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Abstract1: 

Since supply chains are increasingly built on complex interdependences, concerns to adopt new 

managerial approaches based on collaboration have surged. Nonetheless, implementing an 

efficient collaborative solution is a wide process where several obstacles must be faced. This 

work explores the key role of experimentation as a model-driven decision support system for 

managers in the convoluted decision-making process required to evolve from a reductionist 

approach (where the overall strategy is the sum of individual strategies) to a holistic approach 

(where global optimization is sought through collaboration). We simulate a four-echelon supply 

chain within a large noise scenario, while a fractional factorial Design of Experiments (DoE) 

with eleven factors was used to explore cause-effect relationships. By providing evidence in a 

wide range of conditions of the superiority of the holistic approach, supply chain participants 

can be certain to move away from their natural reductionist behavior. Thereupon, practitioners 

focus on implementing the solution. The Theory of Constraints (TOC) defines an appropriate 

framework, where the Drum-Buffer-Rope (DBR) method integrates supply chain processes and 

synchronizes decisions. In addition, this work provides evidence of the need for aligning 

incentives in order to eliminate the risk to deviate. Modeling and simulation, especially agent-

based techniques, allows practitioners to develop awareness of complex organizational 

problems. Hence, these prototypes can be interpreted as forceful laboratories for decision 

making and business transformation.  

Keywords: 

Drum-Buffer-Rope; Model-Driven Decision Support Systems; OUT Policy; Theory of 

Constraints; Throughput Accounting.  

                                                 
1 Abbreviations: ABM – Agent-based Modeling; DBR – Drum-Buffer-Rope; DoE – Design of Experiments; OUT – 

Order-up-to; SCM – Supply Chain Management; TA – Throughput Accounting; TOC – Theory of Constraints. 
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1. Introduction 

 

Reductionism and holism represent two opposite philosophical approaches to problem 

solving. While the former is based on the “divide and conquer” paradigm (breaking 

down the problem into simpler and smaller parts), the latter underscores the idea that 

systems must be viewed as a whole and not as collection of parts. In this sense, when 

reductionism is applied to Supply Chain Management (SCM), the overall strategy is 

obtained as a sum of the individual strategies of the companies that conform the 

supply chain (i.e. local optimization). On the contrary, in a holistic context, these 

individual strategies are the result of an overall strategy defined by collaboration (i.e. 

global optimization). Therefore, supply chain members must tackle a dilemma [1]: 

deciding between favoring decisions which go in their own interest and 

accommodating those that consider the interest of the system as a whole.  

Given that supply chains are growingly built on interrelationships, practitioners 

widely accept that holistic approaches play a crucial role in improving overall 

performance. Nevertheless, even though it might seem counterintuitive, reductionism 

is still widespread in real systems [2]. This approach results in a Nash equilibrium, 

which brings lower overall performance [3]. If each member ignores the impact of its 

actions on the other echelons, the maximization of individual metrics often occurs at 

the expense of the entire supply chain performance [4]. In this sense, local optimization 

has shown to be a major source of inefficiencies, such as the well-known Bullwhip 

Effect [5], that define a set of common issues faced by real supply chains –e.g. excessive 

inventories, low customer service level, and high production variability. 

Under these circumstances, collaboration stands out as a key source of competitive 

advantages. This research work explores the key role of experimentation through 
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Agent-Based Modeling (ABM) [6] as a powerful model-driven decision support system 

[7] for managers in the complex decision-making process of adopting a collaborative 

solution within the supply chain. These computer-based prototypes can be interpreted 

as forceful and risk-free laboratories for business transformation.  

Firstly, this article aims to provide evidence of the fact that holistic approaches clearly 

outperform reductionist ones from an economic perspective. In addition, it uses 

experimentation techniques to define the sources where the upgrade is based on. It is 

only by understanding the improvement that supply chain actors can be certain when 

moving away from their natural reductionist behavior.  

Once developed the awareness of practitioners through the economic comparison, they 

focus on adopting holistic solutions. The implementation of efficient solutions is a wide 

process that requires an integrative schema, where information sharing must be 

understood as an enabler. In this sense, experimentation aims to motivate the 

confidence between supply chain echelons. It is relevant to underline that the efficiency 

of the collaborative solution depends not only on the technical component but also on 

the acceptance level of the decision makers. 

From that point on, adopting holistic approaches requires to integrate processes, 

synchronize decisions, and set up systemic performance indicators. This paper shows 

how to use the Theory of Constraints (TOC) [8] with that goal through modeling 

techniques, which has been compared to the inventory cost-optimal Order-Up-To 

(OUT) policy [9]. That is, TOC allows participants to define a systemic methodology to 

tackle the previously identified issues. This production paradigm manages the supply 

chain flows through the Drum-Buffer-Rope (DBR) method with a focus on the 

bottleneck and defines a systemic scorecard through the Throughput Accounting (TA).  
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However, this is not enough. If there are huge differences in how the echelons benefit 

from collaboration, the holistic approach would not be viable. That is, collaboration 

must be aimed at achieving the optimal through a Nash equilibrium where the 

incentives to deviate are eliminated. For this reason, we last focus on the concept of 

“incentive alignment” [10]. The profit increase must reward the contribution of each 

node in order to avoid opportunistic behaviors. Agent-based prototypes can lead the 

supply chain to modify its costs structure with this aim.   

By way of summary, Figure 1 describes the decision map of this research and shows 

how experimentation conducts, in each step, the adoption of a holistic management. 

This graph, assuming the reductionist approach is the baseline, underscores the need 

for five connecting features in order to implement efficient collaborative solutions [10]. 

 
Fig. 1. Decision map of this research, which highlights the role of experimentation. 

 

2. Background: Literature Review 

 

Some key points of the research context are described below. We first present the main 

dilemma faced by supply chain members. Next, we introduce an integrative 

framework to take advantage of the collaborative approach. Lastly, the TOC is detailed 

as a systemic method to combat the issues derived from the reductionist approach.  
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2.1. The Dilemma of Supply Chain Practitioners. 

