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Abstract

In this paper, we propose a profit-driven approach for classifier con-
struction and simultaneous variable selection based on linear Support
Vector Machines. The main goal is to incorporate business-related
information such as the variable acquisition costs, the Type I and II
error costs, and the profit generated by correctly classified instances,
into the modeling process. Our proposal incorporates a group penalty
function in the SVM formulation in order to penalize the variables
simultaneously that belong to the same group, assuming that compa-
nies often acquire groups of related variables for a given cost rather
than acquiring them individually. The proposed framework was stud-
ied in a credit scoring problem for a Chilean bank, and led to superior
performance with respect to business-related goals.
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1 Introduction

(Classification is a very relevant task in many profit-driven applications, with
credit scoring (Baesens, 2014)) being one of the most important ones. Pre-
dicting the customers that are likely to default on loan repayment via math-
ematical modeling has been a very important topic in recent decades mainly
because it helps companies to make profitable financial decisions while ful-
filling regulatory requirements (Thomas et al., |[2002).

Support Vector Machine (SVM) (Cortes and Vapnik, [1995)) is a powerful
classification approach that can be useful for decision support systems given
its superior performance compared to traditional strategies, like logistic re-
gression (Farquad and Bose| 2012; Huang et all 2004; Li et al.| 2011). This
method, however, is not able to identify the most relevant features used for
classifier construction (Guyon et al., 2006; Maldonado and Weber| |2009).

Despite the plethora of feature selection and classification methods avail-
able in the machine learning literature, most of the work in Analytics applies
traditional, statistically grounded techniques without using business-oriented
measures. Several efforts have been made in developing profit metrics for
comparing the various classification methods (see e.g [Verbeke et al.| [2012;
Verbraken et al., 2014). To the best of our knowledge, however, the only work
that goes one step further and adapts the idea of profit-driven metrics to the
task of feature selection was presented in [Maldonado et al.| (2015). In that
study, various profit-based measures were used for backward feature elimi-
nation with SVM for the churn prediction problem, without taking variable
acquisition costs into account.

In this work, we present an integrated framework for decision support in
credit assignment. This framework takes both the analysis of classification
costs and benefits into account, and includes the concept of variable acqui-
sition costs. The idea is to find the best SVM classifier by balancing the
profit obtained when the model is implemented with the cost of the variables
that are included in it. The problem of grouped variables is addressed by
using the [,-norm penalty (Zou and Yuan|, |2008)). This function is combined
with the 5 and [; regularization functions, leading to two SVM formula-
tions for classification and embedded feature selection. Two credit scoring



datasets from a Chilean bank are used. This data comes from a previously
developed project that involved small loans granted to micro-entrepreneurs
(Bravo et al., 2013). Since interpretability is of utmost importance in credit
scoring due to regulatory constraints, our framework is based on linear SVM,
avoiding black-box modeling such as kernel-based SVM.

This paper is structured as follows: in Section [2] the concept of profit
measure is described in the context of credit scoring. Previous work on fea-
ture selection and SVM classification is discussed in Section [3] The proposed
profit-based framework using SVM is described in Section [d In Section [3]
the case study is presented, and experimental results are given. Finally, the
main conclusions of this study are presented in Section [6]

2 Profit-based credit scoring

In credit scoring, the first goal is to construct a vector of characteristics x €
R that describe the repayment behavior of a set of borrowers {(x;,v;) ™,
with y; € {—1,+1} the objective variable describing the event of default (1)
or repayment (-1) after the first year of the life of the loan. The observation
window was determined studying the number of months that pass until the
bad rate for a portfolio is deemed to reach stability. This window tends to
be between 12 to 18 months for consumer lending (Siddiqi, 2007)).

From these inputs, a probability function s(z) = p(y = 1|z) can be
obtained, which is then used to decide whether future borrowers are credit-
worthy or whether the loan should be rejected. For this, a cutoff point ¢ is
used, so that if s(z;) > ¢, then the loan application will be rejected.

Given the financial nature of credit scoring, tying profits to the model
analysis and evaluation is a natural step. In Bravo et al.| (2013), this de-
cision was tied to determining the cutoff point, extending the widely used
analysis that determined this point by using the point where the slope of
the Receiver Operator Characteristic (ROC) curve intercepted with the pro-
portion between the average cost of misclassifying a good borrower versus
misclassifying a bad borrower. This idea, of obtaining the best possible cut-
off given only a fraction of the data, has been key in model evaluation. The
H-measure (Hand, 2009) has already used it, defining the cutoff points that
should be maximal given the distribution of costs, and later |Verbeke et al.
(2012) extended it by including a more thorough profit- (not cost) based
framework. It is this version, specifically the credit scoring profit framework



by [Verbraken et al. (2014), that will be the base of our analyses.

Taking a continuous model, a decision can only be made if we choose a
threshold T'. For any cutoff s, some cases will be accepted and some rejected,
which we will describe as F_1(s) and Fi(s), the cumulative distributions of
negative and positive cases at a given cutoff s, respectively. Additionally,
most credit scoring problems are imbalanced, since the commercial conditions
of the lender, such as the current acceptance policy, its risk appetite, the
market segment it targets, and the propensity of repayment in the market
where the lender operates influence the bad rate. In general, most retail
portfolios tend to have a significantly larger number of good loans than bad
loans. We will assume that the prior probability of being good is given by
m_1, and the one of being bad given by 7, such that 7_; + 7 = 1.

