization
axioms. Finally, pignistic probabilities are computednfrthese mass functions in

order to decide about sources independeg&aith that:

la(s1,S2) = BetR(Ind)

d(s1,S2) = BetR(Dep)

(28)

If I 4(s1,S2) > l4(s1,S2) we claim that sources; ands; are independent otherwise

they are dependent.

4.5, General case

The method detailed above estimates the independence coomee on an-
other one. Independence measure is non-symmetric bedauseurces; is inde-
pendent on a sourc® thens; is not necessarily independent &rnand even if it is
the case, degrees of independence are not necessarilyrbe sa

It is wise to choose the minimum independence frgfsil ;) and k(s;,s1) as
the overall independence. Consequently, if at least one@gburces is dependent
on the other, then sources are considered dependent. Invedings, two sources
are independent only if they are mutually independent. dgogerall indepen-

dence that is denotdds;, s,) is given by:

I(s1,52) = min(lg(s1,2), ld(S2, 1)) (29)

We note that (s1,S,) is non-negative, normalized, symmetric and identical.
We define an independence measure, nbiegeneralizing the independence for

more than two sources verifying the following axioms:
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1. Non-negativity: Many sources independen{®,s,,Ss,...,Ss}, noted
l4(s1,%,---,Shs) CANNOt be negative, it is either positive or null.

2. Normalization: Sources independerde a degree if0,1]. The minimum
0 is reached when sources are completely dependent and Kieuna 1 is
reached when they are completely independent.

3. Symmetry:1(s1,%,S3,...,5s) IS the sources’ overall independence and
1(S1,%2,%3, - Sns) = (82,51, 83, - -, Sns) = 1(S3,51, %, - -, Shs)-

4. ldentity:1(s1,s1,81) = 0. It is obvious that any source is completely depen-
dent on itself.

5. Increasing with inclusiont(s;,s) < I(s1,,S3), more there are sources,

more they are likely to be independent.

To compute the overall independencensfsources{s;,s,...,Ss}, indepen-
dencies of pairs of sources are computed and the maﬂ'rimmapendence is the

sources overall independence:
(51,2, .,5s) = max(1(s,s))), vie[lng ,j€li,ng (30)
or equivalently:
1(s1,%; .-, Ss) = max(min(la(s;, s)), la(s;,))), vi,jellng i#] (31)
Independence degree of sources is then integrated in thbirtation step using
the following mixed combination rule.
5. Combination rule

Combination rules using conjunctive and/or disjunctivieesusuch as [2, 5, 6,

1,.8] are used when sources are completely independent btibus and bold

4The maximum is used to insure the property of increasing inithusion.
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rules [10] tolerate redundant information and consequerath be used to combine
mass functions which sources are dependent. In the corbirgtep, sources de-
pendence or independence hypothesis is intuitively matieowt any possibility
of check. Sources independence degree is neither 0 nor 1lbu¢leover|0,1].
The main question is “which combination rule to use when doinly partially
independeniependent mass functions?”

In this paper, we propose a new mixed combination rule usomjuactive and
cautious rules detailed in equation$ (8) aind (13). In the chsotally dependent
sources (where independence is 0), the cautious and pptged combination
rules are similar; whereas in the case of totally indepensteurces (independence
is 1), the conjunctive and proposed combination rules andasi In the case of an
independence degree | 1], combined mass function is the average of conjunc-
tive and cautious combinations weighted by sources’ indepece degree.

Assume that two sources ands, are independent with a degrgesuch that
y =1(s1,%); my andmy, are mass functions provided By ands,. The proposed

mixed combination rule is defined as follows:

Muixed (A) = Y+ M@ (A) + (1—y) xm@p(A), VACQ (32)

The degree of independence of a set of sources is given byiequydd), and
the mixed combination of a set of mass functidms;, my, ..., mys} provided by

sources{s1, S, ..., S} IS also a weighted average such that:

yzl(SﬂJSQr"aS"IS) (33)
Properties of the proposed mixed combination rule:

e Commutativity: Conjunctive and cautious rules are comuinga Indepen-
dence measure is symmetric because sources’ degree oémtte is the

same for a set of sources. Then the proposed rule is comueutati
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e Associativity: Conjunctive and cautious rule are asso@diut the proposed
rule is not because independence degree sifurces and + 1 ones is not

necessarily the same.

¢ Idempotent: Degree of independence of one source to is8lfin that case
the proposed rule is equivalent to the cautious rule. As #utiaus rule is

idempotent, it is the case of the proposed mixed rule.
e Neutral element: Mixed combination rule does not have anyrakelement.
e Absorbing element: No absorbing element also.