 

The main goal of companies is to make money now and in future [8]. To accomplish 

this objective, they can adopt two positions. This is the so-called dilemma [1]. This 

inherent decision for supply chain members can be expressed by Figure 2.  

 
Fig. 2. The dilemma of supply chain members through an evaporating cloud (adapted from [1]). 

 

The traditional approach to face this dilemma (to maximize individual performance) 

consists in seeking for protecting their individual profitability [4]. This reductionist 

behavior provokes win-lose games, in which each member looks for its own bargain at 

the expense of its partners [11]. Local optimization results in multiple forecasting, price 

fluctuations, and rationing games that (strengthened by order batching and lead times) 

translate into information distortion along the supply chain. This causes dramatic 

inefficiencies within the system, through the well-known Bullwhip Effect [12], e.g. low 

service levels and excessive fluctuations in inventories and orders.  

From a holistic perspective, the various supply chain echelons understand that the best 

solution for the whole system leads to the best solution for them. Therefore, in order to 

maximize profit, they make decisions considering the global profitability, namely they 

use systemic performance metrics [1]. In a collaborative way, supply chain participants 

coordinate their processes and synchronize their decisions aimed at revenues from 

final customers instead of their own sales [4].   
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2.2. An Integrative Framework for Supply Chain Collaboration. 

The literature on the subject mostly assumes holistic methods to outperform traditional 

management policies (based on reductionist principles) in terms of overall supply 

chain performance. However, practitioners find it difficult to address the issue of 

supply chain collaboration, which justifies why, even shown it superiority, it is not 

widespread in practice [13]. If a robust solution is not found, the menace of 

opportunistic behaviors arise, which creates an environment of uncertainty and 

complexity such that the cost of transacting under this context involves additional risk 

and expense [14]. Namely, the effectiveness of collaboration relies not only upon the 

integration of operations, but also upon the level to which efforts are aligned [13].  

This fact highlights the relevance of defining an appropriate framework for supply 

chain collaboration where to obtain competitive advantages by working together [4]. 

This must be integrative, i.e. connecting different features of collaboration, such as the 

one proposed by Simatupang and Sridharan [10], which considers five edges: 

(1) Information sharing, defined as the access to private data in all members’ 

systems creating visibility at the different nodes on the overall system state.   

(2) Decision synchronization, which refers to the extent to which the various 

echelons can orchestrate critical decisions at planning and execution levels. 

(3) Incentive alignment, achieved through the process of sharing costs, risks, and 

benefits among the various participants in an equitable manner. 

(4) Integrated processes, i.e. the design of the efficient supply chain flow that 

delivers products to end customers in a timely manner at lower costs. 

(5) Systemic performance indicators, understood as the process of devising and 

implementing metrics that guide members to improve overall performance. 
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2.3. The Theory of Constraints (TOC) in Supply Chain Management (SCM). 

The TOC, presented by E. M. Goldratt [8], meant a major innovation in the production 

field. This management philosophy views any system as being limited in reaching a 

higher performance only by its bottleneck. Although it was first oriented on the 

manufacturing system, further development incorporates solutions for other business 

areas, such as SCM [15]. The TOC holistic paradigm has been shown to achieve 

breakthrough improvements in comparison with mass production alternatives in terms 

of lead time reduction, customer service level increase, and throughput growth [16].  

For this reason, the TOC can be presented as the core of the collaborative solution, 

namely, it allows managers to integrate processes, synchronize decisions and set up a 

performance system [1]. Its logical thinking is expressed as a continuous improvement 

cycle with five steps [8]:  

(1) To identify the bottleneck. 

(2) To decide how to exploit the bottleneck. 

(3) To subordinate everything else in the system to the previous step. 

(4) To elevate the bottleneck. 

(5) To evaluate if the bottleneck has been broken, and return to the beginning. 

To manage the system, the TOC proposes the DBR methodology [8]. This pull-oriented 

strategy (i.e. replenishment is based on actual demand instead of on the forecast) aims 

to manage properly the bottleneck (ensuring its steady supply) through suitable 

coordination. It is named by its three main components. The drum, placed at the 

bottleneck, is a system pacemaker. The rest of the nodes follow its beat (production 

rate). The buffer protects the drum against variability, so that the full capacity in the 

bottleneck is exploited. The rope is the release mechanism that subordinates the entire 
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system to the drum. The DBR configuration (planning state) is complemented with the 

buffer management (monitoring stage), which implies administrating the buffer along 

the different nodes in order to guide how the system is tuned for peak performance. 

Applying this method along the supply chain warrants the concentration of all 

members to what matters for the system as a whole [2].  

In addition, the TOC defines a collaborative performance system to measure how the 

company performs. Unlike cost accounting (aimed at cost reduction), the TA [17] seeks 

to maximize the efficiency of the flow of value. Hence inventory is not considered as an 

asset, but a liability. The TA aims to enable managers to examine the link between 

process constraints and financial performance in decision making, i.e. to determine the 

real impact of their decisions. Three financial measures are proposed as 

complementary indicators: net profit (absolute terms), return on investment (relative 

terms), and cash flow (survival terms). The operational decisions are related to overall 

system success through the “cost bridge”, defined by three metrics [17]:  

(1) Throughput: the rate at which the system generates money through sales, i.e. 

the difference between the revenue and the total variable costs.  

(2) Inventory: it includes not only raw material, work-in-progress, and finished 

goods stock but also all other invested money in the supply chain. 

(3) Operating Expense: all the money the system spends in order to turn inventory 

into throughput, e.g. transformation and shipping costs.  

 

3. Problem Formulation: Supply Chain Model 

 
This section is devoted to detail the conceptual model of the agent-based supply chain 

that has been developed in this research, as well as the wide context where to confirm 

economic robustness of the results.  