The last step in defining the profit comes from the analysis of (mis)clas-
sifying the cases in the dataset. There are two (potentially stochastic) costs
that are relevant for the analysis: b_; is the benefit of accepting a good
borrower, and ¢; the loss of accepting a bad borrower. Under this framework,
the average profit per borrower, given a threshold ¢ is given by (Verbeke et al.|
2012):

P(t;b_1,c1) =b_ym 1 F_4(t) — eym Fi(t). (1)

When b_; and ¢; are deterministic, then the maximization of this measure
leads to the Maximum Profit measure (MP |Verbeke et al., 2012). If any is
stochastic, this maximization lead to the Expected Maximum Profit measure
(EMP |Verbraken et al. 2013), both of which permit evaluating the perfor-
mance of a model in a profit driven environment, once the correct form of the
cost and benefit functions has been set. In Credit Scoring, both [Hand| (2009)
and |Verbraken et al.| (2014)) have detailed the most appropriate measures for
each of the functions, which are relevant to this work.

For b_i, the benefit of accepting a good borrower, the profit obtained
throughout the life of the loan has to be normalized considering multiple
repayment periods, i.e. the Return On Investment (ROI) of the loan. The
total interest (Broverman| [2010) formulas give this value. Considering a
principal A requested at maturity (terms) 7" at an interest rate given by 7,
the total interest I follows:
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The ROI of the loan will simply be the total interest I divided by the



principal A, i.e.

I M
b_, = ROI = — "

AT T-aen " )

On the other hand, the cost of accepting a bad applicant will be given by
the loss that is incurred when the borrower defaults. The Basel II Banking
Regulation Accords (Basel Committee on Banking Supervision), 2006) define
the expected loss of a borrower as

L=PD-LGD-EAD, (4)

where the PD is equal to the Probability of Default, which is derived by the
scoring function s(z). The EAD is the Exposure at Default, or the amount
that is outstanding when default occurs, and the LGD is the Loss Given
Default, or the percentage of the EAD that cannot be recovered after all
collection actions have been exhausted. Note that to estimate the cost of
accepting a bad borrower, the assumption is that the borrower will default
with certainty. So PD = 1, and only the LGD and the FAD must be
estimated to calculate the loss for each case. With this, the cost of accepting
a bad borrower will be given by:

¢1=LGD - EAD. (5)

To correctly calculate ¢q, the values of the EAD and the LGD must be
available. The Exposure at Default should already be present in the test
set, as it corresponds to the value that was in lieu of payment at the time
of default, for defaulted loans. For non-defaulted loans, this value is zero.
The LGD might not be completely available at the time of evaluation, espe-
cially if the common practice of validating using out-of-time recent samples
is followed. Three options are available to the modeler:

1. An incomplete workout period can be used, using as a measure the
recovery rate up to the time when the sample was created. This practice
falls in line with the recommendations given by the banking regulation
agreements, which mandate the use of incomplete workouts for the
estimation of LGD models (European Banking Authority, |2016]). The
LGD is then calculated as 1 - RR;,., with RR;,. the recovery rate at
the time of observation.



2. The standard regulatory parameters can be used. The Basel agree-
ments (Basel Committee on Banking Supervision), 2006|) propose a set
of standard parameters for the LGD that should be used by all finan-
cial institutions not implementing their own LGD models, i.e., using
standard or foundational Internal Ratings-Based (IRB) models.

3. For institutions implementing their own LGD models, their internal
estimates can be used.

In previous studies, an average loss has been computed over all cases. We
will use the value per-loan for our estimations. Considering each sample ¢,
we will refer to the benefit of accepting a good borrower as b_; ;, while the
cost of accepting a bad borrower will be equal to ¢;;. Each parameter will
then take the following functional form:

Miri
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One element that has been omitted so far in previous studies is the vari-
able acquisition cost. This cost can be relevant in credit risk management as
well as in many other disciplines.

The very diverse sources of data that any modern financial company has
available is also reflected in diverse variable acquisition costs. Some of these
costs are, for example:

e Internal data management costs: No matter the data source, there is a
cost for managing the data and store it efficiently within the systems
of an organization. This cost can also increase as the data diversity
increases, as for example store a mix of structured data, images, and
text might require the use of a Hadoop or similar data storage system,
which comes with higher human resource cost.

e Internal data creation cost: Almost all organizations create data when
evaluating a customer. Most organizations require, for example, a form
with the loan application. This data comes at a cost, not only due to
the time the credit officer needs to support potential borrowers in their
application, but also due to internal processes, such as data verification.
In the UK, for example, a survey indicated that 92% of all financial



institutions had procedures set in place to validate the income infor-
mation of borrowers (Financial Conduct Authority, 2017)). It is very
likely that different data sources also come at different costs: An in-
depth interview such as the ones developed for first-time applicants
some segments (notably SME such as the one in this research) might
be very expensive, but an evaluation for a returning customer for whom
only historical structured data is used might be the exact opposite.

e External data creation cost: When external providers (consultants or
surveyors) are hired to produce primary data, organizations incur ex-
ternal data creation costs. These costs can be assigned to each variable
evenly, for example. One example for this type of data would be prop-
erty valuation services.

e External data provider cost: Finally, structured or unstructured data
that can be purchased from providers, such as a credit bureau. These
variables need to be properly costed considering contractual and per-
case costs.