Example. Assume a frame of discernme@t= {a,b,c} and two sources; ands,
providing two mass functionsy andm,. Table[1 illustrates conjunctive and cau-
tious combinations as well as mixed combination in the cagesey =0, y=0.3,

y= 0.6 andy = 1. Wheny = 0, mixed and cautious combinations are equivalent;
wheny = 1, mixed and conjunctive combinations are equivalent, rotise it is a
weighted average by €)0, 1].

Finally, to illustrate the proposed mixed combination rated compare it to
other combination rules, three mass functions are gemeratelomly using algo-
rithm[2. These mass functions are combined with conjuncihampster, Yager,
disjunctive, cautious and mean combination rules. Theyak® combined with
the mixed combination rule with different independencelsy
Figure[3 illustrates distancgbetween the mixed combination with several de-
grees of independence and combined mass functions usifgnctive, Dempster,
Yager, disjunctive, cautious and mean combination ruléstaces between mixed

combination with several independence degrees; and Ydigamctive, mean and

5Jousselme distance detailed in equation (16).

23



Dempster’s rules are linear and decreasing proportionaljy

Table 1: Combination of two mass functions

20 m | M | M@ M@ | Mvixed | MMixed | MMixed | MMixed
y=0 | y=03|y=06]|y=1
0 0 0 0.1071| 0.06 | 0.1071| 0.093 | 0.0789 | 0.06
a 0.3] 0.3 0.2679| 0.45| 0.2679| 0.3225 | 0.3771 | 0.45
b 0 0 0 0 0 0 0 0
aub 0 0 0 0 0 0 0 0
c 020 0.1786| 0.14 | 0.1786| 0.167 | 0.1554 | 0.14
auc 0.2] 0.4 0.2551| 0.26 | 0.2551| 0.2566 | 0.2580 | 0.26
buc 0 0 0 0 0 0 0 0
aubuc | 03| 0.3 0.1913| 0.09| 0.1913| 0.1609 | 0.1305 | 0.09

6. Experiments

Because of the lack of real evidential data, we use genenassd functions to
test the method detailed above. Moreover, it is difficultitoidate all situations
with all possible combinations of focal elements for selveegrees of indepen-
dence between sources. First, we generate two sets of madsofs for two

sourcess; andsy; then we illustrate for three sources.

6.1. Generated data depiction

Generating sets af mass functions for several sources depends on sources

independence. We discern cases of independent and depsonderes.
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Figure 3: Distances between combined mass functions

6.1.1. Independent sources
In general, to generate mass functions some informationeeded: the num-

ber of hypotheses in the frame of discernmé®,| and the number of mass func-

tions. We note that number of focal elements, and masse$aser randomly.

In the case of independent sources, masses can be anywtdoearelements
of both sources are chosen independently. Mass functionsaofls, are generated
following algorithm[2. We note that focal elements, theimher andsBms are

chosen randomly according to the universal low.

Algorithm 2 Independent mass functions generating
Require: |Q|, n: number of mass functions

1: fori=1tondo

2. Choose randomlyF |, the number of focal elements @h |2?|].

3:  Choose randomlyF | focal elements noteB.

4. Divvy the interval[0, 1] into |F| continuous sub-intervals.
5. Focal elementgBMs are intervals sizes.

6: end for

7: return nmass functions
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6.1.2. Dependent sources

The case of dependent sources is a bit difficult to simulaseasral scenarios
can occur. In this section, we will try to illustrate the mostmmon situations.
Generated mass functions for dependent sources are sdppdse consistent and
do not enclose any internal conflict [27]. Consistent masstfans contain at least
one focal element common to all focal sets. Figure 4 illdsga consistent mass

function where all focal elemen{®\, B, C, D} intersect.

Figure 4: Consistent belief function

Algorithm[3 generates a set pbfconsistent mass functi(l%slefined on a frame
of discernment of sizé Q |. In the case of dependent sources, they are almost
consistent and at least one of them is dependent on the dthsimulate the case
where one source is dependent on another one, consisteatfumasions of the
first one are generated following algorithilh 3, then thoséhefd¢econd source are
generated knowing decisions of the first one. Algorifim 4egates a set of mass
functions that are dependent on another set of mass fusctidependence is due

to the knowledge of other source’s decisions.

8Conflict within such mass functions is null.

26



Algorithm 3 Consistent mass functions generating
Require: |Q|, n: number of mass functions

1: fori=1tondo
2:  Choose randomly a focal sef (it can be a single point) frorQ.
3:  Find the seBof all focal sets includingy.

4:  Choose randomlyF

, the number of focal elements ¢h |S)].
5.  Choose randomlyF | focal elements fron® notedF.

6:  Divvy the interval[0, 1] into |F| continuous sub-intervals.