 

9 

 

3.1. Supply Chain Scenario: Assumptions and Scope. 

In the same line as other relevant and recent studies [18], the supply chain has been 

analyzed under the Beer Game environment [19]. This is a traditional single-product 

supply chain with a serial structure formed by four echelons (factory, distributor, 

wholesaler, and retailer). With the aim of bringing it closer to reality, the noise sources 

have been expanded in order to consider common hurdles in real supply chains. It can 

be called the noise-extended Beer Game environment. The assumptions are as follows:  

(1) Stochastic customer demand. Specifically, a normal distribution simulates 

demand. Both mean and standard deviation are selected by the experimenter. 

(2) Stochastic lead time. Each node receives both product and orders within a time 

range (set by the user) after sent, defined by a continuous uniform distribution. 

(3) Stochastic failure of products. In each product’s action (including storage and 

transport) along the supply chain, there is a probability of failure, defined by 

the defective products rate, which is set by the experimenter. 

(4) Constrained production (factory) and transportation (between the various 

echelons) capacity. The user defines these quantity limitations. However, 

unconstrained storage capacity has been considered. 

(5) Non-negative condition of the order quantity. Each member cannot return the 

product to its supplier. 

Figure 3 displays the parameter diagram that describes the scope of this study. In the 

centre, it shows the overall system function responsible for transforming raw materials 

into finished products. Among the nodes, the material flow (from the factory to the 

retailer) refers to the shipping of the product, while the information flow (in the 

opposite direction) represents the orders. At the top part, the noise sources 
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(uncontrollable factors) that threaten the supply chain can be seen divided into internal 

(lead times, defective products, and storage) and external (demand variability, 

transport, and raw materials). At the bottom part, the parametric space (controllable 

factors) highlights the factors to be modified. The extensive costs scenario and the 

performance (both financial and operational) metrics explained below are also shown. 

 
Fig. 3. Scope of the research, by means of a parameter diagram. 

 

3.2. Economic Model and Performance Metrics.  

The economic model seeks to imitate the main revenues and costs faced by real supply 

chain members. Income in the overall system is only generated through selling the 

product (to customer). In each node, money is made by sales to the next echelon. 

Expenditure is incurred in three ways: storage, transport, and provisioning. All of them 

have been considered to be proportional. Obviously, the provisioning cost of each 

echelon means the income for the previous one. Hence, a pricing system must be 

defined in the supply chain. All these economic parameters are set by the user.  
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As explained, the TA is supported on three operational measures. According to TOC 

principles, the throughput is the difference between the revenue through sales (selling 

price times sales quantity) and the variable costs related to purchases (buying price 

times purchase quantity). Note that the gap between sales and purchase quantities is 

due to defective products and storage. The operating expense is calculated by adding 

storage and transport costs, as both are assumed to transform inventory into 

throughput. In the reductionist approach, this expense is adjusted by the difference 

between the money paid and received due to backorder penalty (as it is a usual 

practice in reductionist systems). Finally, the inventory in terms of TA is obtained by 

estimating the economic value of the products that are stored in each node.  

From that point on, the key financial indicators can be easily obtained [17]. The net 

profit is expressed as the difference between throughput and operating expense, the 

cash flow considers, besides the above difference, the change of investment in the same 

horizon, and the return on investment is the net profit divided by the inventory. These 

metrics can be obtained for the overall supply chain (in the holistic supply chain) or 

node by node (in the reductionist system).  

Figure 4 outlines the economic model of the supply chain, including the three operating 

metrics and the main financial measure (net profit).  

 
Fig. 4. Overview of the economic model of the supply chain, with the operating metrics.  
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3.3. Reductionist Approach: The Order-Up-To (OUT) Inventory Policy. 

In the non-collaborative management, each supply chain echelon communicates only 

with the previous one (to receive an order and to send the product) and with the next 

one (to place an order and to receive the product). Therefore, customer demand is only 

known by the retailer. In this mode, orders not fulfilled in time are backlogged, as 

usual in these replenishment models [9]. In each node, these backorders (involving an 

economic penalty) are fulfilled as soon as on-hand inventory becomes available. 

This approach has been implemented through the OUT method. These policies are 

often used in the real world, given the usual practice in retailing to replenish very 

frequently [5] and because it is optimal in terms of inventory and shortage costs [20].  

 The classic OUT method is a periodic review system for issuing orders depending on 

demand forecasting and (both on-hand and on-order) inventory position, in order to 

bring the inventory position up to a defined level. That is, the order rate is the sum of 

the forecast, the gap between actual and target net stock (on-hand inventory), and the 

discrepancy between actual and target work-in-progress (on-order inventory). In this 

research, the demand has been forecast using a three-period moving average. 

Both the target work-in-progress and the target net stock (a safety stock) are considered 

to be variables. Its sum to the forecast defines the OUT point. The former aims to cover 

the lead time between nodes, so it is easily estimated as the forecast times the average 

shipping lead time. The latter is aimed to protect supply chain nodes from demand 

variability and from internal noise sources (variability in lead times and defective in 

products).  It is proportional to the demand standard deviation, to the lead time range, 

and to the estimated defective products. Each term in multiplied by the parameter Z, 

set by the user and related to the desired service level.  
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In the reductionist system, the discrete operation (sequence of events) of each node is 

summarized by Figure 5 for the distributor. At the beginning of each period, the 

product is received from the factory and it is stocked up. Then, the order is received 

from the wholesaler, and the net stock is checked in order to prepare the shipping. If 

the order can be fulfilled (besides considering previous backlog), the required quantity 

is sent; otherwise, backlog is generated and the available product is shipped. The next 

steps depend on the previously explained OUT policy. Notice both flows are delayed 

due to the lead time. The operation is similar for the other nodes.  

 
Fig. 5. Sequence of events for the distributor when applying the OUT policy. 

 

3.4. Holistic Approach: The Drum-Buffer-Rope (DBR) Methodology. 

Under the collaborative approach, the system is ruled by a kind of headquarters that 

accounts for the interest of the whole supply chain, taking decisions on the basis of 

greater visibility (supported by information sharing). Accordingly, the various nodes 

behave as required to protect the overall supply chain function.  