In section [4.3] we will integrate the costs and benefits introduced in this
section with the variable cost measures originally developed by Maldonado
et al.| (2017).

3 Theoretical background on feature selec-
tion and SVM classification

In this section, we introduce the soft-margin SVM formulation for linear
classification, and several well-known feature selection strategies for SVM
classification that are relevant for this study.

3.1 Soft-margin SVM

The traditional soft-margin SVM formulation (Cortes and Vapnik, [1995])
finds a hyperplane of the form w'x+b = 0 by solving the following quadratic



programming (QP) problem:

I -
min o [[w] +C;§z~

stoy(wix, +0)>1-&, i=1,...,m,
&20, izl,...,m,

(7)

where C' > 0 is a parameter that controls the trade-off between margin maxi-
mization and model fit, and &; denotes a slack variable related to each training
example. This strategy for model fit is known as hinge loss. Although non-
linear classifiers can be obtained from SVM using the kernel trick, we limit
ourselves to linear classifiers since interpretability is crucial in domains like
credit scoring due to regulatory constraints.

3.2 Feature Selection for SVM

Several feature selection strategies have been proposed in the literature for
SVM classification, which are divided in three families: filter, wrapper, and
embedded methods |Guyon et al.| (2006). The first approach (filter methods)
uses statistical properties to filter out irrelevant and/or redundant variables,
assessing the correlation between them and the label vector. The Fisher
Score, for example, is a statistical measure used to rank the attributes accord-
ing to their contribution before applying any classification approach (Duda
et al} 2001). This metric evaluates the absolute difference, for each feature
j, between the means of the positive (u;) and negative class (u; ), divided
by a joint standard deviation (o})* + (o).

Wrapper methods score various variable subsets according to their predic-
tive power. Since the exhaustive search for the optimal subset of variables is
a combinatorial problem, several heuristic approaches have been suggested,
such as a greedy search or meta-heuristics Guyon et al.| (2006).

The Recursive Feature Elimination SVM (RFE-SVM) (Guyon et al.
2002)), is a greedy approach that first trains SVM and then eliminates those
features whose removal leads to the largest margin of class separation in an
iterative fashion. Formally, the absolute value of the weight vector is com-
puted, and the variable j with the smallest value of |w;| is removed.

The RFE-SVM backward elimination algorithm was modified in Maldon-
ado and Weber]| (2009) to include a holdout step. The training set split into a



holdout-training subset and a validation subset, in which the number of mis-
classified instances is computed. The rationale behind this strategy, called
Holdout SVM (HOSVM), is to eliminate those features whose removal has
the least impact on the out-of-sample classification performance given by the
accuracy computed on the validation set. This idea was further extended
in Maldonado et al.| (2015)) for profit-based feature selection for churn pre-
diction. The accuracy measure was replaced by the profit obtained by a
retention campaign, considering the respective costs and benefits (MPC and
EMPC). In this work, we compare our proposal with the HOSVM method
using AUC and MPC as performance metrics on the validation set.

There are important differences between the current proposal and the
work by Maldonado et al.| (2015). First, the applications are different: Mal-
donado et al.| (2015) focuses on churn prediction in telco, while the current
proposal faces a credit scoring problem in a Chilean bank, with an alternative
definition of profit. There is also a methodological difference regarding the
feature selection strategy: Unlike HOSVM, our proposal does not perform
an iterative strategy in which attributes are discarded based on their contri-
bution in the profit measure. In the current paper, however, we penalize the
use of (group of) features in the SVM formulation by introducing a group
penalty function in the SVM formulation, a strategy that can be considered
an embedded method.

Embedded methods find an optimal subset of features in the process
of model construction. Embedded methods are able to capture dependen-
cies between variables effectively, being computationally less demanding than
wrapper methods |Guyon et al.| (2006). They are, however, conceptually more
complex than filter and wrapper methods, and modifications to SVM could
affect it virtues, such as convexity and computational efficiency.

A well-known embedded strategy for SVM classification is to penalize the
use of features by replacing the squared Euclidean norm in Formulation @
with a regularizer that encourages sparsity. The most common approach is
use of the LASSO penalty or [; norm, which provides a good compromise
between complexity reduction and feature elimination (Bradley and Man-
gasarian, 1998)).

Along the same line, a group penalty function is a regularization strat-
egy designed to penalize the use of a group of related variables together in
such a way that sparsity is encouraged at a group level instead of by remov-
ing weights independently (Yuan and Lin) 2006). Such a strategy has been
used in binary classification with categorical attributes with multiple levels,
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which are usually transformed into sets of dummy variables. In such cases, it
may be desirable to remove the full set of dummy variables (Yuan and Lin,
2006)). Feature selection can be performed simultaneously at a variable level,
jointly penalizing all the weights related to one attribute in each classification
function (see e.g. Chapelle and Keerthi, 2008)).