7 BBMS of focal elements are intervals sizes.

8: end for

9: return nconsistent mass functions

6.2. Results of tests

Algorithms detailed in the previous section are used to $este cases of
sources’ dependence and independence. We note that imexteses where mass
functions are certain or even when focal elements do natset¢ maximal values
of independence are obtained. In the case of perfect depesdmass functions
have the same focal elements; however, clusters contaia fmastions with con-
sistent focal elements. Clustering is performed accortiinfpcal elements and

clusters are perfectly linked.

6.2.1. Independent sources

In this paragraph, mass functions are independent. Fosalegits andBmS
are randomly chosen ensuing algorithm 2. For tests, we eljd@$= 5 which is
considered as medium-sized frame of discernmeninand 00. Tablé R illustrates
the mean of 100 tests in the case of independent sources. ddreaoh100 tests for
two dependent sources yields to a degree of independesc@ 68, thus sources

are independent. Assume that andm,, given in table 1L, are provided by two
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Algorithm 4 Dependent mass functions generating

Require: |Q|, n: number of mass functionsd,decision of another source

1: fori=1tondo
2:
3:
4.
5:
6:

7.

Find the seSof all focal sets includingl.

Choose randomlyF

Choose randomlyF | focal elements frons notedF.

, the number of focal elements ¢h |S)].

Divvy the interval[0, 1] into |F| continuous sub-intervals.

Focal elementgBMS are intervals sizes.

end for

8: return nconsistent mass functions

sourcess; ands, which independence degree is given in tdlle 2. Combination o

my, andmy, is given in tablé B.

dent mass functions are generated following algorithm 22 |= 5. The mean

To illustrate the case of three independent sources, tietseot 100 indepen-

of 100 tests are illustrated in talble 4.

Table 2: Mean of 100 tests on 100 generated mass functiomadmources

Dependence type Degree of independence Overall independence

l4(s1,5) = 0.68, Ig(s1,5,) = 0.32 | y=0.68
Independence —

la(sz,51) = 0.68, l3(s2,51) = 0.32

lg(s1,%2) = 0.34,14(s1,5) = 0.66 | y=0.34
Dependence —

la(sz,51) = 0.35,14(s2,51) = 0.65

6.2.2. Dependent sources

rithms[3 and 4. For tests, we chod€® |= 5 andn = 100. We generate 100 mass

In the case of dependent sources, mass functions are gahersuing algo-
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Table 3: Mixed combination ah, andm,

20 M | M | Myiixed | MMixed
y=068| y=0.34

0 0 0 0.092 0.076

a 0.3 0.3 0.3262 | 0.3881
b 0 0 0 0

aub 0 0 0 0

C 02|0 0.1662 | 0.1531
auc 0.2 0.4 0.2567 | 0.2583
buc 0 0 0 0
aUbuc| 0.3 0.3]| 01589 | 0.1244

functions of botts; ands, for 100 times and then compute the average(ils,),
l4(s2,51) andl(sy,sp). Tablel2 illustrates the mean of 100 independence degrees
of two dependent sources providing each one 100 randomlgrged mass func-
tions. These sources are dependent with a degreg 2+ 0.66. In tabld B and
mp are combined using the mixed rule whegs:= 0.34.
To illustrate the case of three dependent sources, thre@k&00 dependent mass
functions are generated following algorithids 3 ahd 4 wh@rj=5. The mean of
100 degrees of independence are illustrated in fdble 5.

Finally, assume than;, m, andmg of table[® are three mass functions defined
on a frame of discernme® = {a,b,c} and provided by three dependent sources.
The mixed combined mass function when their degree of inudgrece iy = 0.35

is also given in tablE]6.
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Table 4: Mean of 100 tests on 100 generated mass functiotisrésr independent sources

Sources Degree of independence Pairwise Overall
independence independence
la(s1,52) = 0.67,14(s1,52) = 0.33 | I(s1,5) = 0.67
T la(S2,51) = 0.67,l4(s2,51) = 0.33
lg(s1,53) = 0.68, Ig(s1,53) = 0.32 | I(s1,53) =0.68 | y=0.68
e la(Ss,51) = 0.68,1g(Ss,51) = 0.32
la(Sp,S3) = 0.68, 14(sp,53) = 0.32 | 1(sp,53) = 0.68
e la(Ss,52) = 0.68,I4(Ss,S,) = 0.32

7. Conclusion

In this paper, we proposed a method to learn sources cogimitilependence in

order to use the appropriate combination rule either wheinces are cognitively

dependent or independent. Sources are cognitively indigmerif they are differ-

ent; not communicating and they have distinct evidentiapom. The proposed

statistical approach is based on a clustering algorithnliegbpo mass functions

provided by several sources. A pair of sources independendeduced from

weights of linked clusters after a matching of their clustdndependence degree

of sources can either guide the choice of the combinatianifut is either 1 or O;

when it is a degree ové0, 1], we propose a new combination rule that weights the

conjunctive and cautious combinations with sources’ iedelence degree.
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