From that point on, the holistic approach has been implemented through TOC 

principles, which are based on prioritizing the system bottleneck. In particular, the 

DBR method leads to both synchronize the entire sequence of integrated activities 
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required to deliver products and to create effective processes aimed at achieving 

breakthrough improvements in system performance and reliability [21]. 

According to TOC logical thinking, the first step is to identify the bottleneck. In supply 

chains, the bottleneck tends to be the sales constraint as (production, transport, and 

storage) capacities are usually higher than demand [22]. Under this scenario, the 

demand is an external constraint beyond the supply chain sphere of influence. Hence, 

the bottleneck cannot be elevated or broken, and consequently the fourth and fifth 

steps of the improvement cycle are not required.  

That is, the key points are the second and third steps, which define the sequence of 

events through the DBR method. On the one hand, the supply chain must efficiently 

exploit the bottleneck. This means to sell the product at the retailer, i.e. to minimize lost 

sales. To this end, the drum is placed at the retailer. This must beat out (define) the 

production and distribution rate for the whole system according to the actual demand. 

On the other hand, the other nodes must be subordinated to the bottleneck. In this 

sense, the retailer is protected from shortages, and thus the supply chain as a whole, 

against variation.  

To subordinate the factory, the distributor, and the wholesaler to the bottleneck, we 

need the buffer and the rope [23]. The buffer is aimed at protecting the bottleneck 

through time. Uncertainty in the supply chain (demand, lead times, and defective 

products) must not increase lost sales. Thus, the buffer refers to the time period 

between releasing the material and the drum due date. For each node, the buffer 

considers the maximum lead time between itself and the customer. The rope is the 

release timing. It can be understood as a real-time feedback between the drum and the 

node operation. It should be noted that the rope length covers the same as the buffer 
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duration. Tying the rope ensures that excess flow cannot be admitted. In this sense, the 

rope defines how much to order: the difference between the desired (considering the 

drum rate along the buffer time, and a safety stock to protect against demand 

variability and defective products) and the actual (sum of the net stock and shipping 

product) supply chain inventory. As the overall inventory is constrained, the Bullwhip 

Effect is dramatically reduced.  

This DBR configuration, where the systemic condition to tie the different members 

through time (not by product) is established, is the planning stage. It is aimed to 

operate the system. Subsequently, a second stage is required each time period [2]. In 

the control stage (aimed at keeping a running check of the system efficiency), the buffer 

is managed along the intermediate members. Buffer management consists in moving 

the flow so that arrival happens on time at the bottleneck. 

The main ideas explained above are displayed in Figure 6b (it highlights the role of the 

three main components of the DBR method) in contrast to Figure 6a, which shows the 

basic ideas of the OUT policy. It should be noted that the factory decides the 

production orders that are placed based on the recent demand, while the rest of the 

nodes compensate the flow dissipated downstream after shipping. They calculate the 

rope length to the drum position, and make the order decision based on its 

downstream buffer to the bottleneck. This way, each supply chain member decides the 

quantity to dose subordinated to the bottleneck, so these dissipative orders do not have 

lead time nor generate backorders since the next dosage again obey the bottleneck [24]. 

On the contrary, note that in the reductionist system the nodes consider the upcoming 

demand and local inventories to order. Youngman [22] has developed an outstanding 

guide for TOC implementation in production and distribution systems, which can be 

consulted to get further detail.  
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Fig. 6a. Overview of the supply chain, when working according to the OUT policy.  
 

 

Fig. 6b. Overview of the supply chain, when working according to the DBR methodology.  

 

 

4. Agent-Based Development of the System 

 

In order to carry out the experimental approach aimed at comparing a supply chain 

managed using the OUT policy versus the same system ruled by TOC principles, the 

noise-extended Beer Game environment was required to be modeled. From the 

different available alternatives to create this model, we chose ABM [6].  

ABM is a decentralized approach to model design emerging analytical method for 

social sciences, aimed at simulating the actions and interactions of autonomous agents 

(between them and with the environment) with a view to assessing their effects on the 

system as a whole [6]. This modeling approach follows the underlying notion that 
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complex systems are built bottom-up. ABM fits in computational science [25] and is a 

very suitable approach when the problem is intractable by analytical tools, when the 

theoretical approach might be not reliable, or the experimentation with a real system is 

unfeasible or costly; all of which apply in our case. Actually, ABM is largely used to 

analyze the complex behavior of supply chains [26].  

As ABM has its roots in Complex Adaptive Systems [27], we have extensively used 

these mechanisms to build our model: the agents are tagged (can be distinguished), 

they have internal and polymorphous rules to represent decision making, and the 

model is created by using building-blocks (aggregating simpler reusable components). 

The system has been implemented using NetLogo 5.1.0 [28]. NetLogo is a multi-agent 

programmable modeling environment continuously developed by the Center for 

Connected Learning and Computer-Based Model (Northwestern University). 

We have used different breeds (types) of agents to represent the system, such as actors 

(supply chain echelons), events (that trigger the action), entities (representing material 

and orders), records (performance metrics), and police (for controlling and debugging). 

Each one has its own attributes and methods. Thus, agents are heterogeneous [29]. 

The engineering of the agent-based model consists in making the agents to follow 

discrete-event cues and make them behave as finite-state machines. For this reason, a 

Future Event List (FEL) artifact is a core feature in the model, as it cares about cueing 

future events to deploy action. In addition, the model is based on a finite-state engine, 

which makes actors roam through a cyclic map of states to perform the previously 

defined sequence of events (see Figures 5 and 6). At the beginning of each cycle (local 

for each agent), the agent is idle. At the end, it reports the main results. Therefore, 

agents are autonomous [30] in terms of their decision making. 
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Two essential phases in modeling are verification (checking cohesion and consistency) 

and validation (predictions must match the reality). In this regard, the model was 

developed following strict rules of clean code, test-driven development, and robust 

engineering. We used anti-error mechanisms (e.g. cross checking) for early detection of 

system malfunctions. In addition, several acceptance tests have been used to confirm 

that the model exhibits a known behavior when exposed to controlled conditions.  