The best-known group penalty is called group-LASSO (Yuan and Lin|
20006)); it extends the idea of the LASSO penalty by penalizing the Euclidean
norm of the weights related to a given group. This group penalty function
has the following form:

Dw) = 3 Vil w? ®

where |[w\W|]y = \/ 2ter, w?. The measure Z; represents disjoint sets of

related features linked to a given attribute j = 1,...,J, where |Z;| = p; is
the total number of levels considered for each nominal variable (one of the
levels can be used as reference category for avoiding multicollinearity issues),
and Z}]:1 p; = n represents the total number of estimated weights.

Next, a framework based on SVM is proposed to find an optimal solu-
tion that balances the benefits and costs of classification with the variable
acquisition costs. Feature selection is performed by adding a group penalty
function, given the variable acquisition costs scheme.

4 Proposed profit-based framework for credit
scoring using SVM

The main idea of this proposal is to provide a profit-based classification
framework for SVM, performing feature selection simultaneously with the
classifier construction. The proposed approach is applied in the context of
credit scoring, although it can be used in any application where the ben-
efits for correct classification, the misclassification costs, and the variable
acquisition costs are estimated.

The proposed method is introduced in three sections: The [,.-norm penal-
ty function for grouped feature selection is introduced in Section The
proposed classification models are presented in Section 4.2 And finally, the
use of profit metrics for feature and model selection is discussed in Section

4.3l
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4.1 The L-infinity norm as group penalty function

Our proposal considers n attributes that stem from various sources with
different variable acquisition costs. In order to reduce these costs, the whole
set of variables related to one source is jointly penalized, using the [,,-norm
regularizer (Zou and Yuan) 2008). This function has the following form:

P(w) = Z w9l 9)

where |[|[w\|| = maxjez,{|w|}, i.e. the highest weight (in magnitude) for
each source of variables j = 1,...,J is minimized, Z; being the set of vari-
ables that belong to source 5. The [,-norm penalty was originally developed
for dealing with categorical variables in binary SVM classification, under the
name F,.-norm SVM. The main advantage of the [,-norm penalty of the
group LASSO is that the former can be cast easily into a smooth linear func-
tion. This strategy has not been used for selecting attributes with different
acquisition costs, to the best of our knowledge.

4.2 The proposed models for classification and feature
selection

We propose two double-regularized SVM formulations: the l3l,.-SVM, and
l1loo-SVM approaches. They differ in the regularization strategy used to
control the complexity of the solution, according to the Structural Risk Min-
imization (SRM) principle followed by SVM ((Cortes and Vapnik, (1995). The
l5l5o-SVM method combines three objectives: Euclidean norm minimization
(also known as Tikhonov regularization), l.-norm penalization for grouped
feature selection, and hinge loss minimization to guarantee an adequate
model fit. Alternatively, the [11,,-SVM method is equivalent to l3l,-SVM,
but uses the LASSO penalty instead of the Euclidean norm. The l5/,-SVM
model has the following form:

m J
1 9 ,
min — ||w|"+C i A w |
iy 3 V0D 62 D )

st y(wix, +b)>1-¢, i=1,...,m,
&ZO, izl,...,m,

(10)
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where C, A > 0 are parameters that will be tuned via grid search with cross-
validation. In order to avoid using a nonsmooth function in the previous
problem, we introduce a set of auxiliary variables z; > 0, and add new
constraints |w;| < z; for each [ € Z; and j = 1,...,J. The quadratic
programming problem solved by ll,.-SVM becomes:

m J
1 2
min = ||w||"+C i+ A Zi
i, 5P+ 0D 6 A

stoy(wx+b)>1-&,  i=1,...,m, (11)
5120, ’izl,...,m,
—ZjSQUZSZj,lEIj,jzl,...,J.

Similarly, the [1l,,-SVM model has the following form:

m J
' , ()
min [[wl, +CD &+ AW
=1 _]=1 (12)

st y(wix, +0)>1-¢&, i=1,...,m,

5120, izl,...,m,
with [[w||; = > | |w;| denoting the l;-norm of w. Again, a set of auxiliary
variables is introduced in order to avoid a non-smooth optimization problem,

leading to the following linear programming model:

n m J
Ibnin ZU¢+C’Z§i —i—)\sz
Wbz i=1 i=1 j=1

s.t. yl-(wTXme) >1-¢, 1=1,...,m, (13)
51207 i:17"'7ma
—zi<w <z, lel;, j=1,...,J,

—u<<w<u.

4.3 Proposed profit metric for model and feature se-
lection

One of the main contributions of this work is the modification of the tradi-
tional profit measure to incorporate variable acquisition costs. This metric

12



is used for model selection for standard SVM (tuning of parameter C') and
our approaches (tuning of parameters C' and \).