 

5. Simulation Study and Discussion of Results 

 

This section presents the Design of Experiments (DoE), shows the results obtained in 

this research work, and discusses them based on the stated objectives.  

5.1. Design of Experiments (DoE). 

This DoE aims to assess the impact of moving from the OUT policy to a DBR-managed 

supply chain in a wide variety of scenarios, both from an overall and a node-by-node 

perspective. Using Goldratt’s principles, results (Y) are expressed in terms of net profit 

(NP) in the entire supply chain (i=0) and in the four members (i=1,…,4). This larger-

the-better indicator represents the critical concern the various supply chain members. 

The experimentation approach shown in Eq. (1) is defined as a function of eleven 

variables. In other words, treatments have been performed on different scenarios 

defined by the combination of eleven factors; see the parameter diagram in Figure 3. 

Four of them are controllable: management policy (X1), production capacity (X2), 

transport capacity (X3), and Z safety parameter (X4). The remaining seven factors are 

noise: standard deviation of the demand (Z5), transport cost (Z6), storage cost (Z7), 

defective product rate (Z8), gross margin of the supply chain echelons (Z9), range of 

the order lead time (Z10), and range of the product lead time (Z11). All of them are real 
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factors except X1 that is a categorical variable. It should also be considered the 

unexplained part of the system response, i.e. the residuals ( ). Therefore, it is a 

fractional factorial DoE with eleven factors. 

                                                      (1) 

Each factor in the DoE has two levels. Table 1 outlines the levels that have been defined. 

We have sought for wide enough ranges in these variables where to derive conclusions 

with general implications for real supply chains. Note that we have selected as fixed 

those factors that act like an anchor for the others, see Table 1. 

Table 1. DoE: Definition of the factors and levels. 
Factor Role Level 1 (Low*) Level 2 (High*) 

Management policy (X1) Controllable Holism - DBR Reduct. - OUT 
Production capacity (X2) Controllable 140 u 9876 u  
Transport capacity (X3) Controllable 140 u 9876 u 
Z safety parameter (X4) Controllable 1.282 (90%) 2.326 (99%) 
St. Dev. of the demand (Z5) External Noise 10 u 30 u  
Transport cost (Z6) External Noise 0.002 $/u/period 0.01 $/u/period 
Storage cost (Z7) Internal Noise 0.002 $/u/period 0.01 $/u/period 
Defective products rate (Z8) Internal Noise 500 ppm  6000 ppm  
Gross margin (Z9) Internal Noise 0.20 $/u 0.60 $/u  
Order lead time: Range (Z10) Internal Noise 0 periods 1 period  
Product lead time: Range (Z11) Internal Noise 1 period 4 period 
Mean of the demand (Fixed) External Noise 100 u  
Material cost (Fixed) External Noise 0.40 $/u  
Order lead time: Min (Fixed) Internal Noise 1 period  
Product lead time: Min (Fixed) Internal Noise 4 periods**  
Backorder penalty (Fixed) Internal Noise 0.04 $/u/period  
Note  (*): “Low” and “high” refers only to the categorical variables.  

(**): Except in the factory, where the product lead time is 10. 
(1): The fractional factorial DoE requires the use of mid levels in numerical factors. 
According to the standard logic, we have chosen the following values: X2 - 180 u; X3 - 
180 u; X4 - 1.64 (95%); Z5 - 22 u; Z6 - 0.006 $/u/period; Z7 - 0.006 $/u/period; Z8 - 2000 
ppm; Z9 - 0.60 $/u; Z10 - 0 periods; Z11 - 2 periods. 

 

We have employed 10 and 30 as values for the standard deviation of the demand, since 

the coefficient of variation (i.e. the ratio of the standard deviation to the mean of the 

demand, which is 100) of retail series is usually lower than 50% [5]. Regarding the 
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capacities, the lower level introduces a significant constraint in the system (40% greater 

than the average demand, which reduces the supply chain ability to react when 

backlog occurs especially when suffering from the Bullwhip Effect), while the higher 

level creates an unconstrained environment. In terms of the safety stock, the use of 90% 

(it is considered that lower values provokes a high number of lost sales) and 99% (it is 

considered that greater values result in excessive storage costs) to define the interval of 

target customer service levels is common both in research studies and in practice [31].  

Although the range of the order lead time is usually considered as null (i.e. fixed lead 

time, level 1 in our DoE), we have also chosen a range of 1 (level 2) to analyze the 

impact of this variable. At the same time and since the minimum value is 4, the range 

of the product (shipping) lead time varies between 1 (low variability; lead time 

between 4 and 5) and 4 (high variability; lead time between 4 and 8). These ranges can 

be understood as common in practice; e.g. see [32]. In terms of the defective product 

rate per time unit, we have selected an interval from 500 to 6,000 parts per million, 

since the model have been designed to usually operate within the industry-average 

area in the six-sigma scale [33]. From this point on, the model may explore other points 

either in the best-in-class area or in the non-competitive area of the six-sigma scale. 

Regarding the economic factors, the unit material cost ($0.40) sets the economic scale. 