Let us consider the SVM classifier A = {w, b}, and a validation subset V
with samples xj and labels y; € {—1,+1}, for { = 1,...,|V|. The profit for
V consists of the benefits associated to the correctly classified non-defaulters
(negative class), minus the losses associated with the misclassified defaulters
(positive class), minus the variable acquisition costs for each source of at-
tributes used in the classifier construction. Formally, the profit measure is
redefined as follows:

, 1—sgn(w'x?+b 1—sgn(w'x? +b
Profzt(A,V):Zb,l,l g (2 L )—ch,z J (2 L )

ley— ley+

J
- V) AG,
j=1
(14)

where b_; represents the benefit for granting credit to a non-defaulter [ €
V7, ¢y is the loss for granting credit to a defaulter [ € VT, and AC; is
the variable acquisition cost for a source j. Additionally, V¥ (V™) is the
subset of positive (negative) instances in the validation set V, |V] is the
cardinality of this set, and I; is an indicator variable that takes the value
1 if maxjez, {|wi|} > e. That is to say, at least one attribute has a weight
higher (in magnitude) than €, a sufficiently small parameter, for each source
of variables j = 1,...,J. Notice that this metric estimates the total profit of
a solution on a validation set, rather than computing the expected profit of a
solution based on the prior probabilities of being defaulter or non-defaulter.

Following the ideas discussed in Section [2| we assume that the benefits
and losses for granting credit depend on the applicant. We compute b_;; as
the ROI obtained by the lender for each loan [, while ¢ ; is computed as the
expected loss considering that the loan [ is already in default. Note that the
interest rate and the amount granted are usually available for the customers
when they apply for the loans, but the losses that a defaulter generates are
not available at that moment. In this case, following |Bravo et al. (2013),
it is possible to compute the LGD as an average, based on information of
previous defaulted loans for the expected loss segment, as given by the PD of
the borrower. We also assume that the variable acquisition costs are similar
for all applicants, since they can usually be estimated as the monetary cost

13



of purchasing certain information (e.g. from credit bureaus), or by valuating
the time an analyst requires gathering the information from a given source.

5 Experimental results

We applied the proposed lsl,-SVM and [;1,.-SVM approaches to two credit
scoring datasets. We also studied other alternative feature selection methods
described in Section (Fisher Score, RFE-SVM, and the HOSVM method
using AUC and MPC as performance metrics for the validation set) for com-
parison purposes.

This section is organized as follows: the credit scoring project that pro-
vided the dataset is described in Section [5.1} The experimental settings are
described in Section [5.2] In Section [5.3] a summary of the performance ob-
tained for the proposed and alternative methods is presented. Finally, the
detailed feature selection performance for various metrics and subsets of se-
lected variables is reported in Section [5.4]

5.1 Description of the case study

The data comes from a Chilean bank that provides loans to small and micro-
companies, loans that are repaid in monthly installments. The information
was collected in the period from 2004 to 2007. The target variable corre-
sponds to the usual definition of default based on Basel II/III: one or more
instalments in arrears for more than 90 days during the first year of the loan
(Basel Committee on Banking Supervision, [2006)).

The customers are divided into two datasets according to their credit
history with the bank, as follows:

e New customers (NEW): A total of 1,510 customers was available, of
which 629 of them were defaulters. After pre-processing and filtering
out irrelevant information, a total of 94 attributes was available.

e Returning customers (RET): A total of 5,799 customers was available,
of which 872 of them were defaulters. After pre-processing, a total of
46 attributes was available.

Besides the benefits and costs of granting loans, the variable acquisition
costs were studied with the proposed framework. Specifically, the dataset

14



includes expensive internal processes as well as data from external sources
for new customers. The different sources of information can be modeled
as groups of related variables with a single cost for using this source in the
model. In other words, if one variable is identified as relevant and included in
the final model, then all the remaining variables of its group can be included
at zero cost. The following groups of related attributes were identified:

e (Credit evaluation attributes: This set of attributes comes from the form
that each applicant fills out. This application is subsequently analyzed
by the risk department, and then registered into the company database.
Since all applicants are required to fill out one of these forms, the
acquisition of these variables can be seen as a sunk cost. These forms
are filled out by the applicants in the company with one credit officer
from the bank; a task that takes about one hour, on average. Thus,
the estimated cost per borrower is €5, assuming a monthly salary of
€ 1000 per credit officer. After pre-processing, a total of 32 and 31
attributes from this source of variables were available for the new and
returning customers, respectively.

e In-depth interview attributes: The bank conducts an in-depth inter-
view of the applicant after the evaluation process. This interview is
done during a visit to the place of work of the applicant made by an
credit officer. The estimated cost for this set of attributes is € 20 per
application (four hours of an credit officer’s time). After pre-processing,
a total of 5 and 2 attributes from this source of variables was available
for the new and returning customers, respectively. Few variables are
relevant because this source of information is mainly used as an input
for the next set of variables.

e Financial analysis attributes: Once an in-depth interview is performed,
the bank estimates the cash flow of the company, which is usually not
available. This is done by a specialist who has an estimated monthly
salary of € 2000, in about two hours per borrower. The estimated cost
is then €20 per borrower. After pre-processing, a total of 34 and 13
attributes from this source of variables was available for the new and
returning customers, respectively.

e System-level information: In order to enrich the information on bor-
rowers with no credit history (new customers), the financial institution

15



acquired information on the borrowers’ standing debts in the finan-
cial system. This data source has a global fixed cost of € 1000. After
pre-processing, a total of 9 attributes was available.

e Financial analysis attributes based on system-level information: Some
of the variables constructed during the financial analysis combined
system-level information with other sources, such as evaluation or in-
terview data. Although this source does not represent a new group per
se, the costs of the four previous groups need to be considered if vari-
ables of this source are included in the solution. After pre-processing,
a total of 14 attributes was available for the new customers.