The unit gross margin per node has been decided to cover an interval from the 50% to 

the 150% of the material cost, while the ratio of the transport and storage costs per 

period have been chosen to be between 0.5% and 2.5%. Nonetheless, the economic 

values are meaningless in their selves, but the relevant point is their financial 

implications on the supply chain. For example, the Return on Sales (ratio of the 

operating profit to the sales revenue) in the tests performed varies from -4% to 70%, 

which can be assume to largely cover the usual financial situation of real systems.  
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Table 2. DoE: Inner array (orthogonal matrix) and results of the different treatments. 
Run X1 X2 X3 X4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 NP SC NP Fact NP Dist NP Whol NP Ret 

1 OUT Low Mid Low Low High High Low High Low Low $27,044.56 $5,718.33 $4,945.86 $7,264.44 $9,115.93 
2 DBR High High Low Low High Low High High Low Low $43,686.43 $16,154.12 $8,339.36 $10,318.59 $8,874.36 
3 DBR Low High High Low High High Low Low High High $8,205.18 $3,536.14 $947.53 $2,390.29 $1,331.22 
4 DBR High Low Low Low Low High Low Low Low High $11,757.21 $3,002.22 $2,859.05 $2,887.18 $3,008.76 
5 OUT High Low High Low Low Low High High High High $34,762.44 $8,875.50 $7,079.23 $9,812.19 $8,995.52 
6 OUT Low Low High Low High Low High Mid Low Low $16,271.97 $4,440.30 $1,683.10 $4,602.04 $5,546.53 
7 DBR Low High High High Low High Low High High Low $49,044.95 $13,823.97 $11,912.50 $11,968.64 $11,339.84 
8 DBR Low Low Low Mid Low High High High High Low $46,234.37 $15,300.15 $11,221.03 $10,699.88 $9,013.31 
9 OUT High High High High High High High High Low High $18,000.34 $287.99 $2,652.27 $7,475.88 $7,584.20 
10 DBR Low Low High High High Mid High Low Low High $2,299.29 $4,418.99 $-1,799.86 $1,037.15 $-1,356.99 
11 OUT Low Low Low High High Low Low Low High Low $8,971.63 $1,816.87 $101.50 $3,565.77 $3,487.49 
12 OUT High High Low High High High High Low High Low $-2,972.76 $-4,309.84 $-2,871.24 $1,921.81 $2,286.51 
13 DBR Low High Low High Low Low High Low Low Low $11,144.96 $5,062.66 $1,577.08 $2,260.19 $2,245.03 
14 OUT High Low High High Low High Low Low Low Low $3,896.98 $-4,974.51 $1,606.11 $3,587.80 $3,677.58 
15 OUT Low High Low High Low Low Low High Low High $33,491.43 $7,596.18 $6,918.58 $9,335.48 $9,641.19 
16 DBR High Low Low High High Low Low High High High $45,336.74 $14,061.00 $9,395.73 $11,464.13 $10,415.88 
17 OUT Low High Low Low Low High High Low High High $5,176.96 $-331.77 $-23.12 $2,230.43 $3,301.42 
18 DBR High High High Low Low Low Low Low High Low $15,503.55 $4,411.51 $3,628.99 $3,857.10 $3,605.95 
19 OUT Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid $16,697.15 $2,800.37 $2,890.40 $5,280.46 $5,725.92 
20 DBR Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid $28,205.50 $8,521.28 $6,279.26 $7,047.98 $6,357.07 
21 OUT Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid $16,547.36 $2,215.26 $3,078.03 $5,515.68 $5,738.39 
22 DBR Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid $27,655.38 $8,431.51 $5,798.61 $7,047.75 $6,377.51 
23 OUT Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid $16,094.82 $1,977.17 $3,007.92 $5,249.42 $5,860.31 
24 DBR Mid Mid Mid Mid Mid Mid Mid Mid Mid Mid $27,032.78 $8,601.08 $5,571.46 $6,613.59 $6,246.65 
Notes (1): This table highlights the collaborative treatments.  
 (2): “NP SC” represents the overall net profit of the supply chain, while the last four columns show the net profit of the four supply chain members. 
 (3): A more detailed version of the results is available upon request.  
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5.2. Layout and results. 

Following Fisher’s strategy [34], an 18-row orthogonal inner array (block 1) has been 

created. Each row represents a treatment defined by a different combination of factors. 

This technique allows one to draw conclusions from a broad design space exploring 

some strategic points. In addition, 6 additional runs have been carried out (block 2). 

These are the same intermediate treatment replicated three times for both management 

approaches, with the aim of checking consistency of results and system stability. The 

former was verified through a 2-variance Levene test, which showed that differences 

are not significant. Regarding the latter, we verified there is not lack-of-fit problem. A 

time horizon of 250 periods was used for each treatment. Table 2 displays the results. 

5.3. Overall Analysis of the Results. 

First, we focus on the results of the entire supply chain. Broadly speaking, this 

experimentation provides evidence about the sound impact of DBR application to 

improve supply chain profitability in comparison with the OUT inventory policy. 

While the average net profit is $26,342.20 when DBR manages the supply chain, it is 

$16,165.24 when the OUT inventory policy is applied in each participant. This means 

an improvement of 63%. Nonetheless these impressions must be verified statistically. 

Due to this reason, Yates’ algorithm was applied to compute the estimates of main 

effects in this factorial experiment. JMP [35] statistical software has been used. 

Figure 7 shows that a linear model is enough to explain the results obtained. As the 

coefficient of determination (R2) is considerably high, the variability is more absorbed 

through the model than by the residual. Hence, there is a large capacity to explain 

system response between controllable and noise factors. The ANOVA study concludes 

that the model is relevant (p-value significantly lower than 5%). 
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Fig. 7. Summary of the Yates’ results that confirm the validity of the linear model obtained. 

 

Table 3 displays the effect diagram, with the parameter estimates (and the standard 

error), the t-ratio (which tells about the relative importance of each factor), and the p-

value. This shows six significant factors at the confidence level 95%. As expected, the 

management policy is one of them. This one and the gross margin are the more 

relevant factors. That is, the main hypothesis is confirmed: the holistic DBR method 

significantly outperforms the reductionist OUT. On the other hand, although both are 

relevant, transport cost has shown to be more important than storage cost, while the 

range of the order lead time has a higher impact than the one of the product lead time. 

Figure 8 exhibits the main effects plot. It graphically shows the influence of the various 

controllable and noise factors on supply chain net profit. It should be remarked that, 

according to the main goal of the paper, it represents the screening. Hence some of the 

effects that can be seen are negligible. Note that neither the production nor the 

transportation capacities have proven to be significant. Surprisingly, the Z safety 

parameter does not have a considerable impact on the net profit, while this metric does 

not have a significant relationship with the standard deviation of the demand. In 

addition, it is not possible to verify, at the confidence level 95%, a great negative effect 

caused by the defective product rate on the net profit.  
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Table 3. DoE screening: Effect analysis for the whole supply chain net profit. 
Factor Estimate  Std Error t-ratio p-value 

Intercept 4,864.30 3,535.65 1.38 0.1940 
Management policy (X1) (*) -5,190.72 574.69 -9.03 0.0000 
Production capacity (X2) -0.09 0.13 -0.70 0.4991 
Transport capacity (X3) -0.18 0.13 -1.35 0.2019 
Z safety parameter (X4) -1,911.71 1,273.53 -1.50 0.1592 
St. Dev. of the demand (Z5) -50.23 67.86 -0.74 0.4734 
Transport cost (Z6) -624,120.30 166,365.90 -3.75 0.0028 
Storage cost (Z7) -462,745.70 171,117.30 -2.70 0.0192 
Defective products rate (Z8) -0.50 0.24 -2.08 0.0596 
Gross margin of the levels (Z9) 77,435.22 3,413.62 22.68 0.0000 
Order lead time: Range (Z10) 4,743.19 1,241.29 3.82 0.0024 
Product lead time: Range (Z11) -1,035.85 442.83 -2.34 0.0374 
Note  (*): In this categorical variable, the results refer to OUT in comparison with DBR. 
 (1): This table highlights the significant factors at the confidence level 95%. 

 

 
Fig. 8. DoE screening: Main effects of the different factors on supply chain performance. 

 

5.4 Understanding the Improvement. 

The previous results demonstrate the improvement induced by the holistic 

management on the supply chain in economic terms, but how is this achieved? To 

answer this question, we focus on block 2 of the DoE: the central points. Table 4 shows 

the average and the standard deviation of the operational indicators in these tests 

when the system is managed through the OUT replenishment policy (runs 19, 21, and 

23) and the DBR methodology (runs 20, 22, 24).  
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Table 4. Operational indicators in block 2: mean and standard deviation (in brackets). 

Management Throughput Operating Expense Inventory 

OUT $24,249.30 ($328.35) $5,319.94 ($312.79) $2,830.00 ($428.00) 
DBR $35,193.20 ($187.48) $4,579.09 ($71.29) $2,882.53 ($50.97) 

 
These results outline that the net profit grows due to two reasons: the throughput 

tends to increase, and the operating expense tends to decrease. Nonetheless, the 

contribution of the throughput has a greater significance. It is not a surprise: the TOC 

proposes an innovative management focused on increasing the throughput, whereas 

traditional practices are aimed at cutting costs. However, and paradoxically, the DBR 

method also leads to a cost reduction. Table 5 helps to interpret these results, displaying 

some key indicators that underline the differences between both approaches. 

Table 5. Total sales, average time in the system (per unit), rolled throughput yield (RTY, or 
percentage of defect free units), and Bullwhip Effect (ratio between the variance of the overall 
inventory and the variance of the demand): mean and standard deviation (in brackets). 

Management Total sales 
Average time 
in the system 

RTY 
Bullwhip 

Effect 

OUT 22,027.0 (536.6) 58.07 (10.12) 89.84% (0.82%) 392.21 (48.35) 
DBR 27,552.7 (90.0) 34.16 (0.89) 93.37% (0.23%) 127.48 (49.36) 

 
The increase in the throughput comes mainly from the rise in the total sales in the 

system, i.e. the reduction in lost sales achieved by the DBR method. Note that the 

increase by 25% in total sales translates into a higher increase (45%) in the throughput 

due to the operating leverage. The large amount of lost sales, even when working with 

high service levels, within the reductionist system is a direct consequence of the 

problems caused by the Bullwhip Effect (variability along the supply chain is 

significantly higher). Notice lost sales increase dramatically even though the inventory 

level is similar (see the inventory in Table 4, or the average time in the system in Table 

5), since it is not appropriately distributed in the supply chain to protect the bottleneck. 

A growth in sales usually leads to an increase in operating expense. However, it does 

not occur in this case. The reason is the total time of the product in the supply chain. 
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With the OUT policy, the product tends to be unnecessarily (far from the customer) 

stored, and consequently the percentage of defective products increases (i.e. the rolled 

throughput yield reduces). As a result of both effects, storage costs are dramatically 

higher in the reductionist approach. 

It can also be noticed from inspection of Tables 4 and 5 that variations in results are 

smaller with the DBR method. That is, the reductionist approach is more sensitive to 

the repetitiveness of the experiment. The holistic approach seems to be more robust.  

5.5. Analysis by Nodes of the Results. 

Once TOC economic superiority in this noise-extended environment has been verified 

when compared to the classic OUT policy for the overall supply chain, this leads to an 

unavoidable key question: Do all supply chain members benefit in the same way from 

collaboration? Therefore, the research is moved towards the node-by-node analysis. 

We have carried out the same study for the net profit of each member.  

When results are observed in detail, it can be noticed that the wealth generated by the 

holistic approach is not equitably distributed along the various supply chain echelons. 

Table 6 exhibits the average net profit of the four nodes both when the DBR 

methodology and the OUT policy manage the supply chain. Figure 9 displays the main 

effects of the management policy factor in order to graphically show the significant 

difference in how members benefit from collaboration. 

Table 6. Local results of the same treatment when both alternatives are used to manage the 
supply chain. 

Factor OUT _ Net profit DBR _ Net profit Percentage increase 

Supply Chain $16,165.24 $26,342.20 +62.96% 
Factory $2,175.99 $8,777.05  +303.36% 
Distributor $2,589.05 $5,477.56 +111.57% 
Wholesaler $5,486.78 $6,466.04  +17.85% 
Retailer $5,913.42 $5,621.55  -4.94% 
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Fig. 9. DoE screening: Main effects of the management policy factor on the various nodes. 