Note that, unusually, more information is available in this dataset for
new customers than for returning customers. The reason for this comes from
evaluation process carried out for both segments: the new customers do not
usually have any past credit history, a deeper (and more expensive) evalua-
tion process was done for them, resulting in the larger number of variables
for the financial analysis attribute group. For returning customers, only cer-
tain variables were captured in these segments, and past credit history was
added. This results in a smaller overall number of variables for the returning
customers.

5.2 Experimental settings

We used 10-fold cross-validation for model selection purposes, exploring the
following values for C' and \: {277,276 ... 271 20 21 926 97} Our pro-
posals perform automatic feature selection, and different combinations of C'
and A lead to different solutions in terms of performance and attributes se-
lected. In contrast, the Fisher Score, RFE-SVM, and HOSVM methods are
feature ranking approaches, requiring a predefined number of attributes as
an input. For such approaches, model selection was performed using all the
attributes, and SVM was trained subsequently for subsets of ranked features
of size n = {5, 10, 20, 30, 40, 50, 60, 70, 80,90} and n = {5, 10, 20, 30,40} for
the new and returning customers, respectively.

Logistic regression is used as an additional benchmark approach since
it is the standard model for credit scoring (Thomas et al., 2002). A back-
ward elimination procedure is performed, removing those variables whose
coefficients are not statistically significant based on the Wald test using a
significance level of o = 5%.
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A combination of undersampling and SMOTE oversampling was per-
formed for the returning customers to deal with the class-imbalance problem
(Chawla et al., [2002; |Farquad and Bose, [2012). We performed 200% oversam-
pling for the minority class, and then undersampling to perfect balance. For
the SMOTE oversampling, the nearest neighbors were set to 5, as suggested
in Chawla et al. (Chawla et al.| |2002). Data resampling was performed only
for the training set. This resampling technique proved to be the most effective
one in terms of predictive performance in our previous works on imbalanced
data classification (see Maldonado, [2015; Maldonado et al.l 2015).

The following pre-processing strategy was used to discard irrelevant in-
formation (see Bravo et al., [2013] for more details):

o A first filter was applied in order to discard useless variables, eliminat-
ing those with nominal variables with more than a 99% concentration
at a single level, numerical variables with zero standard deviation, or
more than 30% of missing values.

e The two-sample independence tests Kolmogorov-Smirnov (KS) and x?
were applied for numerical and nominal variables, respectively, in order
to discard attributes that are statistically independent with the target
variable at av = 5% significance level.

5.3 Result summary

Next, a summary of the results is presented. Tables [I] and [2] show the
performance of each method and of new and returning customers, respec-
tively, when the profit metric presented in Section is used for model
selection. For the logistic regression with the backward elimination process,
the cutoff is chosen to maximize the total profit in the validation set. This
is done by evaluating the profit using the following values for the cutoff
t € {0,0.05,0.1,0.15,...,0.95,1}. The following performance measures are
reported: AUC (x100), overall accuracy (in percentage), number of selected
variables n*, number of sources of variables selected .J*, the proposed profit
metric, benefits due to correct identification of non-defaulters, losses due to
incorrect identification of defaulters, and variable acquisition costs. All mon-
etary metrics are expressed in Euros for a group of approx. 150 and 580
applicants for new and returning customers, respectively (one tenth of the
full sample, which the average validation sample size for the 10-fold cross-
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validation procedure). The best performance among all methods in terms of
profit is highlighted in bold type.

New customers
Logit Fisher RFE-SVM HOSVM yec HOSVMpype  Ilalee-SVM  111-SVM

AUC 69.6  50.0 60.1 64.7 67.6 66.6 66.6
Accu. 70.4 583 64.2 66.6 68.5 68.2 68.2
n* 28.7 5 5 10 10 35.4 26.4

J* 4.8 2.9 2.5 3.4 3.3 1.1 1
Profit 36 1107 910 1742 1845 4449 4699
Benefits 8769 9965 8528 8008 7976 8342 8370
Losses 3235 5933 3745 3081 2696 3045 3078
Acq. Costs 5498 2925 3873 3185 3435 849 592

Table 1: Predictive performance for all feature selection approaches. New cus-
tomers. Profit as the performance metric.

Returning customers
Logit Fisher RFE-SVM HOSVMaye HOSVMype  2leo-SVM  [11,-SVM

AUC 67.7 62.3 56.9 66.1 65.5 63.2 63.2
Accu. 84.9 56.6 56.6 61.3 61.1 54.6 57.4
n* 28.8 20 5 20 20 31 31
J* 2.9 2.2 1.9 2 2.1 1 1
Profit 35913 24354 22972 29339 27913 36581 38618
Benefits 67282 42881 39193 45401 45080 42419 44874
Losses 10372 4427 5077 3933 4053 3564 3982
Acq. Costs 20998 14100 11143 12129 13114 2274 2274

Table 2: Predictive performance for all feature selection approaches. Returning
customers. Profit as the performance metric.