 
When analyzing the reductionist approach, the dramatic economic consequences of the 

Bullwhip Effect within the supply chain arise. This phenomenon creates large 

differences in profits along the distribution system, although the gross margin is the 

same and the throughput only undergoes slight changes (due to defective products 

and storage). These variations lead to an increase in operating expense as it moves 

away from the customer. Nonetheless, there is not a great difference in factory and 

distributor. The reason could be the production limitation. This constraint is a good 

solution to tame the Bullwhip Effect at the factory [36], as prevents the factory from 

generating large variations, smoothing its behavior. This limitation tends to increase 

lost sales at the retailer, but in certain scenarios the cost reduction compensates it. 

As seen, the great increase in overall profits induced by the holistic management comes 

both from the growth in throughput (Goldratt’s practices are aimed at protecting the 

bottleneck) and the decrease in operating expense (as the Bullwhip Effect is 

significantly reduced). Nevertheless, as TOC solution is based on keeping the 

inventory near to customer in order to minimize lost sales, the retailer will assume 

higher inventory costs. Thus, as shown in Table 6, cost distribution varies considerably. 

This causes that, when the DBR method is used, those members distant to customer 
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obtain better results (in case of equality in margins), especially if unit costs are high. In 

the factory, storage costs are more relevant since the lead time is greater, while in the 

rest of the nodes, transport costs are more relevant. 

In summary, although there is a dramatic improvement generated by the collaborative 

approach in the supply chain (overall profit is increased by 63%), this increase is much 

higher as the members move away from the customer. In fact, global optimization 

might lead to economic losses in some nodes –this could happen in the retailer in the 

case analyzed. In this context, the interest in adopting a collaborative policy will be 

very different at the various nodes. Therefore, if collaboration does not generate fair 

benefits in all echelons, some barriers to holism emerge in the supply chain, and the 

system would run into a non-optimal solution. 

This node-by-node study brings evidence of the need for the fifth feature according to 

the Simatupang and Sridharan’s framework [10]. Some kind of incentive alignment is 

required in order to achieve the system optimal solution through a Nash equilibrium, 

i.e. without incentives to deviate. That is, sharing costs, risks, and benefits among the 

various members is essential for taking the system from reductionism to holism. Thus, 

experimentation through simulation allows manager to anticipate to this problem by 

defining an appropriate cost structure within the supply chain. 

 

6. Main Conclusions and Future Research 

 

Although holistic supply chain solutions are considered to outperform traditional 

reductionist alternatives, they are not yet widespread since the adoption of an efficient 

collaborative solution requires a complex decision-making process to implement an 

appropriate framework [37]. This research focuses on this transition from local to 
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global optimization understanding experimentation as a powerful engine for gaining 

knowledge. We employ an agent-based approach as a model-driven decision support 

system, where practitioners can explore a complex network of interdependences that 

would be unmanageable through other methodologies. 

There are some aspects that the authors (with practical experience in supply chains and 

change management) consider essential in this transition. One of them is the 

educational phase that is required to move supply chain participants away from their 

natural individualistic behavior. Simulation can lead them to gain confidence in 

collaborative practices [38], since motivation is crucial in this decision-making process. 

These studies can reproduce the known environment (which would be inconceivable 

through an analytical approach), and allow managers to explore complex cause-effect 

relationships within an inexpensive and risk-free context.  

This work provides evidence of TOC economic robustness in comparison with the 

OUT inventory policy when managing a four-echelon supply chain with several noise 

sources. The overall improvement came mainly from the increase of the throughput, 

which is a strong argument against traditional cutting costs-based management. 

However, paradoxically, the operating expense is also reduced due to the taming in the 

Bullwhip Effect and hence the reduction in storage costs. Several experiments have 

been carried out to statistically confirm this hypothesis, and the average increase in the 

net profit of the whole supply chain has been 63%. 

Once the improvement is perceived, supply chain actors focus on the implementation. 

In the required integrative framework, information sharing acts as an (indispensable) 

enabler. This creates a visibility environment, which facilitates decision making to be 

carried out by a headquarter office that accounts for the interest of the whole system.  
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To find an appropriate collaborative solution for the supply chain, it is essential to 

integrate processes, synchronize decisions, and define a systemic performance 

scorecard [10]. To solve these issues, a solution based on Goldratt’s TOC is proposed, 

in which the DBR method defines the collaborative behavior and the TA is used to 

determine the impact of the decisions on supply chain performance.  

We provide evidence of the fact that the net profit distribution significantly varies 

when adopting collaborative solutions. While the OUT tends to damage upstream 

echelons due to the Bullwhip Effect, the TOC approach usually favors these members. 

Under these circumstances, aligning incentives within the supply chain is required. In 

this sense, trust is essential, and risks and benefits must be shared in order to avoid 

opportunistic behaviors [39]. Computer-based prototypes can be used by managers as 

business laboratories to define an appropriate cost structure within the supply chain.  

Once studied the widely used Beer Game (serial) supply chain, future work is aimed at 

confirming the robustness of the holistic approach in divergent networks topologies.  

In addition, we intend to further explore the reductionism-to-holism transition in terms 

of incentive alignment. One simple way companies can define a robust adaptive 

mechanism (it must be able to function over time) is by altering contracts with the aim 

of fairly distributing the benefit induced by collaboration. It means establishing linear 

contracts so that each node is rewarded according to its contribution.  

A third avenue for future work is to incorporate Lean Management mechanisms in the 

agent-based system. We aim to use simulation for contrasting the TOC with the most 

known holistic paradigm. Our preliminary research suggests that while there is not a 

significant difference between both methodologies in low-noise scenarios, the TOC 

makes a difference when the supply chain faces harmful noise conditions.  
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