In tables[I]and 2] we observe relatively similar results for new and return-
ing customers. The methods l5l,.-SVM and [;/,.-SVM tend to use only the
information from the first source of attributes (credit evaluation), leading to
the lowest variable acquisition costs and the best performance in terms of
profit. The resulting differences in terms of profit between our proposal and
the alternative methods are noteworthy, mainly due to its ability to identify
cheap solutions in terms of variable acquisition costs, while the alternative
approaches use more than two different sources even when selecting five at-
tributes. Results are relatively similar in terms of benefits and losses, except
for the Fisher Score, whose best solution in terms of profit implies grat-
ing credit to all applicants (AUC=0.5), leading to higher benefits but also
greater losses. For this method, the benefits of improving classification per-
formance with additional variables is not able to compensate the acquisition
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costs. Another exception is the logit model, which has the best predictive
performance but a high variable acquisition cost since it cannot be tuned for
removing expensive variables.

Tables[3|and [ show similar information compared with tables[l]and 2] but
AUC is used instead of the profit metric to select the best model for new and
returning customers, respectively. For the logistic regression with a backward
elimination process, results based on the maximum likelihood cutoff of 0.5
are reported. Notice that the results for the logistic regression are equivalent
to tables those shown in [I] and [2| for the metrics AUC, variables selected,
sources selected, and variable acquisition costs, since the only parameter
tuned is the cutoff. The best performance among all methods in terms of
AUC is highlighted in bold type.

New customers
Logit Fisher RFE-SVM HOSVMayec HOSVMpype  loleo-SVM  111,,-SVM

AUC 69.6  69.6 70.4 69.0 69.6 70.7 70.7
Accu. 70.6  70.0 70.9 69.5 70.4 71.3 71.5
n* 28.7 80 90 80 20 90.5 58.5

J* 4.8 5 5 5 4 4.3 3.9
Profit -5 -305 -40 -379 1271 1806 2541
Benefits 8018 7738 8003 7753 7991 8107 8114
Losses 2525 2287 2288 2376 2507 2342 2386
Acq. Costs 5498 5756 5756 5756 4213 3960 3187

Table 3: Predictive performance for all feature selection approaches. New cus-
tomers. AUC as the performance metric.

Returning customers
Logit Fisher RFE-SVM HOSVMaye HOSVMype  6leo-SVM  [11,-SVM

AUC 67.7 67.8 65.0 67.0 67.2 67.7 67.4
Accu. 65.1 64.0 61.7 63.3 63.4 63.8 63.8
n* 28.8 40 40 40 40 45.6 44.2

J* 2.9 3 3 3 3 2.8 2.1
Profit 23579 21519 19740 21032 21048 23263 30399
Benefits 48436 47218 45718 46938 46822 47008 47315
Losses 3860 3716 3995 3922 3791 3734 3802
Acq. Costs 20998 21983 21983 21983 21983 20012 13114

Table 4: Predictive performance for all feature selection approaches. Returning
customers. AUC as the performance metric.

In tables [3] and [, we observe first that higher-dimensional solutions are
found, compared with the results presented in tables [I] and [2] leading to an
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increase in AUC and accuracy, but to an important loss in terms of profit.
This occurs because the use of the additional sources of variables leads to
better classification performance, but this benefit is not able to compensate
for the high cost of performing interviews and financial analyses. A compar-
ison between the different feature selection methods shows that classification
performance is relatively similar among them in terms of the highest AUC,
our proposals having best performance for the new customers. Notably, even
though the model is selected to maximize AUC, both l5l-SVM and [;l..-
SVM show a higher profit than the rest of the benchmarked models. This
follows since our methods penalize the use of variables as groups, finding so-
lutions that are cheap in terms of variable acquisition costs, but as accurate
as the other methods studied.

At this point it is important to highlight some characteristics of the
datasets that are rather uncommon in credit risk studies. First, the AUC
and accuracies for the returning customer (behavioral) model are lower than
the standard. This is caused mainly by the fact that micro-entrepreneurs
are more homogeneous than traditional applicants, and some variables, like
income, are not relevant for this problem (see Bravo et al. [2013| for a de-
tailed discussion around this topic). Additionally, type I and II error cost are
quite similar: interest rates are very high compared to the standard due to
the higher risk, but recovery rates are also high for loans labeled as defaulted
due to effective renegotiations. This segment is profitable for the bank mainly
because of the high interest rate and the low LGD. Finally, default rates are
unusually high for the new loans when comparing them with retail loans,
which explains the high interest rates that are charged to this segment. Our
framework can help elucidate which sets of variables are the most profitable
given other default rate and interest rate structures, where we do not expect,
for example, that using just one variable source is optimal. This follows from
the combination of these factors, plus the acquisition cost structure of this
particular problem.

5.4 Detailed feature selection performance

Next, the feature selection performance is detailed by plotting the variable ac-
quisition costs and the profit for an increasing number of selected attributes
for both datasets. Our approach is not directly comparable with feature
ranking methods like Fisher Score, RFE-SVM, and HOSVM since it auto-
matically identifies the optimal subset of features during the classifier con-
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struction, leading to single solutions. In order to make this comparison, we
report the performance obtained by the alternative methods for the subsets
of size n discussed in Section [5.2] and compare them with various solutions
of different cardinality obtained by lsl,-SVM and [;{,.-SVM using different
values of C' and \. In order to reflect the trends that each graph follows, we
graph, in addition to the points, the best polynomial that adjusts to those
points. These graphs are presented in figures [1| and [2] for the new customers,
and figures |3|and [4f for the returning customers. The logistic regression model
is excluded from this analysis since it provides a single subset of relevant vari-
ables, in contrast to feature ranking methods, and there are no parameters
to tune to obtain different solutions.

6000
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RFE-SVM
Fisher
—~  |l,~SVM
Ipla=SVM
N T HOSVMayc
~ HOSVMypc

B
[=}
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2000 1
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No. of Selected Features

Figure 1: Total variable acquisition costs for an increasing number of features.
New customers.

For the new customers, it can be seen that the variable acquisition costs
decrease significantly for lsl..-SVM and [1/,.-SVM when fewer attributes are
selected. This is in contrast to the alternative methods (Figure , leading
to important differences in terms of profit (Figure .

A similar analysis can be done for the returning customers: While benefits
and costs are roughly the same for all approaches, acquisition costs are much
lower in our proposal compared to the alternative methods (Figure, leading
to a much higher profit (Figure . It is important to note that no solution
with less than 30 attributes is found for our method, since it tends to use all
available variables from the cheapest source, given the nature of the /,,-norm
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Figure 2: Total Profit (benefits-losses-var.acq.costs) for an increasing number of
features. New customers.

regularizer.

The best overall performance in terms of profit is achieved by [l;{,,-SVM,
suggesting that the [; regularization is more compatible with the [,,-norm
than with the Tikhonov regularization, although the differences are very
small between them in terms of performance. In terms of complexity, we
recommend [;/,,-SVM since it can be cast into a linear programming problem,
while the [5/,,-SVM requires quadratic programming solvers.

6 Conclusions and future developments

In this study, a profit-based framework for model and feature selection is
developed. The main goal is to incorporate variable acquisition costs in the
modeling decisions, and assess the performance of the solution taking this
information into account together with the benefits and losses caused by
correct and incorrect classification, respectively. The proposal includes two
formulations that use the [,-norm as a group penalty function, encouraging
solutions that use few sources of attributes rather than a traditional fea-
ture selection scheme where all attributes have the same cost. In terms of
computational complexity, lsl..-SVM and [;1,.-SVM are almost equivalent to
[5-SVM and [1-SVM, respectively. The differences are the inclusion of vari-
ables z, one for each variable group, an extra set of constraints for the weight
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Figure 3: Total variable acquisition costs for an increasing number of features.
Returning customers.

vector, and the additional linear term in the objective function.

The proposed framework was applied in a credit scoring project of a
Chilean bank, which consists of two datasets of applicants from the micro-
entrepreneur segment. A detailed cost-benefit analysis was performed for
this data, including the computation of the financial losses for defaulters,
the benefits of successfully granted loans, and the variable acquisition costs
for each source of information. Based on this information, we compared
our laloo-SVM and [1l-SVM formulations with well-known feature selection
strategies, such as the HOSVM, the RFE-SVM, and the Fisher Score meth-
ods, showing the importance of profit-based evaluation in analytics.

From our experimental results, we can conclude that our strategy outper-
forms alternative methods in terms of profit thanks to its ability to identify
accurate solutions using few sources of variables, in contrast to traditional
feature selection methods for SVM that prioritize relevance over the source
of the information. The proposal also achieves a positive performance if tra-
ditional metrics are used, leading to the highest AUC for the new customers
and a similar one compared to that of the best method for the returning
customers. In our case study, however, some sources of attributes are too
expensive and the marginal benefits in terms of classification power gained
by using these sources are lower than the acquisition costs. In consequence,
selecting the best model based on AUC leads to an important loss of profit

23



40000 A

30000 4 i Method
RFE-SVM

Fisher

-~ ll,—SVM
Iole=SVM

HOSVMauc

~ HOSVMypc

Profit (€)
_p——

20000 -

10 20 30 40
No. of Selected Features

Figure 4: Total Profit (benefits-losses-var.acq.costs) for an increasing number of
features. Returning customers.

in this application.

Even though our solution comes at a slightly increased computational
cost, it can be applied in multiple situations. If the data sources are costly,
or the modeler must decide between many providers, then a profit-optimizing
model will quickly offset the computational expense. Our method can also
be used as an input for a traditional model, determining the most profitable
sets of variables before estimating the final predictive model.

Important future developments can be derived from this work. The fol-
lowing directions are viewed as future work:

e This work can be extended further to other analytics applications in
which profit measures are relevant for model selection, such as churn
prediction and fraud detection. For example, several sources of in-
formation can be identified in telecommunication companies, such as
socio-demographic variables, call detail records, and information from
external sources.

e There are interesting applications in the medical sciences for which the
proposed approach could be used. Although the estimation of the clas-
sification benefits and costs can be more challenging than in analytics,
our proposal can be helpful in identifying which sources of attributes
are most relevant in diagnosing a disease. The Electroencephalogram
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(EEG) and the Electrocardiogram (ECG) are well-known sources of
information that have acquisition costs and can be used jointly with
the personal information of the patient.

e The [, -norm penalization can be used in other classification methods,
such as logistic regression. Consequently, our framework can be ex-
tended to other linear methods.
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